The Jupiter Energetic Particle Detector Instrument (JEI

Space Science Reviews 213, 289-346 DOI: 10.1007/s11214-013-0025-3

Citation Report

#	Article	IF	CITATIONS
1	A survey of solar wind conditions at 5 AU: a tool for interpreting solar wind-magnetosphere interactions at Jupiter. Frontiers in Astronomy and Space Sciences, 2014, 1, .	1.1	27
2	An integrated time-of-flight versus residual energy subsystem for a compact dual ion composition experiment for space plasmas. Review of Scientific Instruments, 2015, 86, 054501.	0.6	6
3	The "Puck―energetic charged particle detector: Design, heritage, and advancements. Journal of Geophysical Research: Space Physics, 2016, 121, 7900-7913.	0.8	15
4	Compact Dual Ion Composition Experiment for space plasmas—CoDICE. Journal of Geophysical Research: Space Physics, 2016, 121, 6632-6638.	0.8	5
5	Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation. Space Science Reviews, 2016, 204, 187-256.	3.7	139
6	The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission. Space Science Reviews, 2016, 199, 471-514.	3.7	111
7	The Juno Magnetic Field Investigation. Space Science Reviews, 2017, 213, 39-138.	3.7	209
8	The Mushroom: A halfâ€sky energetic ion and electron detector. Journal of Geophysical Research: Space Physics, 2017, 122, 1513-1530.	0.8	40
9	Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, 2017, 356, 826-832.	6.0	109
10	Plasma waves in Jupiter's highâ€latitude regions: Observations from the Juno spacecraft. Geophysical Research Letters, 2017, 44, 4447-4454.	1.5	27
11	Juno/JEDI observations of 0.01 to >10ÂMeV energetic ions in the Jovian auroral regions: Anticipating a source for polar Xâ€ray emission. Geophysical Research Letters, 2017, 44, 6476-6482.	1.5	16
12	First look at Jupiter's synchrotron emission from Juno's perspective. Geophysical Research Letters, 2017, 44, 8676-8684.	1.5	10
13	A heavy ion and proton radiation belt inside of Jupiter's rings. Geophysical Research Letters, 2017, 44, 5259-5268.	1.5	28
14	Searching for low-altitude magnetic field anomalies by using observations of the energetic particle loss cone on JUNO. Geophysical Research Letters, 2017, 44, 4472-4480.	1.5	3
15	Juno observations of energetic charged particles over Jupiter's polar regions: Analysis of monodirectional and bidirectional electron beams. Geophysical Research Letters, 2017, 44, 4410-4418.	1.5	90
16	Observation and interpretation of energetic ion conics in Jupiter's polar magnetosphere. Geophysical Research Letters, 2017, 44, 4419-4425.	1.5	21
17	Radiation near Jupiter detected by Juno/JEDI during PJ1 and PJ3. Geophysical Research Letters, 2017, 44, 4426-4431.	1.5	10
18	Electron butterfly distributions at particular magnetic latitudes observed during Juno's perijove pass. Geophysical Research Letters, 2017, 44, 4489-4496.	1.5	6

#	Article	IF	CITATIONS
19	Observations of MeV electrons in Jupiter's innermost radiation belts and polar regions by the Juno radiation monitoring investigation: Perijoves 1 and 3. Geophysical Research Letters, 2017, 44, 4481-4488.	1.5	29
20	Jovian bow shock and magnetopause encounters by the Juno spacecraft. Geophysical Research Letters, 2017, 44, 4506-4512.	1.5	30
21	Electron beams and loss cones in the auroral regions of Jupiter. Geophysical Research Letters, 2017, 44, 7131-7139.	1.5	61
22	Survey of Voyager plasma science ions at Jupiter: 1. Analysis method. Journal of Geophysical Research: Space Physics, 2017, 122, 8241-8256.	0.8	28
23	A new view of Jupiter's auroral radio spectrum. Geophysical Research Letters, 2017, 44, 7114-7121.	1.5	35
24	Energetic particle signatures of magnetic fieldâ€eligned potentials over Jupiter's polar regions. Geophysical Research Letters, 2017, 44, 8703-8711.	1.5	41
25	Discrete and broadband electron acceleration in Jupiter's powerful aurora. Nature, 2017, 549, 66-69.	13.7	79
26	The Juno Mission. Space Science Reviews, 2017, 213, 5-37.	3.7	222
27	The Juno Waves Investigation. Space Science Reviews, 2017, 213, 347-392.	3.7	110
28	The Juno Radiation Monitoring (RM) Investigation. Space Science Reviews, 2017, 213, 507-545.	3.7	29
29	Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves. Geophysical Research Letters, 2018, 45, 1246-1252.	1.5	17
30	Intervals of Intense Energetic Electron Beams Over Jupiter's Poles. Journal of Geophysical Research: Space Physics, 2018, 123, 1989-1999.	0.8	35
31	Diverse Electron and Ion Acceleration Characteristics Observed Over Jupiter's Main Aurora. Geophysical Research Letters, 2018, 45, 1277-1285.	1.5	49
32	Precipitating Electron Energy Flux and Characteristic Energies in Jupiter's Main Auroral Region as Measured by Juno/JEDI. Journal of Geophysical Research: Space Physics, 2018, 123, 7554-7567.	0.8	42
33	The Rings of Jupiter as Seen by the Electron and Proton Radiation Belt Model Salammbô. Geophysical Research Letters, 2018, 45, 10,838.	1.5	10
34	The Acceleration of Electrons to High Energies Over the Jovian Polar Cap via Whistler Mode Waveâ€Particle Interactions. Journal of Geophysical Research: Space Physics, 2018, 123, 7523-7533.	0.8	21
35	Whistler Mode Waves Associated With Broadband Auroral Electron Precipitation at Jupiter. Geophysical Research Letters, 2018, 45, 9372-9379.	1.5	21
36	Jovian Auroral Ion Precipitation: Fieldâ€Aligned Currents and Ultraviolet Emissions. Journal of Geophysical Research: Space Physics, 2018, 123, 2257-2273.	0.8	18

#	Article	IF	CITATIONS
37	A Physical Model of the Proton Radiation Belts of Jupiter inside Europa's Orbit. Journal of Geophysical Research: Space Physics, 2018, 123, 3512-3532.	0.8	30
38	Jovian Injections Observed at High Latitude. Geophysical Research Letters, 2019, 46, 9397-9404.	1.5	17
39	InGaP electron spectrometer for high temperature environments. Scientific Reports, 2019, 9, 11096.	1.6	3
40	The MERiT Onboard the CeREs: A Novel Instrument to Study Energetic Particles in the Earth's Radiation Belts. Journal of Geophysical Research: Space Physics, 2019, 124, 5734-5760.	0.8	12
41	Investigation of Massâ€∤Chargeâ€Dependent Escape of Energetic Ions Across the Magnetopauses of Earth and Jupiter. Journal of Geophysical Research: Space Physics, 2019, 124, 5539-5567.	0.8	15
42	Birkeland currents in Jupiter's magnetosphere observed by the polar-orbiting Juno spacecraft. Nature Astronomy, 2019, 3, 904-909.	4.2	40
43	Hybrid Simulations of Magnetodisc Transport Driven by the Rayleighâ€Taylor Instability. Journal of Geophysical Research: Space Physics, 2019, 124, 5107-5120.	0.8	4
44	Highâ€Energy (>10 MeV) Oxygen and Sulfur Ions Observed at Jupiter From Pulse Width Measurements of the JEDI Sensors. Geophysical Research Letters, 2019, 46, 10959-10966.	1.5	2
45	Detection efficiency of microchannel plates to penetrating radiation in space. CEAS Space Journal, 2019, 11, 607-616.	1.1	1
46	On the Relation Between Jovian Aurorae and the Loading/Unloading of the Magnetic Flux: Simultaneous Measurements From Juno, Hubble Space Telescope, and Hisaki. Geophysical Research Letters, 2019, 46, 11632-11641.	1.5	32
47	Evidence of Europa Neutral Gas Torii From Energetic Sulfur Ion Measurements. Geophysical Research Letters, 2019, 46, 3599-3606.	1.5	23
48	Kinetic Simulations of Electron Acceleration by Dispersive Scale Alfvén Waves in Jupiter's Magnetosphere. Geophysical Research Letters, 2019, 46, 3043-3051.	1.5	36
49	lo's Effect on Energetic Charged Particles as Seen in Juno Data. Geophysical Research Letters, 2019, 46, 13615-13620.	1.5	12
50	Contemporaneous Observations of Jovian Energetic Auroral Electrons and Ultraviolet Emissions by the Juno Spacecraft. Journal of Geophysical Research: Space Physics, 2019, 124, 8298-8317.	0.8	22
51	Survey of Jupiter's Dawn Magnetosheath Using Juno. Journal of Geophysical Research: Space Physics, 2019, 124, 9106-9123.	0.8	16
52	Comparing Electron Energetics and UV Brightness in Jupiter's Northern Polar Region During Juno Perijove 5. Geophysical Research Letters, 2019, 46, 19-27.	1.5	18
53	AlGaAs two by two pixel detector for electron spectroscopy in space environments. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 951, 163039 ion precipitation at Jupiter III: Jarget and projectile	0.7	2
54	processes in H <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/Math/ML">id="d1e56441" altimg="si117.svg"><mml:msup><mml:mrow /><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:mrow </mml:msup></mml:math> , H, and H <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e56449"</mml:math 	0.9	7
	altimg= sub5.svg > <mml:msub><mml:mrow< td=""><td></td><td></td></mml:mrow<></mml:msub>		

/><mml:mrow><mml:mo>â~</mml:mo></mml:mrow></mml:m

C	 	D -		
	ON		= Dre	NDT.
		1.7.1		

#	Article	IF	CITATIONS
55	Heavy Ion Charge States in Jupiter's Polar Magnetosphere Inferred From Auroral Megavolt Electric Potentials. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028052.	0.8	21
56	Reconnection―and Dipolarizationâ€Driven Auroral Dawn Storms and Injections. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027663.	0.8	27
57	IN SITU MASS SPECTROMETERS FOR APPLICATIONS IN SPACE. Mass Spectrometry Reviews, 2020, 40, 670-691.	2.8	5
58	First Report of Electron Measurements During a Europa Footprint Tail Crossing by Juno. Geophysical Research Letters, 2020, 47, e2020GL089732.	1.5	17
59	Juno Energetic Neutral Atom (ENA) Remote Measurements of Magnetospheric Injection Dynamics in Jupiter's Io Torus Regions. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027964.	0.8	11
60	Energetic Particles and Acceleration Regions Over Jupiter's Polar Cap and Main Aurora: A Broad Overview. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027699.	0.8	47
61	Juno Observations of Heavy Ion Energization During Transient Dipolarizations in Jupiter Magnetotail. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027933.	0.8	10
62	Plasma Sheet Boundary Layer in Jupiter's Magnetodisk as Observed by Juno. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027957.	0.8	7
63	Energy Flux and Characteristic Energy of Electrons Over Jupiter's Main Auroral Emission. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027693.	0.8	37
64	Magnetotail Reconnection at Jupiter: A Survey of Juno Magnetic Field Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027486.	0.8	21
65	Juno Reveals New Insights Into Ioâ€Related Decameter Radio Emissions. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006415.	1.5	4
66	Jovian Auroral Ion Precipitation: Xâ€Ray Production From Oxygen and Sulfur Precipitation. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027007.	0.8	20
67	Chandra Observations of Jupiter's Xâ€ray Auroral Emission During Juno Apojove 2017. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006262.	1.5	16
68	Statistical study of energetic electrons in Jupiter's inner magnetosphere by Juno/JEDI. Advances in Space Research, 2021, 67, 1709-1720.	1.2	3
69	Proton Outflow Associated With Jupiter's Auroral Processes. Geophysical Research Letters, 2021, 48, .	1.5	13
70	Lowâ€Latitude Whistlerâ€Mode and Higherâ€Latitude Zâ€Mode Emission at Jupiter Observed by Juno. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028742.	0.8	10
71	Design and Realization of China Tianwen-1 Energetic Particle Analyzer. Space Science Reviews, 2021, 217, 1.	3.7	5
72	Simultaneous Observation of an Auroral Dawn Storm With the Hubble Space Telescope and Juno. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028717.	0.8	6

#	Article	IF	CITATIONS
73	Jupiter's Ion Radiation Belts Inward of Europa's Orbit. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028925.	0.8	10
74	Energy Spectra Near Ganymede From Juno Data. Geophysical Research Letters, 2021, 48, e2021GL093021.	1.5	10
75	Jupiter high-energy/high-latitude electron environment from Juno's JEDI and UVS science instrument background noise. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1002, 165244.	0.7	2
76	Revealing the source of Jupiter's x-ray auroral flares. Science Advances, 2021, 7, .	4.7	25
77	Jupiter's Doubleâ€Arc Aurora as a Signature of Magnetic Reconnection: Simultaneous Observations From HST and Juno. Geophysical Research Letters, 2021, 48, e2021GL093964.	1.5	3
78	Survey of Juno Observations in Jupiter's Plasma Disk: Density. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029446.	0.8	15
79	UMaMI: A New Frontiers-style Mission Concept to Explore the Uranian System. Planetary Science Journal, 2021, 2, 174.	1.5	11
80	Quantification of Diffuse Auroral Electron Precipitation Driven by Whistler Mode Waves at Jupiter. Geophysical Research Letters, 2021, 48, e2021GL095457.	1.5	12
81	Electron Partial Density and Temperature Over Jupiter's Main Auroral Emission Using Juno Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029426.	0.8	11
82	A Preliminary Study of Magnetosphere″onosphereâ€Thermosphere Coupling at Jupiter: Juno Multi″nstrument Measurements and Modeling Tools. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029469.	0.8	11
83	Characteristics of Jupiter's Xâ€Ray Auroral Hot Spot Emissions Using Chandra. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029243.	0.8	8
84	A prototype AllnP electron spectrometer. Planetary and Space Science, 2021, 205, 105284.	0.9	Ο
85	Energetic Proton Acceleration Associated With Io's Footprint Tail. Geophysical Research Letters, 2020, 47, e2020GL090839.	1.5	16
86	Energetic Neutral Atoms From Jupiter's Polar Regions. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028697.	0.8	2
87	Influence of Solar Disturbances on Galactic Cosmic Rays in the Solar Wind, Heliosheath, and Local Interstellar Medium: Advanced Composition Explorer, New Horizons, and Voyager Observations. Astrophysical Journal, 2020, 905, 69.	1.6	15
88	The Formation of Saturn's and Jupiter's Electron Radiation Belts by Magnetospheric Electric Fields. Astrophysical Journal Letters, 2020, 905, L10.	3.0	20
89	Spatial Variations in the Altitude of the CH ₄ Homopause at Jupiter's Mid-to-high Latitudes, as Constrained from IRTF-TEXES Spectra. Planetary Science Journal, 2020, 1, 85.	1.5	9
90	A Systematic Review of Product Design for Space Instrument Innovation, Reliability, and Manufacturing. Machines, 2021, 9, 244.	1.2	11

#	Article	IF	CITATIONS
91	Statistics on Jupiter's Current Sheet With Juno Data: Geometry, Magnetic Fields and Energetic Particles. Journal of Geophysical Research: Space Physics, 2021, 126, .	0.8	9
92	The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission. , 2017, , 469-512.		0
93	The Juno Mission. , 2017, , 5-37.		4
94	The Juno Magnetic Field Investigation. , 2017, , 171-270.		1
95	The Juno Waves Investigation. , 2017, , 425-470.		1
96	The Juno Radiation Monitoring (RM) Investigation. , 2017, , 385-423.		0
97	The in-situ exploration of Jupiter's radiation belts. Experimental Astronomy, 2022, 54, 745-789.	1.6	11
98	A Persistent Depletion of Plasma Ions Within Jupiter's Auroral Polar Caps. Geophysical Research Letters, 2020, 47, .	1.5	1
99	Simultaneous UV Images and High‣atitude Particle and Field Measurements During an Auroral Dawn Storm at Jupiter. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029679.	0.8	3
100	Analysis of Whistlerâ€Mode and Zâ€Mode Emission in the Juno Primary Mission. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029885.	0.8	5
101	Energetic neutral atom imaging of the terrestrial global magnetosphere. , 2022, , 23-58.		0
102	Properties of Ionâ€Inertial Scale Plasmoids Observed by the Juno Spacecraft in the Jovian Magnetotail. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	3
103	A Comprehensive Set of Juno In Situ and Remote Sensing Observations of the Ganymede Auroral Footprint. Geophysical Research Letters, 2022, 49, .	1.5	8
104	Xâ€ŧay views of our solar system. Astronomische Nachrichten, 0, , .	0.6	Ο
105	Energetic Electron Distributions Near the Magnetic Equator in the Jovian Plasma Sheet and Outer Radiation Belt Using Juno Observations. Geophysical Research Letters, 2021, 48, .	1.5	6
106	Closed Fluxtubes and Dispersive Proton Conics at Jupiter's Polar Cap. Geophysical Research Letters, 2022, 49, .	1.5	7
107	Waterâ€Group Pickup Ions From Europaâ€Genic Neutrals Orbiting Jupiter. Geophysical Research Letters, 2022, 49, .	1.5	16
108	Loss of Energetic lons Comprising the Ring Current Populations of Jupiter's Middle and Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	4

#	Article	IF	CITATIONS
109	Energetic charged particle fluxes relevant to Ganymede's polar region. Geophysical Research Letters, 0, , .	1.5	6
110	Juno Plasma Wave Observations at Ganymede. Geophysical Research Letters, 2022, 49, .	1.5	13
111	Investigating the Occurrence of Magnetic Reconnection at Jupiter's Dawn Magnetopause During the Juno Era. Geophysical Research Letters, 2022, 49, .	1.5	7
112	Variability of Jupiter's Synchrotron Radiation: Goldstone Apple Valley Radio Telescope (GAVRT) Observations -II. Publications of the Astronomical Society of the Pacific, 2022, 134, 084401.	1.0	1
113	Jupiter's Lowâ€Altitude Auroral Zones: Fields, Particles, Plasma Waves, and Density Depletions. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	12
114	Insight Into Io Enabled by Characterization of Its Neutral Oxygen Torus. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	2
115	Pitch Angle Distribution of MeV Electrons in the Magnetosphere of Jupiter. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	5
116	Energetic Proton Distributions in the Inner and Middle Magnetosphere of Jupiter Using Juno Observations. Geophysical Research Letters, 2022, 49, .	1.5	4
117	Jovian Auroral Electron Precipitation Budget—A Statistical Analysis of Diffuse, Monoâ€Energetic, and Broadband Auroral Electron Distributions. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	5
118	Plasmoids in the Jovian Magnetotail: Statistical Survey of Ion Acceleration Using Juno Observations. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	0
119	Studies on the Dust–Ion–Acoustic Solitary Wave in Planar and Non-Planar Super-Thermal Plasmas with Trapped Electrons. Plasma Physics Reports, 2022, 48, 627-637.	0.3	5
120	Magnetosphereâ€Ionosphereâ€Thermosphere Coupling Study at Jupiter Based on Juno's First 30 Orbits and Modeling Tools. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	5
121	Jupiter's Sheared Flow Unstable Magnetopause Boundary Observed by Juno. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	4
122	Energetic Magnetospheric Particle Fluxes Onto Callisto's Atmosphere. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	8
123	Juno Magnetometer Observations at Ganymede: Comparisons With a Global Hybrid Simulation and Indications of Magnetopause Reconnection. Geophysical Research Letters, 2022, 49, .	1.5	12
124	Juno's Close Encounter With Ganymede—An Overview. Geophysical Research Letters, 2022, 49,	1.5	23
125	Driver of Energetic Electron Precipitation in the Vicinity of Ganymede. Geophysical Research Letters, 2023, 50, .	1.5	1
126	Energetic Charged Particle Observations During Juno's Close Flyby of Ganymede. Geophysical Research Letters, 2022, 49, .	1.5	13

#	Article	IF	CITATIONS
127	Properties of Turbulent Alfvénic Fluctuations and Waveâ€Particle Interaction Associated With Io's Footprint Tail. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	3
128	Ganymede's Radiation Cavity and Radiation Belts. Geophysical Research Letters, 2022, 49, .	1.5	4
129	Medium and high energy electron detectors onboard BeiDou navigation satellite in MEO. Open Astronomy, 2023, 32, .	0.2	0
130	How Biâ€Modal Are Jupiter's Main Aurora Zones?. Journal of Geophysical Research: Space Physics, 2023, 128, .	0.8	2
131	Electron Energization by Inertial Alfvén Waves in Density Depleted Flux Tubes at Jupiter. Geophysical Research Letters, 2023, 50, .	1.5	1
132	Future Exploration of the Outer Heliosphere and Very Local Interstellar Medium by Interstellar Probe. Space Science Reviews, 2023, 219, .	3.7	9
133	Energetic proton acceleration by EMIC waves in Io's footprint tail. Frontiers in Astronomy and Space Sciences, 0, 10, .	1.1	3
134	Dipolarization Fronts in the Jovian Magnetotail: Statistical Survey of Ion Intensity Variations Using Juno Observations. Journal of Geophysical Research: Space Physics, 2023, 128, .	0.8	0
135	Design and Simulation of the Space-based TOF×E Medium Energetic Ion Detector. Kongjian Kexue Xuebao, 2023, 43, 340.	0.2	0