Structure of PINK1 and mechanisms of Parkinson's dise

ELife 6, DOI: 10.7554/elife.29985

Citation Report

#	Article	IF	CITATIONS
1	Structure of PINK1 in complex with its substrate ubiquitin. Nature, 2017, 552, 51-56.	13.7	114
2	Vivid views of the PINK1 protein. Nature, 2017, 552, 38-39.	13.7	2
3	<scp>PINK</scp> 1 autophosphorylation is required for ubiquitin recognition. EMBO Reports, 2018, 19, .	2.0	88
4	Basal Mitophagy Occurs Independently of PINK1 in Mouse Tissues of High Metabolic Demand. Cell Metabolism, 2018, 27, 439-449.e5.	7.2	439
5	Building and decoding ubiquitin chains for mitophagy. Nature Reviews Molecular Cell Biology, 2018, 19, 93-108.	16.1	458
6	Autophagy and lysosomal pathways in nervous system disorders. Molecular and Cellular Neurosciences, 2018, 91, 167-208.	1.0	22
7	Structural Insights into the Forward and Reverse Enzymatic Reactions in Human Adenine Phosphoribosyltransferase. Cell Chemical Biology, 2018, 25, 666-676.e4.	2.5	12
8	Impact of altered phosphorylation on loss of function of juvenile Parkinsonism–associated genetic variants of the E3 ligase parkin. Journal of Biological Chemistry, 2018, 293, 6337-6348.	1.6	22
9	The Anthelmintic Drug Niclosamide and Its Analogues Activate the Parkinson's Disease Associated Protein Kinase PINK1. ChemBioChem, 2018, 19, 425-429.	1.3	51
10	The crystal structure of pseudokinase PEAK1 (Sugen kinase 269) reveals an unusual catalytic cleft and a novel mode of kinase fold dimerization. Journal of Biological Chemistry, 2018, 293, 1642-1650.	1.6	42
11	New insights into the structure of PINK1 and the mechanism of ubiquitin phosphorylation. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 515-534.	2.3	19
12	Cellular and Molecular Basis of Neurodegeneration in Parkinson Disease. Frontiers in Aging Neuroscience, 2018, 10, 109.	1.7	153
13	Structural insights into ubiquitin phosphorylation by PINK1. Scientific Reports, 2018, 8, 10382.	1.6	35
14	Modelling mitochondrial dysfunction in Alzheimer's disease using human induced pluripotent stem cells. World Journal of Stem Cells, 2019, 11, 236-253.	1.3	13
15	The Michael J. Fox Foundation for Parkinson's Research Strategy to Advance Therapeutic Development of PINK1 and Parkin. Biomolecules, 2019, 9, 296.	1.8	15
16	Mechanisms of PINK1, ubiquitin and Parkin interactions in mitochondrial quality control and beyond. Cellular and Molecular Life Sciences, 2019, 76, 4589-4611.	2.4	73
17	Intracellular and Intercellular Mitochondrial Dynamics in Parkinson's Disease. Frontiers in Neuroscience, 2019, 13, 930.	1.4	55
18	Earliest Mechanisms of Dopaminergic Neurons Sufferance in a Novel Slow Progressing Ex Vivo Model of Parkinson Disease in Rat Organotypic Cultures of Substantia Nigra. International Journal of Molecular Sciences, 2019, 20, 2224	1.8	15

ATION REDO

CITATION REPORT

#	Article	IF	CITATIONS
19	Neuronal Mitophagy: Lessons from a Pathway Linked to Parkinson's Disease. Neurotoxicity Research, 2019, 36, 292-305.	1.3	9
20	Therapeutic approaches to enhance PINK1/Parkin mediated mitophagy for the treatment of Parkinson's disease. Neuroscience Letters, 2019, 705, 7-13.	1.0	93
21	Beetles as Model Organisms in Physiological, Biomedical and Environmental Studies – A Review. Frontiers in Physiology, 2019, 10, 319.	1.3	73
22	A Structurally-Validated Multiple Sequence Alignment of 497 Human Protein Kinase Domains. Scientific Reports, 2019, 9, 19790.	1.6	79
23	How Phosphorylation by PINK1 Remodels the Ubiquitin System: A Perspective from Structure and Dynamics. Biochemistry, 2020, 59, 26-33.	1.2	9
24	The PEAK family of pseudokinases, their role in cell signalling and cancer. FEBS Journal, 2020, 287, 4183-4197.	2.2	20
25	Mitochondrial remodeling in human skin fibroblasts from sporadic male Parkinson's disease patients uncovers metabolic and mitochondrial bioenergetic defects. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165615.	1.8	24
26	Paradoxical Mitophagy Regulation by PINK1 and TUFm. Molecular Cell, 2020, 80, 607-620.e12.	4.5	39
27	PINK1/Parkin Mediated Mitophagy, Ca2+ Signalling, and ER–Mitochondria Contacts in Parkinson's Disease. International Journal of Molecular Sciences, 2020, 21, 1772.	1.8	105
28	Emerging roles of the αCâ€Î²4 loop in protein kinase structure, function, evolution, and disease. IUBMB Life, 2020, 72, 1189-1202.	1.5	22
29	The PINK1–Parkin axis: An Overview. Neuroscience Research, 2020, 159, 9-15.	1.0	94
30	Quantitative Middle-Down MS Analysis of Parkin-Mediated Ubiquitin Chain Assembly. Journal of the American Society for Mass Spectrometry, 2020, 31, 1132-1139.	1.2	16
31	Deciphering the dual role and prognostic potential of PINK1 across cancer types. Neural Regeneration Research, 2021, 16, 659.	1.6	7
32	Molecular mechanisms and physiological functions of mitophagy. EMBO Journal, 2021, 40, e104705.	3.5	553
33	Scutellarin ameliorates high glucose-induced vascular endothelial cells injury by activating PINK1/Parkin-mediated mitophagy. Journal of Ethnopharmacology, 2021, 271, 113855.	2.0	38
36	PINK1 and Parkin: The odd couple. Neuroscience Research, 2020, 159, 25-33.	1.0	8
37	Autophagy in the mammalian nervous system: a primer for neuroscientists. Neuronal Signaling, 2019, 3, NS20180134.	1.7	13
39	Targeting PINK1 Using Natural Products for the Treatment of Human Diseases. BioMed Research International, 2021, 2021, 1-10.	0.9	7

#	ARTICLE PTEN-induced binase 1 (PINK1) and Parbin: Unlocking a mitochondrial quality control pathway linked to	IF	CITATIONS
40	Parkinson's disease. Current Opinion in Neurobiology, 2022, 72, 111-119.	2.0	40
42	Selective localization of Mfn2 near PINK1 enables its preferential ubiquitination by Parkin on mitochondria. Open Biology, 2022, 12, 210255.	1.5	10
43	Mechanism of PINK1 activation by autophosphorylation and insights into assembly on the TOM complex. Molecular Cell, 2022, 82, 44-59.e6.	4.5	42
45	Mapping of a N-terminal α-helix domain required for human PINK1 stabilization, Serine228 autophosphorylation and activation in cells. Open Biology, 2022, 12, 210264.	1.5	21
46	The role of the individual TOM subunits in the association of PINK1 with depolarized mitochondria. Journal of Molecular Medicine, 2022, 100, 747-762.	1.7	10
47	Activation mechanism of PINK1. Nature, 2022, 602, 328-335.	13.7	59
48	Mitochondrial quality control in health and in Parkinson's disease. Physiological Reviews, 2022, 102, 1721-1755.	13.1	70
49	Current opinions on mitophagy in fungi. Autophagy, 2023, 19, 747-757.	4.3	9
50	Structural features of the protein kinase domain and targeted binding by small-molecule inhibitors. Journal of Biological Chemistry, 2022, 298, 102247.	1.6	31
51	Mitochondrial-Dependent and Independent Functions of PINK1. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
52	Lipid Nanoparticles: Promising Treatment Approach for Parkinson's Disease. International Journal of Molecular Sciences, 2022, 23, 9361.	1.8	23
53	Targeting Deubiquitinating Enzymes (DUBs) That Regulate Mitophagy via Direct or Indirect Interaction with Parkin. International Journal of Molecular Sciences, 2022, 23, 12105.	1.8	1
54	Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: An update on current advances and impediments. Neuroscience and Biobehavioral Reviews, 2023, 144, 104961.	2.9	28
55	Analysis of the structural dynamics of the mutations in the kinase domain of PINK1 protein associated with Parkinson's disease. Gene, 2023, 857, 147183.	1.0	1
57	Parkin and mitochondrial signalling. Cellular Signalling, 2023, 106, 110631.	1.7	3
58	Structural Mechanisms of Mitochondrial Quality Control Mediated by PINK1 and Parkin. Journal of Molecular Biology, 2023, 435, 168090.	2.0	10
68	Mitophagy plays a "double-edged sword―role in the radiosensitivity of cancer cells. Journal of Cancer Research and Clinical Oncology, 2024, 150, .	1.2	0

CITATION REPORT

ARTICLE

IF CITATIONS