A review of fibrin and fibrin composites for bone tissue

International Journal of Nanomedicine Volume 12, 4937-4961

DOI: 10.2147/ijn.s124671

Citation Report

#	Article	IF	CITATIONS
1	Innovative biodegradable poly(L-lactide)/collagen/ hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation. International Journal of Nanomedicine, 2017, Volume 12, 7577-7588.	6.7	44
2	Biomineralization of Fucoidan-Peptide Blends and Their Potential Applications in Bone Tissue Regeneration. Journal of Functional Biomaterials, 2017, 8, 41.	4.4	21
3	Enhanced tendon-to-bone repair through adhesive films. Acta Biomaterialia, 2018, 70, 165-176.	8.3	26
4	Biologically Inspired Materials in Tissue Engineering. Pancreatic Islet Biology, 2018, , 113-147.	0.3	1
5	Biomimetic Architectures for Peripheral Nerve Repair: A Review of Biofabrication Strategies. Advanced Healthcare Materials, 2018, 7, e1701164.	7.6	94
6	Fibrin-based delivery strategies for acute and chronic wound healing. Advanced Drug Delivery Reviews, 2018, 129, 134-147.	13.7	101
7	Fabrication of platelet-rich plasma heparin sulfate/hydroxyapatite/zirconia scaffold. Bioinspired, Biomimetic and Nanobiomaterials, 2018, 7, 122-130.	0.9	11
8	Nanogel tectonic porous 3D scaffold for direct reprogramming fibroblasts into osteoblasts and bone regeneration. Scientific Reports, 2018, 8, 15824.	3.3	26
9	Fibrin-Based Biomaterial Applications in Tissue Engineering and Regenerative Medicine. Advances in Experimental Medicine and Biology, 2018, 1064, 253-261.	1.6	58
10	Gate-Free Hydrogel–Graphene Transistors as Underwater Microphones. ACS Applied Materials & Interfaces, 2018, 10, 42573-42582.	8.0	21
11	Optimal biomaterials for tracheal epithelial grafts: An in vitro systematic comparative analysis. Acta Biomaterialia, 2018, 81, 146-157.	8.3	14
12	Advances in Protein-Based Materials: From Origin to Novel Biomaterials. Advances in Experimental Medicine and Biology, 2018, 1078, 161-210.	1.6	30
13	Abundant proteins in platelet-rich fibrin and their potential contribution to wound healing: An explorative proteomics study and review of the literature. Journal of Dental Sciences, 2018, 13, 386-395.	2.5	17
14	Journey into Bone Models: A Review. Genes, 2018, 9, 247.	2.4	80
15	A Novel Microplate 3D Bioprinting Platform for the Engineering of Muscle and Tendon Tissues. SLAS Technology, 2018, 23, 599-613.	1.9	76
16	State-of-Art Functional Biomaterials for Tissue Engineering. Frontiers in Materials, 2019, 6, .	2.4	49
17	Dual Crosslinked Gelatin Methacryloyl Hydrogels for Photolithography and 3D Printing. Gels, 2019, 5, 34.	4.5	27
18	3D Microfluidic Bone Tumor Microenvironment Comprised of Hydroxyapatite/Fibrin Composite. Frontiers in Bioengineering and Biotechnology, 2019, 7, 168.	4.1	49

#	Article	IF	CITATIONS
19	Incorporation of Fibrin Matrix into Electrospun Membranes for Periodontal Wound Healing. Bioengineering, 2019, 6, 57.	3.5	10
20	Albumin-Enriched Fibrin Hydrogel Embedded in Active Ferromagnetic Networks Improves Osteoblast Differentiation and Vascular Self-Organisation. Polymers, 2019, 11, 1743.	4.5	13
21	Hydrogel scaffolds based on blood plasma cryoprecipitate and collagen derived from various sources: Structural, mechanical and biological characteristics. Bioactive Materials, 2019, 4, 334-345.	15.6	25
22	Differentiation of Induced Pluripotent Stem Cells towards Mesenchymal Stromal Cells is Hampered by Culture in 3D Hydrogels. Scientific Reports, 2019, 9, 15578.	3.3	20
23	Extracellular Heme Proteins Influence Bovine Myosatellite Cell Proliferation and the Color of Cell-Based Meat. Foods, 2019, 8, 521.	4.3	80
24	Damped White Noise Diffusion with Memory for Diffusing Microprobes in Ageing Fibrin Gels. Biophysical Journal, 2019, 117, 1029-1036.	0.5	10
25	<p>Icariin-loaded porous scaffolds for bone regeneration through the regulation of the coupling process of osteogenesis and osteoclastic activity</p> . International Journal of Nanomedicine, 2019, Volume 14, 6019-6033.	6.7	35
26	Commercially available bone graft substitutes: the impact of origin and processing on graft functionality. Drug Metabolism Reviews, 2019, 51, 533-544.	3.6	34
27	Transected Tendon Treated with a New Fibrin Sealant Alone or Associated with Adipose-Derived Stem Cells. Cells, 2019, 8, 56.	4.1	22
28	Development of CaCO3 microsphere-based composite hydrogel for dual delivery of growth factor and Ca to enhance bone regeneration. Biomaterials Science, 2019, 7, 3614-3626.	5.4	22
29	Scaffolds for gingival tissues. , 2019, , 521-543.		0
30	Recent developments and clinical applications of surgical glues: An overview. International Journal of Biological Macromolecules, 2019, 137, 95-106.	7. 5	49
31	Biomaterials for craniofacial tissue engineering and regenerative dentistry., 2019,, 643-674.		3
32	Amorphous polyphosphate nanoparticles: application of the morphogenetically active inorganic polymer for personalized tissue regeneration. Journal Physics D: Applied Physics, 2019, 52, 363001.	2.8	6
33	In Vitro Characterization of Hypoxia Preconditioned Serum (HPS)—Fibrin Hydrogels: Basis for an Injectable Biomimetic Tissue Regeneration Therapy. Journal of Functional Biomaterials, 2019, 10, 22.	4.4	10
34	Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering. Biomaterials, 2019, 214, 119214.	11.4	92
35	Fibrin Sealant Derived from Human Plasma as a Scaffold for Bone Grafts Associated with Photobiomodulation Therapy. International Journal of Molecular Sciences, 2019, 20, 1761.	4.1	30
36	Decellularized cartilage as a prospective scaffold for cartilage repair. Materials Science and Engineering C, 2019, 101, 588-595.	7.3	35

#	Article	IF	Citations
37	Complete regeneration of large bone defects in rats with commercially available fibrin loaded with BMP-2. , $2019, 38, 94-105$.		18
38	Biomaterials for stem cell engineering and biomanufacturing. Bioactive Materials, 2019, 4, 366-379.	15.6	75
39	Self-Assembling Peptides as Building Blocks of Functional Materials for Biomedical Applications. Bulletin of the Chemical Society of Japan, 2019, 92, 391-399.	3.2	83
40	Materials Science and Design Principles of Growth Factor Delivery Systems in Tissue Engineering and Regenerative Medicine. Advanced Healthcare Materials, 2019, 8, e1801000.	7.6	133
41	Strontiumâ€substituted hydroxyapatite stimulates osteogenesis on poly(propylene fumarate) nanocomposite scaffolds. Journal of Biomedical Materials Research - Part A, 2019, 107, 631-642.	4.0	22
42	Poly (3â€hydroxybutyrateâ€coâ€3â€hydroxyvalerate)/fibrinogen/bredigite nanofibrous membranes and their integration with osteoblasts for guided bone regeneration. Journal of Biomedical Materials Research - Part A, 2019, 107, 1154-1165.	4.0	34
43	Proteinâ€based bioadhesives and bioglues. Polymers for Advanced Technologies, 2019, 30, 217-234.	3.2	37
44	Other Miscellaneous Materials and Their Nanocomposites. , 2019, , 353-398.		2
45	StarPEG/heparin-hydrogel based <i>in vivo</i> engineering of stable bizonal cartilage with a calcified bottom layer. Biofabrication, 2019, 11, 015001.	7.1	20
46	Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration. Acta Biomaterialia, 2019, 84, 180-193.	8.3	257
47	Preparation and characterization of poly($\hat{l}\mu$ -caprolactone) scaffolds modified with cell-loaded fibrin gel. International Journal of Biological Macromolecules, 2019, 125, 683-689.	7.5	17
48	Nanoengineered biomaterials for bone/dental regeneration. , 2019, , 13-38.		5
49	Bioactive Hydrogel Platforms for Spatiotemporal Delivery of Baculoviruses in Biomedical Applications. Advanced Therapeutics, 2020, 3, 1900103.	3.2	1
50	Scleral ossicles: angiogenic scaffolds, a novel biomaterial for regenerative medicine applications. Biomaterials Science, 2020, 8, 413-425.	5.4	6
51	Metal nanoscale systems functionalized with organic compounds. , 2020, , 407-436.		2
52	Common biocompatible polymeric materials for tissue engineering and regenerative medicine. Materials Chemistry and Physics, 2020, 242, 122528.	4.0	69
53	Biopolymeric nanocomposite scaffolds for bone tissue engineering applications – A review. Journal of Drug Delivery Science and Technology, 2020, 55, 101452.	3.0	99
54	Recent advances of injectable hydrogels for drug delivery and tissue engineering applications. Polymer Testing, 2020, 81, 106283.	4.8	136

#	Article	IF	CITATIONS
55	Fibrin Matrices as (Injectable) Biomaterials: Formation, Clinical Use, and Molecular Engineering. Macromolecular Bioscience, 2020, 20, e1900283.	4.1	37
56	In Vivo Regeneration of Large Bone Defects by Cross-Linked Porous Hydrogel: A Pilot Study in Mice Combining Micro Tomography, Histological Analyses, Raman Spectroscopy and Synchrotron Infrared Imaging. Materials, 2020, 13, 4275.	2.9	11
57	Embedding cells within nanoscale, rapidly mineralizing hydrogels: A new paradigm to engineer cell-laden bone-like tissue. Journal of Structural Biology, 2020, 212, 107636.	2.8	8
58	Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing. Bioengineering, 2020, 7, 115.	3.5	72
59	Overview of Tissue Engineering Concepts and Applications. , 2020, , 1289-1316.		4
60	Aptamer-Functionalized Natural Protein-Based Polymers as Innovative Biomaterials. Pharmaceutics, 2020, 12, 1115.	4.5	7
61	Effects of nanofibers on mesenchymal stem cells: environmental factors affecting cell adhesion and osteogenic differentiation and their mechanisms. Journal of Zhejiang University: Science B, 2020, 21, 871-884.	2.8	20
62	Progress and Prospects of Polymer-Based Drug Delivery Systems for Bone Tissue Regeneration. Polymers, 2020, 12, 2881.	4.5	43
63	Biodegradable materials for bone defect repair. Military Medical Research, 2020, 7, 54.	3.4	121
64	Biomaterials for Adhesion in Orthopedic Applications: A Review. Engineered Regeneration, 2020, 1 , 51-63.	6.0	22
65	Application of fibrin-based hydrogels for nerve protection and regeneration after spinal cord injury. Journal of Biological Engineering, 2020, 14, 22.	4.7	49
66	Self-assembly/condensation interplay in nano-to-microfibrillar silicified fibrin hydrogels. International Journal of Biological Macromolecules, 2020, 164, 1422-1431.	7.5	11
67	An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting, 2020, 20, e00093.	5.8	109
68	Pre-vascularization Approaches for Heart Tissue Engineering. Regenerative Engineering and Translational Medicine, 2021, 7, 450-459.	2.9	4
69	Type I Collagen-Fibrin Mixed Hydrogels: Preparation, Properties and Biomedical Applications. Gels, 2020, 6, 36.	4.5	27
70	Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies. Molecules, 2020, 25, 4802.	3.8	12
71	3D Perfusable Hydrogel Recapitulating the Cancer Dynamic Environment to in Vitro Investigate Metastatic Colonization. Polymers, 2020, 12, 2467.	4.5	13
72	Innovative Molecular and Cellular Therapeutics in Cleft Palate Tissue Engineering. Tissue Engineering - Part B: Reviews, 2021, 27, 215-237.	4.8	17

#	Article	IF	Citations
73	Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomaterialia, 2020, 117, 60-76.	8.3	115
74	Current biocompatible materials in oral regeneration: a comprehensive overview of composite materials. Journal of Materials Research and Technology, 2020, 9, 11731-11755.	5 . 8	36
75	Rupture of blood clots: Mechanics and pathophysiology. Science Advances, 2020, 6, eabc0496.	10.3	54
76	The Few Who Made It: Commercially and Clinically Successful Innovative Bone Grafts. Frontiers in Bioengineering and Biotechnology, 2020, 8, 952.	4.1	47
77	Simvastatin-Loaded Nanomicelles Enhance the Osteogenic Effect of Simvastatin. Journal of Nanomaterials, 2020, 2020, 1-14.	2.7	1
78	Multivalent ions and biomolecules: Attempting a comprehensive perspective. ChemPhysChem, 2020, 21, 1742-1767.	2.1	50
79	Natural Polymeric Scaffolds in Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 474.	4.1	198
80	The Bone Extracellular Matrix in Bone Formation and Regeneration. Frontiers in Pharmacology, 2020, 11, 757.	3.5	326
81	Fibrin hydrogel incorporated with graphene oxide functionalized nanocomposite scaffolds for bone repair $\hat{a} \in \mathbb{C}^n$ In vitro and in vivo study. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102251.	3.3	40
82	Injectable hydrogels for tendon and ligament tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1333-1348.	2.7	21
83	Identification and Analysis of Key Parameters for the Ossification on Particle Functionalized Composites Hydrogel Materials. ACS Applied Materials & English	8.0	17
84	Evaluation of a cell-based osteogenic formulation compliant with good manufacturing practice for use in tissue engineering. Molecular Biology Reports, 2020, 47, 5145-5154.	2.3	4
85	Surgical applications of intracorporal tissue adhesive agents: current evidence and future development. Expert Review of Medical Devices, 2020, 17, 443-460.	2.8	12
86	Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration. International Journal of Biological Macromolecules, 2020, 154, 795-817.	7. 5	79
87	Development of natural fiber-supported high-strength autologous fibrin glue from human plasma. Journal of Adhesion Science and Technology, 2020, 34, 1898-1911.	2.6	5
88	Evaluation of Fibrin-Agarose Tissue-Like Hydrogels Biocompatibility for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 596.	4.1	41
89	Fabrication of Nanofibrous/Xerogel Layer-by-Layer Biocomposite Scaffolds for Skin Tissue Regeneration: In Vitro Study. ACS Omega, 2020, 5, 2133-2147.	3.5	10
90	Biological Mechanisms for Cartilage Repair Using a BioCartilage Scaffold: Cellular Adhesion/Migration and Bioactive Proteins. Cartilage, 2021, 13, 984S-992S.	2.7	15

#	Article	IF	Citations
91	Gelatin Nanoparticleâ€Injectable Plateletâ€Rich Fibrin Double Network Hydrogels with Local Adaptability and Bioactivity for Enhanced Osteogenesis. Advanced Healthcare Materials, 2020, 9, e1901469.	7.6	60
92	Acoustic Patterning of Growth Factor for Three-Dimensional Tissue Engineering. Tissue Engineering - Part A, 2020, 26, 602-612.	3.1	7
93	Proteosaccharide combinations for tissue engineering applications. Carbohydrate Polymers, 2020, 235, 115932.	10.2	25
94	Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. International Journal of Biological Macromolecules, 2020, 154, 390-412.	7. 5	103
95	Protein-Based Hydroxyapatite Materials: Tuning Composition toward Biomedical Applications. ACS Applied Bio Materials, 2020, 3, 3441-3455.	4.6	20
96	Composition and Mechanism of Three-Dimensional Hydrogel System in Regulating Stem Cell Fate. Tissue Engineering - Part B: Reviews, 2020, 26, 498-518.	4.8	28
97	Enzymatic Hydrolysis of Marine Collagen and Fibrinogen Proteins in the Presence of Thrombin. Marine Drugs, 2020, 18, 208.	4.6	9
98	Engineering Anisotropic Meniscus: Zonal Functionality and Spatiotemporal Drug Delivery. Tissue Engineering - Part B: Reviews, 2021, 27, 133-154.	4.8	17
99	Human Umbilical Vein Endothelial Cell Support Bone Formation of Adipose-Derived Stem Cell-Loaded and 3D-Printed Osteogenic Matrices in the Arteriovenous Loop Model. Tissue Engineering - Part A, 2021, 27, 413-423.	3.1	18
100	Macrophages' contribution to ectopic osteogenesis in combination with blood clot and bone substitute: possibility for application in bone regeneration strategies. International Orthopaedics, 2021, 45, 1087-1095.	1.9	6
101	A hybrid scaffold of gelatin glycosaminoglycan matrix and fibrin as a carrier of human corneal fibroblast cells. Materials Science and Engineering C, 2021, 118, 111430.	7.3	13
102	Customized reconstructive prosthesis design based on topological optimization to treat severe proximal tibia defect. Bio-Design and Manufacturing, 2021, 4, 87-99.	7.7	18
103	Tissue adhesives: From research to clinical translation. Nano Today, 2021, 36, 101049.	11.9	90
104	Boneâ€onâ€aâ€Chip: Microfluidic Technologies and Microphysiologic Models of Bone Tissue. Advanced Functional Materials, 2021, 31, 2006796.	14.9	49
105	Transcript-Activated Coatings on Titanium Mediate Cellular Osteogenesis for Enhanced Osteointegration. Molecular Pharmaceutics, 2021, 18, 1121-1137.	4.6	11
106	Recent Advances in Biopolymeric Composite Materials for Tissue Engineering and Regenerative Medicines: A Review. Molecules, 2021, 26, 619.	3.8	48
107	Bone defect reconstruction via endochondral ossification: A developmental engineering strategy. Journal of Tissue Engineering, 2021, 12, 204173142110042.	5 . 5	33
108	Heparin-based nanocomposites for tissue engineering. , 2021, , 81-101.		0

#	ARTICLE	IF	CITATIONS
109	Toward Biofabrication of Resorbable Implants Consisting of a Calcium Phosphate Cement and Fibrin—A Characterization In Vitro and In Vivo. International Journal of Molecular Sciences, 2021, 22, 1218.	4.1	20
110	Biologization of Pcl-Mesh Using Platelet Rich Fibrin (Prf) Enhances Its Regenerative Potential In Vitro. International Journal of Molecular Sciences, 2021, 22, 2159.	4.1	11
111	Chitosan-Human Bone Composite Granulates for Guided Bone Regeneration. International Journal of Molecular Sciences, 2021, 22, 2324.	4.1	13
112	Functional tissue-engineered bone-like graft made of a fibrin scaffold and TG2 gene-modified EMSCs for bone defect repair. NPG Asia Materials, 2021, 13, .	7.9	24
113	Transplantation of bone marrow mesenchymal stem cells and fibrin glue into extraction socket in maxilla promoted bone regeneration in osteoporosis rat. Life Sciences, 2021, 290, 119480.	4.3	2
114	Vascularization Approaches in Tissue Engineering: Recent Developments on Evaluation Tests and Modulation. ACS Applied Bio Materials, 2021, 4, 2941-2956.	4.6	37
115	Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chemical Reviews, 2021, 121, 4309-4372.	47.7	472
116	Hard Dental Tissues Regeneration—Approaches and Challenges. Materials, 2021, 14, 2558.	2.9	19
117	Thermosensitive gallic acid-conjugated hexanoyl glycol chitosan as a novel wound healing biomaterial. Carbohydrate Polymers, 2021, 260, 117808.	10.2	39
118	Biofabrication of vasculature in microphysiological models of bone. Biofabrication, 2021, 13, 032004.	7.1	19
119	<i>In vivo</i> neural tissue engineering using adipose-derived mesenchymal stem cells and fibrin		
	matrix. Journal of Spinal Cord Medicine, 2023, 46, 262-276.	1.4	6
120		2.7	5
120	matrix. Journal of Spinal Cord Medicine, 2023, 46, 262-276. Porcine fibrin sealant combined with autologous chondrocytes successfully promotes fullâ€thickness cartilage regeneration in a rabbit model. Journal of Tissue Engineering and Regenerative Medicine,		
	matrix. Journal of Spinal Cord Medicine, 2023, 46, 262-276. Porcine fibrin sealant combined with autologous chondrocytes successfully promotes fullâ€thickness cartilage regeneration in a rabbit model. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 776-787. Effect of platelet-poor plasma additive on the formation of biocompatible calcium phosphates.	2.7	5
121	matrix. Journal of Spinal Cord Medicine, 2023, 46, 262-276. Porcine fibrin sealant combined with autologous chondrocytes successfully promotes fullâ€thickness cartilage regeneration in a rabbit model. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 776-787. Effect of platelet-poor plasma additive on the formation of biocompatible calcium phosphates. Materials Today Communications, 2021, 27, 102224.	2.7	7
121	matrix. Journal of Spinal Cord Medicine, 2023, 46, 262-276. Porcine fibrin sealant combined with autologous chondrocytes successfully promotes fullâ€thickness cartilage regeneration in a rabbit model. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 776-787. Effect of platelet-poor plasma additive on the formation of biocompatible calcium phosphates. Materials Today Communications, 2021, 27, 102224. Scaffolds for the manufacture of cultured meat. Critical Reviews in Biotechnology, 2022, 42, 311-323. Advances in the applications of polymer biomaterials for in vitro follicle culture. Biomedicine and	2.7 1.9 9.0	5 7 64
121 122 123	matrix. Journal of Spinal Cord Medicine, 2023, 46, 262-276. Porcine fibrin sealant combined with autologous chondrocytes successfully promotes fullâ€thickness cartilage regeneration in a rabbit model. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 776-787. Effect of platelet-poor plasma additive on the formation of biocompatible calcium phosphates. Materials Today Communications, 2021, 27, 102224. Scaffolds for the manufacture of cultured meat. Critical Reviews in Biotechnology, 2022, 42, 311-323. Advances in the applications of polymer biomaterials for in vitro follicle culture. Biomedicine and Pharmacotherapy, 2021, 140, 111422. Natural Polymeric Scaffolds for Tissue Engineering Applications. Journal of Biomaterials Science,	2.7 1.9 9.0 5.6	5 7 64 4

#	Article	IF	CITATIONS
127	Improved Posterolateral Lumbar Spinal Fusion Using a Biomimetic, Nanocomposite Scaffold Augmented by Autologous Platelet-Rich Plasma. Frontiers in Bioengineering and Biotechnology, 2021, 9, 622099.	4.1	3
128	Cell-matrix reciprocity in 3D culture models with nonlinear elasticity. Bioactive Materials, 2022, 9, 316-331.	15.6	36
129	Multi-element processed pyritum mixed to \hat{l}^2 -tricalcium phosphate to obtain a 3D-printed porous scaffold: An option for treatment of bone defects. Materials Science and Engineering C, 2021, 128, 112326.	7.3	7
130	Effects of Therapy with Fibrin Glue combined with Mesenchymal Stem Cells (MSCs) on Bone Regeneration: A Systematic Review. Cells, 2021, 10, 2323.	4.1	29
131	Strength and deformability of fibrin clots: Biomechanics, thermodynamics, and mechanisms of rupture. Acta Biomaterialia, 2021, 131, 355-369.	8.3	13
132	Current Biomaterial-Based Bone Tissue Engineering and Translational Medicine. International Journal of Molecular Sciences, 2021, 22, 10233.	4.1	52
133	Maturation of biomimetic hydroxyapatite in physiological fluids: a physicochemical and proteomic study. Materials Today Bio, 2021, 12, 100137.	5 . 5	5
134	Polydopamine Nanobottles with Photothermal Capability for Controlled Release and Related Applications. Advanced Materials, 2021, 33, e2104729.	21.0	31
135	Natural Polymers for the Maintenance of Oral Health: Review of Recent Advances and Perspectives. International Journal of Molecular Sciences, 2021, 22, 10337.	4.1	39
136	State of the art in integrated biosensors for organ-on-a-chip applications. Current Opinion in Biomedical Engineering, 2021, 19, 100309.	3.4	34
137	Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation. Carbohydrate Polymers, 2021, 272, 118444.	10.2	16
138	Decellularized and biological scaffolds in dental and craniofacial tissue engineering: a comprehensive overview. Journal of Materials Research and Technology, 2021, 15, 1217-1251.	5.8	24
139	Recent Advances in PolyArylEtherKetones and Their In Vitro Evaluation for Hard Tissue Applications. , 2021, , 423-437.		0
140	Chapter 7. Injectable Biopolymer Hydrogels for Regenerative Medicine. Biomaterials Science Series, 2021, , 155-200.	0.2	2
141	Pro-angiogenic and osteogenic composite scaffolds of fibrin, alginate and calcium phosphate for bone tissue engineering. Journal of Tissue Engineering, 2021, 12, 204173142110056.	5 . 5	35
142	Fibrin in Nerve Tissue Engineering. , 2021, , 1-43.		1
143	HLA-B27–mediated activation of TNAP phosphatase promotes pathogenic syndesmophyte formation in ankylosing spondylitis. Journal of Clinical Investigation, 2019, 129, 5357-5373.	8.2	51
144	Experimental substantiation of osteotransplant application in traumatic vertebral defects. Hirurgia Pozvonochnika, 2018, 15, 41-51.	0.4	1

#	Article	IF	Citations
145	Fibrin-based Bioinks: New Tricks from an Old Dog. International Journal of Bioprinting, 2020, 6, 269.	3.4	25
146	Self-assembling Peptides in Current Nanomedicine: Versatile Nanomaterials for Drug Delivery. Current Medicinal Chemistry, 2020, 27, 4855-4881.	2.4	15
147	Fibrin with Laminin-Nidogen Reduces Fibrosis and Improves Soft Palate Regeneration Following Palatal Injury. Biomolecules, 2021, 11, 1547.	4.0	2
148	Strength, deformability and toughness of uncrosslinked fibrin fibers from theoretical reconstruction of stress-strain curves. Acta Biomaterialia, 2021, 136, 327-342.	8.3	15
149	Recent Advances in Three-Dimensional Stem Cell Culture Systems and Applications. Stem Cells International, 2021, 2021, 1-13.	2.5	23
150	Cell Attachment Capacity and Compounds of Fibrin Membranes Isolated from Fresh Frozen Plasma and Cryoprecipitate. Membranes, 2021, 11, 783.	3.0	2
152	THE DIFFERENCE OF TENSILE STRENGTH AND YIELD FIBRINOGEN ON FIBRIN GLUE PREPARATIVE BY CRYOPRESIPITATE WITH AND WITHOUT FREEZE DRYING METHODS. Indonesian Journal of Clinical Pathology, 2019, 25, 349.	0.1	0
153	Synthesis of composite materials based on calcium phosphates and blood components. Proceedings of the National Academy of Sciences of Belarus, Chemical Series, 2019, 55, 135-141.	0.1	3
154	Hibrid biomaterials based on hydroxyapatite and blood components. Proceedings of the National Academy of Sciences of Belarus, Chemical Series, 2019, 55, 299-308.	0.1	1
155	Modern concepts of the fibrinolytic system. E3S Web of Conferences, 2020, 215, 05002.	0.5	0
156	Recent Advances in PolyArylEtherKetones and Their In Vitro Evaluation for Hard Tissue Applications. , 2020, , $1-15$.		0
157	An Ethanol-Free Autologous Thrombin System. Journal of Extra-Corporeal Technology, 2018, 50, 237-243.	0.4	0
158	Bone tissue engineering., 2022,, 587-644.		2
159	Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomaterials Science and Engineering, 2021, 7, 5397-5431.	5. 2	41
160	Biological Augments for Acetabular Chondral Defects in Hip Arthroscopyâ€"A Scoping Review of the Current Clinical Evidence. Current Reviews in Musculoskeletal Medicine, 2021, 14, 328-339.	3 . 5	0
161	In Vivo Efficacy of Neutrophil-Mediated Bone Regeneration Using a Rabbit Calvarial Defect Model. International Journal of Molecular Sciences, 2021, 22, 13016.	4.1	10
162	Clinically relevant materials & amp; applications inspired by food technologies. EBioMedicine, 2022, 75, 103792.	6.1	5
163	Zastosowanie fibryny w inÅ⅓ynierii tkankowej. OsiÄ…gniÄ™cia i perspektywy. Postepy Higieny I Medycyny Doswiadczalnej, 2021, 75, 749-761.	0.1	2

#	ARTICLE	IF	CITATIONS
164	Functionalizing Fibrin Hydrogels with Thermally Responsive Oligonucleotide Tethers for On-Demand Delivery. Bioengineering, 2022, 9, 25.	3 . 5	4
165	Preparation and Properties of Decellularized Sheep Kidney Derived Matrix Scaffolds. Journal of Physics: Conference Series, 2022, 2160, 012014.	0.4	1
167	Animal models of inflammatory musculoskeletal diseases for tissue engineering and regenerative medicine: updates and translational application., 2022,, 123-135.		0
168	The contracture-in-a-well. An in vitro model distinguishes bulk and interfacial processes of irreversible (fibrotic) cell-mediated contraction. Materials Science and Engineering C, 2022, 133, 112661.	7.3	1
169	Enhanced Bone Regeneration Using a ZIFâ€8‣oaded Fibrin Composite Scaffold. Macromolecular Bioscience, 2022, 22, e2100416.	4.1	4
170	Potential of Fibrin Glue and Mesenchymal Stem Cells (MSCs) to Regenerate Nerve Injuries: A Systematic Review. Cells, 2022, 11, 221.	4.1	16
171	Recent advances in 3D hydrogel culture systems for mesenchymal stem cell-based therapy and cell behavior regulation. Journal of Materials Chemistry B, 2022, 10, 1486-1507.	5.8	23
172	Delivery of nitric oxide-releasing silica nanoparticles for in vivo revascularization and functional recovery after acute peripheral nerve crush injury. Neural Regeneration Research, 2022, 17, 2043.	3.0	4
173	Overexpression of sonic hedgehog enhances the osteogenesis in rat ectomesenchymal stem cells. Cell and Tissue Banking, 2022, , $\hat{1}$.	1.1	0
174	Sprayable hydrogel for biomedical applications. Biomaterials Science, 2022, 10, 2759-2771.	5.4	11
175	A biocomplex to repair experimental critical size defects associated with photobiomodulation therapy. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2022, 28, e20210056.	1.4	6
177	Bioengineering Outlook on Cultivated Meat Production. Micromachines, 2022, 13, 402.	2.9	14
178	A Novel High-strength Autologous Fibrin Glue Augmented with Biocompatible Polymers. Journal of Adhesion, 2023, 99, 632-647.	3.0	1
179	Polymeric Hydrogels for Controlled Drug Delivery to Treat Arthritis. Pharmaceutics, 2022, 14, 540.	4.5	19
180	Fabrication and Characterization of a Three-Dimensional Fibrin Gel Model to Evaluate Anti-Proliferative Effects of Astragalus hamosus Plant Extract on Breast Cancer Cells. Asian Pacific Journal of Cancer Prevention, 2022, 23, 731-741.	1.2	9
181	Decellularized Pig Kidney with a Micro-Nano Secondary Structure Contributes to Tumor Progression in 3D Tumor Model. Materials, 2022, 15, 1935.	2.9	4
182	Development of a fibrin-mediated gene delivery system for the treatment of cystinosis via design of experiment. Scientific Reports, 2022, 12, 3752.	3.3	2
183	The interplay between hemostasis and immune response in biomaterial development for osteogenesis. Materials Today, 2022, 54, 202-224.	14.2	29

#	Article	IF	CITATIONS
185	3D-Printed Hydrogels in Orthopedics: Developments, Limitations, and Perspectives. Frontiers in Bioengineering and Biotechnology, 2022, 10, 845342.	4.1	9
186	In vitro and in vivo assessment of a <scp>3D</scp> printable gelatin methacrylate hydrogel for bone regeneration applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 2133-2145.	3.4	17
187	3D printed hydrogel for articular cartilage regeneration. Composites Part B: Engineering, 2022, 237, 109863.	12.0	44
188	Injectable Hyaluronic Acid/Human Umbilical Cord Mesenchymal Stem Cells/Bone Morphogenetic Protein-2 Promotes the Repair of Radial Bone Defects in Rabbits. Journal of Biomaterials and Tissue Engineering, 2022, 12, 1378-1384.	0.1	O
189	Reducing relapse and accelerating osteogenesis in rapid maxillary expansion using an injectable mesoporous bioactive glass/fibrin glue composite hydrogel. Bioactive Materials, 2022, 18, 507-525.	15.6	13
191	Nanocomposites based on apatitic tricalcium phosphate and autofibrin. Proceedings of the National Academy of Sciences of Belarus, Chemical Series, 2021, 57, 413-423.	0.1	0
192	Preparation and Characterization of Plasma-Derived Fibrin Hydrogels Modified by Alginate di-Aldehyde. International Journal of Molecular Sciences, 2022, 23, 4296.	4.1	11
195	Biodegradable Inks in Indirect Three-Dimensional Bioprinting for Tissue Vascularization. Frontiers in Bioengineering and Biotechnology, 2022, 10, 856398.	4.1	8
196	Biomaterials for bioprinting. , 2022, , 51-86.		2
197	Electrospun nanofibrous membrane for biomedical application. SN Applied Sciences, 2022, 4, 172.	2.9	27
198	Fibrin in Nerve Tissue Engineering. Reference Series in Biomedical Engineering, 2022, , 281-322.	0.1	0
199	Strong and bioactive bioinspired biomaterials, next generation of bone adhesives. Advances in Colloid and Interface Science, 2022, 305, 102706.	14.7	21
200	Fibrin Sealants: Challenges and Solutions. ACS Biomaterials Science and Engineering, 2022, 8, 2220-2231.	5.2	15
201	Hydrogels for Tissue Engineering: Addressing Key Design Needs Toward Clinical Translation. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	25
202	Silk Fibroin as Adjuvant in the Fabrication of Mechanically Stable Fibrin Biocomposites. Polymers, 2022, 14, 2251.	4.5	2
203	Osteoconductive Silk Fibroin Binders for Bone Repair in Alveolar Cleft Palate: Fabrication, Structure, Properties, and In Vitro Testing. Journal of Functional Biomaterials, 2022, 13, 80.	4.4	1
204	A Molecular View on Biomaterials and Dental Stem Cells Interactions: Literature Review. Applied Sciences (Switzerland), 2022, 12, 5815.	2.5	4
205	Review of Polymeric Biomimetic Small-Diameter Vascular Grafts to Tackle Intimal Hyperplasia. ACS Omega, 2022, 7, 22125-22148.	3.5	12

#	Article	IF	CITATIONS
206	Prospects of cell chemotactic factors in bone and cartilage tissue engineering. Expert Opinion on Biological Therapy, 2022, 22, 883-893.	3.1	1
207	A regulatory mechanism of a stepwise osteogenesis-mimicking decellularized extracellular matrix on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Journal of Materials Chemistry B, 2022, 10, 6171-6180.	5.8	4
208	Therapeutic use of $\hat{l}\pm 2$ -antiplasmin as an antifibrinolytic and hemostatic agent in surgery and regenerative medicine. Npj Regenerative Medicine, 2022, 7, .	5.2	6
209	Advances in Fibrin-Based Materials in Wound Repair: A Review. Molecules, 2022, 27, 4504.	3.8	20
210	Review of current literature for vascularized biomaterials in dental repair. Biochemical Engineering Journal, 2022, 187, 108545.	3.6	2
211	Can a Scaffold Enriched with Mesenchymal Stem Cells Be a Good Treatment for Spinal Cord Injury?. International Journal of Molecular Sciences, 2022, 23, 7545.	4.1	7
212	Fracture hematoma micro-architecture influences transcriptional profile and plays a crucial role in determining bone healing outcomes., 2022, 139, 213027.		8
213	Constructing Injectable Bone-Forming Units by Loading a Subtype of Osteoprogenitors on Decellularized Bone Matrix Powders for Bone Regeneration. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	2
214	Collagen/physiologically clotted fibrin-based nanobioscaffold supported with silver nanoparticles: A novel approach. International Journal of Artificial Organs, 2022, 45, 1021-1027.	1.4	4
215	Biomaterials and advanced technologies for the evaluation and treatment of ovarian aging. Journal of Nanobiotechnology, 2022, 20, .	9.1	10
217	In Vivo Bone Tissue Engineering Strategies: Advances and Prospects. Polymers, 2022, 14, 3222.	4.5	17
218	Musculoskeletal tissues-on-a-chip: role of natural polymers in reproducing tissue-specific microenvironments. Biofabrication, 2022, 14, 042001.	7.1	7
219	Downâ€regulation of hsaâ€circâ€0107593 promotes osteogenic differentiation of <scp>hADSCs</scp> via <scp>miR</scp> â€20aâ€5p/ <scp>SMAD6</scp> signaling. Oral Diseases, 2023, 29, 3447-3459.	3.0	1
220	Natural Polymerâ€Derived Bioscaffolds for Peripheral Nerve Regeneration. Advanced Functional Materials, 2022, 32, .	14.9	21
221	Hydrogels for bone organoid construction: From a materiobiological perspective. Journal of Materials Science and Technology, 2023, 136, 21-31.	10.7	17
222	Rational design in functional hydrogels towards biotherapeutics. Materials and Design, 2022, 223, 111086.	7.0	9
223	PVA/pectin composite hydrogels inducing osteogenesis for bone regeneration. Materials Today Bio, 2022, 16, 100431.	5.5	12
224	Tissue Engineering Strategies in Cleft Palate. , 2022, , 429-438.		1

#	Article	IF	CITATIONS
225	Physical, Mechanical, and Biological Properties of Fibrin Scaffolds for Cartilage Repair. International Journal of Molecular Sciences, 2022, 23, 9879.	4.1	16
226	Electrospun PCL/fibrin scaffold as a bone implant improved the differentiation of human adipose-derived mesenchymal stem cells into osteo-like cells. International Journal of Polymeric Materials and Polymeric Biomaterials, 2024, 73, 71-78.	3.4	2
227	Immediate to short-term inflammatory response to biomaterial implanted in calvarium of mice. European Journal of Translational Myology, 0, , .	1.7	0
228	Polymer-Based Materials Built with Additive Manufacturing Methods for Orthopedic Applications: A Review. Journal of Composites Science, 2022, 6, 262.	3.0	4
229	Advances in scaffolds used for <scp>pulp–dentine</scp> complex tissue engineering: A narrative review. International Endodontic Journal, 2022, 55, 1277-1316.	5.0	6
230	Advances in Biomaterials for Promoting Vascularization. Current Stem Cell Reports, 2022, 8, 184-196.	1.6	3
231	Biodegradable Nanocomposite as Advanced Bone Tissue Scaffold. , 2022, , 1-50.		0
232	Minced Autologous Chondral Fragments with Fibrin Glue as a Simple Promising One-Step Cartilage Repair Procedure: A Clinical and MRI Study at 12-Month Follow-Up. Cartilage, 2022, 13, 19-31.	2.7	7
233	Use of Photobiomodulation Combined with Fibrin Sealant and Bone Substitute Improving the Bone Repair of Critical Defects. Polymers, 2022, 14, 4170.	4.5	6
234	Hydrogel: A Potential Material for Bone Tissue Engineering Repairing the Segmental Mandibular Defect. Polymers, 2022, 14, 4186.	4.5	9
235	Using extracellular matrix as the bio-glue for wound repair in the surgery. , 0, 1, .		0
236	Gene-activated titanium implants for gene delivery to enhance osseointegration., 2022, 143, 213176.		4
237	Evaluating material-driven regeneration in a tissue engineered human in vitro bone defect model. Bone, 2023, 166, 116597.	2.9	4
238	Use of Nanocomposites in Bone Regeneration. Cureus, 2022, , .	0.5	1
239	Application of Hydrogels as Sustained-Release Drug Carriers in Bone Defect Repair. Polymers, 2022, 14, 4906.	4.5	9
240	Natural Materials for 3D Printing and Their Applications. Gels, 2022, 8, 748.	4.5	13
241	Polymer-matrix nanocomposites and its potential applications. , 2023, , 567-583.		1
242	Progress in Clinical Application of Bone Defect Materials. Advances in Clinical Medicine, 2022, 12, 10598-10603.	0.0	0

#	Article	IF	CITATIONS
243	Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering. Frontiers in Chemistry, 0, 10 , .	3.6	3
244	Achievements in Mesoporous Bioactive Glasses for Biomedical Applications. Pharmaceutics, 2022, 14, 2636.	4.5	11
246	Natural Coatings and Surface Modifications on Magnesium Alloys for Biomedical Applications. Polymers, 2022, 14, 5297.	4.5	6
247	Advances in Skin Tissue Engineering and Regenerative Medicine. Journal of Burn Care and Research, 2023, 44, S33-S41.	0.4	3
248	Correlation between Fibrin Fibrillation Kinetics and the Resulting Fibrin Network Microstructure. Advanced Healthcare Materials, 0, , 2202231.	7.6	0
249	Interactions between Dental MSCs and Biomimetic Composite Scaffold during Bone Remodeling Followed by In Vivo Real-Time Bioimaging. International Journal of Molecular Sciences, 2023, 24, 1827.	4.1	2
250	Biomaterials and Futures for Bone Regeneration. The Journal of the Korean Orthopaedic Association, 2022, 57, 447.	0.1	0
251	Tissue Bioengineering with Fibrin Scaffolds and Deproteinized Bone Matrix Associated or Not with the Transoperative Laser Photobiomodulation Protocol. Molecules, 2023, 28, 407.	3.8	5
252	Novel Local "Off-the-Shelf―Immunotherapy for the Treatment of Myeloma Bone Disease. Cells, 2023, 12, 448.	4.1	0
253	Characterization and Safety Profile of a New Combined Advanced Therapeutic Medical Product Platelet Lysate-Based Fibrin Hydrogel for Mesenchymal Stromal Cell Local Delivery in Regenerative Medicine. International Journal of Molecular Sciences, 2023, 24, 2206.	4.1	2
254	Bioinspired advanced nanomaterials for infection control and promotion of bone growth. , 2023, , 161-187.		0
255	Radiological and histochemical study of bone regeneration using the costal cartilage in rats. Journal of Oral Science, 2023, 65, 90-95.	1.7	0
256	Macromolecular chemistry: An introduction. , 2023, , 71-128.		1
257	Hydrogelâ€Based Artificial Mucosa Restores Local Immune and Microbial Homeostasis for Treating Ulcerative Colitis. Advanced Functional Materials, 2023, 33, .	14.9	4
258	Polydopamine-coated biomimetic bone scaffolds loaded with exosomes promote osteogenic differentiation of BMSC and bone regeneration. Regenerative Therapy, 2023, 23, 25-36.	3.0	3
259	Development of Scaffolds from Bio-Based Natural Materials for Tissue Regeneration Applications: A Review. Gels, 2023, 9, 100.	4.5	35
260	Collagen Scaffold Application in Arthroscopic Reconstruction of Osteochondral Lesions of the Talus With Autologous Cancellous Bone Grafts. Orthopaedic Journal of Sports Medicine, 2023, 11, 232596712211457.	1.7	2
261	"Smart―Stimuliâ€responsive Injectable Gels for Bone Tissue Engineering Application. Macromolecular Bioscience, 2023, 23, .	4.1	7

#	Article	IF	CITATIONS
262	A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges. Bioengineering, 2023, 10, 204.	3. 5	19
263	Influence of Lithium- and Zinc-Containing Bioactive Glasses on Pulpal Regeneration. European Journal of Dentistry, 2023, 17, 1120-1128.	1.7	0
264	Fabrication of Fibrin/Polyvinyl Alcohol Scaffolds for Skin Tissue Engineering via Emulsion Templating. Polymers, 2023, 15, 1151.	4.5	5
265	Biodegradable Nanocomposite as Advanced Bone Tissue Scaffold. , 2023, , 929-977.		0
266	Biopolymer-Based Gels., 2023, , 1-22.		0
267	Chitosan-based functionalized scaffolds for nanobone tissue regeneration., 2023,, 501-532.		0
268	Fibrin and Marine-Derived Agaroses for the Generation of Human Bioartificial Tissues: An Ex Vivo and In Vivo Study. Marine Drugs, 2023, 21, 187.	4.6	4
269	Mineralization of Bone Extracellular Matrix-like Scaffolds Fabricated as Silk Sericin-Functionalized Dense Collagen–Fibrin Hybrid Hydrogels. Pharmaceutics, 2023, 15, 1087.	4.5	3
271	Natural compound-based scaffold to design inÂvitro disease systems. , 2023, , 373-389.		0
272	Expression analysis of genes involved in the expansion of hematopoietic stem cells (SCF, Flt3-L, TPO,) Tj ETQq1 1	0.784314	FrgBT /Overl
273	Biopolymer-Based Gels., 2023,, 469-490.		0
274	Coating of manganese functional polyetheretherketone implants for osseous interface integration. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	4.1	0
275	Scalable and Uniform Fabrication of Dexamethasone-Eluting Depot-Engineered Stem Cell Spheroids as a Microtissue Construct to Target Bone Regeneration. ACS Applied Materials & Samp; Interfaces, 2023, 15, 26373-26384.	8.0	1
276	Probing the interaction between metastatic breast cancer cells and osteoblasts in a thread-based breast–bone co-culture device. Lab on A Chip, 2023, 23, 2838-2853.	6.0	1
277	Protein-Based Materials as Cancer In Vitro Models. , 2023, , 1-23.		0
278	Advances in Functionalization of Bioresorbable Nanomembranes and Nanoparticles for Their Use in Biomedicine. International Journal of Molecular Sciences, 2023, 24, 10312.	4.1	4
279	A Novel Bioimplant Comprising Ad-BMP9-Transfected BMSCs and GelMA Microspheres Produced from Microfluidic Devices for Bone Tissue Engineering. Journal of Tissue Engineering and Regenerative Medicine, 2023, 2023, 1-17.	2.7	0
280	The safety and efficacy of fibrin sealant for thyroidectomy: a systematic review and meta-analysis of randomized controlled trials. Frontiers in Surgery, 0 , 10 , .	1.4	0

#	Article	IF	CITATIONS
281	Hydrogel Coating Optimization to Augment Engineered Soft Tissue Mechanics in Tissue-Engineered Blood Vessels. Bioengineering, 2023, 10, 780.	3.5	0
282	Reinforcement of Injectable Hydrogel for Meniscus Tissue Engineering by Using Cellulose Nanofiber from Cassava Pulp. Polymers, 2023, 15, 2092.	4.5	7
283	Lyophilized Platelet-Rich Fibrin Exudate-Loaded Carboxymethyl Chitosan/GelMA Hydrogel for Efficient Bone Defect Repair. ACS Applied Materials & Samp; Interfaces, 2023, 15, 26349-26362.	8.0	7
284	Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering. International Journal of Nanomedicine, 0, Volume 18, 3595-3622.	6.7	4
285	Organoid and organoid extracellular vesicles for osteoporotic fractures therapy: Current status and future perspectives. , 2023, 1 , .		5
286	Formation of Hydroxyapatite-Based Hybrid Materials in the Presence of Platelet-Poor Plasma Additive. Biomimetics, 2023, 8, 297.	3.3	O
287	Bone marrow stromal cell-derived exosome combinate with fibrin on tantalum coating titanium implant accelerates osseointegration. Frontiers in Bioengineering and Biotechnology, $0,11,.$	4.1	1
288	Carbon fiber: Characterization and evaluation of the inflammatory response and toxicity in rats. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 0, , .	3.4	0
289	An Ethanol-Free Autologous Thrombin System. Journal of Extra-Corporeal Technology, 2018, 50, 237-243.	0.4	4
290	Characterization and biological evaluation of new PLGA/fibrin/lignin biocomposite electrospun scaffolds. Physica Scripta, 2023, 98, 095506.	2.5	2
292	Optimization of a concentrated growth factor/mesoporous bioactive glass composite scaffold and its application in rabbit mandible defect regeneration. Biomaterials Science, 2023, 11, 6357-6372.	5.4	2
293	Technological advances in fibrin for tissue engineering. Journal of Tissue Engineering, 2023, 14, .	5.5	6
294	Essential Oil of Bursera morelensis Promotes Cell Migration on Fibroblasts: In Vitro Assays. Molecules, 2023, 28, 6258.	3.8	0
295	Application of 3D- printed hydrogels in wound healing and regenerative medicine. Biomedicine and Pharmacotherapy, 2023, 167, 115416.	5.6	10
296	Mimicking Molecular Pathways in the Design of Smart Hydrogels for the Design of Vascularized Engineered Tissues. International Journal of Molecular Sciences, 2023, 24, 12314.	4.1	2
297	Facile preparation and properties of porous poly(vinyl alcohol)/trehalose/nano-clay hydrogels with high mechanical strength for potential application in bone tissue engineering. European Polymer Journal, 2023, 197, 112336.	5.4	2
298	Hydrogel-Based Therapeutics for Pancreatic Ductal Adenocarcinoma Treatment. Pharmaceutics, 2023, 15, 2421.	4.5	1
299	Heparin-based nanocomposite hydrogels. , 2024, , 233-248.		0

#	Article	IF	CITATIONS
300	Macro, Micro, and Nano-Inspired Bioactive Polymeric Biomaterials in Therapeutic, and Regenerative Orofacial Applications. Drug Design, Development and Therapy, 0, Volume 17, 2985-3021.	4.3	0
301	The healing capacity and osteogenesis pattern of demineralized dentin matrix (DDM)-fibrin glue (FG) compound. Scientific Reports, 2023, 13, .	3.3	0
303	Regulating Blood Clot Fibrin Films to Manipulate Biomaterial-Mediated Foreign Body Responses. Research, 2023, 6, .	5.7	0
305	Low-temperature thermal treatment's impact on hydroxyapatite nanofiber characteristics. Materials Today: Proceedings, 2023, , .	1.8	0
306	Material matters: exploring the interplay between natural biomaterials and host immune system. Frontiers in Immunology, $0,14,1$	4.8	1
307	Biomaterials in Drug Delivery Systems. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2023, , 291-332.	1.0	O
308	In situ generated hemostatic adhesives: From mechanisms of action to recent advances and applications., 2023, 155, 213670.		0
309	Addressing Key Questions in Organoid Models: Who, Where, How, and Why?. International Journal of Molecular Sciences, 2023, 24, 16014.	4.1	O
310	A review of advanced hydrogels for cartilage tissue engineering. Frontiers in Bioengineering and Biotechnology, 0, 12 , .	4.1	0
311	Integrated Electrochemical and Optical Biosensing in Organsâ€onâ€Chip. ChemBioChem, 0, , .	2.6	O
313	Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers, 2024, 16, 206.	4.5	4
315	Organic-based nanomaterials for regenerative medicine. , 2024, , 359-400.		O
316	Applications of biodegradable polymers and ceramics for bone regeneration: a mini-review. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-15.	3.4	0
317	An Injectable silk-based hydrogel as a novel biomineralization seedbed for critical-sized bone defect regeneration. Bioactive Materials, 2024, 35, 274-290.	15.6	O
318	Selective Laser Melting of the Porous Ta Scaffold with Mg-Doped Calcium Phosphate Coating for Orthopedic Applications. ACS Biomaterials Science and Engineering, 2024, 10, 1435-1447.	5.2	0
319	A review: analysis of technical challenges in cultured meat production and its commercialization. Critical Reviews in Food Science and Nutrition, 0 , , 1 - 18 .	10.3	O
320	Biofabrication Approaches to Tendon and Ligament Reconstruction. , 2024, , 1-18.		0
321	Rapid Selfâ€Assembly Miniâ€Livers Protect Mice Against Severe Hepatectomyâ€Induced Liver Failure. Advanced Science, 0, , .	11.2	O

#	Article	IF	CITATIONS
322	Remodelers of the vascular microenvironment: The effect of biopolymeric hydrogels on vascular diseases. International Journal of Biological Macromolecules, 2024, 264, 130764.	7.5	0
323	Pioneering a paradigm shift in tissue engineering and regeneration with polysaccharides and proteins-based scaffolds: A comprehensive review. International Journal of Biological Macromolecules, 2024, 265, 130643.	7.5	0
324	Revealing Early Spatial Patterns of Cellular Responsivity in Fiber-Reinforced Microenvironments. Tissue Engineering - Part A, 0, , .	3.1	0