Data Mining and Analytics in the Process Industry: The

IEEE Access 5, 20590-20616 DOI: 10.1109/access.2017.2756872

Citation Report

#	Article	IF	CITATIONS
1	Fault variables recognition using improved k-nearest neighbor reconstruction. , 2017, , .		3
2	Automated feature learning for nonlinear process monitoring – An approach using stacked denoising autoencoder and k-nearest neighbor rule. Journal of Process Control, 2018, 64, 49-61.	1.7	104
3	Weighted random forests for fault classification in industrial processes with hierarchical clustering model selection. Journal of Process Control, 2018, 64, 62-70.	1.7	49
4	Time Sequential Phase Partition and Modeling Method for Fault Detection of Batch Processes. IEEE Access, 2018, 6, 1249-1260.	2.6	3
5	Sequential Fault Diagnosis Based on LSTM Neural Network. IEEE Access, 2018, 6, 12929-12939.	2.6	200
6	Joint-Individual Monitoring of Parallel-Running Batch Processes Based on MCCA. IEEE Access, 2018, 6, 13005-13014.	2.6	8
7	Optimal Variable Transmission for Distributed Local Fault Detection Incorporating RA and Evolutionary Optimization. IEEE Access, 2018, 6, 3201-3211.	2.6	12
8	Quantum statistic based semi-supervised learning approach for industrial soft sensor development. Control Engineering Practice, 2018, 74, 144-152.	3.2	6
9	A Common and Individual Feature Extraction-Based Multimode Process Monitoring Method With Application to the Finishing Mill Process. IEEE Transactions on Industrial Informatics, 2018, 14, 4841-4850.	7.2	53
10	Multimode Process Monitoring Based on Switching Autoregressive Dynamic Latent Variable Model. IEEE Transactions on Industrial Electronics, 2018, 65, 8184-8194.	5.2	87
11	Isolating the impact of rock properties and operational settings on minerals processing performance: A data-driven approach. Minerals Engineering, 2018, 122, 53-66.	1.8	4
12	Semisupervised learning for probabilistic partial least squares regression model and soft sensor application. Journal of Process Control, 2018, 64, 123-131.	1.7	64
13	Similar Batch Process Monitoring With Orthogonal Subspace Alignment. IEEE Transactions on Industrial Electronics, 2018, 65, 8173-8183.	5.2	14
14	Process Modeling and Monitoring With Incomplete Data Based on Robust Probabilistic Partial Least Square Method. IEEE Access, 2018, 6, 10160-10168.	2.6	12
15	A Mixture of Variational Canonical Correlation Analysis for Nonlinear and Quality-Relevant Process Monitoring. IEEE Transactions on Industrial Electronics, 2018, 65, 6478-6486.	5.2	110
16	Adaptive soft sensors for quality prediction under the framework of Bayesian network. Control Engineering Practice, 2018, 72, 19-28.	3.2	53
17	Variable selection for nonlinear soft sensor development with enhanced Binary Differential Evolution algorithm. Control Engineering Practice, 2018, 72, 68-82.	3.2	17
18	Prediction of suitable human resource for replacement in skilled job positions using Supervised Machine Learning. , 2018, , .		6

ATION RE

#	Article	IF	CITATIONS
19	Customized Knowledge Discovery in Databases methodology for the Control of Assembly Systems. Machines, 2018, 6, 45.	1.2	1
20	A Novel Scalable Semi-supervised GMM and Its Application for Multimode Process Quality Prediction with Big Data. , 2018, , .		0
21	Bayesian Regularized Gaussian Mixture Regression with Application to Soft Sensor Modeling for Multi-Mode Industrial Processes. , 2018, , .		3
22	Sequential Graphical Lasso for Fault Detection and Isolation. , 2018, , .		0
23	Ensemble Machine Learning Systems for the Estimation of Steel Quality Control. , 2018, , .		17
24	Data-Driven Approach to Support Experts in the Identification of Operational States in Industrial Process Plants. , 2018, , .		3
25	Transfer of Qualitative and Quantitative Knowledge for Similar Batch Process Monitoring. IEEE Access, 2018, 6, 73856-73870.	2.6	8
26	Improved Kernel Fisher Discriminant Analysis for Nonlinear Process Fault Pattern Recognition. , 2018, ,		2
27	Data-based Sensing of Composition and Quality of Product in Biodiesel Production. , 2018, , .		0
28	Multi-layer Monitoring for Parallel Batch Processes with Input Trajectory Adjustment. , 2018, , .		0
29	On an Aspect of Implementing Real-Time Optimization: Establishing the Suspending and Activating Conditions Incorporating Process Monitoring. IFAC-PapersOnLine, 2018, 51, 79-84.	0.5	3
30	Soft Sensor Development for Multimode Processes Based on Semisupervised Gaussian Mixture Models. IFAC-PapersOnLine, 2018, 51, 614-619.	0.5	11
31	A Comparative Study of Adaptive Soft Sensors for Quality Prediction in an Industrial Refining Hydrocracking Process. , 2018, , .		10
32	A New Cooperative Anomaly Detection Method for Stacker Running Track of Automated Storage and Retrieval System in Industrial Environment. Journal of Control Science and Engineering, 2018, 2018, 1-12.	0.8	2
33	Nonlinear Process Monitoring Based on Multi-block Dynamic Kernel Principal Component Analysis. , 2018, , .		2
34	Decentralized Modified Autoregressive Models for Fault Detection in Dynamic Processes. Industrial & amp; Engineering Chemistry Research, 2018, 57, 15794-15802.	1.8	10
35	Online Fault Diagnosis System for Electric Powertrains Using Advanced Signal Processing and Machine Learning. , 2018, , .		6
36	Social Networking and Caching Aided Collaborative Computing for the Internet of Things. IEEE Communications Magazine, 2018, 56, 149-155.	4.9	20

#	Article	IF	Citations
37	Student's-t Mixture Regression-Based Robust Soft Sensor Development for Multimode Industrial Processes. Sensors, 2018, 18, 3968.	2.1	10
38	Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures. Entropy, 2018, 20, 853.	1.1	14
39	Online Semi-supervised Quality Prediction Model for Batch Mixing Process. , 2018, , .		1
40	Recursive Autoregressive Dynamic Latent Variable Model for Fault Detection of Dynamic Process with Missing Values. , 2018, , .		0
41	Distributed Gaussian mixture model for monitoring plant-wide processes with multiple operating modes. IFAC Journal of Systems and Control, 2018, 6, 1-15.	1.1	9
42	Multiple Fault Diagnosis in Distillation Column Using Multikernel Support Vector Machine. Industrial & Engineering Chemistry Research, 2018, 57, 14689-14706.	1.8	25
43	Principal Polynomial Analysis for Fault Detection and Diagnosis of Industrial Processes. IEEE Access, 2018, 6, 52298-52307.	2.6	13
44	Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data. Annual Reviews in Control, 2018, 46, 107-133.	4.4	202
45	Layer-by-Layer Enhancement Strategy of Favorable Features of the Deep Belief Network for Industrial Process Monitoring. Industrial & Engineering Chemistry Research, 0, , .	1.8	13
46	Nonlinear fault detection of batch processes based on functional kernel locality preserving projections. Chemometrics and Intelligent Laboratory Systems, 2018, 183, 79-89.	1.8	21
47	Active learning for modeling and prediction of dynamical fluid processes. Chemometrics and Intelligent Laboratory Systems, 2018, 183, 11-22.	1.8	13
48	A JITL-Based Probabilistic Principal Component Analysis for Online Monitoring of Nonlinear Processes. Journal of Chemical Engineering of Japan, 2018, 51, 874-889.	0.3	5
49	An evaluation of machine learning and artificial intelligence models for predicting the flotation behavior of fine high-ash coal. Advanced Powder Technology, 2018, 29, 3493-3506.	2.0	26
50	Formal Verification of Temporal Constraints for Mobile Service-Based Business Process Models. IEEE Access, 2018, 6, 59843-59852.	2.6	7
51	Locally Weighted Canonical Correlation Analysis for Nonlinear Process Monitoring. Industrial & Engineering Chemistry Research, 2018, 57, 13783-13792.	1.8	26
52	KPI relevant and irrelevant fault monitoring with neighborhood component analysis and two-level PLS. Journal of the Franklin Institute, 2018, 355, 8049-8064.	1.9	15
53	A prediction and outlier detection scheme of molten steel temperature in ladle furnace. Chemical Engineering Research and Design, 2018, 138, 229-247.	2.7	13
54	Performance monitoring method based on balanced partial least square and Statistics Pattern Analysis. ISA Transactions, 2018, 81, 121-131.	3.1	22

#	Article	IF	CITATIONS
55	Least Squares-Support Vector Regression for Determining Product Concentrations in Acid-Catalyzed Propylene Oligomerization. Industrial & Engineering Chemistry Research, 2018, 57, 13156-13176.	1.8	18
56	A New Data Reconciliation Strategy Based on Mutual Information for Industrial Processes. Industrial & Engineering Chemistry Research, 2018, 57, 12861-12870.	1.8	12
57	Process Data Analytics via Probabilistic Latent Variable Models: A Tutorial Review. Industrial & Engineering Chemistry Research, 2018, 57, 12646-12661.	1.8	176
58	Effective variable selection and moving window HMM-based approach for iron-making process monitoring. Journal of Process Control, 2018, 68, 86-95.	1.7	37
59	Soft sensor modeling with a selective updating strategy for Gaussian process regression based on probabilistic principle component analysis. Journal of the Franklin Institute, 2018, 355, 5336-5349.	1.9	16
60	Layered online data reconciliation strategy with multiple modes for industrial processes. Control Engineering Practice, 2018, 77, 63-72.	3.2	15
61	Multiâ€similarity measurement driven ensemble justâ€inâ€time learning for soft sensing of industrial processes. Journal of Chemometrics, 2018, 32, e3040.	0.7	55
62	Dynamic soft sensors with active forward-update learning for selection of useful data from historical big database. Chemometrics and Intelligent Laboratory Systems, 2018, 175, 87-103.	1.8	12
63	Online Quality Prediction of Industrial Terephthalic Acid Hydropurification Process Using Modified Regularized Slow-Feature Analysis. Industrial & Engineering Chemistry Research, 2018, 57, 9604-9614.	1.8	30
64	Just-in-time semi-supervised soft sensor for quality prediction in industrial rubber mixers. Chemometrics and Intelligent Laboratory Systems, 2018, 180, 36-41.	1.8	97
65	Probabilistic Nonlinear Soft Sensor Modeling Based on Generative Topographic Mapping Regression. IEEE Access, 2018, 6, 10445-10452.	2.6	11
66	Multi-subspace factor analysis integrated with support vector data description for multimode process monitoring. Journal of the Franklin Institute, 2018, 355, 7664-7690.	1.9	14
67	Big data quality prediction in the process industry: A distributed parallel modeling framework. Journal of Process Control, 2018, 68, 1-13.	1.7	78
68	Multiway principal polynomial analysis for semiconductor manufacturing process fault detection. Chemometrics and Intelligent Laboratory Systems, 2018, 181, 29-35.	1.8	7
69	Multimode complex process monitoring using doubleâ€ l evel local information based local outlier factor method. Journal of Chemometrics, 2018, 32, e3048.	0.7	5
70	Monitoring big process data of industrial plants with multiple operating modes based on Hadoop. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 10-21.	2.7	25
71	Dynamic Bayesian Network-Based Approach by Integrating Sensor Deployment for Machining Process Monitoring. IEEE Access, 2018, 6, 33362-33375.	2.6	5
72	Analytic Hierarchy Process Based Fuzzy Decision Fusion System for Model Prioritization and Process Monitoring Application. IEEE Transactions on Industrial Informatics, 2019, 15, 357-365.	7.2	54

#	Article	IF	CITATIONS
73	Soft-Sensor Development for Processes With Multiple Operating Modes Based on Semisupervised Gaussian Mixture Regression. IEEE Transactions on Control Systems Technology, 2019, 27, 2169-2181.	3.2	40
74	Dynamic Probabilistic Latent Variable Model for Process Data Modeling and Regression Application. IEEE Transactions on Control Systems Technology, 2019, 27, 323-331.	3.2	58
75	Scalable Semisupervised GMM for Big Data Quality Prediction in Multimode Processes. IEEE Transactions on Industrial Electronics, 2019, 66, 3681-3692.	5.2	67
76	A new data analytics framework emphasising preprocessing of data to generate insights into complex manufacturing systems. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 6713-6726.	1.1	11
77	Data-driven CBM tool for risk-informed decision-making in an electric arc furnace. International Journal of Advanced Manufacturing Technology, 2019, 105, 595-608.	1.5	16
78	Nonlinear industrial soft sensor development based on semi-supervised probabilistic mixture of extreme learning machines. Control Engineering Practice, 2019, 91, 104098.	3.2	34
79	Domain adaptation transfer learning soft sensor for product quality prediction. Chemometrics and Intelligent Laboratory Systems, 2019, 192, 103813.	1.8	96
80	Structured sequential Gaussian graphical models for monitoring time-varying process. Control Engineering Practice, 2019, 91, 104099.	3.2	8
82	Distributed process monitoring framework based on decomposed modified partial least squares. Canadian Journal of Chemical Engineering, 2019, 97, 3087-3100.	0.9	6
83	Oscillation Detection in Process Industries by a Machine Learning-Based Approach. Industrial & Engineering Chemistry Research, 2019, 58, 14180-14192.	1.8	11
84	Output relevant slow feature extraction using partial least squares. Chemometrics and Intelligent Laboratory Systems, 2019, 191, 148-157.	1.8	19
85	Development of Predictive Emissions Monitoring System Using Open Source Machine Learning Library – Keras: A Case Study on a Cogeneration Unit. IEEE Access, 2019, 7, 113463-113475.	2.6	22
86	Industrial process monitoring based on Fisher discriminant global-local preserving projection. Journal of Process Control, 2019, 81, 76-86.	1.7	30
87	Denoised Residual Trace Analysis for Monitoring Semiconductor Process Faults. IEEE Transactions on Semiconductor Manufacturing, 2019, 32, 293-301.	1.4	21
88	A distributed PCA-TSS based soft sensor for raw meal fineness in VRM system. Control Engineering Practice, 2019, 90, 38-49.	3.2	22
89	K-means Bayes algorithm for imbalanced fault classification and big data application. Journal of Process Control, 2019, 81, 54-64.	1.7	46
90	Data Analytics and Machine Learning for Smart Process Manufacturing: Recent Advances and Perspectives in the Big Data Era. Engineering, 2019, 5, 1010-1016.	3.2	186
91	Data mining and machine learning in the context of sustainable evaluation: a literature review. IEEE Latin America Transactions, 2019, 17, 372-382.	1.2	17

#	Article	IF	CITATIONS
92	Real Time Energy Performance Control for Industrial Compressed Air Systems: Methodology and Applications. Energies, 2019, 12, 3935.	1.6	20
93	Dimensionality reduction for visualizing industrial chemical process data. Control Engineering Practice, 2019, 93, 104189.	3.2	34
94	Mutual Information–Dynamic Stacked Sparse Autoencoders for Fault Detection. Industrial & Engineering Chemistry Research, 2019, 58, 21614-21624.	1.8	23
95	Fault Detection and Diagnosis Using Combined Autoencoder and Long Short-Term Memory Network. Sensors, 2019, 19, 4612.	2.1	118
96	Scalable Analytics Platform for Machine Learning in Smart Production Systems. , 2019, , .		14
97	Deep ensemble forests for industrial fault classification. IFAC Journal of Systems and Control, 2019, 10, 100071.	1.1	7
98	Mixture modeling for industrial soft sensor application based on semi-supervised probabilistic PLS. Journal of Process Control, 2019, 84, 46-55.	1.7	25
99	Semi-supervised variational Bayesian Student's t mixture regression and robust inferential sensor application. Control Engineering Practice, 2019, 92, 104155.	3.2	13
100	Recursive-CPLS-Based Quality-Relevant and Process-Relevant Fault Monitoring With Application to the Tennessee Eastman Process. IEEE Access, 2019, 7, 128746-128757.	2.6	16
101	Physics-Prior Bayesian Neural Networks in Semiconductor Processing. IEEE Access, 2019, 7, 130168-130179.	2.6	7
102	An improved Fisher discriminant analysis algorithm based on Procrustes analysis for adaptive fault recognition. Measurement and Control, 2019, 52, 1063-1071.	0.9	5
103	Primary-Auxiliary Statistical Local Kernel Principal Component Analysis and Its Application to Incipient Fault Detection of Nonlinear Industrial Processes. IEEE Access, 2019, 7, 122192-122204.	2.6	5
104	Real-Time Semisupervised Predictive Modeling Strategy for Industrial Continuous Catalytic Reforming Process with Incomplete Data Using Slow Feature Analysis. Industrial & Engineering Chemistry Research, 2019, 58, 17406-17423.	1.8	22
105	Quality-Driven Kernel Projection to Latent Structure Model for Nonlinear Process Monitoring. IEEE Access, 2019, 7, 74450-74458.	2.6	12
106	Data Management in Industry 4.0: State of the Art and Open Challenges. IEEE Access, 2019, 7, 97052-97093.	2.6	99
107	Feature Selection Using an Improved Gravitational Search Algorithm. IEEE Access, 2019, 7, 114440-114448.	2.6	16
108	Cascading Fault Analysis and Control Strategy for Computer Numerical Control Machine Tools Based on Meta Action. IEEE Access, 2019, 7, 91202-91215.	2.6	13
109	New efficiency opportunities arising from intelligent real time control tools applications: the case of Compressed Air Systems' energy efficiency in production and use. Energy Procedia, 2019, 158, 4198-4203.	1.8	13

#	Article	IF	CITATIONS
110	A new multivariate approach based on weighted factor scores and confidence ellipses to precision evaluation of textured fiber bobbins measurement system. Precision Engineering, 2019, 60, 520-534.	1.8	14
111	Fault diagnosis optimization algorithm based on k nearest neighbor. , 2019, , .		1
112	Robust inferential sensor development based on variational Bayesian Student's-t mixture regression. Neurocomputing, 2019, 369, 11-28.	3.5	10
113	Understanding Big Data Analytics for Manufacturing Processes: Insights from Literature Review and Multiple Case Studies. Computers and Industrial Engineering, 2019, 137, 106099.	3.4	110
114	A comparative study of deep and shallow predictive techniques for hot metal temperature prediction in blast furnace ironmaking. Computers and Chemical Engineering, 2019, 130, 106575.	2.0	56
115	Soft Sensing of Silicon Content via Bagging Local Semi-Supervised Models. Sensors, 2019, 19, 3814.	2.1	16
116	Adaptive virtual sensors using SNPER for the localized construction and elastic net regularization in nonlinear processes. Control Engineering Practice, 2019, 83, 129-140.	3.2	15
117	Ensemble just-in-time learning framework through evolutionary multi-objective optimization for soft sensor development of nonlinear industrial processes. Chemometrics and Intelligent Laboratory Systems, 2019, 184, 153-166.	1.8	30
118	Improved CCM for variable causality detection in complex systems. Control Engineering Practice, 2019, 83, 67-82.	3.2	16
119	Distributed partial least squares based residual generation for statistical process monitoring. Journal of Process Control, 2019, 75, 77-85.	1.7	38
120	Gaussian feature learning based on variational autoencoder for improving nonlinear process monitoring. Journal of Process Control, 2019, 75, 136-155.	1.7	69
121	Qualityâ€relevant dynamic process monitoring based on mutual information multiblock slow feature analysis. Journal of Chemometrics, 2019, 33, e3110.	0.7	21
122	A multiobjective optimization model for machining quality in the AISI 12L14 steel turning process using fuzzy multivariate mean square error. Precision Engineering, 2019, 56, 303-320.	1.8	18
123	Justâ€inâ€ŧime learning–multiple subspace support vector data description used for nonâ€Gaussian dynamic batch process monitoring. Journal of Chemometrics, 2019, 33, e3134.	0.7	14
124	Formation lithology classification using scalable gradient boosted decision trees. Computers and Chemical Engineering, 2019, 128, 392-404.	2.0	134
125	Innovative data regression incorporating deterministic knowledge for soft sensing in the process industry. Journal of Process Control, 2019, 80, 180-192.	1.7	5
126	Process Monitoring via Key Principal Components and Local Information Based Weights. IEEE Access, 2019, 7, 15357-15366.	2.6	9
127	Online learning based Fisher discriminant analysis and its application for fault classification in in in industrial processes. Chemometrics and Intelligent Laboratory Systems, 2019, 191, 30-41.	1.8	10

#	Article	IF	CITATIONS
128	Data-Driven Advances in Manufacturing for Batch Polymer Processing Using Multivariate Nondestructive Monitoring. Industrial & Engineering Chemistry Research, 2019, 58, 9940-9951.	1.8	11
129	A Label Noise Robust Stacked Auto-Encoder Algorithm for Inaccurate Supervised Classification Problems. Mathematical Problems in Engineering, 2019, 2019, 1-19.	0.6	1
130	\$eta\$ Algorithm: A New Probabilistic Process Learning Approach for Big Data in Healthcare. IEEE Access, 2019, 7, 78842-78869.	2.6	5
131	Fault Identification Using Fast k-Nearest Neighbor Reconstruction. Processes, 2019, 7, 340.	1.3	9
132	A P- <mml:math <br="" display="inline" id="d1e702" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si8.svg"><mml:mi>t</mml:mi></mml:math> -SNE and MMEMPM based quality-related process monitoring method for a variety of hot rolling processes. Control Engineering Practice, 2019, 89, 1-11.	3.2	19
133	Advances in alarm data analysis with a practical application to online alarm flood classification. Journal of Process Control, 2019, 79, 56-71.	1.7	43
134	Sparse Kernel Principal Component Analysis via Sequential Approach for Nonlinear Process Monitoring. IEEE Access, 2019, 7, 47550-47563.	2.6	7
135	Statistical monitoring for non-Gaussian processes based on MICA-KDR method. ISA Transactions, 2019, 94, 164-173.	3.1	10
136	Scalable learning and probabilistic analytics of industrial big data based on parameter server: Framework, methods and applications. Journal of Process Control, 2019, 78, 13-33.	1.7	19
137	Sensors Information Fusion System with Fault Detection Based on Multi-Manifold Regularization Neighborhood Preserving Embedding. Sensors, 2019, 19, 1440.	2.1	5
138	Incorporate active learning to semi-supervised industrial fault classification. Journal of Process Control, 2019, 78, 88-97.	1.7	24
139	Special Probabilistic Prediction Model for Temperature Characteristics of Dynamic Fluid Processes. IEEE Access, 2019, 7, 55064-55072.	2.6	1
140	Systematic Development of a New Variational Autoencoder Model Based on Uncertain Data for Monitoring Nonlinear Processes. IEEE Access, 2019, 7, 22554-22565.	2.6	44
141	A novel algorithm for privacy preserving utility mining based on integer linear programming. Engineering Applications of Artificial Intelligence, 2019, 81, 300-312.	4.3	13
142	Double Layer Distributed Process Monitoring Based on Hierarchical Multi-Block Decomposition. IEEE Access, 2019, 7, 17337-17346.	2.6	8
143	Ensemble semi-supervised Fisher discriminant analysis model for fault classification in industrial processes. ISA Transactions, 2019, 92, 109-117.	3.1	31
144	Fault Identification of Chemical Processes Based on k-NN Variable Contribution and CNN Data Reconstruction Methods. Sensors, 2019, 19, 929.	2.1	3
145	Using multivariate pattern segmentation to assess process performance and mine good operation conditions for dynamic chemical industry. Chemical Engineering Science, 2019, 201, 339-348.	1.9	5

#	ARTICLE	IF	CITATIONS
146	Improved process monitoring based on global–local manifold analysis and statistical local approach for industrial process. Journal of Process Control, 2019, 75, 107-119.	1.7	13
147	SVM-tree and SVM-forest algorithms for imbalanced fault classification in industrial processes. IFAC Journal of Systems and Control, 2019, 8, 100052.	1.1	22
148	Real-time monitoring of the moisture content of filter cakes in vacuum filters by a novel soft sensor. Separation and Purification Technology, 2019, 223, 282-291.	3.9	5
149	Data-driven monitoring of multimode continuous processes: A review. Chemometrics and Intelligent Laboratory Systems, 2019, 189, 56-71.	1.8	112
150	A New Hierarchical Framework for Detection and Isolation of Multiple Faults in Complex Industrial Processes. IEEE Access, 2019, 7, 12006-12015.	2.6	8
151	Experimental Investigation of Power Signatures for Cavitation and Water Hammer in an Industrial Parallel Pumping System. Energies, 2019, 12, 1351.	1.6	11
152	Distributed parallel deep learning of Hierarchical Extreme Learning Machine for multimode quality prediction with big process data. Engineering Applications of Artificial Intelligence, 2019, 81, 450-465.	4.3	43
153	Recursive Gaussian Mixture Models for Adaptive Process Monitoring. Industrial & Engineering Chemistry Research, 2019, 58, 6551-6561.	1.8	22
154	A Cooperative Denoising Algorithm with Interactive Dynamic Adjustment Function for Security of Stacker in Industrial Internet of Things. Security and Communication Networks, 2019, 2019, 1-16.	1.0	6
155	Enabling Cognitive Predictive Maintenance Using Machine Learning: Approaches and Design Methodologies. Advances in Intelligent Systems and Computing, 2019, , 37-45.	0.5	4
156	Annulus-event-based fault detection, isolation and estimation for multirate time-varying systems: Applications to a three-tank system. Journal of Process Control, 2019, 75, 48-58.	1.7	47
157	Critical comparison of methods for fault diagnosis in metabolomics data. Scientific Reports, 2019, 9, 1123.	1.6	7
158	Local and Global Randomized Principal Component Analysis for Nonlinear Process Monitoring. IEEE Access, 2019, 7, 25547-25562.	2.6	13
159	Multirate Dynamic Process Monitoring Based on Multirate Linear Gaussian State-Space Model. IEEE Transactions on Automation Science and Engineering, 2019, 16, 1708-1719.	3.4	29
160	Multiphase and Multimode Monitoring of Batch Processes Based on Density Peak Clustering and Just-in-time Learning. , 2019, , .		0
161	Dynamic Processes Modeling and Monitoring based on a Novel Dynamic Latent Variable Model. , 2019, , .		0
162	Back-propagation Based Contribution for nonlinear fault diagnosis. , 2019, , .		0
163	Nonlinear Soft Sensor Modeling Method Based on Multimode Kernel Partial Least Squares Assisted by Improved KFCM Clustering. , 2019, , .		2

			-
#	ARTICLE	IF	CITATIONS
164	Review of Machine Learning Approaches In Fault Diagnosis applied to IoT Systems. , 2019, , .		20
165	Incremental Algorithm for Association Rule Mining under Dynamic Threshold. Applied Sciences (Switzerland), 2019, 9, 5398.	1.3	24
166	A Novel Structured Dynamic CCA Modeling for Process Monitoring. , 2019, , .		0
167	Fault Detection and Diagnosis Based on Adam-ICA. , 2019, , .		2
168	A Semantic Workbench for Editing, Querying, Navigating and Distributing Ontologies for Cognitive Manufacturing. , 2019, , .		0
169	Automatic process modeling with time delay neural network based on low-level data Procedia Manufacturing, 2019, 38, 125-132.	1.9	3
170	Robust Supervised Probabilistic Factor Analysis and Its Application to Industrial Soft Sensor Modeling. IEEE Access, 2019, 7, 184038-184052.	2.6	1
171	Towards the Automation of a Chemical Sulphonation Process with Machine Learning. , 2019, , .		4
172	Classification Technique for Heart Disease Prediction in Data Mining. , 2019, , .		14
173	Fault Classification in Wind Turbines Using Principal Component Analysis Technique. , 2019, , .		3
174	Practical Framework for Advanced Quality-based Process Control in Interlinked Manufacturing Processes. , 2019, , .		1
175	Between-Phase Nonlinear Correlation Analysis-Based Modeling and Online Monitoring for Multiphase Batch Process With Transitions. IEEE Access, 2019, 7, 158951-158968.	2.6	2
176	On the Use of Inductive Biases for Semantic Characterization of Industrial Alarm Systems. , 2019, , .		1
177	A twoâ€layer ensemble learning framework for dataâ€driven soft sensor of the diesel attributes in an industrial hydrocracking process. Journal of Chemometrics, 2019, 33, e3185.	0.7	34
178	Determination of copper-based mineral species by laser induced breakdown spectroscopy and chemometric methods. Journal of Analytical Atomic Spectrometry, 2019, 34, 2459-2468.	1.6	25
179	Data-Driven Predictive Model Based on Locally Weighted Bayesian Gaussian Regression. , 2019, , .		0
180	An Improved Bar-Shaped Sliding Window CNN Tailored to Industrial Process Historical Data with Applications in Chemical Operational Optimizations. Industrial & Engineering Chemistry Research, 2019, 58, 21219-21232.	1.8	9
181	Generalized grouped contributions for hierarchical fault diagnosis with group Lasso. Control Engineering Practice, 2019, 93, 104193.	3.2	25

#	Article	IF	CITATIONS
182	Model Calibration Method for Soft Sensors Using Adaptive Gaussian Process Regression. IEEE Access, 2019, 7, 168436-168443.	2.6	9
183	Nonlinear Variational Bayesian Factor Regression for Inferential Sensor Modeling. , 2019, , .		0
184	Multi-grain Cascade Recurrent Neural Network for Nonlinear Time-varying Process Soft Sensor Modeling. , 2019, , .		2
185	Transfer learning soft sensor for product quality prediction in multi-grade processes. , 2019, , .		0
186	Probabilistic Sequential Network for Deep Learning of Complex Process Data and Soft Sensor Application. IEEE Transactions on Industrial Informatics, 2019, 15, 2700-2709.	7.2	77
187	Deep Principal Component Analysis Based on Layerwise Feature Extraction and Its Application to Nonlinear Process Monitoring. IEEE Transactions on Control Systems Technology, 2019, 27, 2526-2540.	3.2	67
188	Semi-supervised mixture of latent factor analysis models with application to online key variable estimation. Control Engineering Practice, 2019, 84, 32-47.	3.2	23
189	Parallel quality-related dynamic principal component regression method for chemical process monitoring. Journal of Process Control, 2019, 73, 33-45.	1.7	41
190	Multirate Factor Analysis Models for Fault Detection in Multirate Processes. IEEE Transactions on Industrial Informatics, 2019, 15, 4076-4085.	7.2	39
191	A novel robust data reconciliation method for industrial processes. Control Engineering Practice, 2019, 83, 203-212.	3.2	29
192	Concurrent Fault Detection and Anomaly Location in Closed-Loop Dynamic Systems With Measured Disturbances. IEEE Transactions on Automation Science and Engineering, 2019, 16, 1033-1045.	3.4	4
193	Parallel Computing and SGD-Based DPMM For Soft Sensor Development With Large-Scale Semisupervised Data. IEEE Transactions on Industrial Electronics, 2019, 66, 6362-6373.	5.2	40
194	Incipient Fault Detection for Chemical Processes Using Two-Dimensional Weighted SLKPCA. Industrial & Engineering Chemistry Research, 2019, 58, 2280-2295.	1.8	30
195	Ensemble pattern trees for predicting hot metal temperature in blast furnace. Computers and Chemical Engineering, 2019, 121, 442-449.	2.0	36
196	Interval multiple-output soft sensors development with capacity control for wastewater treatment applications: A comparative study. Chemometrics and Intelligent Laboratory Systems, 2019, 184, 82-93.	1.8	27
197	Multiple probability principal component analysis for process monitoring with multi-rate measurements. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 18-28.	2.7	15
198	Machine learning applications in minerals processing: A review. Minerals Engineering, 2019, 132, 95-109.	1.8	186
199	Nonlinear Gaussian Mixture Regression for Multimode Quality Prediction With Partially Labeled Data. IEEE Transactions on Industrial Informatics, 2019, 15, 4044-4053.	7.2	18

#	Article	IF	CITATIONS
200	Quality variable prediction for chemical processes based on semisupervised Dirichlet process mixture of Gaussians. Chemical Engineering Science, 2019, 193, 394-410.	1.9	38
201	Hierarchical Bayesian Network Modeling Framework for Large-Scale Process Monitoring and Decision Making. IEEE Transactions on Control Systems Technology, 2020, 28, 671-679.	3.2	36
202	Deep quality-related feature extraction for soft sensing modeling: A deep learning approach with hybrid VW-SAE. Neurocomputing, 2020, 396, 375-382.	3.5	78
203	Local Parameter Optimization of LSSVM for Industrial Soft Sensing With Big Data and Cloud Implementation. IEEE Transactions on Industrial Informatics, 2020, 16, 2917-2928.	7.2	37
204	Semisupervised Robust Modeling of Multimode Industrial Processes for Quality Variable Prediction Based on Student's <i>t</i> Mixture Model. IEEE Transactions on Industrial Informatics, 2020, 16, 2965-2976.	7.2	42
205	A Correlation-Based Distributed Fault Detection Method and Its Application to a Hot Tandem Rolling Mill Process. IEEE Transactions on Industrial Electronics, 2020, 67, 2380-2390.	5.2	35
206	Adaptive ensemble learning strategy for semi-supervised soft sensing. Journal of the Franklin Institute, 2020, 357, 3753-3770.	1.9	20
207	Industrial process deep feature representation by regularization strategy autoencoders for process monitoring. Measurement Science and Technology, 2020, 31, 025104.	1.4	12
208	Multi-rate principal component regression model for soft sensor application in industrial processes. Science China Information Sciences, 2020, 63, 1.	2.7	10
209	Cable joint fault detection for the ring main unit based on an adaptive TNPE algorithm. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2020, 10, e1336.	4.6	4
210	Quantitative analysis of product quality of naphtha reforming process under uncertain process conditions. Chemical Engineering Communications, 2020, 207, 1092-1102.	1.5	3
211	Industry 4.0 based process data analytics platform: A waste-to-energy plant case study. International Journal of Electrical Power and Energy Systems, 2020, 115, 105508.	3.3	107
212	Development of short chain fatty acid-based artificial neuron network tools applied to biohydrogen production. International Journal of Hydrogen Energy, 2020, 45, 5175-5181.	3.8	25
213	Automatic Deep Extraction of Robust Dynamic Features for Industrial Big Data Modeling and Soft Sensor Application. IEEE Transactions on Industrial Informatics, 2020, 16, 4456-4467.	7.2	33
214	Bayesian Just-in-Time Learning and Its Application to Industrial Soft Sensing. IEEE Transactions on Industrial Informatics, 2020, 16, 2787-2798.	7.2	30
215	Nonlinear probabilistic latent variable regression models for soft sensor application: From shallow to deep structure. Control Engineering Practice, 2020, 94, 104198.	3.2	73
216	A generalization model for multi-record privacy preservation. Journal of Ambient Intelligence and Humanized Computing, 2020, 11, 2899-2912.	3.3	9
217	A spatial-temporal LWPLS for adaptive soft sensor modeling and its application for an industrial hydrocracking process. Chemometrics and Intelligent Laboratory Systems, 2020, 197, 103921.	1.8	29

#	Article	IF	CITATIONS
218	Tackling Faults in the Industry 4.0 Era—A Survey of Machine-Learning Solutions and Key Aspects. Sensors, 2020, 20, 109.	2.1	156
219	A comprehensive hybrid first principles/machine learning modeling framework for complex industrial processes. Journal of Process Control, 2020, 86, 30-43.	1.7	67
220	Streaming parallel variational Bayesian supervised factor analysis for adaptive soft sensor modeling with big process data. Journal of Process Control, 2020, 85, 52-64.	1.7	26
221	Machine learning in drying. Drying Technology, 2020, 38, 596-609.	1.7	28
222	Hierarchical Quality Monitoring for Large-Scale Industrial Plants With Big Process Data. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 3330-3341.	7.2	16
223	MRS-kNN fault detection method for multirate sampling process based variable grouping threshold. Journal of Process Control, 2020, 85, 149-158.	1.7	21
224	A new classification method of ancient Chinese ceramics based on machine learning and component analysis. Ceramics International, 2020, 46, 8104-8110.	2.3	19
225	Deep relevant representation learning for soft sensing. Information Sciences, 2020, 514, 263-274.	4.0	35
226	Data-driven individual–joint learning framework for nonlinear process monitoring. Control Engineering Practice, 2020, 95, 104235.	3.2	20
227	Whole Process Monitoring Based on Unstable Neuron Output Information in Hidden Layers of Deep Belief Network. IEEE Transactions on Cybernetics, 2020, 50, 3998-4007.	6.2	47
228	Data-Driven Two-Dimensional Deep Correlated Representation Learning for Nonlinear Batch Process Monitoring. IEEE Transactions on Industrial Informatics, 2020, 16, 2839-2848.	7.2	46
229	A Review of Kernel Methods for Feature Extraction in Nonlinear Process Monitoring. Processes, 2020, 8, 24.	1.3	69
230	A Data Fusion Fault Diagnosis Method Based on LSTM and DWT for Satellite Reaction Flywheel. Mathematical Problems in Engineering, 2020, 2020, 1-15.	0.6	5
231	Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks. Materials, 2020, 13, 4236.	1.3	8
232	Fast tunable gradient RBF networks for online modeling of nonlinear and nonstationary dynamic processes. Journal of Process Control, 2020, 93, 53-65.	1.7	9
233	Prediction and Uncertainty Propagation for Completion Time of Batch Processes Based on Data-Driven Modeling. Industrial & Engineering Chemistry Research, 2020, 59, 14374-14384.	1.8	4
234	Predicting chattering alarms: A machine Learning approach. Computers and Chemical Engineering, 2020, 143, 107122.	2.0	16
235	Unsupervised learning algorithms applied to grouping problems. Procedia Computer Science, 2020, 175, 677-682.	1.2	0

#	Article	IF	CITATIONS
237	Nonlinear Fault Detection of Batch Processes Using Functional Local Kernel Principal Component Analysis. IEEE Access, 2020, 8, 117513-117527.	2.6	4
238	Ensemble deep learning based semi-supervised soft sensor modeling method and its application on quality prediction for coal preparation process. Advanced Engineering Informatics, 2020, 46, 101136.	4.0	38
239	Supply Chain Monitoring Using Principal Component Analysis. Industrial & Engineering Chemistry Research, 2020, 59, 12487-12503.	1.8	6
240	Al-based Framework for Deep Learning Applications in Grinding. , 2020, , .		6
241	Between-class difference analysis based multidimensional RBC for multivariate fault isolation of industrial processes. Journal of the Taiwan Institute of Chemical Engineers, 2020, 115, 1-12.	2.7	6
242	Novel Quality-Relevant Process Monitoring based on Dynamic Locally Linear Embedding Concurrent Canonical Correlation Analysis. Industrial & Engineering Chemistry Research, 2020, 59, 21439-21457.	1.8	11
243	Heat-loss cycle prediction in steelmaking plants through artificial neural network. Journal of the Operational Research Society, 2022, 73, 326-337.	2.1	6
244	Next generation control units simplifying industrial machine learning. , 2020, , .		6
245	Nonlinear fault detection for batch processes via improved chordal kernel tensor locality preserving projections. Control Engineering Practice, 2020, 101, 104514.	3.2	17
246	Near-infrared fault detection based on stacked regularized auto-encoder network. Chemometrics and Intelligent Laboratory Systems, 2020, 204, 104101.	1.8	2
247	Blast furnace hot metal temperature and silicon content prediction using soft sensor based on fuzzy C-means and exogenous nonlinear autoregressive models. Computers and Chemical Engineering, 2020, 141, 107028.	2.0	32
248	A novel industrial process monitoring method based on improved local tangent space alignment algorithm. Neurocomputing, 2020, 405, 114-125.	3.5	14
249	Inâ€line characterization of dispersion uniformity evolution during a twinâ€screw blending extrusion based on nearâ€infrared spectroscopy. Polymer Engineering and Science, 2020, 60, 2087-2096.	1.5	7
250	Two-Tier analyzed content filtering based Data Management Architecture in Industry 4.0. , 2020, , .		3
251	On wavelet-based statistical process monitoring. Transactions of the Institute of Measurement and Control, 2022, 44, 525-538.	1.1	12
252	Qualified Rate Prediction of Typical Workpieces in Discrete Manufacturing Process. , 2020, , .		0
253	A novel common and specific features extraction-based process monitoring approach with application to a hot rolling mill process. Control Engineering Practice, 2020, 104, 104628.	3.2	6
254	Maintenance transformation through Industry 4.0 technologies: A systematic literature review. Computers in Industry, 2020, 123, 103335.	5.7	136

#	Article	IF	CITATIONS
255	A Collaborative Optimization Strategy for Energy Reduction in Ironmaking Digital Twin. IEEE Access, 2020, 8, 177570-177579.	2.6	16
256	A Batch Process Monitoring Method Using Two-Dimensional Localized Dynamic Support Vector Data Description. IEEE Access, 2020, 8, 181192-181204.	2.6	4
257	A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in Electronics Industry. IEEE Access, 2020, 8, 183192-183271.	2.6	81
258	Development of Adversarial Transfer Learning Soft Sensor for Multigrade Processes. Industrial & Engineering Chemistry Research, 2020, 59, 16330-16345.	1.8	60
259	Interpreting Remaining Useful Life estimations combining Explainable Artificial Intelligence and domain knowledge in industrial machinery. , 2020, , .		18
260	Interactive Timeline Approach for Contextual Spatio-Temporal ECT Data Investigation. Sensors, 2020, 20, 4793.	2.1	10
261	Residual Analysis of Predictive Modelling Data for Automated Fault Detection in Building's Heating, Ventilation and Air Conditioning Systems. Sustainability, 2020, 12, 6758.	1.6	9
262	Automatic Deep Vector Learning Model Applied for Oil-Well-Testing Feature Mining, Purification and Classification. IEEE Access, 2020, 8, 151634-151649.	2.6	3
263	Fostering Sustainability through Visualization Techniques for Real-Time IoT Data: A Case Study Based on Gas Turbines for Electricity Production. Sensors, 2020, 20, 4556.	2.1	5
264	Gated Stacked Target-Related Autoencoder: A Novel Deep Feature Extraction and Layerwise Ensemble Method for Industrial Soft Sensor Application. IEEE Transactions on Cybernetics, 2022, 52, 3457-3468.	6.2	49
265	Actuator and Sensor Fault Classification for Wind Turbine Systems Based on Fast Fourier Transform and Uncorrelated Multi-Linear Principal Component Analysis Techniques. Processes, 2020, 8, 1066.	1.3	51
266	Unsupervised Functional Link Artificial Neural Networks for Cluster Analysis. IEEE Access, 2020, 8, 169215-169228.	2.6	5
267	Comparative Survey of Machine Learning Techniques for Prediction of Parkinson's Disease. , 2020, , .		6
268	A Comparison Framework of Machine Learning Algorithms for Mixed-Type Variables Datasets: A Case Study on Tire-Performances Prediction. IEEE Access, 2020, 8, 214902-214914.	2.6	9
269	A Robust Data Reconciliation Method Based on Shape Parameters. , 2020, , .		0
270	Data-Driven Fault Diagnosis for Traction Systems in High-Speed Trains: A Survey, Challenges, and Perspectives. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 1700-1716.	4.7	244
271	Applying the Balanced Scorecard and Predictive Analytics in the Administration of a European Funding Program. Administrative Sciences, 2020, 10, 102.	1.5	5
272	Fast Locally Weighted PLS Modeling for Large-Scale Industrial Processes. Industrial & Engineering Chemistry Research, 2020, 59, 20779-20786.	1.8	17

#	Article	IF	CITATIONS
273	Determination of bubble sizes in bubble column reactors with machine learning regression methods. Chemical Engineering Research and Design, 2020, 163, 47-57.	2.7	9
274	Locally linear back-propagation based contribution for nonlinear process fault diagnosis. IEEE/CAA Journal of Automatica Sinica, 2020, 7, 764-775.	8.5	15
275	Biosystems Design by Machine Learning. ACS Synthetic Biology, 2020, 9, 1514-1533.	1.9	76
276	Supervised Nonlinear Dynamic System for Soft Sensor Application Aided by Variational Auto-Encoder. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 6132-6142.	2.4	42
277	Development and Utilization of a Framework for Data-Driven Life Cycle Management of Battery Cells. Procedia Manufacturing, 2020, 43, 431-438.	1.9	10
278	Towards the behavior analysis of chemical reactors utilizing data-driven trend analysis and machine learning techniques. Applied Soft Computing Journal, 2020, 94, 106464.	4.1	5
279	Quality monitoring method based on enhanced canonical component analysis. ISA Transactions, 2020, 105, 221-229.	3.1	2
280	Optimal Weighting Distance-Based Similarity for Locally Weighted PLS Modeling. Industrial & Engineering Chemistry Research, 2020, 59, 11552-11558.	1.8	15
281	Random Forest-Bayesian Optimization for Product Quality Prediction With Large-Scale Dimensions in Process Industrial Cyber–Physical Systems. IEEE Internet of Things Journal, 2020, 7, 8641-8653.	5.5	35
282	Industrial Virtual Sensing for Big Process Data Based on Parallelized Nonlinear Variational Bayesian Factor Regression. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 8128-8136.	2.4	18
283	Conditional random field for monitoring multimode processes with stochastic perturbations. Journal of the Franklin Institute, 2020, 357, 8229-8251.	1.9	11
284	Gaussian process regression with heteroscedastic noises — A machine-learning predictive variance approach. Chemical Engineering Research and Design, 2020, 157, 162-173.	2.7	15
285	Monitoring and prediction of big process data with deep latent variable models and parallel computing. Journal of Process Control, 2020, 92, 19-34.	1.7	30
286	Grouping multiâ€rate sampling fault detection method for penicillin fermentation process. Canadian Journal of Chemical Engineering, 2020, 98, 1319-1327.	0.9	6
287	Autoencoder-based nonlinear Bayesian locally weighted regression for soft sensor development. ISA Transactions, 2020, 103, 143-155.	3.1	21
288	Machine Learning for Optical Gas Sensing: A Leaky-Mode Humidity Sensor as Example. IEEE Sensors Journal, 2020, 20, 6954-6963.	2.4	24
289	Integration of alarm design in fault detection and diagnosis through alarm-range normalization. Control Engineering Practice, 2020, 98, 104388.	3.2	8
290	Multimode process monitoring based on fault dependent variable selection and moving window-negative log likelihood probability. Computers and Chemical Engineering, 2020, 136, 106787.	2.0	27

#	Article	IF	CITATIONS
291	Integration of Industry 4.0 Related Technologies in Construction Industry: A Framework of Cyber-Physical System. IEEE Access, 2020, 8, 122908-122922.	2.6	113
292	Soft Sensing of Nonlinear and Multimode Processes Based on Semi-Supervised Weighted Gaussian Regression. IEEE Sensors Journal, 2020, 20, 12950-12960.	2.4	25
293	Smart Manufacturing for Smart Cities—Overview, Insights, and Future Directions. Advanced Intelligent Systems, 2020, 2, 2000043.	3.3	29
294	Regression and independence based variable importance measure. Computers and Chemical Engineering, 2020, 135, 106757.	2.0	7
295	Robust Soft Sensor with Deep Kernel Learning for Quality Prediction in Rubber Mixing Processes. Sensors, 2020, 20, 695.	2.1	20
296	The business model of intelligent manufacturing with Internet of Things and machine learning. Enterprise Information Systems, 2022, 16, 307-325.	3.3	15
297	Soft Sensor Modeling for Unobserved Multimode Nonlinear Processes Based on Modified Kernel Partial Least Squares With Latent Factor Clustering. IEEE Access, 2020, 8, 35864-35872.	2.6	11
298	Variable Sub-Region Canonical Variate Analysis for Dynamic Process Monitoring. IEEE Access, 2020, 8, 37775-37789.	2.6	3
299	Defect Detection in Composite Products Based on Sparse Moving Window Principal Component Thermography. Advances in Polymer Technology, 2020, 2020, 1-12.	0.8	7
300	Predictive Data Mining Techniques for Fault Diagnosis of Electric Equipment: A Review. Applied Sciences (Switzerland), 2020, 10, 950.	1.3	20
301	Robust Bayesian networks for low-quality data modeling and process monitoring applications. Control Engineering Practice, 2020, 97, 104344.	3.2	28
302	Refining data-driven soft sensor modeling framework with variable time reconstruction. Journal of Process Control, 2020, 87, 91-107.	1.7	30
303	Dynamic Bayesian network for robust latent variable modeling and fault classification. Engineering Applications of Artificial Intelligence, 2020, 89, 103475.	4.3	13
304	A step towards the live identification of pipe obstructions with the use of passive acoustic emission and supervised machine learning. Biosystems Engineering, 2020, 191, 48-59.	1.9	5
305	Mixed-Framework-Based Energy Optimization of Chemi-Mechanical Pulping. IEEE Transactions on Industrial Informatics, 2020, 16, 5895-5904.	7.2	9
306	Prediction of liquid ammonia yield using a novel deep learningâ€based heterogeneous pruning ensemble model. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2408.	0.8	3
307	Modeling Large-Scale Industrial Processes by Multiple Deep Belief Networks With Lower-Pressure and Higher-Precision for Status Monitoring. IEEE Access, 2020, 8, 20439-20448.	2.6	7
308	Ensemble Just-In-Time Learning-Based Soft Sensor for Mooney Viscosity Prediction in an Industrial Rubber Mixing Process. Advances in Polymer Technology, 2020, 2020, 1-14.	0.8	13

#	Article	IF	CITATIONS
309	Adaptive Modeling of Fixed-Bed Reactors with Multicycle and Multimode Characteristics Based on Transfer Learning and Just-In-Time Learning. Industrial & Engineering Chemistry Research, 2020, 59, 6629-6637.	1.8	5
310	Deep Learning for Industrial KPI Prediction: When Ensemble Learning Meets Semi-Supervised Data. IEEE Transactions on Industrial Informatics, 2021, 17, 260-269.	7.2	83
311	An integrated machine learning model for aircraft components rare failure prognostics with log-based dataset. ISA Transactions, 2021, 113, 127-139.	3.1	32
312	Virtual Sensor Development for Multioutput Nonlinear Processes Based on Bilinear Neighborhood Preserving Regression Model With Localized Construction. IEEE Transactions on Industrial Informatics, 2021, 17, 2500-2510.	7.2	6
313	Improved sparse representation based on local preserving projection for the fault diagnosis of multivariable system. Science China Information Sciences, 2021, 64, 1.	2.7	4
314	Data Augmentation Classifier for Imbalanced Fault Classification. IEEE Transactions on Automation Science and Engineering, 2021, 18, 1206-1217.	3.4	74
315	Scalable Soft Sensor for Nonlinear Industrial Big Data via Bagging Stochastic Variational Gaussian Processes. IEEE Transactions on Industrial Electronics, 2021, 68, 7594-7602.	5.2	5
316	A Novel Feature-Extraction-Based Process Monitoring Method for Multimode Processes With Common Features and Its Applications to a Rolling Process. IEEE Transactions on Industrial Informatics, 2021, 17, 6466-6475.	7.2	13
317	Machine learning and data mining in manufacturing. Expert Systems With Applications, 2021, 166, 114060.	4.4	291
318	The knowledge discovery in databases approach: identifying variables that influence ISO 9001 and ISO 14001 certifications. Journal of Environmental Planning and Management, 2021, 64, 1271-1290.	2.4	2
319	Fault Detection of Complex Processes Using nonlinear Mean Function Based Gaussian Process Regression: Application to the Tennessee Eastman Process. Arabian Journal for Science and Engineering, 2021, 46, 6369-6390.	1.7	4
320	Semi-Supervised Learning-Based Calibration Model Building of NIR Spectroscopy for <i>In Situ</i> Measurement of Biochemical Processes Under Insufficiently and Inaccurately Labeled Samples. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	2.4	9
321	Emerging trends and global scope of big data analytics: a scientometric analysis. Quality and Quantity, 2021, 55, 1371-1396.	2.0	21
322	An extensible quality-related fault isolation framework based on dual broad partial least squares with application to the hot rolling process. Expert Systems With Applications, 2021, 167, 114166.	4.4	9
323	Data-Driven Fault Diagnosis Using Deep Canonical Variate Analysis and Fisher Discriminant Analysis. IEEE Transactions on Industrial Informatics, 2021, 17, 3324-3334.	7.2	36
324	Siamese Neural Network-Based Supervised Slow Feature Extraction for Soft Sensor Application. IEEE Transactions on Industrial Electronics, 2021, 68, 8953-8962.	5.2	19
325	A Multiagent-Based Methodology for Known and Novel Faults Diagnosis in Industrial Processes. IEEE Transactions on Industrial Informatics, 2021, 17, 3358-3366.	7.2	18
326	Fault Diagnosis in Industrial Processes by Maximizing Pairwise Kullback–Leibler Divergence. IEEE Transactions on Control Systems Technology, 2021, 29, 780-785.	3.2	10

#	Article	IF	CITATIONS
327	Imbalanced Sample Selection With Deep Reinforcement Learning for Fault Diagnosis. IEEE Transactions on Industrial Informatics, 2022, 18, 2518-2527.	7.2	42
328	Novel L1 Regularized Extreme Learning Machine for Soft-Sensing of an Industrial Process. IEEE Transactions on Industrial Informatics, 2022, 18, 1009-1017.	7.2	45
329	Modeling and optimal control framework for the solution purification process. , 2021, , 15-35.		0
330	Data-Driven Designs of Fault Detection Systems via Neural Network-Aided Learning. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 5694-5705.	7.2	45
331	Study on the intelligent identification method of formation lithology by element and gamma spectrum. Neural Computing and Applications, 2022, 34, 3375-3383.	3.2	1
332	A Novel Operation Sequence Similarity-Based Approach for Typical Process Route Knowledge Discovery. IEEE Access, 2021, 9, 126801-126821.	2.6	0
333	Introduction to machine learning in the power generation industry. , 2021, , 77-92.		5
335	Stacked sparse autoencoders monitoring model based on fault-related variable selection. Soft Computing, 2021, 25, 3531-3543.	2.1	7
336	Data-Driven Fault Detection for Dynamic Systems With Performance Degradation: A Unified Transfer Learning Framework. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	2.4	34
337	Predictive Systems for the Well Drilling Operations. Studies in Systems, Decision and Control, 2021, , 347-368.	0.8	2
338	A Single-Side Neural Network-Aided Canonical Correlation Analysis With Applications to Fault Diagnosis. IEEE Transactions on Cybernetics, 2022, 52, 9454-9466.	6.2	48
339	Towards Secured Online Monitoring for Digitalized GIS Against Cyber-Attacks Based on IoT and Machine Learning. IEEE Access, 2021, 9, 78415-78427.	2.6	69
340	Implementation of Industry 4.0 technology: New opportunities and challenges for maintenance strategy. Procedia Computer Science, 2021, 180, 424-429.	1.2	30
341	Hessian Semisupervised Scatter Regularized Classification Model With Geometric and Discriminative Information for Nonlinear Process. IEEE Transactions on Cybernetics, 2022, 52, 8862-8875.	6.2	5
342	Application of Reinforcement Learning to a Mining System. , 2021, , .		3
343	A Review on Dataâ€Đriven Learning Approaches for Fault Detection and Diagnosis in Chemical Processes. ChemBioEng Reviews, 2021, 8, 239-259.	2.6	48
344	Quality relevant fault detection of batch process via statistical pattern and regression coefficient. Canadian Journal of Chemical Engineering, 0, 99, S504.	0.9	1
345	Increasing adoption rates at animal shelters: a two-phase approach to predict length of stay and optimal shelter allocation. BMC Veterinary Research, 2021, 17, 70.	0.7	18

#	Article	IF	CITATIONS
346	Discovering Energy Consumption Patterns with Unsupervised Machine Learning for Canadian In Situ Oil Sands Operations. Sustainability, 2021, 13, 1968.	1.6	0
347	Locality preserving randomized canonical correlation analysis for real-time nonlinear process monitoring. Chemical Engineering Research and Design, 2021, 147, 1088-1100.	2.7	19
348	Predicting Alcohol Concentration during Beer Fermentation Using Ultrasonic Measurements and Machine Learning. Fermentation, 2021, 7, 34.	1.4	10
349	A Fault Diagnosis Strategy based on Qualitative Trend Analysis Integrating Andrews Plot for Industrial Processes. , 2021, , .		1
350	SISME, Estuarine Monitoring System Based on IOT and Machine Learning for the Detection of Salt Wedge in Aquifers: Case Study of the Magdalena River Estuary. Sensors, 2021, 21, 2374.	2.1	7
351	Customer Complaints Clusterization of Government Drinking Water Company on Social Media Twitter using Text Mining. , 2021, , .		2
352	Detection and Classification of Human Activity for Emergency Response in Smart Factory Shop Floor. Applied Sciences (Switzerland), 2021, 11, 3662.	1.3	26
353	Data-driven modeling and analysis based on complex network for multimode recognition of industrial processes. Journal of Manufacturing Systems, 2022, 62, 915-924.	7.6	13
354	Nonlinear process modeling via unidimensional convolutional neural networks with self-attention on global and local inter-variable structures and its application to process monitoring. ISA Transactions, 2022, 121, 105-118.	3.1	13
355	Sensors Data Analysis in Supervisory Control and Data Acquisition (SCADA) Systems to Foresee Failures with an Undetermined Origin. Sensors, 2021, 21, 2762.	2.1	14
356	A Fault Detection Method based on the Deep Extended PCA $\hat{a} \in SVM$ in Industrial Processes. , 2021, , .		2
357	Addressing Biodisaster X Threats With Artificial Intelligence and 6G Technologies: Literature Review and Critical Insights. Journal of Medical Internet Research, 2021, 23, e26109.	2.1	16
358	Localityâ€preserving data modelling and its application in fault classification. Canadian Journal of Chemical Engineering, 2022, 100, 491-502.	0.9	1
359	Variational Bayesian probabilistic modeling framework for data-driven distributed process monitoring. Control Engineering Practice, 2021, 110, 104778.	3.2	16
360	Data Mining Algorithm for Physical Health Monitoring of Young Students Based on Big Data. Journal of Healthcare Engineering, 2021, 2021, 1-9.	1.1	1
361	Machine Learning and Deep Learning in smart manufacturing: The Smart Grid paradigm. Computer Science Review, 2021, 40, 100341.	10.2	125
362	Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of Systems Assurance Engineering and Management, 0, , 1.	1.5	21
363	Data-Driven Predictive Model for Mixed Oil Length Prediction in Long-Distance Transportation Pipeline. , 2021, , .		2

ARTICLE IF CITATIONS # Evolutionary optimization based pseudo labeling for semi-supervised soft sensor development of 1.9 26 364 industrial processes. Chemical Engineering Science, 2021, 237, 116560. Intelligent Decision Support System in Inheritance Processes : a Research in the General Attorney Office of the State of Pernambuco., 2021,,. Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks. 366 7 1.1 Mathematics, 2021, 9, 1367. AVUBDI: A Versatile Usable Big Data Infrastructure and Its Monitoring Approaches for Process 1.3 Industry. Frontiers in Chemical Engineering, 2021, 3, . The interpretive model of manufacturing: a theoretical framework and research agenda for machine 368 4.9 24 learning in manufacturing. International Journal of Production Research, 2021, 59, 4960-4994. Semi-supervised data modeling and analytics in the process industry: Current research status and challenges. IFAC Journal of Systems and Control, 2021, 16, 100150. 1.1 Improving the Efficiency of Industrial Enterprise Management Based on the Forge Software-analytical 370 0.5 7 Platform. Lecture Notes in Networks and Systems, 2022, , 1107-1113. A qualitative study of Machine Learning practices and engineering challenges in Earth Observation. IT - Information Technology, 2021, 63, 235-247. 371 0.6 Building digitally-enabled process innovation in the process industries: A dynamic capabilities 372 4.2 84 approach. Technovation, 2021, 105, 102256. Intelligent Ironmaking Optimization Service on a Cloud Computing Platform by Digital Twin. 3.2 Engineering, 2021, 7, 1274-1281. Quality monitoring in multistage manufacturing systems by using machine learning techniques. 374 9 4.4 Journal of Intelligent Manufacturing, 2022, 33, 2471-2486. Non-linear process monitoring using kernel principal component analysis: A review of the basic and modified techniques with industrial applications. Brazilian Journal of Chemical Engineering, 2022, 39, 327-344. Automation Pyramid as Constructor for a Complete Digital Twin, Case Study: A Didactic 376 2.1 23 Manufacturing System. Sensors, 2021, 21, 4656. Improving the sensitivity of statistical process monitoring of manifolds embedded in high-dimensional 1.8 spaces: The truncated-Q statistic. Chemometrics and Intelligent Laboratory Systems, 2021, 215, 104369. Machine Learning in Chemical Product Engineering: The State of the Art and a Guide for Newcomers. 378 1.3 28 Processes, 2021, 9, 1456. Online reinforcement learning for a continuous space system with experimental validation. Journal of Process Control, 2021, 104, 86-100. 379 Comparison of Semirigorous and Empirical Models Derived Using Data Quality Assessment Methods. 380 0.8 3 Minerals (Basel, Switzerland), 2021, 11, 954. Giysi Endüstrisinde Üretim Performansının Tahmininde Yapay Sinir AÄŸlarının Kullanılması. European₅ 381 Journal of Science and Technology, 0, , .

#	Article	IF	CITATIONS
382	Application of Artificial Intelligence in Food Industry—a Guideline. Food Engineering Reviews, 2022, 14, 134-175.	3.1	56
383	Kernel Generalization of Multi-Rate Probabilistic Principal Component Analysis for Fault Detection in Nonlinear Process. IEEE/CAA Journal of Automatica Sinica, 2021, 8, 1465-1476.	8.5	14
384	Machine Learning Applications in Biofuels' Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions. Energies, 2021, 14, 5072.	1.6	10
385	Innovative feature selection and classification model for heart disease prediction. Journal of Reliable Intelligent Environments, 2022, 8, 333-343.	3.8	23
386	Data-driven quality improvement approach to reducing waste in manufacturing. TQM Journal, 2023, 35, 51-72.	2.1	14
387	Data analytics for quality management in Industry 4.0 from a MSME perspective. Annals of Operations Research, 0, , 1.	2.6	20
388	A Deep Variational Autoencoder Based Inverse Method for Active Energy Consumption of Mining Plants and Ball Grinding Circuit Investigation. International Journal of Precision Engineering and Manufacturing - Green Technology, 0, , 1.	2.7	1
389	Use of machine learning in prediction of granule particle size distribution and tablet tensile strength in commercial pharmaceutical manufacturing. International Journal of Pharmaceutics, 2021, 609, 121146.	2.6	12
390	Application of machine learning algorithm in the sheet metal industry: an exploratory case study. International Journal of Computer Integrated Manufacturing, 2022, 35, 145-164.	2.9	6
391	Criteria for optimizing kernel methods in fault monitoring process: A survey. ISA Transactions, 2022, 127, 259-272.	3.1	7
392	Deep unLSTM network: Features with memory information extracted from unlabeled data and their application on industrial unsupervised industrial fault detection. Applied Soft Computing Journal, 2021, 108, 107382.	4.1	8
393	Industrial Big Data Modeling and Monitoring Framework for Plant-Wide Processes. IEEE Transactions on Industrial Informatics, 2021, 17, 6399-6408.	7.2	28
394	A novel hybrid analysis and modeling approach applied to aluminum electrolysis process. Journal of Process Control, 2021, 105, 62-77.	1.7	14
395	Quality-related locally weighted soft sensing for non-stationary processes by a supervised Bayesian network with latent variables. Frontiers of Information Technology and Electronic Engineering, 2021, 22, 1234-1246.	1.5	5
396	Semisupervised dynamic soft sensor based on complementary ensemble empirical mode decomposition and deep learning. Measurement: Journal of the International Measurement Confederation, 2021, 183, 109788.	2.5	14
397	Systems level roadmap for solvent recovery and reuse in industries. IScience, 2021, 24, 103114.	1.9	21
398	Reinforced knowledge distillation: Multi-class imbalanced classifier based on policy gradient reinforcement learning. Neurocomputing, 2021, 463, 422-436.	3.5	12
399	Adaptive Dendritic Cell-Deep Learning Approach for Industrial Prognosis Under Changing Conditions. IEEE Transactions on Industrial Informatics, 2021, 17, 7760-7770.	7.2	8

#	Article	IF	CITATIONS
400	Auxiliary Information-Guided Industrial Data Augmentation for Any-Shot Fault Learning and Diagnosis. IEEE Transactions on Industrial Informatics, 2021, 17, 7535-7545.	7.2	51
401	Application of data mining in Iran's Artisanal and Small-Scale mines challenges analysis. Resources Policy, 2021, 74, 102337.	4.2	7
402	Handling missing data for construction waste management: machine learning based on aggregated waste generation behaviors. Resources, Conservation and Recycling, 2021, 175, 105809.	5.3	15
403	Determination of thermodynamic state variables of liquids from their microscopic structures using an artificial neural network. Soft Matter, 2021, 17, 1975-1984.	1.2	5
404	Graph Convolutional Network-Based Method for Fault Diagnosis Using a Hybrid of Measurement and Prior Knowledge. IEEE Transactions on Cybernetics, 2022, 52, 9157-9169.	6.2	86
405	CaPBug-A Framework for Automatic Bug Categorization and Prioritization Using NLP and Machine Learning Algorithms. IEEE Access, 2021, 9, 50496-50512.	2.6	25
406	Deep Learning for Fault Diagnostics in Bearings, Insulators, PV Panels, Power Lines, and Electric Vehicle Applications—The State-of-the-Art Approaches. IEEE Access, 2021, 9, 41246-41260.	2.6	26
407	Quality-related fault detection and diagnosis: a technical review and summary. , 2021, , 1-50.		0
408	The Role of Machine Learning in IIoT Through FPGAs. , 2021, , 121-137.		0
409	Federated Learning for Internet of Things: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 2021, 23, 1622-1658.	24.8	365
410	Using Data Mining Techniques to Perform School Dropout Prediction: A Case Study. Advances in Intelligent Systems and Computing, 2020, , 211-217.	0.5	3
411	Concepts and Methods of "Digital Twins―Models Creation in Industrial Asset Performance Management Systems. Advances in Intelligent Systems and Computing, 2021, , 1589-1595.	0.5	7
413	Conception of a Reference Architecture for Machine Learning in the Process Industry. , 2020, , .		3
414	Artificial Intelligence-Based Emission Reduction Strategy for Limestone Forced Oxidation Flue Gas Desulfurization System. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142,	1.4	21
415	Multiscale Convolutional and Recurrent Neural Network for Quality Prediction of Continuous Casting Slabs. Processes, 2021, 9, 33.	1.3	8
416	Web Crawler: Design And Implementation For Extracting Article-Like Contents. Cybernetics and Physics, 2020, , 144-151.	0.2	4
417	Piano Spectrum Recognition System (PSRS) for Smart Piano Guiding Framework. , 2021, , .		0
418	Explainable Machine Learning to Improve Assembly Line Automation. , 2021, , .		1

#	Article	IF	CITATIONS
419	Explaining and Integrating Machine Learning Models with Rigorous Simulation. Chemie-Ingenieur-Technik, 2021, 93, 1998-2009.	0.4	3
420	Prediction of Bubble Sizes in Bubble Columns withÂMachine Learning Methods. Chemie-Ingenieur-Technik, 2021, 93, 1968-1975.	0.4	10
421	Process intensification 4.0: A new approach for attaining new, sustainable and circular processes enabled by machine learning. Chemical Engineering and Processing: Process Intensification, 2022, 180, 108671.	1.8	17
422	Flooding Prevention in Distillation and Extraction Columns with Aid of Machine Learning Approaches. Chemie-Ingenieur-Technik, 2021, 93, 1917-1929.	0.4	9
423	Prediction of Gas Viscosity of Yemeni Gas Fields Using Machine Learning Techniques. , 2021, , .		6
424	A Holistic Quality Assurance Approach for Machine Learning Applications in Cyber-Physical Production Systems. Applied Sciences (Switzerland), 2021, 11, 9590.	1.3	8
425	Machine Learning in Chemical Engineering: A Perspective. Chemie-Ingenieur-Technik, 2021, 93, 2029-2039.	0.4	87
426	Machine learning to electrochemistry: Analysis of polymers and halide ions in a copper electrolyte. Electrochimica Acta, 2021, 399, 139424.	2.6	10
427	Smart Measurements and Analysis for Software Quality Enhancement. Communications in Computer and Information Science, 2019, , 194-219.	0.4	1
428	Fog-Cloud Collaboration for Real-Time Streaming Applications. Advances in Wireless Technologies and Telecommunication Book Series, 2019, , 128-147.	0.3	0
429	Predicting Diabetes by adopting Classification Approach in Data Mining. International Journal on Informatics Visualization, 2019, 3, 218-221.	0.5	0
430	USING METHOD OF MACHINE TRAINING AND ARTIFICIAL INTELLIGENCE IN CHEMICAL TECHNOLOGY. PART II. Oil and Gas Business, 2019, , 202.	0.2	0
431	A Feature Importance Analysis for Soft-Sensing-Based Predictions in a Chemical Sulphonation Process. , 2020, , .		0
432	Season-Based Occupancy Prediction in Residential Buildings Using Machine Learning Models. E-Prime, 2021, 1, 100003.	2.1	11
433	Heart Disease Prediction using Machine Learning Techniques. , 2020, , .		61
434	Towards the use of LSTM-based Neural Network for Industrial Alarm Systems. , 0, , .		0
435	State-Based Control Feature Extraction for Effective Anomaly Detection in Process Industries. Computers, Materials and Continua, 2020, 63, 1415-1431.	1.5	4
436	Survey on Data Mining and Predictive Analytics Techniques. Lecture Notes in Networks and Systems, 2020, , 971-981.	0.5	2

#	Article	IF	CITATIONS
437	Applying Feature Selection to Improve Predictive Performance and Explainability in Lung Cancer Detection with Soft Computing. , 2020, , .		2
438	Application of Machine Learning and Vision for real-time condition monitoring and acceleration of product development cycles. Procedia Manufacturing, 2020, 52, 61-66.	1.9	0
439	Virtual sensors of nonlinear industrial processes based on neighborhood preserving regression model. IFAC-PapersOnLine, 2020, 53, 11926-11931.	0.5	2
440	Basics of Data-Driven FDD Methods. Lecture Notes in Intelligent Transportation and Infrastructure, 2020, , 43-61.	0.3	0
441	Analysis of Scholarship Consideration Using J48 Decision Tree Algorithm for Data Mining. Lecture Notes in Computer Science, 2020, , 230-238.	1.0	0
443	Analysis of Student Academic Performance and Social Media Activities by Using Data Mining Approach. , 2020, , .		1
444	MODELING OF THE PROCESS OF SOLID ACID ALKILATION USING MACHINE LEARNING ALGORITHMS. Oil and Gas Business, 2020, , 152.	0.2	0
445	Prozesstechnik: Der sich anpassende Zwilling. Nachrichten Aus Der Chemie, 2020, 68, 31-32.	0.0	0
446	Intellectual Property Rights and Computer Applications for Pharmaceutical Research and Development. Applied Drug Research, Clinical Trials and Regulatory Affairs, 2021, 8, 112-124.	0.1	0
447	Improved Process Fault Diagnosis by Using Neural Networks with Andrews Plot and Autoencoder. , 2020, , .		1
448	NARX NETWORK BASED DATA-DRIVEN ALGORITHM FOR DETECTION OF TRAY FAULTS IN NONLINEAR DYNAMIC DISTILLATION COLUMN. Jurnal Teknologi (Sciences and Engineering), 2020, 82, .	0.3	2
450	Deep Learning Predictive Models for Terminal Call Rate Prediction during the Warranty Period. Business Systems Research, 2020, 11, 36-50.	0.5	3
451	Success Factors for Using Case Method in Teaching Applied Data Science Education. European Journal of Education, 2021, 4, 77-86.	0.2	3
452	Hybrid Digital Twin for process industry using Apros simulation environment. , 2021, , .		6
453	Applicability of correlational data-mining to small-scale turbojet performance map generation. International Journal of Turbo and Jet Engines, 2024, 40, s67-s75.	0.3	0
454	Significant Association Rule Mining with MMS and Efficient Correlation Framework. Lecture Notes in Networks and Systems, 2022, , 755-769.	0.5	0
455	A framework to identify and respond to weak signals of disastrous process incidents based on FRAM and machine learning techniques. Chemical Engineering Research and Design, 2022, 158, 98-114.	2.7	8
456	The Machine Learning Life Cycle in Chemical Operations – Status and Open Challenges. Chemie-Ingenieur-Technik, 2021, 93, 2063-2080.	0.4	15

#	Article	IF	Citations
457	Nonstationary and Multirate Process Monitoring by Using Common Trends and Multiple Probability Principal Component Analysis. Industrial & Engineering Chemistry Research, 2021, 60, 18031-18044.	1.8	2
458	Improve industrial performance based on systematic analyses of manufacturing data. IFAC-PapersOnLine, 2021, 54, 709-716.	0.5	1
459	A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Compressed Sensing and Stacked Multi-Granularity Convolution Denoising Auto-Encoder. IEEE Access, 2021, 9, 154777-154787.	2.6	4
460	A novel mechanism model of the fluidized bed roaster in the zinc roasting process. IFAC-PapersOnLine, 2021, 54, 13-18.	0.5	4
461	Toward Interpretable Process Monitoring: Slow Feature Analysis-Aided Autoencoder for Spatiotemporal Process Feature Learning. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-11.	2.4	8
462	Proof of Concept: Calibration of an Overhead Line Conductors' Movements Simulation Model Using Ensemble-Based Machine Learning Model. IEEE Access, 2021, 9, 163391-163411.	2.6	2
463	Didaktischer Ansatz zur Entwicklung künstlicher neuronaler Netze. Atp Magazin, 2019, 61, 82-87.	0.3	0
464	Identifying and Analyzing Data Model Requirements and Technology Potentials of Machine Learning Systems in the Manufacturing Industry of the Future. , 2020, , .		0
465	A Novel Incremental Gaussian Mixture Regression and Its Application for Time-varying Multimodal Process Quality Prediction. , 2020, , .		0
466	Reduced Stationary Subspace Analysis for Anomaly Detection in Nonstationary Industrial Processes. , 2020, , .		0
467	Fault Detection and Diagnosis in Steel Industry: a One Class-Support Vector Machine Approach. , 2021, ,		4
468	Supervised Dynamic Latent Variable Models for Fault Identification in Dynamic Processes. , 2021, , .		0
469	Simultaneous fault diagnosis based on multiple kernel support vector machine in nonlinear dynamic distillation column. Energy Science and Engineering, 2022, 10, 814-839.	1.9	6
470	Industrial Automation Information Analogy for Smart Grid Security. Computers, Materials and Continua, 2022, 71, 3985-3999.	1.5	4
471	Inference of faults through symbolic regression of system data. Computers and Chemical Engineering, 2022, 157, 107619.	2.0	7
472	Sparsity constrained wavelet neural networks for robust soft sensor design with application to the industrial KIVCET unit. Computers and Chemical Engineering, 2022, 159, 107695.	2.0	2
473	The Relationship between the Mechanism of Sarcopenia and Exercise Based on Data Mining. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-13.	0.7	1
474	Semi-supervised learning for data-driven soft-sensing of biological and chemical processes. Chemical Engineering Science, 2022, 251, 117459.	1.9	8

#	Article	IF	CITATIONS
475	A Bibliometric Study and Science Mapping Research of Intelligent Decision. Cognitive Computation, 2022, 14, 989-1008.	3.6	7
476	Accurate computational evolution of proteins and its dependence on deep learning and machine learning strategies. Biocatalysis and Biotransformation, 2022, 40, 169-181.	1.1	2
477	Data-Driven Process System Engineering–Contributions to its consolidation following the path laid down by George Stephanopoulos. Computers and Chemical Engineering, 2022, 159, 107675.	2.0	2
478	The New Generation of ERP in the Era of Artificial Intelligence and Industry 4.0. Advances in Intelligent Systems and Computing, 2022, , 1086-1094.	0.5	1
479	Margin-based approach for outlier detection of industrial design data using a modified general regression neural network. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2022, 36, .	0.7	1
480	Identification of important factors influencing nonlinear counting systems. Frontiers of Information Technology and Electronic Engineering, 2022, 23, 123-133.	1.5	0
481	Application of Computer Data Mining Technology Based on AKN Algorithm in Denial of Service Attack Defense Detection. Wireless Communications and Mobile Computing, 2022, 2022, 1-12.	0.8	1
482	Towards artificial intelligence at scale in the chemical industry. AICHE Journal, 2022, 68, .	1.8	12
483	Machine Learning Modeling of Gas Utilization Rate in Blast Furnace. Jom, 2022, 74, 1633-1640.	0.9	11
484	Missingness analysis of manufacturing systems: A case study. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2022, 236, 1406-1417.	1.5	1
485	Industry 4.0 driven statistical analysis of investment casting process demonstrates the value of digitalisation. Procedia Computer Science, 2022, 200, 284-297.	1.2	2
486	Deep Cascade Gradient RBF Networks With Output-Relevant Feature Extraction and Adaptation for Nonlinear and Nonstationary Processes. IEEE Transactions on Cybernetics, 2023, 53, 4908-4922.	6.2	2
487	Smart extensions to regular cameras in the industrial environment. Procedia Computer Science, 2022, 200, 298-307.	1.2	2
488	Market basket analysis of administrative patterns data of consumer purchases using data mining technology. Journal of Applied Engineering Science, 2022, 20, 339-345.	0.4	9
489	Impacts of the COVIDâ€19 outbreak on olderâ€age cohorts in European Labor Markets: A machine learning exploration of vulnerable groups. Regional Science Policy and Practice, 2023, 15, 559-584.	0.8	7
490	Online reconstruction and diagnosibility analysis of multiplicative fault models for process-related faults. Journal of the Franklin Institute, 2022, 359, 3291-3312.	1.9	2
491	Fault classification based on variableâ€weighted dynamic sparse stacked autoencoder for industrial processes. Canadian Journal of Chemical Engineering, 2023, 101, 420-430.	0.9	2
492	Covariance matrix adapted grey wolf optimizer tuned eXtreme gradient boost for bi-directional modelling of direct metal deposition process. Expert Systems With Applications, 2022, 199, 116971.	4.4	6

#	Article	IF	CITATIONS
493	NIR-Based Intelligent Sensing of Product Yield Stress for High-Value Bioresorbable Polymer Processing. Sensors, 2022, 22, 2835.	2.1	2
494	Large-Scale Industrial Fermenter Foaming Control: Automated Machine Learning for Antifoam Prediction and Defoaming Process Implementation. Industrial & Engineering Chemistry Research, 2022, 61, 5227-5238.	1.8	3
495	A Feature Weighted Mixed Naive Bayes Model for Monitoring Anomalies in the Fan System of a Thermal Power Plant. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 719-727.	8.5	12
496	Handling missing data through deep convolutional neural network. Information Sciences, 2022, 595, 278-293.	4.0	19
497	Reinforcement learning approach to autonomous PID tuning. Computers and Chemical Engineering, 2022, 161, 107760.	2.0	41
498	Low-rank reconstruction-based autoencoder for robust fault detection. Control Engineering Practice, 2022, 123, 105156.	3.2	10
499	Accelerating Reinforcement Learning with Local Data Enhancement for Process Control. , 2021, , .		1
500	Eklemeli İmalat ile Üretilen PLA Esaslı Malzemenin Çekme Dayanımının Makine Öğrenmesi Algoriti Kullanarak Tahmini. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 0, , .	maları 0.2	0
501	Maintenance strategy selection: a comprehensive review of current paradigms and solution approaches. International Journal of Quality and Reliability Management, 2022, 39, 675-703.	1.3	10
502	Efficient feature subset selection and classification using levy flightâ€based cuckoo search optimization with parallel support vector machine for the breast cancer data. International Journal of Imaging Systems and Technology, 0, , .	2.7	1
503	High-Dimensional, Small-Sample Product Quality Prediction Method Based on MIC-Stacking Ensemble Learning. Applied Sciences (Switzerland), 2022, 12, 23.	1.3	5
504	Application of Machine Learning Techniques to Predict a Patient's No-Show in the Healthcare Sector. Future Internet, 2022, 14, 3.	2.4	20
505	Research on Quality Prediction of Typical Workpieces Based on Feature Recombination and XGBoost Algorithm. , 2021, , .		0
506	Improved CNN Based Feature Extraction for Data Mining. , 2022, , .		0
507	Development of soft sensors based on neural networks for detection of anomaly working condition in automated machinery. , 2022, , .		0
508	Utilization of Beam Signatures Supporting High User Mobility With Extremely Low Feedback Overhead. IEEE Access, 2022, 10, 47461-47475.	2.6	0
509	Review of Multiscale Methods for Process Monitoring, With an Emphasis on Applications in Chemical Process Systems. IEEE Access, 2022, 10, 49708-49724.	2.6	6
510	Gated Broad Learning System Based on Deep Cascaded for Soft Sensor Modeling of Industrial Process.	2.4	16

		CITATION REPORT		
#	Article		IF	CITATIONS
511	Human Activity Recognition Data Analysis: History, Evolutions, and New Trends. Sensors,	2022, 22, 3401.	2.1	16
512	Data-driven dynamic causality analysis of industrial systems using interpretable machine process mining. Journal of Intelligent Manufacturing, 2023, 34, 57-83.	learning and	4.4	7
513	Status Forecast and Fault Classification of Smart Meters Using LightGBM Algorithm Impr Random Forest. Wireless Communications and Mobile Computing, 2022, 2022, 1-11.	oved by	0.8	7
514	Machine learning based prediction of subcooled bubble condensation behavior, validation experimental and numerical results. Nuclear Engineering and Design, 2022, 393, 111794	n with ·	0.8	5
515	Improving performance of mass real estate valuation through application of the dataset of and Spatially Constrained Multivariate Clustering Analysis. Land Use Policy, 2022, 119, 10	optimization 06167.	2.5	13
516	Cohort-based federated learning services for industrial collaboration on the edge. Journal Parallel and Distributed Computing, 2022, 167, 64-76.	of	2.7	10
517	Data mining and knowledge discovery in chemical processes: Effect of alternative process techniques. Data-Centric Engineering, 2022, 3, .	sing	1.2	4
518	How statistical modeling and machine learning could help in the calibration of numerical and fluid mechanics models? Application to the calibration of models reproducing the vib behavior of an overhead line conductor. Array, 2022, 15, 100187.	simulation ratory	2.5	2
519	One-Variable Attack on the Industrial Fault Classification System and Its Defense. Engine 240-251.	ering, 2022, 19,	3.2	2
520	A review of ultrasonic sensing and machine learning methods to monitor industrial proce Ultrasonics, 2022, 124, 106776.	sses.	2.1	18
521	A Critical Analysis of the Blockchain Technology and its Applications. , 2022, , .			2
522	Generation of synthetic manufacturing datasets for machine learning using discrete-even simulation. Production and Manufacturing Research, 2022, 10, 337-353.	t	0.9	5
523	Gemelos Digitales en la Industria de Procesos. RIAI - Revista Iberoamericana De Automatic Informatica Industrial, 2022, 19, 285-296.	ca E	0.6	5
524	Efficient Loop Unrolling Factor Prediction Algorithm using Machine Learning Models. , 20	22, , .		13
525	Fault Detection for High-Speed Trains Using CCA and Just-in-Time Learning. Machines, 20	22, 10, 526.	1.2	2
526	Data-driven control of automotive diesel engines and after-treatment systems: State of the future challenges. Proceedings of the Institution of Mechanical Engineers, Part D: Journal Automobile Engineering, 2023, 237, 2083-2098.	ne art and of	1.1	4
527	FIEMA, a system of fuzzy inference and emission analytics for sustainability-oriented cher design. Applied Soft Computing Journal, 2022, 126, 109295.	nical process	4.1	3
528	Towards Virtual 3D Asset Price Prediction Based on Machine Learning. Journal of Theoreti Applied Electronic Commerce Research, 2022, 17, 924-948.	cal and	3.1	7

#	Article	IF	CITATIONS
529	Fault detection and diagnosis strategy based on k-nearest neighbors and fuzzy C-means clustering algorithm for industrial processes. Journal of the Franklin Institute, 2022, 359, 7115-7139.	1.9	18
530	A dual attribute weighted decision fusion system for fault classification based on an extended analytic hierarchy process. Engineering Applications of Artificial Intelligence, 2022, 114, 105066.	4.3	4
531	Ensemble enhanced active learning mixture discriminant analysis model and its application for semi-supervised fault classification. Frontiers of Information Technology and Electronic Engineering, 2022, 23, 1814-1827.	1.5	1
532	DLDP-FL: Dynamic Local Differential Privacy Federated Learning Method Based on Mesh Network Edge Devices. Journal of Computational Science, 2022, , 101789.	1.5	0
533	Adaptive error approximate data reconciliation technique for healthcare framework. International Journal of Systems Assurance Engineering and Management, 2024, 15, 356-366.	1.5	1
534	Linear Chain Conditional Random Field for Operating Mode Identification and Multimode Process Monitoring. ACS Omega, 2022, 7, 29483-29494.	1.6	3
535	Layer-wise feature extraction approaches with deep PLS for quality prediction in industrial process. , 2022, , .		1
536	Enhancing the reliability and accuracy of data-driven dynamic soft sensor based on selective dynamic partial least squares models. Control Engineering Practice, 2022, 127, 105292.	3.2	8
537	Interpretable failure risk assessment for continuous production processes based on association rule mining. Advances in Industrial and Manufacturing Engineering, 2022, 5, 100095.	1.2	4
538	Comparison of Machine Learning Algorithms for Sand Production Prediction: An Example for a Gas-Hydrate-Bearing Sand Case. Energies, 2022, 15, 6509.	1.6	2
539	Automatic determination of optimal fault detection filter. Journal of Process Control, 2022, 118, 69-81.	1.7	2
540	ELFpm: A machine learning framework for industrial machines prediction of remaining useful life. Neurocomputing, 2022, 512, 420-442.	3.5	3
541	Intensification of catalytic reactors: A synergic effort of Multiscale Modeling, Machine Learning and Additive Manufacturing. Chemical Engineering and Processing: Process Intensification, 2022, 181, 109148.	1.8	15
542	The truncated Q statistic for Statistical Process Monitoring of High-Dimensional Systems. Computer Aided Chemical Engineering, 2022, , 1381-1386.	0.3	0
543	Multiplicative Fault Detection and Isolation in Dynamic Systems Using Data-Driven K-Gap Metric based kNN Algorithm. IFAC-PapersOnLine, 2022, 55, 169-174.	0.5	1
544	Predictive modeling of the hot metal silicon content in blast furnace based on ensemble method. Metallurgical Research and Technology, 2022, 119, 515.	0.4	7
545	Machine learning techniques in food processing. , 2022, , 333-351.		0
546	Potenziale von Neuronalen Netzen gegenüber SPC zur Fehlervermeidung in der Prozesssteuerung. , 2022, , 188-206.		1

ARTICLE IF CITATIONS DETERMINATION OF RICE SEED VIGOR BY LOW-FIELD NUCLEAR MAGNETIC RESONANCE COUPLED WITH 547 0.1 2 MACHINE LEARNING. INMATEH - Agricultural Engineering, 2022, , 533-542. Latent variable models in the era of industrial big data: Extension and beyond. Annual Reviews in 548 4.4 Control, 2022, 54, 167-199. Modeling in the observable or latent space? A comparison of dynamic latent variable based monitoring methods for sensor fault detection. Chemometrics and Intelligent Laboratory Systems, 2022, 231, 549 2 1.8 104684. Quality analysis for condition monitoring of a manufacturing process integrating acoustic 0.3 processing based on three distinct ML algorithms. TM Technisches Messen, 2022, . Recent Synergies of Machine Learning and Neurorobotics: A Bibliometric and Visualized Analysis. 551 1.1 1 Symmetry, 2022, 14, 2264. Accelerating reinforcement learning with case-based model-assisted experience augmentation for process control. Neural Networks, 2023, 158, 197-215. 3.3 Early-Stage Evaluation of Catalyst Using Machine Learning Based Modeling and Simulation of Catalytic 553 Systems: Hydrogen Production via Water–Gas Shift over Pt Catalysts. ACS Sustainable Chemistry and 3.2 6 Engineering, 2022, 10, 14417-14432. Prediction of equations of state of molecular liquids by an artificial neural network.. Revista 554 0.2 Mexicana De FÁsica, 2022, 68, . Hybrid variable monitoring: An unsupervised process monitoring framework with binary and 555 3.0 6 continuous variables. Automatica, 2023, 147, 110670. Uncertainty Quantification Based on Bayesian Neural Networks for Predictive Quality., 2022, 253-268. Anomaly Detection in Batch Manufacturing Processes Using Localized Reconstruction Errors From 1-D Convolutional AutoEncoders. IEEE Transactions on Semiconductor Manufacturing, 2023, 36, 557 2 1.4 147-150. Feature selection and feature learning in machine learning applications for gas turbines: A review. 4.3 Engineering Applications of Artificial Intelligence, 2023, 117, 105591. Learning From Major Accidents: A Meta-Learning Perspective. Safety Science, 2023, 158, 105984. 559 2.6 5 A Joint Stacked Autoencoder Approach with Silhouette Information for Industrial Fault Detection. 1.3 Processes, 2022, 10, 2408. Machine Learning and Data Mining Use Cases in the Development of Marketing Strategies. Lecture 561 0.50 Notes in Networks and Systems, 2023, , 581-591. Enhancing BNN structure learning of hybrid modeling strategy for free formulated mechanism complex systems. Journal of Process Control, 2022, 120, 44-67. Challenges and opportunities of deep learning-based process fault detection and diagnosis: a review. 563 3.221 Neural Computing and Applications, 2023, 35, 211-252. Transfer learning for modeling and prediction of marine buoy motion characteristics. Ocean 564 Engineering, 2022, 266, 113158.

#	Article	IF	CITATIONS
565	A comprehensive operating performance assessment framework based on distributed Siamese gated recurrent unit for hot strip mill process. Applied Soft Computing Journal, 2023, 132, 109889.	4.1	3
566	Review of interpretable machine learning for process industries. Chemical Engineering Research and Design, 2023, 170, 647-659.	2.7	16
567	A Federated Classification Approach of Waste Lubricant Oils in Geographically Distributed Laboratories. Industrial & Engineering Chemistry Research, 2022, 61, 17544-17556.	1.8	0
568	European Structural and Investment Funds 2021–2027: Prediction Analysis Based on Machine Learning Models. , 2023, , 167-175.		0
569	Identification of Machine Learning Relevant Energy and Resource Manufacturing Efficiency Levers. Sustainability, 2022, 14, 15618.	1.6	2
570	Comparison of ML algorithms for prediction of tensile strength of polymer matrix composites. Materials Today: Proceedings, 2022, , .	0.9	0
571	Data-driven modelling for gas consumption prediction at City Gate Stations. Journal of Physics: Conference Series, 2022, 2385, 012099.	0.3	0
572	Visual Analysis of Image Processing in the Mining Field Based on a Knowledge Map. Sustainability, 2023, 15, 1810.	1.6	2
573	Flow regime identification in aerated stirred vessel using passive acoustic emission and machine learning. Canadian Journal of Chemical Engineering, 2023, 101, 5670-5682.	0.9	1
574	Digital twin-driven vibration amplitude simulation for condition monitoring of axial blowers in blast furnace ironmaking. Systems Science and Control Engineering, 2023, 11, .	1.8	1
575	Long short-term memory (LSTM) model-based reinforcement learning for nonlinear mass spring damper system control. Procedia Computer Science, 2023, 216, 213-220.	1.2	1
576	Stacking Machine Learning Models using Factor Analysis to Predict the Output Laser Power. , 2022, , .		0
577	Learning Analytics and Machine Learning. , 2022, , .		3
578	Modified t-Distribution Stochastic Neighbor Embedding Using Augmented Kernel Mahalanobis-Distance for Dynamic Multimode Chemical Process Monitoring. International Journal of Chemical Engineering, 2022, 2022, 1-19.	1.4	5
579	Domain Adaptation Soft Sensing with Parameter Transferring. , 2022, , .		0
581	Multi-criteria Decision-Making Techniques for the Selection of Pareto-optimal Machine Learning Models in a Drinking-Water Quality Monitoring Problem. International Journal of Information Technology and Decision Making, 2024, 23, 447-474.	2.3	0
582	Single-Point and Surface Quality Assessment Algorithm in Continuous Production with the Use of 3D Laser Doppler Scanning Vibrometry System. Sensors, 2023, 23, 1263.	2.1	18
583	Artificial Intelligence Technologies within the Risk-based Audit Approach – A Categorization and Classification Method –. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
584	Soft Sensor Model Based on Kernel Slow Feature Analysis and Dynamic inner Principal Component Analysis. , 2022, , .		0
585	Independent component analysis application for fault detection in process industries: Literature review and an application case study for fault detection in multiphase flow systems. Measurement: Journal of the International Measurement Confederation, 2023, 209, 112504.	2.5	8
586	A learning procedure for detection of process anomalies in the production of metal long products and a new industrial case study. IFAC-PapersOnLine, 2022, 55, 325-330.	0.5	0
587	A Comprehensive Study on the Styrene–CTR Radical Graft Polymerization: Combination of an Experimental Approach, on Different Scales, with Machine Learning Modeling. Macromol, 2023, 3, 79-107.	2.4	0
588	Convolutional Neural Network-Based Machine Vision for Non-Destructive Detection of Flooding in Packed Columns. Sensors, 2023, 23, 2658.	2.1	0
589	Scienceâ€guided data analytics for selecting ionic liquid solvents for aromatic extraction. AICHE Journal, 2023, 69, .	1.8	3
590	Improved Optimization Method for Blast Furnace Based on Robust Soft Sensor and Process Knowledge. , 2022, , .		0
591	A Robust Fault Classification Method for Streaming Industrial Data Based on Wasserstein Generative Adversarial Network and Semi-Supervised Ladder Network. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-9.	2.4	1
592	How machine learning changes Project Risk Management: a structured literature review and insights for organizational innovation. European Journal of Innovation Management, 2023, ahead-of-print, .	2.4	1
593	Optimized stacking ensemble models for the prediction of diabetic progression. Multimedia Tools and Applications, 0, , .	2.6	0
594	Abnormal Operating Condition Identification of Industrial Processes Based on Deep Learning With Global-Local Slow Feature Analysis. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-11.	2.4	2
595	Optimization of the SAG Grinding Process Using Statistical Analysis and Machine Learning: A Case Study of the Chilean Copper Mining Industry. Materials, 2023, 16, 3220.	1.3	5
598	Heart Disease: Automatic Prediction from the Numerical and Categorical Features by Machine Learning Methods. , 2023, , .		0
604	Evaluation ofÂFederated Learning Strategies onÂIndustrial Time Series Fault Classification. Lecture Notes in Networks and Systems, 2023, , 433-444.	0.5	0
605	The Use of Industry 4.0 Technologies in Maintenance: A Systematic Literature Review. Lecture Notes in Networks and Systems, 2023, , 811-821.	0.5	0
607	Entwicklung eines IT-basierten Reifegradmodells zur Bewertung der DatenqualitĤfür Predictive Data Analytics in der Fertigung der Industrie 4.0. , 2023, , 21-43.		0
610	Research on Causal Model Construction and Fault Diagnosis of Control Systems. Lecture Notes in Electrical Engineering, 2023, , 833-849.	0.3	0
612	Large-scale process models using deep learning. , 2023, , 315-336.		0

IF ARTICLE CITATIONS # Industrial Fault Detection Based on Time-Frequency Distillation Autoencoder., 2023,,. 0 619 Advancing Towards Zero-Defect Manufacturing in the Plastic Injection Industry with Global and Local Explainability Approaches. , 2023, , . Attacks Detection in Industrial Cyber-Physical Systems Using Convolutional Neural Networks., 2023,, 632 0 Automated Software Services: Vollautomatisierte Entscheidungen durch KÃ1/4nstliche Intelligenz., 634 2023, , 263-281. Machine learning for control of (bio)chemical manufacturing systems., 2024, , 181-240. 638 0 Intelligent Operational Decision Support System for Sugar Factory Resource Efficiency., 2023,,. Advanced Porosity Prediction in Heterogeneous Oil Reservoirs: Using Novel Machine Learning and 647 0.0 0 Deep Learning Techniques. Springer Series in Geomechanics and Geoengineering, 2024, , 518-545.

CITATION REPORT