CITATION REPORT List of articles citing

DOI: 10.5194/acp-17-10743-2017 Atmospheric Chemistry and Physics, 2017, 17, 10743-10752.

Source: https://exaly.com/paper-pdf/67962580/citation-report.pdf

Version: 2024-04-19

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
49	Chemical characterization and source identification of PM_{2.5} at multiple sites in the BeijingIlianjinHebei region, China. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 12941-12962	6.8	120
48	Characterization, mixing state, and evolution of single particles in a megacity of Sichuan Basin, southwest China. <i>Atmospheric Research</i> , 2018 , 209, 179-187	5.4	16
47	Comparison of primary aerosol emission and secondary aerosol formation from gasoline direct injection and port fuel injection vehicles. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 9011-9023	6.8	37
46	Dual effect of anthropogenic emissions on the formation of biogenic SOA. 2019,		
45	Important role of aromatic hydrocarbons in SOA formation from unburned gasoline vapor. <i>Atmospheric Environment</i> , 2019 , 201, 101-109	5.3	18
44	Catalyzed Gasoline Particulate Filters Reduce Secondary Organic Aerosol Production from Gasoline Direct Injection Vehicles. <i>Environmental Science & Environmental Science & E</i>	10.3	9
43	Secondary Organic Aerosol Formation from Urban Roadside Air in Hong Kong. <i>Environmental Science & Environmental Science & Env</i>	10.3	30
42	Potential dual effect of anthropogenic emissions on the formation of biogenic secondary organic aerosol (BSOA). <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 15651-15671	6.8	7
41	Characterization of single scattering albedo and chemical components of aged toluene secondary organic aerosol. <i>Atmospheric Pollution Research</i> , 2019 , 10, 1736-1744	4.5	6
40	Review of Chinese atmospheric science research over the past 70 years: Atmospheric physics and atmospheric environment. <i>Science China Earth Sciences</i> , 2019 , 62, 1903-1945	4.6	11
39	Highly efficient adsorption of benzothiophene from model fuel on a metal-organic framework modified with dodeca-tungstophosphoric acid. <i>Chemical Engineering Journal</i> , 2019 , 362, 30-40	14.7	21
38	Intermediate and high ethanol blends reduce secondary organic aerosol formation from gasoline direct injection vehicles. <i>Atmospheric Environment</i> , 2020 , 220, 117064	5.3	11
37	Toxicological responses in human airway epithelial cells (BEAS-2B) exposed to particulate matter emissions from gasoline fuels with varying aromatic and ethanol levels. <i>Science of the Total Environment</i> , 2020 , 706, 135732	10.2	13
36	Vehicular non-exhaust particulate emissions in Chinese megacities: Source profiles, real-world emission factors, and inventories. <i>Environmental Pollution</i> , 2020 , 266, 115268	9.3	22
35	Source-Receptor Relationship Revealed by the Halted Traffic and Aggravated Haze in Beijing during the COVID-19 Lockdown. <i>Environmental Science & Environmental Science & Envi</i>	10.3	38
34	New Insights into the Radical Chemistry and Product Distribution in the OH-Initiated Oxidation of Benzene. <i>Environmental Science & Environmental Scie</i>	10.3	14
33	Evaluating the relationships between aromatic and ethanol levels in gasoline on secondary aerosol formation from a gasoline direct injection vehicle. <i>Science of the Total Environment</i> , 2020 , 737, 140333	10.2	8

32	Contrasting size-resolved hygroscopicity of fine particles derived by HTDMA and HR-ToF-AMS measurements between summer and winter in Beijing: the impacts of aerosol aging and local emissions. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 915-929	6.8	18
31	Aromatic compounds in a semi-urban site of western India: Seasonal variability and emission ratios. <i>Atmospheric Research</i> , 2020 , 246, 105114	5.4	8
30	Remarkable nucleation and growth of ultrafine particles from vehicular exhaust. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 3427-3432	11.5	69
29	Influence of Inorganic Gases on Formation and Chemical Composition of Monoaromatic Hydrocarbons Secondary Organic Aerosol. <i>Chinese Journal of Analytical Chemistry</i> , 2020 , 48, 449-462	1.6	3
28	Evaluation of the Chemical Composition of Gas and Particle Phase Products of Aromatic Oxidation. 2020 ,		
27	Isobaric Vaporlliquid Equilibria for Binary Mixtures of Gamma-Valerolactone + Toluene. <i>Journal of Chemical & </i>	2.8	4
26	A comprehensive study on emission of volatile organic compounds for light duty gasoline passenger vehicles in China: Illustration of impact factors and renewal emissions of major compounds. <i>Environmental Research</i> , 2021 , 193, 110461	7.9	4
25	Measurement report: Distinct emissions and volatility distribution of intermediate-volatility organic compounds from on-road Chinese gasoline vehicles: implication of high secondary organic aerosol formation potential. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 2569-2583	6.8	16
24	Formation kinetics and mechanisms of ozone and secondary organic aerosols from photochemical oxidation of different aromatic hydrocarbons: dependence on NO _{<i>x</i>} and organic substituents. Atmospheric Chemistry and	6.8	1
23	Physics, 2021 , 21, 7567-7578 Effects of driving conditions on secondary aerosol formation from a GDI vehicle using an oxidation flow reactor. <i>Environmental Pollution</i> , 2021 , 282, 117069	9.3	4
22	Effects of short chain aromatics in gasoline on GDI engine combustion and emissions. <i>Fuel</i> , 2021 , 297, 120725	7.1	4
21	Using an oxidation flow reactor to understand the effects of gasoline aromatics and ethanol levels on secondary aerosol formation. <i>Environmental Research</i> , 2021 , 200, 111453	7.9	1
20	Refueling emission of volatile organic compounds from China 6 gasoline vehicles. <i>Science of the Total Environment</i> , 2021 , 789, 147883	10.2	1
19	Investigation of fluorine-promoted Pt-Re/Al2O3 catalysts in reforming of n-heptane. <i>Catalysis Today</i> , 2021 , 378, 113-118	5.3	Ο
18	Secondary aerosol formation from a Chinese gasoline vehicle: Impacts of fuel (E10, gasoline) and driving conditions (idling, cruising). <i>Science of the Total Environment</i> , 2021 , 795, 148809	10.2	5
17	Primary organic gas emissions from gasoline vehicles in China: Factors, composition and trends. <i>Environmental Pollution</i> , 2021 , 290, 117984	9.3	5
16	Evaluation of the chemical composition of gas- and particle-phase products of aromatic oxidation. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 9783-9803	6.8	17
15	Performance Analysis of New Continue FCC Bench Scale: Modified HS-FCC Integrated with Riser in Producing Bio-Hydrocarbon. <i>SSRN Electronic Journal</i> ,	1	Ο

14	Evaporative emission from China 5 and China 6 gasoline vehicles: Emission factors, profiles and future perspective. <i>Journal of Cleaner Production</i> , 2021 , 331, 129861	10.3	O
13	Suppression of anthropogenic secondary organic aerosol formation by isoprene. <i>Npj Climate and Atmospheric Science</i> , 2022 , 5,	8	O
12	Secondary Organic and Inorganic Aerosol Formation from a GDI Vehicle under Different Driving Conditions. <i>Atmosphere</i> , 2022 , 13, 433	2.7	1
11	Impact of COVID-19 Pandemic Lockdown in Ambient Concentrations of Aromatic Volatile Organic Compounds in a Metropolitan City of Western India. <i>Journal of Geophysical Research D: Atmospheres</i> , 2022 , 127,	4.4	O
10	Emission Reduction of Traffic-Related Light-Absorbing Aerosols in a Megacity in China: A Case Study Via Tunnel Measurements. <i>SSRN Electronic Journal</i> ,	1	
9	Molecular characteristics, sources and environmental risk of aromatic compounds in particulate matter during COVID-2019: nontarget screening by ultra-high resolution mass spectrometry and comprehensive two-dimensional gas chromatography. <i>Environment International</i> , 2022 , 107421	12.9	
8	Tunnel measurements reveal significant reduction in traffic-related light-absorbing aerosol emissions in China. 2022 , 159212		O
7	Characteristics of Volatile Organic Compounds and Their Contribution to Secondary Organic Aerosols during the High O3 Period in a Central Industry City in China. 2022 , 13, 1625		O
6	Characteristics of volatile organic compounds and secondary organic aerosol pollution in different functional areas of petrochemical industrial cities in Northwest China. 2022 , 159903		0
5	Source characterization of volatile organic compounds in urban Beijing and its links to secondary organic aerosol formation. 2022 , 160469		O
4	Evaluation of the Role of Lubricant Additives in Emission Control. 2022, 10, 362		0
3	Optical properties of vehicular brown carbon emissions: Road tunnel and chassis dynamometer tests. 2023 , 320, 121037		O
2	Brake wear-derived particles: Single-particle mass spectral signatures and real-world emissions. 2023 , 100240		0
1	Photochemical transformation and secondary aerosol formation potential of Euro6 gasoline and diesel passenger car exhaust emissions. 2023 , 171, 106159		Ο