SwissFEL: The Swiss X-ray Free Electron Laser

Applied Sciences (Switzerland) 7, 720

DOI: 10.3390/app7070720

Citation Report

#	Article	IF	CITATIONS
1	Perspective: Opportunities for ultrafast science at SwissFEL. Structural Dynamics, 2017, 4, 061602.	0.9	40
2	X-ray free electron laser: opportunities for drug discovery. Essays in Biochemistry, 2017, 61, 529-542.	2.1	19
3	A Dispersive Inelastic X-ray Scattering Spectrometer for Use at X-ray Free Electron Lasers. Applied Sciences (Switzerland), 2017, 7, 899.	1.3	12
4	Attosecond time–energy structure of X-ray free-electron laser pulses. Nature Photonics, 2018, 12, 215-220.	15.6	137
5	Elucidating ultrafast electron dynamics at surfaces using extreme ultraviolet (XUV) reflection–absorption spectroscopy. Chemical Communications, 2018, 54, 4216-4230.	2.2	26
6	First full dynamic range calibration of the JUNGFRAU photon detector. Journal of Instrumentation, 2018, 13, C01027-C01027.	0.5	27
7	Magnetic assessment and modelling of the Aramis undulator beamline. Journal of Synchrotron Radiation, 2018, 25, 686-705.	1.0	12
8	Advances in instrumentation for gas-phase spectroscopy and diffraction with short-wavelength free electron lasers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 907, 116-131.	0.7	24
9	Absolute laser-intensity measurement and online monitor calibration using a calorimeter at a soft X-ray free-electron laser beamline in SACLA. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 894, 107-110.	0.7	4
10	X-ray Free-Electron Laser. Applied Sciences (Switzerland), 2018, 8, 879.	1.3	5
11	Multi-Axis Nanopositioning System for the Hard X-ray Split-Delay System at the LCLS. Synchrotron Radiation News, 2018, 31, 15-20.	0.2	9
12	The JUNGFRAU Detector for Applications at Synchrotron Light Sources and XFELs. Synchrotron Radiation News, 2018, 31, 16-20.	0.2	44
13	Operation and performance of the JUNGFRAU photon detector during first FEL and synchrotron experiments. Journal of Instrumentation, 2018, 13, C11006-C11006.	0.5	11
14	Focusing X-ray free-electron laser pulses using Kirkpatrick–Baez mirrors at the NCI hutch of theÂPAL-XFEL. Journal of Synchrotron Radiation, 2018, 25, 289-292.	1.0	44
15	Review of fully coherent free-electron lasers. Nuclear Science and Techniques/Hewuli, 2018, 29, 1.	1.3	75
16	Generation and measurement of sub-micrometer relativistic electron beams. Communications Physics, 2018, 1, .	2.0	10
17	The ACHIP experimental chambers at the Paul Scherrer Institut. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 907, 244-247.	0.7	10
18	Deformable mirror for wavefront shaping of infrared radiation. Optics Letters, 2018, 43, 2062.	1.7	4

#	ARTICLE	IF	CITATIONS
19	Beam-based optimization of SwissFEL low-level RF system. Nuclear Science and Techniques/Hewuli, 2018, 29, 1.	1.3	9
20	Spatial displacement of forward-diffracted X-ray beams by perfect crystals. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, 75-87.	0.0	3
21	Coherent THz Emission Enhanced by Coherent Synchrotron Radiation Wakefield. Scientific Reports, 2018, 8, 11661.	1.6	16
22	Ab initiocalculation of electron-impact-ionization cross sections for ions in exotic electron configurations. Physical Review A, 2018, 98, .	1.0	3
23	Compact coherence enhancement by subharmonic self-seeding in X-ray free-electron laser facilities. Journal of Synchrotron Radiation, 2018, 25, 329-335.	1.0	6
24	Gain-guided X-ray free-electron laser oscillator. Applied Physics Letters, 2018, 113, 061106.	1.5	10
25	Structural studies on tetrapyrrole containing proteins enabled by femtosecond X-ray pulses. Advances in Botanical Research, 2019, , 33-67.	0.5	5
26	Light Sources in Europe—Case Study: The COMPACTLIGHT Collaboration. Instruments, 2019, 3, 43.	0.8	1
27	High Repetition Rate and Coherent Free-Electron Laser in the X-Rays Range Tailored for Linear Spectroscopy. Instruments, 2019, 3, 47.	0.8	5
28	Tracking multiple components of a nuclear wavepacket in photoexcited Cu(I)-phenanthroline complex using ultrafast X-ray spectroscopy. Nature Communications, 2019, 10, 3606.	5.8	56
29	A versatile experimental system for tracking ultrafast chemical reactions with X-ray free-electron lasers. Structural Dynamics, 2019, 6, 054302.	0.9	10
30	Charge-state populations for the neon-XFEL system*. Chinese Physics B, 2019, 28, 063203.	0.7	2
31	Recent Advances in Ultrafast Structural Techniques. Applied Sciences (Switzerland), 2019, 9, 1427.	1.3	9
32	Interplay and specific features of radiation mechanisms of electrons and positrons in crystalline undulators. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 11LT01.	0.6	7
33	10 years of pioneering X-ray science at the Free-Electron Laser FLASH at DESY. Physics Reports, 2019, 808, 1-74.	10.3	106
34	Sample Delivery Media for Serial Crystallography. International Journal of Molecular Sciences, 2019, 20, 1094.	1.8	49
35	Mirror systems for SwissFEL, from concept to commissioning with x-rays. AIP Conference Proceedings, 2019, , .	0.3	1
36	MariX, an advanced MHz-class repetition rate X-ray source for linear regime time-resolved spectroscopy and photon scattering. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 930, 167-172.	0.7	29

3

#	ARTICLE	IF	CITATIONS
37	Recent advances in ultrafast X-ray sources. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180384.	1.6	89
38	BRICHT: the three-dimensional X-ray crystal Bragg diffraction code. Nuclear Science and Techniques/Hewuli, 2019, 30, 1.	1.3	11
39	Realizing quantum free-electron lasers: a critical analysis of experimental challenges and theoretical limits. Physica Scripta, 2019, 94, 074001.	1.2	13
40	Installation and commissioning of the European XFEL beam transport in the first two beamlines from a metrology point of view. Review of Scientific Instruments, 2019, 90, 021701.	0.6	6
41	Stress, Roughness and Reflectivity Properties of Sputter-Deposited B ₄ C Coatings for X-Ray Mirrors*. Chinese Physics Letters, 2019, 36, 120701.	1.3	13
42	Laser-Driven Modulation of Electron Beams in a Dielectric Micro-Structure for X-Ray Free-Electron Lasers. Scientific Reports, 2019, 9, 19773.	1.6	6
43	FEL performance achieved at PAL-XFEL using a three-chicane bunch compression scheme. Journal of Synchrotron Radiation, 2019, 26, 1127-1138.	1.0	30
44	Thermally modified C-band acceleration unit for a high-repetition normal-conducting linac for free-electron lasers. Review of Scientific Instruments, 2019, 90, 113311.	0.6	0
45	Capturing the photo-induced dynamics of nano-molecules by X-ray free electron laser induced Coulomb explosion. Journal of Chemical Physics, 2019, 151, 124305.	1.2	4
46	Phase-Stable Self-Modulation of an Electron Beam in a Magnetic Wiggler. Physical Review Letters, 2019, 123, 214801.	2.9	17
47	Generation and Characterization of Intense Ultralow-Emittance Electron Beams for Compact X-Ray Free-Electron Lasers. Physical Review Letters, 2019, 123, 234801.	2.9	19
48	Attosecond single-cycle undulator light: a review. Reports on Progress in Physics, 2019, 82, 025901.	8.1	21
49	Towards a free electron laser using laser plasma acceleration on COXINEL. , 2019, , .		0
50	Multi-particle momentum correlations extracted using covariance methods on multiple-ionization of diiodomethane molecules by soft-X-ray free-electron laser pulses. Physical Chemistry Chemical Physics, 2020, 22, 2648-2659.	1.3	5
51	A GdBCO bulk staggered array undulator. Superconductor Science and Technology, 2020, 33, 014004.	1.8	23
52	Approach of Serial Crystallography. Crystals, 2020, 10, 854.	1.0	9
53	Tolerance study of travelling-wave accelerating structure for the main linac of the klystron-based first stage of Compact Linear Collider. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 981, 164499.	0.7	1
54	Robustness issues of timing and synchronization for free electron lasers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 963, 163738.	0.7	2

#	Article	IF	CITATIONS
55	Observation of Seeded Mn K \hat{l}^2 Stimulated X-Ray Emission Using Two-Color X-Ray Free-Electron Laser Pulses. Physical Review Letters, 2020, 125, 037404.	2.9	20
56	Attosecond Coherence Time Characterization in Hard X-Ray Free-Electron Laser. Scientific Reports, 2020, 10, 5961.	1.6	2
57	Demonstration of Transmission Mode Soft X-ray NEXAFS Using Third- and Fifth-Order Harmonics of FEL Radiation at SACLA BL1. Applied Sciences (Switzerland), 2020, 10, 7852.	1.3	2
58	Probing Collisional Plasmas with MCRS: Opportunities and Challenges. Applied Sciences (Switzerland), 2020, 10, 4331.	1.3	8
59	Method for developing a sub-10 fs ultrafast electron diffraction technology. Structural Dynamics, 2020, 7, 034301.	0.9	7
60	Repetitive non-thermal melting as a timing monitor for femtosecond pump/probe X-ray experiments. Structural Dynamics, 2020, 7, 054303.	0.9	1
61	Segmented flow generator for serial crystallography at the European X-ray free electron laser. Nature Communications, 2020, 11, 4511.	5.8	27
62	X-ray induced ultrafast dynamics in atoms, molecules, and clusters: experimental studies at an X-ray free-electron laser facility SACLA and modelling. Advances in Physics: X, 2020, 5, 1785327.	1.5	3
63	Comparative analysis of the theoretical and experimental spectral properties of X-FELs. Results in Physics, 2020, 19, 103361.	2.0	15
64	Characterization of the Electron Beam in the ACHIP Chamber in SwissFEL. Journal of Physics: Conference Series, 2020, 1596, 012019.	0.3	1
65	Diagnostics for Electron Pulse Trains at SwissFEL Obtained by Energy Modulation in a Laser-Driven Dielectric Structure. Journal of Physics: Conference Series, 2020, 1596, 012046.	0.3	1
66	A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam. Nature Photonics, 2020, 14, 748-754.	15.6	140
67	Crystal-based intensive gamma-ray light sources. European Physical Journal D, 2020, 74, 1.	0.6	13
68	Femtosecond Optical Laser System with Spatiotemporal Stabilization for Pump-Probe Experiments at SACLA. Applied Sciences (Switzerland), 2020, 10, 7934.	1.3	7
69	Femtosecond-to-millisecond structural changes in a light-driven sodium pump. Nature, 2020, 583, 314-318.	13.7	115
70	Towards an Optimal Sample Delivery Method for Serial Crystallography at XFEL. Crystals, 2020, 10, 215.	1.0	33
71	A synchronized VUV light source based on high-order harmonic generation at FLASH. Scientific Reports, 2020, 10, 6867.	1.6	8
72	Development of an Experimental Platform for Combinative Use of an XFEL and a High-Power Nanosecond Laser. Applied Sciences (Switzerland), 2020, 10, 2224.	1.3	16

#	ARTICLE	IF	CITATIONS
73	Measurement of charge deposition from heavy ions with the charge integrating JUNGFRAU detector. Journal of Instrumentation, 2020, 15, C05044-C05044.	0.5	1
74	First full dynamic range scan of the JUNGFRAU detector performed at an XFEL with an accurate intensity reference. Journal of Instrumentation, 2020, 15, C02025-C02025.	0.5	5
75	Real-time observation of disintegration processes within argon clusters ionized by a hard-x-ray pulse of moderate fluence. Physical Review A, 2020, 101, .	1.0	7
76	Operation of a bending magnet beamline in large energy bandwidth mode for non-resonant X-ray emission spectroscopy. Results in Physics, 2020, 18, 103212.	2.0	4
77	Magnetic field-enhanced beam monitor for ionizing radiation. Review of Scientific Instruments, 2020, 91, 063503.	0.6	2
78	Online multi-objective particle accelerator optimization of the AWAKE electron beam line for simultaneous emittance and orbit control. AIP Advances, 2020, 10, .	0.6	13
79	Single-shot temporal characterization of XUV pulses with duration from $\hat{a}^{-1}/410$ fs to $\hat{a}^{-1}/4350$ fs at FLASH. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 184004.	0.6	11
80	Experimental demonstration of enhanced self-amplified spontaneous emission by photocathode temporal shaping and self-compression in a magnetic wiggler. New Journal of Physics, 2020, 22, 083030.	1.2	13
81	Free Electron Laser Performance within the EuPRAXIA Facility. Instruments, 2020, 4, 5.	0.8	2
82	Demonstration of Large Bandwidth Hard X-Ray Free-Electron Laser Pulses at SwissFEL. Physical Review Letters, 2020, 124, 074801.	2.9	16
83	Effect of high slice energy spread of an electron beam on the generation of isolated, terawatt, attosecond X-ray free-electron laser pulse. Scientific Reports, 2020, 10, 1312.	1.6	4
84	Characterizing the intrinsic properties of individual XFEL pulses via single-particle diffraction. Journal of Synchrotron Radiation, 2020, 27, 17-24.	1.0	7
85	Nanofocusing Optics for an X-Ray Free-Electron Laser Generating an Extreme Intensity of 100 EW/cm2 Using Total Reflection Mirrors. Applied Sciences (Switzerland), 2020, 10, 2611.	1.3	17
86	Taking a snapshot of the triplet excited state of an OLED organometallic luminophore using X-rays. Nature Communications, 2020, 11, 2131.	5.8	24
87	Analysis of the first magnetic results of the PSI APPLE X undulators in elliptical polarisation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 987, 164741.	0.7	8
88	Two-dimensional tilt control of electron bunch for X-ray free electron laser. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 986, 164726.	0.7	2
89	Plasma-cascade instability. Physical Review Accelerators and Beams, 2021, 24, .	0.6	6
90	Femtosecond X-ray spectroscopy of haem proteins. Faraday Discussions, 2021, 228, 312-328.	1.6	2

#	Article	IF	CITATIONS
91	FLASH2020+: The New High Repetition Rate Coherent Soft X-Ray Facility., 2021,,.		0
92	Suppression of thermal nanoplasma emission in clusters strongly ionized by hard x-rays. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 044001.	0.6	7
93	A self-referenced in-situ arrival time monitor for X-ray free-electron lasers. Scientific Reports, 2021, 11, 3562.	1.6	5
94	Harmonics Generation in Experiments with Free-Electron Lasers in the X-Ray Wavelength Range: a Theoretical Analysis. Technical Physics, 2021, 66, 481-490.	0.2	3
95	All-atom relativistic molecular dynamics simulations of channeling and radiation processes in oriented crystals. European Physical Journal D, 2021, 75, 1 .	0.6	13
96	Study of temporal, spectral, arrival time and energy fluctuations of SASE FEL pulses. Optics Express, 2021, 29, 10491.	1.7	8
97	Atomic, molecular and optical physics applications of longitudinally coherent and narrow bandwidth Free-Electron Lasers. Physics Reports, 2021, 904, 1-59.	10.3	27
98	Hard X-ray transient grating spectroscopy on bismuth germanate. Nature Photonics, 2021, 15, 499-503.	15.6	31
99	Three-Dimensional, Time-Dependent Analysis of High- and Low-Q Free-Electron Laser Oscillators. Applied Sciences (Switzerland), 2021, 11, 4978.	1.3	6
100	Design and characterization of a magnetic bottle electron spectrometer for time-resolved extreme UV and X-ray photoemission spectroscopy of liquid microjets. Structural Dynamics, 2021, 8, 034303.	0.9	12
101	Two-color x-ray free-electron laser by photocathode laser emittance spoiler. Physical Review Accelerators and Beams, 2021, 24, .	0.6	7
102	Composition analysis of boron carbide coatings prepared by reactive sputtering with nitrogen. , $2021,$, .		0
103	Development of a precise evaluation technique for the pre-sampled point spread function of X-ray imaging detectors with sub-micrometer resolution. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1003, 165303.	0.7	3
104	X-ray harmonic radiation in free electron lasers with variable deflection parameter of the undulators. European Physical Journal Plus, 2021, 136, 1.	1.2	7
105	Energy recovery operation for continuous-wave X-ray free-electron lasers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1005, 165410.	0.7	0
106	Variable polarization states in free-electron lasers. Journal of Physics Communications, 2021, 5, 085011.	0.5	7
107	Solvent Effects in the Ultraviolet and X-ray Absorption Spectra of Pyridazine in Aqueous Solution. Journal of Physical Chemistry A, 2021, 125, 7198-7206.	1.1	7
108	Experimental demonstration of two-color x-ray free-electron-laser pulses via wakefield excitation. Physical Review Accelerators and Beams, 2021, 24, .	0.6	3

#	Article	IF	CITATIONS
109	Theoretical Analysis of the Radiation Properties of Some Major Xâ€Ray Free Electron Lasers. Annalen Der Physik, 2021, 533, 2100091.	0.9	13
110	Development of a one-dimensional differential deposition system for X-ray mirror figure correction. Precision Engineering, 2021, 71, 1-6.	1.8	5
111	Undulator design for a laser-plasma-based free-electron-laser. Physics Reports, 2021, 937, 1-73.	10.3	10
112	Overview of SwissFEL dual-photocathode laser capabilities and perspectives for exotic FEL modes. High Power Laser Science and Engineering, 0, , 1-51.	2.0	3
113	Pink-beam serial femtosecond crystallography for accurate structure-factor determination at an X-ray free-electron laser. IUCrJ, 2021, 8, 905-920.	1.0	11
114	On the possibilities of amplification and radiation of harmonics in modern X-ray free electron lasers. Optics and Laser Technology, 2021, 143, 107296.	2.2	5
115	Launching Structural Dynamics. Structural Dynamics, 2020, 7, 060401.	0.9	1
116	From synchrotrons for XFELs: the soft x-ray near-edge spectrum of the ESCA molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 244011.	0.6	7
117	High peak current operation of x-ray free-electron laser multiple beam lines by suppressing coherent synchrotron radiation effects. Physical Review Accelerators and Beams, 2018, 21, .	0.6	6
118	Robustness of a plasma acceleration based free electron laser. Physical Review Accelerators and Beams, 2018, 21, .	0.6	12
119	Generation of two-color x-ray free-electron-laser pulses from a beam with a large energy chirp and a slotted foil. Physical Review Accelerators and Beams, 2019, 22, .	0.6	13
120	Coherent extreme ultraviolet free-electron laser with echo-enabled harmonic generation. Physical Review Accelerators and Beams, 2019, 22, .	0.6	37
121	X-ray free electron laser tuning for variable-gap undulators. Physical Review Accelerators and Beams, 2019, 22, .	0.6	9
122	Multi-beam-energy operation for the continuous-wave x-ray free electron laser. Physical Review Accelerators and Beams, 2019, 22, .	0.6	18
123	Multienergy operation analysis in a superconducting linac based on off-frequency detune method. Physical Review Accelerators and Beams, 2019, 22, .	0.6	2
124	Polarization control of an x-ray free electron laser oscillator. Physical Review Accelerators and Beams, 2020, 23, .	0.6	6
125	Demonstration of two-color x-ray free-electron laser pulses with a sextupole magnet. Physical Review Accelerators and Beams, 2020, 23, .	0.6	13
126	Nanofabricated free-standing wire scanners for beam diagnostics with submicrometer resolution. Physical Review Accelerators and Beams, 2020, 23, .	0.6	2

#	ARTICLE	IF	CITATIONS
127	Low-emittance radio-frequency electron gun using a gridded thermionic cathode. Physical Review Accelerators and Beams, 2020, 23, .	0.6	5
128	High-resolution dispersion-based measurement of the electron beam energy spread. Physical Review Accelerators and Beams, 2020, 23, .	0.6	9
129	Thermal loading on crystals in an x-ray free-electron laser oscillator. Physical Review Accelerators and Beams, 2020, 23, .	0.6	4
130	Loss monitoring for undulator protection at SwissFEL. Physical Review Accelerators and Beams, 2020, 23, .	0.6	1
131	Novel <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>X</mml:mi></mml:math> -band transverse deflection structure with variable polarization. Physical Review Accelerators and Beams, 2020, 23, .	0.6	15
132	Breakdown of frustrated absorption in x-ray sequential multiphoton ionization. Physical Review Research, 2020, 2, .	1.3	9
133	BraggNet: integrating Bragg peaks using neural networks. Journal of Applied Crystallography, 2019, 52, 854-863.	1.9	25
134	Successful sample preparation for serial crystallography experiments. Journal of Applied Crystallography, 2019, 52, 1385-1396.	1.9	34
135	A compact and versatile tender X-ray single-shot spectrometer for online XFEL diagnostics. Journal of Synchrotron Radiation, 2018, 25, 16-19.	1.0	6
136	SwissFEL Aramis beamline photon diagnostics. Journal of Synchrotron Radiation, 2018, 25, 1238-1248.	1.0	29
137	Experimental station Bernina at SwissFEL: condensed matter physics on femtosecond time scales investigated by X-ray diffraction and spectroscopic methods. Journal of Synchrotron Radiation, 2019, 26, 874-886.	1.0	19
138	The SwissFEL soft X-ray free-electron laser beamline: Athos. Journal of Synchrotron Radiation, 2019, 26, 1073-1084.	1.0	51
139	Wavefront sensing at X-ray free-electron lasers. Journal of Synchrotron Radiation, 2019, 26, 1115-1126.	1.0	30
140	Intense sub-micrometre focusing of soft X-ray free-electron laser beyond 1016 Wâ€cmâ^'2 with an ellipsoidal mirror. Journal of Synchrotron Radiation, 2019, 26, 1406-1411.	1.0	23
141	X-ray fluorescence detection for serial macromolecular crystallography using a JUNGFRAU pixel detector. Journal of Synchrotron Radiation, 2020, 27, 329-339.	1.0	3
142	Accurate contrast determination for X-ray speckle visibility spectroscopy. Journal of Synchrotron Radiation, 2020, 27, 999-1007.	1.0	13
143	Two-color X-ray free-electron laser consisting of broadband and narrowband beams. Journal of Synchrotron Radiation, 2020, 27, 1720-1724.	1.0	3
144	Theoretical spectral analysis of FEL radiation from multi-harmonic undulators. Journal of Synchrotron Radiation, 2020, 27, 1648-1661.	1.0	14

#	Article	IF	CITATIONS
145	Characterizing crystalline defects in single nanoparticles from angular correlations of single-shot diffracted X-rays. IUCrJ, 2020, 7, 276-286.	1.0	4
146	Advances in long-wavelength native phasing at X-ray free-electron lasers. IUCrJ, 2020, 7, 965-975.	1.0	25
147	Strategies for sample delivery for femtosecond crystallography. Acta Crystallographica Section D: Structural Biology, 2019, 75, 160-177.	1.1	87
148	EuPRAXIA Conceptual Design Report. European Physical Journal: Special Topics, 2020, 229, 3675-4284.	1.2	64
149	Overcoming the diffraction limit by multi-photon interference: a tutorial. Advances in Optics and Photonics, 2019, 11, 215.	12.1	21
150	Modeling of XUV-induced damage in Ru films: the role of model parameters. Journal of the Optical Society of America B: Optical Physics, 2018, 35, B43.	0.9	6
151	High-resolution micro channel-cut crystal monochromator processed by plasma chemical vaporization machining for a reflection self-seeded X-ray free-electron laser. Optics Express, 2020, 28, 25706.	1.7	6
152	Towards X-ray transient grating spectroscopy. Optics Letters, 2019, 44, 574.	1.7	17
154	Investigation of a short-period microwave undulator. , 2021, , .		0
155	Radio-Frequency Undulators, Cyclotron Auto Resonance Maser and Free Electron Lasers. Applied Sciences (Switzerland), 2021, 11, 9499.	1.3	3
156	Single-Mode Fiber Based Pulsed-Optical Timing Link with Few-Femtosecond Precision in SwissFEL. , 2019, , .		0
157	Higher order modes at FELs: a machine interpretation. , 2019, , .		0
158	Simple generation of two-color FEL pulses using a sextupole magnet., 2019,,.		0
159	Generating three-color pulses in high-gain harmonic-generation free-electron lasers with aÂtilted electron bunch. Journal of Synchrotron Radiation, 2019, 26, 1473-1480.	1.0	0
160	Fast longitudinal beam dynamics optimization in x-ray free electron laser linear accelerators. Physical Review Accelerators and Beams, 2019, 22, .	0.6	3
161	Electron bunch compression with an optical laser. Physical Review Accelerators and Beams, 2019, 22, .	0.6	1
162	Methods: Experimental Techniques and Data Science. Springer Theses, 2020, , 9-63.	0.0	0
163	Imposing strong correlated energy spread on relativistic bunches with transverse deflecting cavities. Physical Review Accelerators and Beams, 2020, 23, .	0.6	2

#	Article	IF	CITATIONS
164	Intensity optimization of x-ray free-electron laser by using phase shifters. Physical Review Accelerators and Beams, 2020, 23, .	0.6	4
165	A Contrast Calibration Protocol for X-ray Speckle Visibility Spectroscopy. Applied Sciences (Switzerland), 2021, 11, 10041.	1.3	3
166	Transmission measurement at the Bernina branch of the Aramis Beamline of SwissFEL. Journal of Synchrotron Radiation, 2019, 26, 2081-2085.	1.0	4
167	Interactive Supercomputing for Experimental Data-Driven Workflows. Communications in Computer and Information Science, 2020, , 164-178.	0.4	1
168	Compact and powerful THz source investigation on laser plasma wakefield injector and dielectric lined structure. Physical Review Accelerators and Beams, 2020, 23, .	0.6	2
169	Impact of laser stacking and photocathode materials on microbunching stability in photoinjectors. Physical Review Accelerators and Beams, 2020, 23, .	0.6	3
170	Optical second harmonic generation in LiB3O5 modulated by intense femtosecond X-ray pulses. Optics Express, 2020, 28, 11117.	1.7	0
171	Coherence time characterization method for hard X-ray free-electron lasers. Optics Express, 2020, 28, 10928.	1.7	0
172	Foreword to the special virtual issue dedicated to the proceedings of the PhotonDiag2018 workshop on FEL Photon Diagnostics, Instrumentation, and Beamlines Design. Journal of Synchrotron Radiation, 2020, 27, 250-253.	1.0	0
173	Transverse-to-longitudinal emittance-exchange in optical wavelength. New Journal of Physics, 2020, 22, 063034.	1.2	3
174	FEL Simulation of New Hard X-ray Undulator Line at PAL-XFEL. Journal of the Korean Physical Society, 2020, 77, 429-437.	0.3	0
175	Beyond integration: modeling every pixel to obtain better structure factors from stills. IUCrJ, 2020, 7, 1151-1167.	1.0	8
176	Angle-dependent interferences in electron emission accompanying stimulated Compton scattering from molecules. Communications Physics, 2021, 4, .	2.0	3
177	Compact and robust supercontinuum generation and post-compression using multiple thin plates. High Power Laser Science and Engineering, 2021, 9, .	2.0	22
178	Anomalous temperature dependence of the experimental x-ray structure factor of supercooled water. Journal of Chemical Physics, 2021, 155, 214501.	1.2	7
179	X-ray FEL linear accelerator design via start-to-end global optimization. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1027, 166294.	0.7	3
181	Diagnostics of Nanosystems with the Use of Ultrashort X-Ray Pulses: Theory and Experiment (Brief) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
182	Compact LWFA-Based Extreme Ultraviolet Free Electron Laser: Design Constraints. Instruments, 2022, 6, 4.	0.8	1

#	Article	IF	CITATIONS
183	Approaching the Attosecond Frontier of Dynamics in Matter with the Concept of X-ray Chronoscopy. Applied Sciences (Switzerland), 2022, 12, 1721.	1.3	2
185	Noise in RF Systems. Particle Acceleration and Detection, 2022, , 183-264.	0.3	2
186	Observation of a Novel Lattice Instability in Ultrafast Photoexcited SnSe. Physical Review X, 2022, 12, .	2.8	10
187	Commissioning the photocathode radio frequency gun: a candidate electron source for Hefei Advanced Light Facility. Nuclear Science and Techniques/Hewuli, 2022, 33, 1.	1.3	4
188	Asymmetric electron angular distributions in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> induced by intense ultrashort soft-x-ray laser pulses. Physical Review A, 2022, 105, .	1.0	1
189	Direct measurement of photocathode time response in a high-brightness photoinjector. Applied Physics Letters, 2022, 120, .	1.5	11
190	Inverse-Designed Narrowband THz Radiator for Ultrarelativistic Electrons. ACS Photonics, 2022, 9, 1143-1149.	3.2	5
192	Methods of Coherent X-Ray Diffraction Imaging. Crystallography Reports, 2021, 66, 867-882.	0.1	6
193	Theory of polarization-averaged core-level molecular-frame photoelectron angular distributions: III. New formula for p- and s-wave interference analogous to Young's double-slit experiment for core-level photoemission from hetero-diatomic molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 244002.	0.6	4
194	Analysis of slice transverse emittance evolution in a very-high-frequency gun photoinjector. Physical Review Accelerators and Beams, 2021, 24, .	0.6	2
195	Applicability of semiclassical methods for modeling laser-enhanced fusion rates in a realistic setting. Physical Review C, 2022, 105, .	1.1	7
197	Wavefront preserving X-ray optics for Synchrotron and Free Electron Laser photon beam transport systems. Physics Reports, 2022, 974, 1-40.	10.3	22
200	X-Ray Free-Electron Lasers with Variable Deflection Parameter of Undulators. Russian Physics Journal, $0, , .$	0.2	1
201	Review and prospects of world-wide superconducting undulator development for synchrotrons and FELs. Superconductor Science and Technology, 2022, 35, 093001.	1.8	11
202	Tuning particle accelerators with safety constraints using Bayesian optimization. Physical Review Accelerators and Beams, 2022, 25, .	0.6	7
203	FEL Pulse Duration Evolution along Undulators at FLASH. Applied Sciences (Switzerland), 2022, 12, 7048.	1.3	1
204	Generating Isolated Attosecond X-Ray Pulses by Wavefront Control in a Seeded Free-Electron Laser. Ultrafast Science, 2022, 2022, .	5.8	8
205	Time resolved structural studies in molecular materials. , 2022, , .		1

#	Article	IF	CITATIONS
206	On Harmonic Generation in X-Ray Free-Electron Lasers with Variable Undulator Deflection Parameter. Technical Physics, 2022, 67, 221-233.	0.2	0
207	Generation of Even Harmonics of Undulator Radiation by Relativistic Electron Beams. Journal of Experimental and Theoretical Physics, 2022, 135, 158-172.	0.2	3
208	Femtosecond diffraction and dynamic high pressure science. Journal of Applied Physics, 2022, 132, .	1.1	6
209	Ultrafast Suppression of the Ferroelectric Instability in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl< td=""><td>າກີ່!ຕິກ>3</td><td><!--<mark-->8ml:mn><</td></mpl<></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	າກ ີ່! ຕິກ>3	<mark 8ml:mn><
210	Effect of nuclear charge on laser-induced fusion enhancement in advanced fusion fuels. Physical Review C, 2022, 106, .	1.1	0
211	Beam dynamics optimization of very-high-frequency gun photoinjector. Nuclear Science and Techniques/Hewuli, 2022, 33, .	1.3	8
212	First commissioning results of the coherent scattering and imaging endstation at the Shanghai soft X-ray free-electron laser facility. Nuclear Science and Techniques/Hewuli, 2022, 33, .	1.3	8
213	Extremely brilliant crystal-based light sources. European Physical Journal D, 2022, 76, .	0.6	5
214	Design study of a dielectric laser undulator. Physical Review Accelerators and Beams, 2022, 25, .	0.6	0
215	Time-resolved experiments on gas-phase atoms and molecules with XUV and X-ray free-electron lasers. Advances in Physics: X, 2023, 8, .	1.5	5
216	Direct measurement of Stokes–Einstein diffusion of Cowpea mosaic virus with 19 Âμs-resolved XPCS. Journal of Synchrotron Radiation, 2022, 29, 1429-1435.	1.0	4
217	SYNAPSE: An international roadmap to large brain imaging. Physics Reports, 2023, 999, 1-60.	10.3	7
218	Mitigation of CSR induced spectral broadening in EEHG FEL. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1048, 167926.	0.7	1
219	Theoretical analysis of the influence of electron beam parameters on the harmonic powers in free electron lasers. Optics and Laser Technology, 2023, 159, 108972.	2.2	2
220	Theoretical Analysis of Radiation Properties of X-Ray Free-Electron Lasers. Radiophysics and Quantum Electronics, 2022, 65, 88-117.	0.1	2
221	A self-synchronization scheme of optical-optical pulses based on the nonlinear wavelength conversion in fibers in FEL facilities. , 2022, , .		O
222	Ray-tracing simulations of a UV/VUV beamline for the PolFEL free electron laser. , 2022, , .		0
223	Automatic online optimization on transverse emittance at SXFEL-UF injector. Journal of Physics: Conference Series, 2022, 2380, 012006.	0.3	0

#	Article	IF	Citations
224	Emittance self-compensation in blow-out mode. New Journal of Physics, 2022, 24, 123008.	1.2	1
225	SwissFEL double bunch operation. Physical Review Accelerators and Beams, 2022, 25, .	0.6	4
226	X-ray free electron laser linear accelerator without a laser heater. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1048, 167968.	0.7	1
227	Seeded free-electron laser driven by a compact laser plasma accelerator. Nature Photonics, 2023, 17, 150-156.	15.6	32
228	Protein Crystallography: Achievements and Challenges. Crystals, 2023, 13, 71.	1.0	6
229	Spectral phase interferometry for direct electric-field reconstruction of synchrotron radiation. Optica, 2023, 10, 302.	4.8	6
230	Generating High-Power, Frequency Tunable Coherent THz Pulse in an X-ray Free-Electron Laser for THz Pump and X-ray Probe Experiments. Photonics, 2023, 10, 133.	0.9	3
231	Physics-constrained 3D convolutional neural networks for electrodynamics. , 2023, 1, .		3
232	Second harmonic in FELs: Generation, amplification and suppression. Europhysics Letters, 2023, 141, 45002.	0.7	4
233	X-ray Free Electron Laser Accelerator Lattice Design Using Laser-Assisted Bunch Compression. Applied Sciences (Switzerland), 2023, 13, 2285.	1.3	1
234	Few-femtosecond X-ray pulse generation and pulse duration control in a seeded free-electron laser. Frontiers in Physics, 0, 11 , .	1.0	1
235	Design of S-band photoinjector with high bunch charge and low emittance based on multi-objective genetic algorithm. Nuclear Science and Techniques/Hewuli, 2023, 34, .	1.3	2
236	Frequency and spatially chirped free-electron laser pulses. Physical Review Research, 2023, 5, .	1.3	1
243	The Complete Description ofÂLight: Higher Order Coherence. Springer Tracts in Modern Physics, 2023, , 227-279.	0.1	0
248	Improving Generalization of Meta-Learning with Inverted Regularization at Inner-Level., 2023,,.		1
255	Self-organization of photoionized plasmas via kinetic instabilities. Reviews of Modern Plasma Physics, 2023, 7, .	2.2	0
260	Imaging Clusters and Their Dynamics with Single-shot Coherent Diffraction., 2023,, 172-232.		0
263	Free Electron Lasers for X-ray Scattering and Diffraction. , 2023, , 301-343.		0

Article IF Citations