Simple Smartphone-Based Guiding System for Visually

Sensors

17, 1371

DOI: 10.3390/s17061371

Citation Report

#	Article	IF	CITATIONS
1	Android Smartphone Based Visual Object Recognition for Visually Impaired Using Deep Learning. , 2018, , .		16
2	Multi-Sensor Obstacle Detection System Via Model-Based State-Feedback Control in Smart Cane Design for the Visually Challenged. IEEE Access, 2018, 6, 64182-64192.	2.6	23
3	Prototype of Mobile Device to Contribute to Urban Mobility of Visually Impaired People. Big Data and Cognitive Computing, 2018, 2, 38.	2.9	0
4	Noise Source Visualization Using a Digital Voice Recorder and Low-Cost Sensors. Sensors, 2018, 18, 1076.	2.1	1
5	Navigation Systems for the Blind and Visually Impaired: Past Work, Challenges, and Open Problems. Sensors, 2019, 19, 3404.	2.1	110
6	Wearable Travel Aid for Environment Perception and Navigation of Visually Impaired People. Electronics (Switzerland), 2019, 8, 697.	1.8	65
7	Edge Based Obstacle Detection Model Focused on Indoor Floor-Based Obstacles. , 2019, , .		0
8	Smart Cane: Public Transportation Code Detection and Identification System for Visually Impaired. , 2019, , .		1
9	Edge Based Obstacle Detection Model for Outdoor Type Obstacles. , 2019, , .		0
10	Towards Smartphone-Based Navigation for Visually Impaired People. Advances in Intelligent Systems and Computing, 2019, , 366-373.	0.5	2
11	Developing Walking Assistants for Visually Impaired People: A Review. IEEE Sensors Journal, 2019, 19, 2814-2828.	2.4	113
12	Better campus life for visually impaired University students: intelligent social walking system with beacon and assistive technologies. Wireless Networks, 2020, 26, 4789-4803.	2.0	10
13	Enhancing perception for the visually impaired with deep learning techniques and low-cost wearable sensors. Pattern Recognition Letters, 2020, 137, 27-36.	2.6	44
14	Digital Enhancement of Cultural Experience and Accessibility for the Visually Impaired. EAI/Springer Innovations in Communication and Computing, 2020, , 237-271.	0.9	12
15	Techniques for Constructing Indoor Navigation Systems for the Visually Impaired: A Review. IEEE Transactions on Human-Machine Systems, 2020, 50, 492-506.	2.5	18
16	Tools and Technologies for Blind and Visually Impaired Navigation Support: AÂReview. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 2022, 39, 3-18.	2.1	86
17	EYERIS: A Virtual Eye to Aid the Visually Impaired., 2020,,.		4
18	VIZIYON: Assistive handheld device for visually challenged. Procedia Computer Science, 2020, 171, 2486-2492.	1.2	8

#	Article	IF	CITATIONS
19	A Systematic Literature Review of the Mobile Application for Object Recognition for Visually Impaired People. , 2020, , .		2
20	Visually Impaired Aid using Convolutional Neural Networks, Transfer Learning, and Particle Competition and Cooperation. , 2020, , .		4
21	Multimodal Navigation Systems for Users with Visual Impairments—A Review and Analysis. Multimodal Technologies and Interaction, 2020, 4, 73.	1.7	9
22	Deep Learning based Object Detection and Recognition Framework for the Visually-Impaired. , 2020, , .		8
23	A survey on Assistive Technology for visually impaired. Internet of Things (Netherlands), 2020, 11, 100188.	4.9	65
24	Uncertainty-Aware Visual Perception System for Outdoor Navigation of the Visually Challenged. Sensors, 2020, 20, 2385.	2.1	19
25	Object detection and recognition: using deep learning to assist the visually impaired. Disability and Rehabilitation: Assistive Technology, 2021, 16, 280-288.	1.3	16
26	On Supporting University Communities in Indoor Wayfinding: An Inclusive Design Approach. Sensors, 2021, 21, 3134.	2.1	8
27	A Systematic Review of Urban Navigation Systems for Visually Impaired People. Sensors, 2021, 21, 3103.	2.1	42
28	Deep learning-based application for indoor wayfinding assistance navigation. Multimedia Tools and Applications, 2021, 80, 27115-27130.	2.6	8
29	Mobile Recognition and Tracking of Objects in the Environment through Augmented Reality and 3D Audio Cues for People with Visual Impairments. , 2021, , .		3
30	Multi-functional Smart E-Glasses for Vision-Based Indoor Navigation. , 2021, , .		1
31	Sensory Substitution for the Visually Impaired: A Study on the Usability of the Sound of Vision System in Outdoor Environments. Electronics (Switzerland), 2021, 10, 1619.	1.8	5
32	Studying the Navigation Assistance System for the Visually Impaired and Blind Persons and ICT use by their Caretakers. , 2021, , .		4
34	Smartphone Navigation Support for Blind and Visually Impaired People - A Comprehensive Analysis of Potentials and Opportunities. Lecture Notes in Computer Science, 2020, , 568-583.	1.0	9
35	Designing for Blind Users. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 2020, , 1-25.	0.5	2
36	Localization Technology in Health Sector: A Study of PCTS in Rajasthan. SSRN Electronic Journal, 0, , .	0.4	0
37	Obstacle Height Estimation Related to Suitable Viewpoint while Waiting for the Bus Using Color Moment Technique. International Journal of Machine Learning and Computing, 2020, 10, 495-500.	0.8	0

#	Article	IF	CITATIONS
38	Social, Medical, and Educational Applications of IoT to Assist Visually Impaired People. Studies in Big Data, 2021, , 195-214.	0.8	0
40	Deep Learning Based Audio Assistive System for Visually Impaired People. Computers, Materials and Continua, 2022, 71, 1205-1219.	1.5	3
41	Computer Vision-Based Assistive Technology for Helping Visually Impaired and Blind People Using Deep Learning Framework. Advances in Computational Intelligence and Robotics Book Series, 2020, , 577-598.	0.4	1
42	Assisting the Visually Challenged People Using Faster RCNN with Inception ResNet V2 Based Object Detection Model. Lecture Notes in Networks and Systems, 2022, , 171-181.	0.5	1
43	Real-Time, CNN-Based Assistive Device for Visually Impaired People., 2021,,.		3
44	Sensing and Navigation of Wearable Assistance Cognitive Systems for the Visually Impaired. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15, 122-133.	2.6	11
45	Recent trends in computer vision-driven scene understanding for VI/blind users: a systematic mapping. Universal Access in the Information Society, 2023, 22, 983-1005.	2.1	9
46	Mobile augmented reality using deep learning for visually impaired people. ACM SIGACCESS Accessibility and Computing, 2022, , 1-1.	0.2	1
47	A Survey on Recent Advances in Al and Vision-Based Methods for Helping and Guiding Visually Impaired People. Applied Sciences (Switzerland), 2022, 12, 2308.	1.3	6
48	Vision Navigator: A Smart and Intelligent Obstacle Recognition Model for Visually Impaired Users. Mobile Information Systems, 2022, 2022, 1-15.	0.4	43
49	Ultrasonic Sound Guide System with Eyeglass Device for the Visually Impaired. Sensors, 2022, 22, 3077.	2.1	1
50	Banknote and obstacle detection system for visually impaired people. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2023, 11, 121-133.	1.3	1
51	Reliable Ultrasonic Obstacle Recognition for Outdoor Blind Navigation. Technologies, 2022, 10, 54.	3.0	10
52	Multiagent mobility and lifestyle recommender system for individuals with visual impairment. Neuroscience Informatics, 2022, 2, 100077.	2.8	1
54	An Extended Usability and UX Evaluation of a Mobile Application for the Navigation of Individuals with Blindness and Visual Impairments Outdoors—An Evaluation Framework Based on Training. Sensors, 2022, 22, 4538.	2.1	9
55	AviPer: assisting visually impaired people to perceive the world with visual-tactile multimodal attention network. CCF Transactions on Pervasive Computing and Interaction, 2022, 4, 219-239.	1.7	2
56	An exploration of smartphone use by, and support for people with vision impairment: a scoping review. Disability and Rehabilitation: Assistive Technology, 2024, 19, 407-432.	1.3	2
57	Range sensor-based assistive technology solutions for people with visual impairment: a review. Disability and Rehabilitation: Assistive Technology, 2024, 19, 576-584.	1.3	1

#	Article	IF	CITATIONS
58	DeepNAVI: A deep learning based smartphone navigation assistant for people with visual impairments. Expert Systems With Applications, 2023, 212, 118720.	4.4	15
59	Smart Glass with Multi-Functionalities for Assisting Visually Impaired People. Journal of Physics: Conference Series, 2022, 2318, 012001.	0.3	1
60	Third Eye Hand Glove Object Detection for Visually Impaired using You Only Look Once (YOLO)v4-Tiny Algorithm. , 2022, , .		5
61	The development of an augmented reality audio application for visually impaired persons. Multimedia Tools and Applications, 0, , .	2.6	1
62	CNN Based Personal Assistive System for Deaf-Blind., 2022,,.		1
63	Pedestrian and Vehicle Detection for Visually Impaired People. Cognitive Science and Technology, 2023, , 37-51.	0.2	1
64	Identifying the walking patterns of visually impaired people by extending white cane with smartphone sensors. Multimedia Tools and Applications, 0 , , .	2.6	0
65	Facilitate Access to Buildings Using a Navigation Mobile application. , 2022, , .		0
66	Framework for Object Recognition and Detection for Blind Users Using Deep Learning. Lecture Notes in Networks and Systems, 2023, , 862-870.	0.5	0
67	Convolutional Neural Networks andÂEnsembles forÂVisually Impaired Aid. Lecture Notes in Computer Science, 2023, , 520-534.	1.0	0
69	Assistance For Visually Impaired People Using Deep Learning. , 2023, , .		0
73	Blind Lane Detection and Following for Assistive Navigation of Vision Impaired People., 2023,,.		0
74	Empowering Individuals with Visual Impairments: A Deep Learning-Based Smartphone Navigation Assistant. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 19-30.	0.5	0
78	Review of substitutive assistive tools and technologies for people with visual impairments: recent advancements and prospects. Journal on Multimodal User Interfaces, 2024, 18, 135-156.	2.0	0
79	I am the Eye - Assistive Eye. , 2023, , 209-224.		0
80	Recent advancements in indoor electronic travel aids for the blind or visually impaired: a comprehensive review of technologies and implementations. Universal Access in the Information Society, 0, , .	2.1	1