A New Personal Mobility Vehicle for Daily Life: Improve Enable Greater Mobility are Showcased at the Cybathlo

IEEE Robotics and Automation Magazine 24, 37-48

DOI: 10.1109/mra.2017.2711603

Citation Report

#	Article	IF	CITATIONS
1	A Heuristic Approach to Overcome Architectural Barriers Using a Robotic Wheelchair. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1846-1854.	4.9	21
2	User Test Report of Personal Mobility Vehicle, RT-Mover PType WA. , 2019, , .		0
3	Usability Evaluation of a Novel Robotic Power Wheelchair for Indoor and Outdoor Navigation. Archives of Physical Medicine and Rehabilitation, 2019, 100, 627-637.	0.9	16
4	Technical Development Report. IEEJ Transactions on Industry Applications, 2018, 138, NL4_10-NL4_10.	0.2	0
5	The CYBATHLON - Bionic Olympics to Benchmark Assistive Technologies. Biosystems and Biorobotics, 2020, , 175-179.	0.3	4
6	Cybathlon. Journal of the Robotics Society of Japan, 2020, 38, 147-150.	0.1	0
7	Stair-climbing gait for a four-wheeled vehicle. ROBOMECH Journal, 2020, 7, .	1.6	9
8	Automated Curb Recognition and Negotiation for Robotic Wheelchairs. Sensors, 2021, 21, 7810.	3.8	3
9	Curb Negotiation With Dynamic Human–Robotic Wheelchair Collaboration. IEEE Transactions on Human-Machine Systems, 2022, 52, 149-155.	3.5	3
10	Methodology of climbing and descending stairs for four-wheeled vehicles. , 2020, , .		1
11	Zero Moment Point Estimation Based on Resonant Frequencies of Wheel Joint for Wheel-Legged Mobile Robot. IEEJ Journal of Industry Applications, 2022, , .	1.1	0
12	A survey on the influence of CYBATHLON on the development and acceptance of advanced assistive technologies. Journal of NeuroEngineering and Rehabilitation, 2022, 19, 38.	4.6	5
13	Autonomous detection and ascent of a step for an electric wheelchair. Mechatronics, 2022, 86, 102838.	3.3	2
14	Wheelchair users' perceptions of a system enabling them to traverse rough terrain controlling their own wheelchair. Applied Ergonomics, 2023, 106, 103866.	3.1	0
15	Experimental thermal characterization of the in-wheel electric motor with loop heat pipe thermal management system. Case Studies in Thermal Engineering, 2023, 47, 103069.	5.7	6
16	Evaluation of Power Wheelchair Dynamic Suspensions for Tip Prevention in Non-ADA Compliant Surfaces. Archives of Physical Medicine and Rehabilitation, 2023, 104, 2043-2050.	0.9	0
17	How the CYBATHLON Competition Has Advanced Assistive Technologies. Annual Review of Control, Robotics, and Autonomous Systems, 2023, 6, 447-476.	11.8	4
18	Dynamic characteristic improvement of battery chargers for personal mobility devices using sliding mode control. Journal of Power Electronics, 0, , .	1.5	0