Guest Editorial Securing IoT Hardware: Threat Models a Solutions

IEEE Transactions on Very Large Scale Integration (VLSI) Syste 25, 3265-3267

DOI: 10.1109/tvlsi.2017.2762398

Citation Report

#	Article	IF	Citations
1	CPS-Agent Oriented Construction and Implementation For Cyber Physical Systems. IEEE Access, 2018, 6, 57631-57642.	4.2	7
2	Lowâ€complexity and differential power analysis (DPA)â€resistant twoâ€folded powerâ€aware Rivest–Shamir–Adleman (RSA) security schema implementation for IoTâ€connected devices. IET Computers and Digital Techniques, 2018, 12, 279-288.	1.2	11
3	Functional Obfuscation of DSP Cores Using Robust Logic Locking and Encryption. , 2018, , .		4
4	Embedded Policing and Policy Enforcement Approach for Future Secure IoT Technologies. , 2018, , .		8
5	Employing Blockchain and Physical Unclonable Functions for Counterfeit IoT Devices Detection. , 2019, , .		27
6	A PUF-based unified identity verification framework for secure IoT hardware via device authentication. World Wide Web, 2020, 23, 1057-1088.	4.0	31
8	Action Evaluation Hardware Accelerator for Next-Generation Real-Time Reinforcement Learning in Emerging loT Systems. , 2020, , .		2
9	Large Delay Analog Trojans: A Silent Fabrication-Time Attack Exploiting Analog Modalities. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 124-135.	3.1	4
10	Smart energy optimization for massive IoT using artificial intelligence. Internet of Things (Netherlands), 2021, 13, 100354.	7.7	28
11	A Secure Lightweight Hardware-Assisted Charging Coordination Authentication Framework for Trusted Smart Grid Energy Storage Units. SN Computer Science, 2021, 2, 1.	3.6	О
12	Enhancing the Performance of Lightweight Configurable PUF for Robust IoT Hardware-Assisted Security. IEEE Access, 2021, 9, 136792-136810.	4.2	10
13	Research on defect detection of media information security based on genetic algorithm. Applied Nanoscience (Switzerland), 2023, 13, 2439-2447.	3.1	O
14	Hardware obfuscation of AES IP core using combinational hardware Trojan circuit for secure data transmission in IoT applications. Concurrency Computation Practice and Experience, 0, , .	2.2	3
15	Hardware Obfuscation of AES IP Core Using PUFs and PRNG: A Secure Cryptographic Key Generation Solution for Internet-of-Things Applications. SN Computer Science, 2022, 3, .	3.6	2
16	Quadruple phase watermarking during high level synthesis for securing reusable hardware intellectual property cores. Computers and Electrical Engineering, 2023, 105, 108476.	4.8	3
17	PUF-Based Authentication for the Security of IoT Devices. , 2023, , .		1
18	A review of the security vulnerabilities and countermeasures in the Internet of Things solutions: A bright future for the Blockchain. Internet of Things (Netherlands), 2023, 23, 100888.	7.7	2