The Taiji Program in Space for gravitational wave physi

National Science Review 4, 685-686

DOI: 10.1093/nsr/nwx116

Citation Report

#	Article	IF	Citations
1	Gravitational-wave astronomy: delivering on the promises. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170279.	1.6	13
2	GWs from S-stars Revolving Around SMBH at Sgr A*. Communications in Theoretical Physics, 2018, 70, 735.	1.1	4
3	Gravitational waves and the polarizations in Hořava gravity after GW170817. Physical Review D, 2018, 98,	1.6	31
4	Hyperunified field theory and Taiji program in space for GWD. International Journal of Modern Physics A, 2018, 33, 1844014.	0.5	12
5	The Development of Phasemeter for Taiji Space Gravitational Wave Detection. Microgravity Science and Technology, 2018, 30, 775-781.	0.7	25
6	Effective decrease of photoelectric emission threshold from gold plated surfaces. Review of Scientific Instruments, 2019, 90, 064501.	0.6	18
7	Detectability of gravitational waves from the coalescence of massive primordial black holes with initial clustering. Physical Review D, 2019, 100 , .	1.6	16
8	Testing dispersion of gravitational waves from eccentric extreme-mass-ratio inspirals. International Journal of Modern Physics D, 2019, 28, 1950166.	0.9	3
9	Gravitational waves from extreme-mass-ratio inspirals using general parametrized metrics. Physical Review D, 2019, 100, .	1.6	11
10	Demonstration of an Ultraprecise Optical Bench for the Taiji Space Gravitational Wave Detection Pathfinder Mission. Applied Sciences (Switzerland), 2019, 9, 2087.	1.3	15
11	Dark quark nuggets. Physical Review D, 2019, 99, .	1.6	86
12	Estimation of spectrum and parameters of relic gravitational waves using space-borne interferometers. Research in Astronomy and Astrophysics, 2019, 19, 024.	0.7	5
13	Frequency response of space-based interferometric gravitational-wave detectors. Physical Review D, 2019, 99, .	1.6	29
14	Numerical simulation of time delay interferometry for TAIJI and new LISA. Research in Astronomy and Astrophysics, 2019, 19, 058.	0.7	19
15	Motion deviation of test body induced by spin and cosmological constant in extreme mass ratio inspiral binary system. European Physical Journal C, 2019, 79, 1.	1.4	7
16	Frequency response of time-delay interferometry for space-based gravitational wave antenna. Physical Review D, 2019, 100, .	1.6	18
17	Constraints on primordial curvature perturbations from primordial black hole dark matter and secondary gravitational waves. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 031-031.	1.9	55
18	Electroweak phase transition with composite Higgs models: calculability, gravitational waves and collider searches. Journal of High Energy Physics, 2019, 2019, 1.	1.6	47

#	Article	IF	CITATIONS
19	A Bright Electromagnetic Counterpart to Extreme Mass Ratio Inspirals. Astrophysical Journal Letters, 2019, 886, L22.	3.0	12
20	Analytical analysis on the orbits of Taiji spacecrafts. Physical Review D, 2019, 100, .	1.6	6
21	Orbit design for space atom-interferometer AIGSO. International Journal of Modern Physics D, 2020, 29, 1940004.	0.9	7
22	A Laser Interferometer Prototype with Pico-Meter Measurement Precision for Taiji Space Gravitational Wave Detection Missionin China. Microgravity Science and Technology, 2020, 32, 331-338.	0.7	11
23	Numerical modeling and experimental demonstration of pulsed charge control for the space inertial sensor used in LISA. Physical Review D, 2020, 102, .	1.6	15
24	Numerical simulation of sky localization for LISA-TAIJI joint observation. Physical Review D, 2020, 102, .	1.6	31
25	Orbit design and thruster requirement for various constant arm space mission concepts for gravitational-wave observation. International Journal of Modern Physics D, 2020, 29, 1940006.	0.9	7
26	Testing spacetime symmetry through gravitational waves from extreme-mass-ratio inspirals. Physical Review D, 2020, 102, .	1.6	36
27	A preliminary forecast for cosmological parameter estimation with gravitational-wave standard sirens from TianQin. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 012-012.	1.9	24
28	Experimental demonstration of time-delay interferometry with optical frequency comb. Physical Review D, 2020, 102, .	1.6	14
29	Irreducible background of gravitational waves from a cosmic defect network: Update and comparison of numerical techniques. Physical Review D, 2020, 102, .	1.6	25
30	Exploring nonsingular black holes in gravitational perturbations. Physical Review D, 2020, 102, .	1.6	14
31	Gauge transformation of scalar induced gravitational waves. Physical Review D, 2020, 102, .	1.6	19
32	Searching for anomalous polarization modes of the stochastic gravitational wave background with LISA and Taiji. Physical Review D, 2020, 102, .	1.6	25
33	Very extreme mass-ratio bursts in the Galaxy and neighbouring galaxies in relation to space-borne detectors. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 498, L61-L65.	1.2	5
34	Fermi-ball dark matter from a first-order phase transition. Physical Review D, 2020, 102, .	1.6	47
35	Orbit-induced Spin Precession as a Possible Origin for Periodicity in Periodically Repeating Fast Radio Bursts. Astrophysical Journal Letters, 2020, 893, L31.	3.0	51
36	Ultraprecision intersatellite laser interferometry. International Journal of Extreme Manufacturing, 2020, 2, 022003.	6.3	18

#	Article	IF	Citations
37	A protocol of potential advantage in the low frequency range to gravitational wave detection with space based optical atomic clocks. European Physical Journal D, 2020, 74, 1.	0.6	3
38	Primordial black holes and secondary gravitational waves from <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math> and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>G</mml:mi></mml:math> inflation. Physical Review D. 2020. 101	1.6	79
39	Full analytical formulas for frequency response of space-based gravitational wave detectors. Physical Review D, 2020, 101, .	1.6	14
40	Prospects for improving cosmological parameter estimation with gravitational-wave standard sirens from Taiji. Science Bulletin, 2020, 65, 1340-1348.	4.3	34
41	Taiji program: Gravitational-wave sources. International Journal of Modern Physics A, 2020, 35, 2050075.	0.5	281
42	Gravitational wave and collider signals in complex two-Higgs doublet model with dynamical <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:math> -violation at finite temperature. Physical Review D. 2020. 101	1.6	33
43	Research on the neutralization control of the RF ion micropropulsion system for the †Taiji-1†satellite mission. Plasma Science and Technology, 2020, 22, 094002.	0.7	8
44	Propagation of gravitational waves in a cosmological background. Physical Review D, 2020, 101, .	1.6	37
45	A Space Inertial Sensor Ground Evaluation System for Non-Sensitive Axis Based on Torsion Pendulum. Applied Sciences (Switzerland), 2020, 10, 3090.	1.3	4
46	Linearity performance analysis of the differential wavefront sensing for the Taiji programme. Journal of Modern Optics, 2020, 67, 383-393.	0.6	3
47	Analytical analysis on the orbits of Taiji spacecrafts to infinite order of the orbital eccentricity. Physical Review D, 2020, 101 , .	1.6	1
48	Hopes and concerns for astronomy of satellite constellations. Nature Astronomy, 2020, 4, 1012-1014.	4.2	51
49	Constraining Screened Modified Gravity with Spaceborne Gravitational-wave Detectors. Astrophysical Journal, 2020, 890, 163.	1.6	13
50	A brief analysis to Taiji: Science and technology. Results in Physics, 2020, 16, 102918.	2.0	112
51	Plasma meets metamatertials: three ways to advance space micropropulsion systems. Advances in Physics: X, 2021, 6, 1834452.	1.5	6
52	The Taiji program: A concise overview. Progress of Theoretical and Experimental Physics, 2021, 2021, .	1.8	73
53	Direct Determination of Supermassive Black Hole Properties with Gravitational-Wave Radiation from Surrounding Stellar-Mass Black Hole Binaries. Physical Review Letters, 2021, 126, 021101.	2.9	16
54	Gravitational memory effects in <scp>Bransâ€Dicke</scp> theory. Astronomische Nachrichten, 2021, 342, 96-102.	0.6	7

#	ARTICLE	IF	CITATIONS
55	The LISA-Taiji Network: Precision Localization of Coalescing Massive Black Hole Binaries. Research, 2021, 2021, 6014164.	2.8	24
56	New sensitivity curves for gravitational-wave signals from cosmological phase transitions. Journal of High Energy Physics, 2021, 2021, 1.	1.6	148
58	Ripples in spacetime from broken supersymmetry. Journal of High Energy Physics, 2021, 2021, 1.	1.6	11
59	Laser acquisition experimental demonstration for space gravitational wave detection missions. Optics Express, 2021, 29, 6368.	1.7	7
60	Lepton-mediated electroweak baryogenesis, gravitational waves and the 4 $\ddot{\text{I}}$, final state at the collider. Journal of High Energy Physics, 2021, 2021, 1.	1.6	13
61	China's first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna. Communications Physics, 2021, 4, .	2.0	26
62	Successful application of optical bench in Taiji-1 laser interferometer. International Journal of Modern Physics A, 2021, 36, 2140001.	0.5	3
63	In-orbit performance of the laser interferometer of Taiji-1 experimental satellite. International Journal of Modern Physics A, 2021, 36, 2140004.	0.5	7
64	Effects of the Space Plasma Density Oscillation on the Interspacecraft Laser Ranging for TianQin Gravitational Wave Observatory. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028579.	0.8	6
65	The phasemeter of Taiji-1 experimental satellite. International Journal of Modern Physics A, 2021, 36, 2140005.	0.5	1
66	Exploration of the coupling between thrust and interference in Taiji-1. International Journal of Modern Physics A, 2021, 36, 2140002.	0.5	2
67	Primordial black holes and secondary gravitational waves from the Higgs field. Physical Review D, 2021, 103, .	1.6	26
68	Prototype of a monolithic cavity-based ultrastable optical reference for space applications. Applied Optics, 2021, 60, 2877.	0.9	5
69	Primordial black holes and scalar-induced secondary gravitational waves from inflationary models with a noncanonical kinetic term. Physical Review D, 2021, 103, .	1.6	46
70	A spaceborne neodymium-doped yttrium aluminum garnet laser with nonplanar-ring-oscillator configuration. International Journal of Modern Physics A, 2021, 36, 2140007.	0.5	2
71	Spherical harmonic analysis of anisotropies in polarized stochastic gravitational-wave background with interferometry experiments. Physical Review D, 2021, 103, .	1.6	6
72	Demonstration of a dual-pass differential Fabryâ€"Perot interferometer for future interferometric space gravitational wave antennas. Classical and Quantum Gravity, 2021, 38, 085018.	1.5	3
7 3	Observing gravitational wave polarizations with the LISA-TAIJI network. Physical Review D, 2021, 103, .	1.6	15

#	ARTICLE	IF	CITATIONS
74	Development and on orbit test of Tajji-1 inertial reference. International Journal of Modern Physics A, 2021, 36, 2140008.	0.5	1
75	Performance tests and simulations for Taiji-1 inertial sensor. International Journal of Modern Physics A, 2021, 36, 2140011.	0.5	1
76	System modeling in data processing of Taiji-1 mission. International Journal of Modern Physics A, 2021, 36, 2140026.	0.5	3
77	The missing link in gravitational-wave astronomy. Experimental Astronomy, 2021, 51, 1427-1440.	1.6	15
78	Ground performance tests and evaluation of RF ion microthrusters for Taiji-1 satellite. International Journal of Modern Physics A, 2021, 36, 2140014.	0.5	10
79	Gravitational-wave physics and astronomy in the 2020s and 2030s. Nature Reviews Physics, 2021, 3, 344-366.	11.9	96
80	Hubble parameter estimation via dark sirens with the LISA-Taiji network. National Science Review, 2022, 9, nwab054.	4.6	22
81	A torsional thrust stand for measuring the thrust response time of micro-Newton thrusters. International Journal of Modern Physics A, 2021, 36, 2140015.	0.5	6
82	High-Accuracy Guide Star Catalogue Generation with a Machine Learning Classification Algorithm. Sensors, 2021, 21, 2647.	2.1	5
83	Probing electroweak phase transition with multi-TeV muon colliders and gravitational waves. Journal of High Energy Physics, 2021, 2021, 1.	1.6	34
84	Gravitational Wave Glitches in Chaotic Extreme-Mass-Ratio Inspirals. Physical Review Letters, 2021, 126, 141102.	2.9	36
85	Gravitational-wave detector networks: standard sirens on cosmology and modified gravity theory. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 044.	1.9	25
86	Energy budget and the gravitational wave spectra beyond the bag model. Physical Review D, 2021, 103, .	1.6	18
87	A back-linked Fabry–Pérot interferometer for space-borne gravitational wave observations. Progress of Theoretical and Experimental Physics, 2021, 2021, .	1.8	3
88	Sky localization of space-based gravitational wave detectors. Physical Review D, 2021, 103, .	1.6	15
89	Testing clockwork axion with gravitational waves. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 049.	1.9	18
90	A brief overview of 8 m prototype facility of laser interferometer for Taiji pathfinder mission. Applied Physics B: Lasers and Optics, 2021, 127, 1.	1.1	4
91	Phase transition gravitational waves from pseudo-Nambu-Goldstone dark matter and two Higgs doublets. Journal of High Energy Physics, 2021, 2021, 1.	1.6	15

#	Article	IF	Citations
92	Shot-noise-limit performance of a weak-light phase readout system for intersatellite heterodyne interferometry. Optics Express, 2021, 29, 18336.	1.7	7
93	A low-noise analog frontend design for the Taiji phasemeter prototype. Review of Scientific Instruments, 2021, 92, 054501.	0.6	6
94	Accuracy of parameter estimations with a spaceborne gravitational wave observatory. Physical Review D, 2021, 103 , .	1.6	10
95	Primordial black holes and secondary gravitational waves from chaotic inflation. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	23
96	Coupling noise analysis of force and temperature on Taiji-1 interferometer., 2021,,.		0
97	Analytical effective one-body formalism for extreme-mass-ratio inspirals with eccentric orbits. Communications in Theoretical Physics, 2021, 73, 085401.	1.1	7
98	Orbit insertion error analysis for a space-based gravitational wave observatory. Advances in Space Research, 2021, 67, 3744-3754.	1.2	6
99	Numerical Simulations of Arm-locking for Taiji Space Gravitational Waves Detection. Microgravity Science and Technology, 2021, 33, 1.	0.7	4
100	Searching for lepton portal dark matter with colliders and gravitational waves. Journal of High Energy Physics, 2021, 2021, 1.	1.6	10
101	Primordial Black Holes Formation and Secondary Gravitational Waves in Nonminimal Derivative Coupling Inflation. Astrophysical Journal, 2021, 915, 118.	1.6	14
102	Sensitivity functions of space-borne gravitational wave detectors for arbitrary time-delay interferometry combinations regarding nontensorial polarizations. Physical Review D, 2021, 104, .	1.6	10
103	Qualifying ringdown and shadow of black holes under general parametrized metrics with photon orbits. European Physical Journal C, 2021, 81, 1.	1.4	10
104	Alternative LISA-TAIJI networks. Physical Review D, 2021, 104, .	1.6	16
105	Drop tower tests of Taiji-1 inertial sensor substitute. Npj Microgravity, 2021, 7, 25.	1.9	3
106	Thermal Noise Decoupling of Micro-Newton Thrust Measured in a Torsion Balance. Symmetry, 2021, 13, 1357.	1.1	3
107	Research on Semi-Physical Simulation Testing of Inter-Satellite Laser Interference in the China Taiji Space Gravitational Wave Detection Program. Applied Sciences (Switzerland), 2021, 11, 7872.	1.3	8
108	Primordial black holes and induced gravitational waves in k-inflation. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 056.	1.9	23
109	Primordial black holes and secondary gravitational waves from natural inflation. Nuclear Physics B, 2021, 969, 115480.	0.9	32

#	ARTICLE	IF	CITATIONS
110	Matrix representation of time-delay interferometry. Physical Review D, 2021, 104, .	1.6	13
111	Alternative mechanism for black hole echoes. Physical Review D, 2021, 104, .	1.6	18
112	Distinguish the $f(T)$ model from \$\$Lambda \$\$CDM model with Gravitational Wave observations. European Physical Journal C, 2021, 81, 1.	1.4	5
113	Progress in nuclear astrophysics of east and southeast Asia. AAPPS Bulletin, 2021, 31, 1.	2.7	5
114	Complementary probe of dark matter blind spots by lepton colliders and gravitational waves. Physical Review D, 2021, 104, .	1.6	5
115	Double-peaked inflation model: Scalar induced gravitational waves and primordial-black-hole suppression from primordial non-Gaussianity. Physical Review D, 2021, 104, .	1.6	26
116	A comprehensive review on the development and applications of narrowâ€linewidth lasers. Microwave and Optical Technology Letters, 2022, 64, 2244-2255.	0.9	31
117	Gravitational-wave glitches: Resonant islands and frequency jumps in nonintegrable extreme-mass-ratio inspirals. Physical Review D, 2021, 104, .	1.6	21
118	Correlation analysis for isotropic stochastic gravitational wave backgrounds with maximally allowed polarization degrees. Physical Review D, 2021, 104, .	1.6	4
119	Concepts and status of Chinese space gravitational wave detection projects. Nature Astronomy, 2021, 5, 881-889.	4.2	88
120	Correlation of gravitational wave background noises and statistical loss for angular averaged sensitivity curves. Physical Review D, 2021, 104, .	1.6	1
121	Preliminary Experimental Characterization of a Microwave Discharge Cusped Field Thruster. Vacuum, 2021, 192, 110486.	1.6	6
122	Refined clock-jitter reduction in the Sagnac-type time-delay interferometry combinations. Physical Review D, 2021, 104, .	1.6	10
123	Electroweak phase transition confronted with dark matter detection constraints. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 035-035.	1.9	3
124	Automatic, high-speed, high-precision acquisition scheme with QPD for the Taiji program. Optics Express, 2021, 29, 821.	1.7	3
125	Electroweak baryogenesis and gravitational waves in a composite Higgs model with high dimensional fermion representations. Journal of High Energy Physics, 2020, 2020, 1.	1.6	25
126	Time-delay interferometry. Living Reviews in Relativity, 2021, 24, 1.	8.2	78
127	The LISA–Taiji network. Nature Astronomy, 2020, 4, 108-109.	4.2	92

#	ARTICLE	IF	CITATIONS
128	The missing link in gravitational-wave astronomy: discoveries waiting in the decihertz range. Classical and Quantum Gravity, 2020, 37, 215011.	1.5	90
129	Cosmological collider signatures of massive vectors from non-Gaussian gravitational waves. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 049-049.	1.9	28
130	Phase transition dynamics and gravitational wave spectra of strong first-order phase transition in supercooled universe. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 045-045.	1.9	45
131	Numerical simulations of the wavefront distortion of inter-spacecraft laser beams caused by solar wind and magnetospheric plasmas. Plasma Science and Technology, 2020, 22, 115301.	0.7	7
132	Gravitational wave background search by correlating multiple triangular detectors in the mHz band. Physical Review D, 2020, 102, .	1.6	18
133	Constraining gravitational-wave polarizations with Taiji. Physical Review D, 2020, 102, .	1.6	9
134	Measuring Parity Asymmetry of Gravitational Wave Backgrounds with a Heliocentric Detector Network in the mHz Band. Physical Review Letters, 2020, 125, 251101.	2.9	19
135	Principle demonstration of the phase locking based on the electro-optic modulator for Taiji space gravitational wave detection pathfinder mission. Optical Engineering, 2018, 57, 1.	0.5	6
136	PhaseTracer: tracing cosmological phases and calculating transition properties. European Physical Journal C, 2020, 80, 1.	1.4	20
137	Astrodynamical middle-frequency interferometric gravitational wave observatory AMIGO: Mission concept and orbit design. International Journal of Modern Physics D, 2020, 29, 1940007.	0.9	13
138	High-precision laser spot center positioning method for weak light conditions. Applied Optics, 2020, 59, 1763.	0.9	13
139	Mechanism of primordial black holes production and secondary gravitational waves in $\hat{l}\pm$ attractor Galileon inflationary scenario. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 018.	1.9	15
140	Primordial black holes formation in the inflationary model with field-dependent kinetic term for quartic and natural potentials. European Physical Journal C, 2021, 81 , 1 .	1.4	18
141	Forecast for cosmological parameter estimation with gravitational-wave standard sirens from the LISA-Taiji network. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	30
142	Pseudospectrum of Reissner-Nordstr \tilde{A}^\P m black holes: Quasinormal mode instability and universality. Physical Review D, 2021, 104, .	1.6	31
143	Parameter estimation for space-based gravitational wave detectors with ringdown signals. Physical Review D, 2021, 104, .	1.6	11
144	Research on high precision laser phase measurement technology for space-based precision ranging. , 2020, , .		0
145	The Gravitational-wave physics II: Progress. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	54

#	Article	IF	CITATIONS
146	Alternative LISA-TAIJI networks: Detectability of the isotropic stochastic gravitational wave background. Physical Review D, 2021, 104, .	1.6	14
147	Detecting gravitational lensing in hierarchical triples in galactic nuclei with space-borne gravitational-wave observatories. Physical Review D, 2021, 104, .	1.6	10
148	Nonlinear Effects in EMRI Dynamics and Their Imprints on Gravitational Waves., 2021,, 1-44.		3
149	Dynamical friction from scalar dark matter in the relativistic regime. Physical Review D, 2021, 104, .	1.6	35
150	How can gravitational-wave standard sirens and 21-cm intensity mapping jointly provide a precise late-universe cosmological probe?. Physical Review D, 2021, 104, .	1.6	24
151	Probing superheavy dark matter with gravitational waves. Journal of High Energy Physics, 2021, 2021, 1.	1.6	22
152	Probing PeV scale SUSY breaking with satellite galaxies and primordial gravitational waves. Physical Review D, 2021, 104, .	1.6	1
153	Search for Continuous Gravitational-wave Signals in Pulsar Timing Residuals: A New Scalable Approach with Diffusive Nested Sampling. Astrophysical Journal, 2021, 922, 228.	1.6	4
155	Detection Landscape in the deci-Hertz Gravitational-Wave Spectrum. , 2021, , 1-14.		2
156	Gravitational waves of a first-order QCD phase transition at finite coupling from holography. Annals of Physics, 2022, 437, 168731.	1.0	6
157	Quantum physics in space. Physics Reports, 2022, 951, 1-70.	10.3	38
158	Effect of density fluctuations on gravitational wave production in first-order phase transitions. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 019.	1.9	11
159	Probing the Spins of Supermassive Black Holes with Gravitational Waves from Surrounding Compact Binaries. Astrophysical Journal, 2022, 924, 127.	1.6	4
160	Stochastic Gravitational Wave Background from PBH-ABH Mergers. Chinese Physics C, 0, , .	1.5	1
161	Science with the TianQin Observatory: Preliminary results on stochastic gravitational-wave background. Physical Review D, 2022, 105, .	1.6	38
162	Primordial black holes in nonminimal derivative coupling inflation with quartic potential and reheating consideration. European Physical Journal C, 2022, 82, 1.	1.4	13
163	Inter-spacecraft offset frequency setting strategy in the Taiji program. Applied Optics, 2022, 61, 837.	0.9	4
164	Gravitational waves of the QCD phase transition in a 5D soft wall model with Gauss-Bonnet correction. Physica Scripta, 2022, 97, 035301.	1.2	1

#	Article	IF	CITATIONS
165	Measuring the Galactic Binary Fluxes with LISA: Metamorphoses and Disappearances of White Dwarf Binaries. Physical Review Letters, 2022, 128, 041101.	2.9	7
166	Multiple hierarchies from a warped extra dimension. Journal of High Energy Physics, 2022, 2022, 1.	1.6	6
167	Low latency detection of massive black hole binaries. Physical Review D, 2022, 105, .	1.6	6
168	Space-borne atom interferometric gravitational wave detections. Part I. The forecast of bright sirens on cosmology. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 017.	1.9	7
169	Primordial black holes and secondary gravitational waves from string inspired general no-scale supergravity. Physical Review D, 2021, 104, .	1.6	14
171	Sensitivity of third-generation interferometers to extra polarizations in the stochastic gravitational wave background. Physical Review D, 2022, 105, .	1.6	7
172	å©ä½"物ç†èµ∙æºå¼•力波的宇宙å¦åº"甓. Scientia Sinica: Physica, Mechanica Et Astronomica, 2022, ,	, .0.2	0
173	Primordial black holes ensued from exponential potential and coupling parameter in nonminimal derivative inflation model. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 033.	1.9	11
174	Bubble wall dynamics at the electroweak phase transition. Journal of High Energy Physics, 2022, 2022, 1.	1.6	20
175	Academician Wen-Rui Hu â€" Eminent Pioneer and Prominent Leader of Microgravity Science in China. Microgravity Science and Technology, 2022, 34, 19.	0.7	6
176	Gravitational wave background from mergers of large primordial black holes. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 037.	1.9	1
177	Massive black hole binaries and where to find them with dual detector networks. Physical Review D, 2022, 105, .	1.6	14
178	Circularization versus eccentrification in intermediate mass ratio inspirals inside dark matter spikes. Physical Review D, 2022, 105, .	1.6	11
179	Tracing astrophysical black hole seeds and primordial black holes with LISA-Taiji network. Monthly Notices of the Royal Astronomical Society, 2022, 512, 6217-6224.	1.6	2
180	On primordial black holes and secondary gravitational waves generated from inflation with solo/multi-bumpy potential *. Chinese Physics C, 2022, 46, 045103.	1.5	25
181	Motion of spinning particles around electrically charged black hole in Eddington-inspired Born–Infeld gravity. European Physical Journal C, 2022, 82, 1.	1.4	2
182	Confronting the primordial black hole scenario with the gravitational-wave events detected by LIGO-Virgo. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 829, 137040.	1.5	36
183	The stochastic gravitational wave background from close hyperbolic encounters of primordial black holes in dense clusters. Physics of the Dark Universe, 2022, 36, 101009.	1.8	8

#	Article	IF	CITATIONS
184	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	1.6	59
185	GRChombo: An adaptable numerical relativity code for fundamental physics. Journal of Open Source Software, 2021, 6, 3703.	2.0	34
186	Possibility of a multi-step electroweak phase transition in the two-Higgs doublet models. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	9
187	Primordial black holes and scalar induced gravitational waves from the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>E</mml:mi></mml:math> model with a Gauss-Bonnet term. Physical Review D, 2022, 105, .	1.6	21
188	Geometric tilt-to-length coupling in precision interferometry: mechanisms and analytical descriptions. Journal of Optics (United Kingdom), 2022, 24, 065601.	1.0	21
189	Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. Journal of High Energy Astrophysics, 2022, 34, 49-211.	2.4	350
190	Role of microfluidics in accelerating new space missions. Biomicrofluidics, 2022, 16, 021503.	1.2	4
191	在æœ^çƒå¼€å±•åšä¿¡ä½¿å©æ−‡å¦çš"ç"究进展. Scientia Sinica: Physica, Mechanica Et Astronomica, 2022,	,0.2	1
192	Anisotropy of phase transition gravitational wave and its implication for primordial seeds of the Universe. Physical Review D, 2022, 105, .	1.6	6
193	Sound velocity effects on the phase transition gravitational wave spectrum in the sound shell model. Physical Review D, 2022, 105, .	1.6	4
194	Collapsing domain walls beyond <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Z</mml:mi>2</mml:msub></mml:math> . Physical Review D, 2022, 105, .	1.6	4
195	Noise Analysis and Optimization of Front-End Circuit in Ultra-High Precision Capacitive Transducer. IEEE Sensors Journal, 2022, 22, 13005-13011.	2.4	2
196	Observable effect of quantized cylindrical gravitational waves. Physical Review D, 2022, 105, .	1.6	0
197	Detection of gravitational wave mixed polarization with single space-based detectors. Physical Review D, 2022, 105, .	1.6	5
198	NANOGrav signal and LIGO-Virgo primordial black holes from the Higgs field. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 046.	1.9	16
199	Constraining the cosmic strings gravitational wave spectra in no-scale inflation with viable gravitino dark matter and nonthermal leptogenesis. Physical Review D, 2022, 105, .	1.6	14
200	A wavelet-based method for thrust noise assessment in gravitational wave detection over wide-frequency-range. Acta Astronautica, 2022, , .	1.7	O
201	Design and analysis of Pound-Drever-Hall-based free-space and fiber-based frequency discriminators: A comparison. Infrared Physics and Technology, 2022, 124, 104219.	1.3	1

#	Article	IF	CITATIONS
202	Correlating gravitational waves with W-boson mass, FIMP dark matter, and Majorana seesaw mechanism. Science Bulletin, 2022, 67, 1437-1442.	4.3	28
203	Detecting electric charge with extreme mass ratio inspirals. Physical Review D, 2022, 105, .	1.6	8
204	True gravitational atoms: Spherical cloud of dilatonic black holes. Physical Review D, 2022, 105, .	1.6	1
205	Primordial black holes from an electroweak phase transition. Physical Review D, 2022, 105, .	1.6	29
206	Nonlinear Effects in EMRI Dynamics and Their Imprints on Gravitational Waves., 2022, , 1625-1668.		0
207	Space-Based Gravitational WaveObservatories. , 2022, , 85-155.		0
208	Detection Landscape in the deci-Hertz Gravitational-Wave Spectrum., 2022, , 479-492.		0
209	The Micro-Deformation Monitoring Based on the All-Fiber-Optic Sensor in Taiji Program. Microgravity Science and Technology, 2022, 34, .	0.7	0
210	Source localizations with the network of space-based gravitational wave detectors. Physical Review D, 2022, 106, .	1.6	6
212	Multi-channel Thermal Deformation Interference Measurement of the Telescope Supporting Frame in Spaceborne Gravitational Wave Detection. Microgravity Science and Technology, 2022, 34, .	0.7	3
213	Iterative time-domain method for resolving multiple gravitational wave sources in pulsar timing array data. Physical Review D, 2022, 106, .	1.6	2
214	Probing WIMPs in space-based gravitational wave experiments. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 833, 137308.	1.5	3
215	Geometric approach for the modified second generation time delay interferometry. Physical Review D, 2022, 106, .	1.6	7
216	Challenges for <mml:math altimg="si238.svg" display="inline" id="d1e11032" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="normal"> î> </mml:mi> </mml:math> CDM: An update. New Astronomy Reviews, 2022, 95, 101659.	5.2	246
217	Automatic Digital Optical Heterodyne Phase-lock Loopin the Milliradian Domain for Spaceborne LaserInterferometry. Applied Optics, 0, , .	0.9	2
218	Proof-of-principle Experimental Demonstration of Time-delay-interferometry for Chinese Space-borne Gravitational Wave Detection Missions. Microgravity Science and Technology, 2022, 34, .	0.7	2
219	Detection of scalar fields by extreme mass ratio inspirals with a Kerr black hole. Physical Review D, 2022, 106, .	1.6	5
220	Robust composite control design of drag-free satellite with Kalman filter-based extended state observer for disturbance reduction. Advances in Space Research, 2022, 70, 3034-3050.	1.2	3

#	ARTICLE	IF	CITATIONS
221	Two approaches for the passive charge management of contactless test masses. Classical and Quantum Gravity, 0 , , .	1.5	2
222	Detecting gravitomagnetism with space-based gravitational wave observatories. Classical and Quantum Gravity, 0, , .	1.5	0
223	FIMP dark matter mediated by a massive gauge boson around the phase transition period and the gravitational waves production. Physical Review D, 2022, 106, .	1.6	4
224	Electroweak phase transition and gravitational waves in the type-II seesaw model. Journal of High Energy Physics, 2022, 2022, .	1.6	13
225	Conceptual design and science cases of a juggled interferometer for gravitational wave detection. Physical Review D, 2022, 106, .	1.6	1
226	Global Gravity Field Model from Taiji-1 Observations. Microgravity Science and Technology, 2022, 34, .	0.7	1
227	Primordial black holes and gravitational waves in hybrid inflation with chaotic potentials. Nuclear Physics B, 2022, 984, 115968.	0.9	22
228	Leptogenesis triggered by a first-order phase transition. Journal of High Energy Physics, 2022, 2022, .	1.6	17
229	Probing dark matter spikes via gravitational waves of extreme-mass-ratio inspirals. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	2.0	11
230	Matrix method for perturbed black hole metric with discontinuity. Classical and Quantum Gravity, 2022, 39, 225004.	1.5	4
231	Weak-Light Phase-Locking Time Delay Interferometry with Optical Frequency Combs. Sensors, 2022, 22, 7349.	2.1	1
232	Primordial non-Guassianity in inflation with gravitationally enhanced friction. Physical Review D, 2022, 106, .	1.6	1
233	Electric propulsion of spacecraft. Physics Today, 2022, 75, 38-44.	0.3	10
234	Constant amplitude modulation heterodyne interferometry. Applied Optics, 2022, 61, 8493.	0.9	0
235	Using the Reflection Ellipsometry to Detect the Stress for the Gold Coating Reflection Mirrors. Microgravity Science and Technology, 2022, 34, .	0.7	0
236	Reducing phase noise coupled by wavefront errors in optical telescopes for the space measurement of gravitational waves. Optics Express, 2022, 30, 37648.	1.7	2
237	Design and optimization of stable initial heliocentric formation on the example of LISA. Advances in Space Research, 2023, 71, 420-438.	1.2	6
238	Inflation, space-borne interferometers and the expansion history of the Universe. European Physical Journal C, 2022, 82, .	1.4	2

#	Article	IF	CITATIONS
239	Intermediate mass-ratio inspirals with dark matter minispikes. Physical Review D, 2022, 106, .	1.6	11
240	A Predefined-Time Control for the Laser Acquisition in Space Gravitational Wave Detection Mission. Sensors, 2022, 22, 7021.	2.1	3
241	The energy budget of cosmological first-order phase transitions beyond the bag equation of state. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 047.	1.9	8
242	Plasma noise in TianQin time-delay interferometry. Physical Review D, 2022, 106, .	1.6	2
243	Space-borne atom interferometric gravitational wave detections. Part III. Eccentricity on dark sirens. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 061.	1.9	4
244	GUTs, hybrid topological defects, and gravitational waves. Physical Review D, 2022, 106, .	1.6	25
245	Circularly polarized scalar induced gravitational waves from the Chern-Simons modified gravity. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 054.	1.9	11
246	Constraints on compact dark matter from lensing of gravitational waves for the third-generation gravitational wave detector. Monthly Notices of the Royal Astronomical Society, 2022, 518, 149-156.	1.6	6
247	Simulation and accuracy analysis of orbit determination for TianQin using SLR data. Classical and Quantum Gravity, 2022, 39, 245016.	1.5	3
248	Past and future of a type la supernovae progenitor candidate HD 265435. Research in Astronomy and Astrophysics, 0, , .	0.7	0
249	Constraint on the mass of graviton with gravitational waves. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	4
250	Effect of celestial body gravity on Taiji mission range and range acceleration noise. Physical Review D, 2022, 106, .	1.6	2
251	Dynamics of bubble walls at the electroweak phase transition. EPJ Web of Conferences, 2022, 270, 00035.	0.1	1
252	Modern Cosmology, an Amuse-Gueule. , 2022, , 37-70.		2
253	Arm locking in conjunction with time-delay interferometry. Physical Review D, 2022, 106, .	1.6	0
254	Detection of early-universe gravitational-wave signatures and fundamental physics. General Relativity and Gravitation, 2022, 54, .	0.7	34
255	Unveiling the hosts of parsec-scale massive black hole binaries: morphology and electromagnetic signatures. Monthly Notices of the Royal Astronomical Society, 2022, 519, 2083-2100.	1.6	5
256	Frequency Division Control of Line-of-Sight Tracking for Space Gravitational Wave Detector. Sensors, 2022, 22, 9721.	2.1	4

#	Article	IF	CITATIONS
257	Constraint on Brans-Dicke theory from intermediate/extreme mass ratio inspirals. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 023.	1.9	5
258	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:mrow></mml:math> -violating effects on gravitational waves in a complex singlet extension of the Standard Model with degenerate scalars. Physical Review D. 2022. 106</pre>	1.6	1
259	Multi-step phase transitions and gravitational waves in the inert doublet model. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 025.	1.9	7
260	Measurement of the Central Galactic Black Hole by Extremely Large Mass-Ratio Inspirals. Symmetry, 2022, 14, 2558.	1.1	0
261	Uncovering a hidden black hole binary from secular eccentricity variations of a tertiary star. Physical Review D, 2022, 106, .	1.6	4
262	Probing parity-odd bispectra with anisotropies of GW V modes. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 019.	1.9	11
263	Enhance primordial black hole abundance through the non-linear processes around bounce point. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 015.	1.9	4
264	Enhancing gravitational wave anisotropies with peaked scalar sources. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 018.	1.9	12
265	Recent Status of Taiji Program in China. Kongjian Kexue Xuebao, 2022, 42, 536.	0.2	2
266	Combinatorial algebraic approach for modified second-generation time-delay interferometry. Physical Review D, 2023, 107 , .	1.6	5
267	Study on Spacecraft Ultra-stable Platform Control for Tai Chi Mission Based on LTV-MPC. Lecture Notes in Electrical Engineering, 2023, , 6368-6380.	0.3	0
268	Bayesian analysis of the stochastic gravitational-wave background with alternative polarizations for space-borne detectors. Physical Review D, 2023, 107, .	1.6	0
269	Exploring the nature of black hole and gravity with an imminent merging binary of supermassive black holes. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	3
270	Constraints on primordial curvature spectrum from primordial black holes and scalar-induced gravitational waves. European Physical Journal C, 2023, 83, .	1.4	19
271	Spacecraft Attitude Coordination Control Strategy for Rapid Construction of Laser Link. Lecture Notes in Electrical Engineering, 2023, , 2462-2470.	0.3	0
272	Probing vector hair of black holes with extreme-mass-ratio inspirals. Physical Review D, 2023, 107, .	1.6	17
273	Adaptive Control for Gravitational Wave Detection Formation Considering Time-Varying Communication Delays. Sensors, 2023, 23, 3003.	2.1	0
274	Residual gas damping noise in constrained volume in space-borne gravitational wave detection. Classical and Quantum Gravity, 2023, 40, 075015.	1.5	2

#	Article	IF	CITATIONS
275	Design and test of the actuation circuit of the inertial sensor for space gravitational wave detection based on hardware-in-the-loop simulation. Classical and Quantum Gravity, 0, , .	1.5	0
276	Gravitational wave source clustering in the luminosity distance space with the presence of peculiar velocity and lensing errors. Physics of the Dark Universe, 2023, 40, 101206.	1.8	1
277	Theoretical and experimental study on vibration sensitivity of a transportable spherical optical reference cavity with multi-channel. Optics Communications, 2023, 537, 129459.	1.0	1
278	Adaptive charge control for the space inertial sensor. Classical and Quantum Gravity, 2023, 40, 075004.	1.5	3
279	Zero-Offset Analysis on Differential Wavefront Sensing Technique in Gravitational Wave Detection Missions. Microgravity Science and Technology, 2023, 35, .	0.7	0
280	Searching for wormholes with gravitational wave scattering. European Physical Journal C, 2023, 83, .	1.4	0
281	The role of low-energy electrons in the charging process of LISA test masses. Classical and Quantum Gravity, 2023, 40, 075001.	1.5	8
282	transition with <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="script">P</mml:mi></mml:mrow></mml:math> and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="script">C</mml:mi><mml:mi mathvariant="script">P</mml:mi></mml:mrow></mml:math>	1.6	4
283	violation Physical Review D, 2023, 107, Primordial black holes and scalar induced gravitational waves from Higgs inflation with noncanonical kinetic term. Physical Review D, 2023, 107, .	1.6	21
284	Primordial black holes and scalar-induced gravitational waves from the perturbations on the inflaton potential in peak theory. Physical Review D, 2023, 107, .	1.6	5
285	40 Years of Space Astronomy in China. Kongjian Kexue Xuebao, 2021, 41, 84.	0.2	0
286	Ground-Vibration Suppression by a Matched Center of Mass for Microthrust Testing in Spaceborne Gravitational-Wave Detection. Physical Review Applied, 2023, 19, .	1.5	1
287	Gravitational Waves and Electromagnetic Radiation from Charged Black Hole Binaries. Symmetry, 2023, 15, 537.	1.1	3
288	Shortcut in codimension-2 brane cosmology in light of GW170817. European Physical Journal C, 2023, 83, .	1.4	1
289	Gravitational waves and monopoles dark matter from first-order phase transition. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2023, 839, 137822.	1.5	2
290	Confusion noise from Galactic binaries for Taiji. Physical Review D, 2023, 107, .	1.6	5
291	High-order matrix method with delimited expansion domain. Classical and Quantum Gravity, 2023, 40, 085019.	1.5	4
292	Continuous Low-Thrust Maneuver Planning for Space Gravitational Wave Formation Reconfiguration Based on Improved Particle Swarm Optimization Algorithm. Sensors, 2023, 23, 3154.	2.1	1

#	Article	IF	CITATIONS
293	Primordial black holes and scalar-induced gravitational waves from the generalized Brans-Dicke theory. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 048.	1.9	14
294	Mock data study for next-generation ground-based detectors: The performance loss of matched filtering due to correlated confusion noise. Physical Review D, 2023, 107, .	1.6	9
295	Joint constraints on cosmological parameters using future multi-band gravitational wave standard siren observations*. Chinese Physics C, 2023, 47, 065104.	1.5	9
296	Comparing accretion disks and dark matter spikes in intermediate mass ratio inspirals. Physical Review D, 2023, 107, .	1.6	3
297	空间⹼•⊛波望远镜远场相ä½å™ªå£°æŠʻâ^¶æ—¹æ³•. Guangxue Xuebao/Acta Optica Sinica, 2023	3, 43,2063	60 0 1.
298	Generation of primordial black holes from an inflation model with modified dispersion relation. Physical Review D, 2023, 107, .	1.6	3
299	LitePIG: a lite parameter inference system for the gravitational wave in the millihertz band. Communications in Theoretical Physics, 2023, 75, 075402.	1.1	1
300	Effectiveness of null time-delay interferometry channels as instrument noise monitors in LISA. Physical Review D, 2023, 107, .	1.6	3
301	Dilution of dark matter relic density in singlet extension models. Journal of High Energy Physics, 2023, 2023, .	1.6	2
408	Gap and Glitch Simulation for Taiji Data Challenge. , 2023, , .		O