Status of the scalar singlet dark matter model

European Physical Journal C 77, 568

DOI: 10.1140/epjc/s10052-017-5113-1

Citation Report

#	Article	IF	CITATIONS
1	Early kinetic decoupling of dark matter: When the standard way of calculating the thermal relic density fails. Physical Review D, 2017, 96 , .	1.6	74
2	Confronting Dirac fermionic dark matter with recent data. Physical Review D, 2017, 96, .	1.6	2
3	Cancellation Mechanism for Dark-Matter–Nucleon Interaction. Physical Review Letters, 2017, 119, 191801.	2.9	93
4	Spontaneous mirror left-right symmetry breaking for leptogenesis parametrized by Majorana neutrino mass matrix. Journal of High Energy Physics, 2017, 2017, 1.	1.6	4
5	BBN for the LHC: Constraints on lifetimes of the Higgs portal scalars. Physical Review D, 2017, 96, .	1.6	64
6	Status of the scalar singlet dark matter model. European Physical Journal C, 2017, 77, 568.	1.4	145
7	ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods. European Physical Journal C, 2017, 77, 1.	1.4	39
8	FlavBit: a GAMBIT module for computing flavour observables and likelihoods. European Physical Journal C, 2017, 77, 1.	1.4	27
9	Multicomponent Dark Matter in Radiative Seesaw Models. Frontiers in Physics, 2017, 5, .	1.0	15
10	Exotic energy injection with <tt>ExoCLASS</tt> : application to the Higgs portal model and evaporating black holes. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 018-018.	1.9	59
11	SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables. European Physical Journal C, 2018, 78, 1.	1.4	21
12	Identifying WIMP dark matter from particle and astroparticle data. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 026-026.	1.9	31
13	Direct signals from electroweak singlets through the Higgs portal. International Journal of Modern Physics D, 2018, 27, 1830008.	0.9	3
14	Simplified Dark Matter Models. Advances in High Energy Physics, 2018, 2018, 1-13.	0.5	12
15	Impact of vacuum stability, perturbativity and XENON1T on global fits of $\$$ mathbb $\{Z\}_2\$$ and $\$$ mathbb $\{Z\}_3\$$ scalar singlet dark matter. European Physical Journal C, 2018, 78, 830.	1.4	62
16	Split fermionic WIMPs evade direct detection. Journal of High Energy Physics, 2018, 2018, 1.	1.6	1
17	Higgs portal dark matter in non-standard cosmological histories. Journal of High Energy Physics, 2018, 2018, 1.	1.6	39
18	Leptonic dark matter with scalar dilepton mediator. Modern Physics Letters A, 2018, 33, 1850226.	0.5	1

#	Article	IF	CITATIONS
19	Dark Matter Searches at Colliders. Annual Review of Nuclear and Particle Science, 2018, 68, 429-459.	3.5	101
20	Exotic gravitational wave signatures from simultaneous phase transitions. Journal of High Energy Physics, 2018, 2018, 1.	1.6	24
21	Constraints on a light leptophobic mediator from LEP data. Journal of High Energy Physics, 2018, 2018, 1.	1.6	1
22	Neutrino Mass, Coupling Unification, Verifiable Proton Decay, Vacuum Stability, and WIMP Dark Matter in SU(5). Advances in High Energy Physics, 2018, 2018, 1-21.	0.5	4
23	Dark energy, scalar singlet dark matter and the Higgs portal. Modern Physics Letters A, 2018, 33, 1850087.	0.5	6
24	Scalar dark matter in leptophilic two-Higgs-doublet model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 779, 201-205.	1.5	13
25	Study of electroweak vacuum stability from extended Higgs portal of dark matter and neutrinos. Physical Review D, 2018, 97, .	1.6	31
26	Prospects for detecting light bosons at the FCC-ee and CEPC. Physical Review D, 2018, 97, .	1.6	9
27	Top-philic vectorlike portal to scalar dark matter. Physical Review D, 2018, 98, .	1.6	24
28	Likelihood analysis of the pMSSM11 in light of LHC 13-TeV data. European Physical Journal C, 2018, 78, 256.	1.4	91
29	LHC dark matter signals from vector resonances and top partners. Physical Review D, 2018, 98, .	1.6	2
30	Common origin of dirac neutrino mass and freeze-in massive particle dark matter. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 039-039.	1.9	29
31	Statistical analyses of Higgs- and Z -portal dark matter models. Physical Review D, 2018, 97, .	1.6	35
32	N2HDECAY: Higgs boson decays in the different phases of the N2HDM. Computer Physics Communications, 2019, 234, 256-262.	3.0	31
33	Examining the neutrino option. Journal of High Energy Physics, 2019, 2019, 1.	1.6	18
34	Scalar singlet dark matter in non-standard cosmologies. European Physical Journal C, 2019, 79, 30.	1.4	51
35	Coloured coannihilations: dark matter phenomenology meets non-relativistic EFTs. Journal of High Energy Physics, 2019, 2019, 1.	1.6	32
36	Axion global fits with Peccei-Quinn symmetry breaking before inflation using GAMBIT. Journal of High Energy Physics, 2019, 2019, 1.	1.6	24

#	Article	IF	Citations
37	Improved bounds on â, § singlet dark matter. Journal of High Energy Physics, 2019, 2019, 1.	1.6	26
38	Electroweak baryogenesis above the electroweak scale. Journal of High Energy Physics, 2019, 2019, 1.	1.6	29
39	Bubbleprofiler: Finding the field profile and action for cosmological phase transitions. Computer Physics Communications, 2019, 244, 448-468.	3.0	36
40	Thick branes in extra dimensions and suppressed dark couplings. Journal of High Energy Physics, 2019, 2019, 1.	1.6	9
41	The two-real-singlet Dark Matter model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 796, 15-19.	1.5	6
42	Phase transitions and gravitational wave tests of pseudo-Goldstone dark matter in the softly broken <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>U</mml:mi>V(<td>1.6</td><td>25</td></mml:math>	1.6	25
43	Global analyses of Higgs portal singlet dark matter models using GAMBIT. European Physical Journal C, 2019, 79, 38.	1.4	85
44	Direct search constraints on very heavy dark skyrmions. European Physical Journal C, 2019, 79, 1.	1.4	0
45	Higgs–inflaton mixing and vacuum stability. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 789, 373-377.	1.5	16
46	Revisiting electroweak phase transition in the standard model with a real singlet scalar. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 789, 154-159.	1.5	37
47	Spotting hidden sectors with Higgs binoculars. Journal of High Energy Physics, 2019, 2019, 1.	1.6	8
48	Interplay of scalar and fermionic components in a multi-component dark matter scenario. European Physical Journal C, 2019, 79, 1.	1.4	18
49	Long-lived particles at the energy frontier: the MATHUSLA physics case. Reports on Progress in Physics, 2019, 82, 116201.	8.1	220
50	Scalar dark matter behind b → sμμ anomaly. Journal of High Energy Physics, 2019, 2019, 1.	1.6	15
51	Reconciling dark matter, \$\$ {R}_{K^{[eft(ast ight)]}} \$\$ anomalies and (g \hat{a} 2) \hat{l} in an L \hat{l} \hat{a} L \hat{l} , scenario. Journal of High Energy Physics, 2019, 2019, 1.	1.6	28
52	An Asymptotically Safe Guide to Quantum Gravity and Matter. Frontiers in Astronomy and Space Sciences, 2019, 5, .	1.1	137
53	Unification of inflation and dark matter in the Higgs–Starobinsky model. European Physical Journal C, 2019, 79, 1.	1.4	11
54	Gravitational waves and electroweak baryogenesis in a global study of the extended scalar singlet model. Journal of High Energy Physics, 2019, 2019, 1.	1.6	63

#	Article	IF	CITATIONS
55	Low-scale leptogenesis assisted by a real scalar singlet. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 037-037.	1.9	22
56	Asymmetric dark matter with a possible Bose-Einstein condensate. Physical Review D, 2019, 99, .	1.6	9
57	Pseudo-Goldstone dark matter confronts cosmic ray and collider anomalies. Physical Review D, 2019, 100, .	1.6	44
58	Cosmological dark matter in a conformal model. Physical Review D, 2019, 100, .	1.6	2
59	Primordial black holes as silver bullets for new physics at the weak scale. Physical Review D, 2019, 100,	1.6	25
60	Mixed WIMP-axion dark matter. Physical Review D, 2019, 100, .	1.6	3
61	GUT Physics in the Era of the LHC. Frontiers in Physics, 2019, 7, .	1.0	35
62	Interactions of astrophysical neutrinos with dark matter: a model building perspective. Journal of High Energy Physics, 2019, 2019, 1.	1.6	33
63	Strongly first-order phase transition in real singlet scalar dark matter model. Journal of Physics G: Nuclear and Particle Physics, 2020, 47, 015201.	1.4	17
64	Dark Matter through the Higgs portal. Physics Reports, 2020, 842, 1-180.	10.3	142
64	Dark Matter through the Higgs portal. Physics Reports, 2020, 842, 1-180. Dirac neutrinos from Peccei-Quinn symmetry: Two examples. Nuclear Physics B, 2020, 957, 115099.	10.3	142
65	Dirac neutrinos from Peccei-Quinn symmetry: Two examples. Nuclear Physics B, 2020, 957, 115099. Lepton number violating operators with standard model gauge fields: a survey of neutrino masses from 3-loops and their link to dark matter. Journal of High Energy Physics, 2020, 2020, 1. Gravitational wave signals of pseudo-Goldstone dark matter in the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> complex	0.9	6
65 66	Dirac neutrinos from Peccei-Quinn symmetry: Two examples. Nuclear Physics B, 2020, 957, 115099. Lepton number violating operators with standard model gauge fields: a survey of neutrino masses from 3-loops and their link to dark matter. Journal of High Energy Physics, 2020, 2020, 1. Gravitational wave signals of pseudo-Goldstone dark matter in the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi< td=""><td>0.9</td><td>6</td></mml:mi<></mml:msub></mml:math>	0.9	6
65 66 67	Dirac neutrinos from Peccei-Quinn symmetry: Two examples. Nuclear Physics B, 2020, 957, 115099. Lepton number violating operators with standard model gauge fields: a survey of neutrino masses from 3-loops and their link to dark matter. Journal of High Energy Physics, 2020, 2020, 1. Gravitational wave signals of pseudo-Goldstone dark matter in the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> complex singlet model. Physical Review D, 2020, 101, . Multilepton signatures for scalar dark matter searches in coannihilation scenario. Physical Review D,	0.9 1.6 1.6	6 4 21
65 66 67	Dirac neutrinos from Peccei-Quinn symmetry: Two examples. Nuclear Physics B, 2020, 957, 115099. Lepton number violating operators with standard model gauge fields: a survey of neutrino masses from 3-loops and their link to dark matter. Journal of High Energy Physics, 2020, 2020, 1. Gravitational wave signals of pseudo-Goldstone dark matter in the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn></mml:mn></mml:msub></mml:math> > complex singlet model. Physical Review D, 2020, 101,. Multilepton signatures for scalar dark matter searches in coannihilation scenario. Physical Review D, 2020, 101,. Revisiting supernova constraints on a light CP-even scalar. Journal of Cosmology and Astroparticle	0.9 1.6 1.6	6 4 21 2
65 66 67 68	Dirac neutrinos from Peccei-Quinn symmetry: Two examples. Nuclear Physics B, 2020, 957, 115099. Lepton number violating operators with standard model gauge fields: a survey of neutrino masses from 3-loops and their link to dark matter. Journal of High Energy Physics, 2020, 2020, 1. Gravitational wave signals of pseudo-Goldstone dark matter in the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/Math/ML"><mml:msub><mml:mi math="" xmlns:msub=""></mml:mi>ZZZ</mml:msub></mml:math> complex singlet model. Physical Review D, 2020, 101,. Multilepton signatures for scalar dark matter searches in coannihilation scenario. Physical Review D, 2020, 101,. Revisiting supernova constraints on a light CP-even scalar. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 003-003.	0.9 1.6 1.6 1.9	6 4 21 2 38

#	Article	IF	CITATIONS
73	A 96 GeV scalar tagged to dark matter models. Nuclear Physics B, 2020, 955, 115057.	0.9	6
74	Impact of Higgs portal on gravity-mediated production of superheavy dark matter. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 019.	1.9	26
75	Symmetry Restoration and Breaking at Finite Temperature: An Introductory Review. Symmetry, 2020, 12, 733.	1.1	24
76	A fresh look at the gravitational-wave signal from cosmological phase transitions. Journal of High Energy Physics, 2020, 2020, 1.	1.6	61
77	Two-real-scalar-singlet extension of the SM: LHC phenomenology and benchmark scenarios. European Physical Journal C, 2020, 80, 1.	1.4	36
78	Freeze-in and freeze-out of dark matter with charged long-lived partners. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 057-057.	1.9	6
79	Refined bounds on MeV-scale thermal dark sectors from BBN and the CMB. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 004-004.	1.9	103
80	Triplet leptogenesis, type-II seesaw dominance, intrinsic dark matter, vacuum stability and proton decay in minimal SO(10) breakings. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 049-049.	1.9	13
81	An overview of DarkBit, the GAMBIT dark matter module. Journal of Physics: Conference Series, 2020, 1342, 012059.	0.3	0
82	Probing Higgs-portal dark matter with vector-boson fusion. Journal of High Energy Physics, 2020, 2020, 1.	1.6	13
83	Multi-component scalar dark matter from a ZN symmetry: a systematic analysis. Journal of High Energy Physics, 2020, 2020, 1.	1.6	22
84	Direct detection and complementary constraints for sub-GeV dark matter. Journal of High Energy Physics, 2020, 2020, 1.	1.6	52
85	CosmoBit: a GAMBIT module for computing cosmological observables and likelihoods. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 022-022.	1.9	15
86	Implications of dark sector mixing on leptophilic scalar dark matter. Journal of High Energy Physics, 2021, 2021, 1.	1.6	4
87	A new feasible dark matter region in the singlet scalar scotogenic model. Nuclear Physics B, 2021, 964, 115307.	0.9	9
88	A real triplet-singlet extended Standard Model: dark matter and collider phenomenology. Journal of High Energy Physics, 2021, 2021, 1.	1.6	6
89	Dileptonic scalar dark matter and exotic leptons. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 815, 136157.	1.5	1
90	Two component singlet-triplet scalar dark matter and electroweak vacuum stability. Physical Review D, 2021, 103, .	1.6	9

#	Article	IF	Citations
91	Real scalar phase transitions: a nonperturbative analysis. Journal of High Energy Physics, 2021, 2021, 1.	1.6	20
92	Cobimaximal mixing with Dirac neutrinos. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 816, 136203.	1.5	2
93	A complete effective field theory for dark matter. Journal of High Energy Physics, 2021, 2021, 1.	1.6	17
94	Principle of multiple point criticality in multi-scalar dark matter models. Nuclear Physics B, 2021, 968, 115441.	0.9	7
95	Dark matter relic abundance beyond kinetic equilibrium. European Physical Journal C, 2021, 81, 1.	1.4	26
96	Axion-Like Particles at the ILC Giga-Z. Journal of High Energy Physics, 2021, 2021, 1.	1.6	4
97	The Higgs portal to cosmology. Progress in Particle and Nuclear Physics, 2021, 120, 103881.	5.6	40
98	SU(5) unification of two triplet seesaw and leptogenesis with dark matter and vacuum stability. Nuclear Physics B, 2021, 970, 115484.	0.9	2
99	Direct detection of pseudo-Nambu-Goldstone dark matter with light mediator. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 822, 136639.	1.5	6
100	Electroweak phase transition confronted with dark matter detection constraints. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 035-035.	1.9	3
101	Interplay between neutrino and gravity portals for FIMP dark matter. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 034.	1.9	29
102	Confronting dark matter co-annihilation of Inert two Higgs Doublet Model with a compressed mass spectrum. Journal of High Energy Physics, 2020, 2020, 1.	1.6	19
103	First-order electroweak phase transition in a complex singlet model with â,, symmetry. Journal of High Energy Physics, 2020, 2020, 1.	1.6	29
104	Gauge field and brane-localized kinetic terms on the chiral square. European Physical Journal C, 2019, 79, 1.	1.4	5
105	Unification predictions with or without supersymmetry. European Physical Journal: Special Topics, 2020, 229, 3243-3262.	1.2	3
106	Two real scalar WIMP model in the assisted freeze-out scenario. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 027.	1.9	10
107	Towards a Higgs mass determination in asymptotically safe gravity with a dark portal. Journal of High Energy Physics, 2021, 2021, 1.	1.6	15
108	Induced spontaneous symmetry breaking chain. Europhysics Letters, 2021, 136, 21003.	0.7	2

#	Article	IF	CITATIONS
109	New Physics interpretations with GAMBIT., 2020, , .		0
110	Fermion singlet dark matter in a pseudoscalar dark matter portal. Journal of High Energy Physics, 2021, 2021, 1.	1.6	11
111	Dark matter interacting via a massive spin-2 mediator in warped extra-dimensions. Journal of High Energy Physics, 2021, 2021, 1.	1.6	10
112	Constraining dark matter annihilation with cosmic ray antiprotons using neural networks. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 037.	1.9	13
113	Dark matter in three-Higgs-doublet models with S3 symmetry. Journal of High Energy Physics, 2022, 2022, 1.	1.6	6
114	Likelihood analysis of the flavour anomalies and g $\hat{a}\in$ 2 in the general two Higgs doublet model. Journal of High Energy Physics, 2022, 2022, 1.	1.6	13
115	Dark sector assisted low scale leptogenesis from three body decay. Physical Review D, 2022, 105, .	1.6	5
117	The GAMBIT Universal Model Machine: from Lagrangians to likelihoods. European Physical Journal C, 2021, 81, 1.	1.4	9
118	Freezing-in a hot bath: resonances, medium effects and phase transitions. Journal of High Energy Physics, 2022, 2022, 1.	1.6	14
119	Is light thermal scalar dark matter possible?. Physical Review D, 2022, 105, .	1.6	6
120	Two dark matter candidates: The case of inert doublet and singlet scalars. Physical Review D, 2022, 105,	1.6	16
121	Cosmology of complex scalar dark matter: Interplay of self-scattering and annihilation. Physical Review D, 2021, 104, .	1.6	2
122	Revising inelastic dark matter direct detection by including the cosmic ray acceleration. Journal of High Energy Physics, 2022, 2022, .	1.6	21
123	Phenomenology of an <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub>E<mml:mn>6</mml:mn></mml:msub></mml:math> inspired extension of the Standard Model: Higgs sector. Physical Review D, 2022, 105, .	1.6	2
124	Leptogenesis in type Ib seesaw models. Physical Review D, 2022, 105, .	1.6	1
125	Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum. Physical Review D, 2022, 105, .	1.6	6
126	Scalar dark matter and radiative Dirac neutrino mass in an extended U(1)â^ model. Nuclear Physics B, 2022, 981, 115855.	0.9	3
127	Manifesting hidden dynamics of a sub-component dark matter. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 052.	1.9	2

#	Article	IF	CITATIONS
128	The mono-Higgs + MET signal at the Large Hadron Collider: a \hat{s} on the $gamma \$ and $gamma \$ and $gamma \$ and $gamma \$	1.4	2
129	Bayesian WIMP detection with the Cherenkov Telescope Array. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 010.	1.9	0
130	One-loop corrections to the Higgs boson invisible decay in a complex singlet extension of the SM. Physical Review D, 2022, 106, .	1.6	3
131	Dark matter indirect detection limits from complete annihilation patterns. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 055.	1.9	2
132	The B anomalies, the U1 leptoquark and dark matter. Journal of High Energy Physics, 2023, 2023, .	1.6	2
133	Sommerfeld enhancement of resonant dark matter annihilation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2023, 839, 137773.	1.5	4
134	A Concise Review on Some Higgs-Related New Physics Models in Light of Current Experiments. Universe, 2023, 9, 178.	0.9	1
135	A new viable mass region of Dark matter and Dirac neutrino mass generation in a scotogenic extension of SM. International Journal of Modern Physics A, 0, , .	0.5	O