Random Pilot and Data Access in Massive MIMO for Ma

IEEE Transactions on Wireless Communications 16, 7703-7717 DOI: 10.1109/twc.2017.2748106

Citation Report

#	Article	IF	CITATIONS
1	Grant-Free Massive MTC-Enabled Massive MIMO: A Compressive Sensing Approach. IEEE Transactions on Communications, 2018, 66, 6164-6175.	7.8	186
2	Human and Machine Type Communications Can Coexist in Uplink Massive Mimo Systems. , 2018, , .		9
3	Coded Pilot Random Access for Massive MIMO Systems. IEEE Transactions on Wireless Communications, 2018, 17, 8035-8046.	9.2	36
4	Multiple Preambles for High Success Rate of Grant-Free Random Access With Massive MIMO. IEEE Transactions on Wireless Communications, 2019, 18, 4779-4789.	9.2	49
5	Massive MIMO for Internet of Things (IoT) connectivity. Physical Communication, 2019, 37, 100859.	2.1	77
6	Collision Resolution Protocol via Soft Decision Retransmission Criterion. IEEE Transactions on Vehicular Technology, 2019, 68, 4094-4097.	6.3	14
7	Detection of Pilot-hopping Sequences for Grant-free Random Access in Massive Mimo Systems. , 2019, , .		6
8	An Architecture for Grant-Free Massive MIMO MTC Based on Compressive Sensing. , 2019, , .		4
9	Random Pilot and Data Access for Massive MIMO Spatially Correlated Rayleigh Fading Channels. , 2019, , .		4
10	Collision Resolution Protocol via Soft Decision Stochastic Retransmission. , 2019, , .		0
11	Unequal Recovery Time Random Access Protocol for Massive MIMO IoT System. , 2019, , .		1
12	Success Probability of Grant-Free Random Access With Massive MIMO. IEEE Internet of Things Journal, 2019, 6, 506-516.	8.7	75
13	MIMO receivers considering preamble collisions for grant-free random access in machine type communication systems. Telecommunication Systems, 2019, 70, 185-191.	2.5	1
14	Comparison of Preamble Structures for Grant-Free Random Access in Massive MIMO Systems. IEEE Wireless Communications Letters, 2020, 9, 166-170.	5.0	15
15	Joint User Identification and Channel Estimation Over Rician Fading Channels. IEEE Transactions on Vehicular Technology, 2020, 69, 6803-6807.	6.3	11
16	Iterative List Detection and Decoding for Massive Machine-Type Communications. IEEE Transactions on Communications, 2020, 68, 6276-6288.	7.8	9
17	Massive MIMO enabled joint unicast transmission to IoT devices and mobile terminals. IET Communications, 2020, 14, 2048-2059.	2.2	0
18	Unequal Access Latency Random Access Protocol for Massive Machine-Type Communications. IEEE Transactions on Wireless Communications, 2020, 19, 5924-5937.	9.2	19

#	Article	IF	CITATIONS
19	On Throughput Improvement Using Immediate Re-Transmission in Grant-Free Random Access With Massive MIMO. IEEE Transactions on Wireless Communications, 2020, 19, 8341-8350.	9.2	14
20	Pilot domain NOMA for grant-free massive random access in massive MIMO marine communication system. China Communications, 2020, 17, 131-144.	3.2	7
21	Pilot-Hopping Sequence Detection Architecture for Grant-Free Random Access using Massive MIMO. , 2020, , .		2
22	Reconfigurable Intelligent Surface-Aided Grant-Free Access for Uplink URLLC. , 2020, , .		15
23	On Throughput of Compressive Random Access for One Short Message Delivery in IoT. IEEE Internet of Things Journal, 2020, 7, 3499-3508.	8.7	16
24	Massive Uncoordinated Access With Massive MIMO: A Dictionary Learning Approach. IEEE Transactions on Wireless Communications, 2020, 19, 1320-1332.	9.2	25
25	Achieving Fair Random Access Performance in Massive MIMO Crowded Machine-Type Networks. IEEE Wireless Communications Letters, 2020, 9, 503-507.	5.0	15
26	IoT Connectivity Technologies and Applications: A Survey. IEEE Access, 2020, 8, 67646-67673.	4.2	175
27	Device Activity Detection and Non-Coherent Information Transmission for Massive Machine-Type Communications. IEEE Access, 2020, 8, 41452-41465.	4.2	13
28	Massive Access for Future Wireless Communication Systems. IEEE Wireless Communications, 2020, 27, 148-156.	9.0	114
29	Structured Massive Access for Scalable Cell-Free Massive MIMO Systems. IEEE Journal on Selected Areas in Communications, 2021, 39, 1086-1100.	14.0	102
30	Grant-Free Random Access in Machine-Type Communication: Approaches and Challenges. IEEE Wireless Communications, 2022, 29, 151-158.	9.0	29
31	A Reconfigurable Access Scheme for Massive-MIMO MTC Networks. IEEE Access, 2021, 9, 65547-65559.	4.2	4
32	Massive Machine-Type Communication Pilot-Hopping Sequence Detection Architectures Based on Non-Negative Least Squares for Grant-Free Random Access. IEEE Open Journal of Circuits and Systems, 2021, 2, 253-264.	1.9	2
33	Spatial Based Pilot Allocation (SBPA) in Crowded Massive MIMO Systems. Wireless Personal Communications, 2021, 119, 239-257.	2.7	1
34	Massive Access for 5G and Beyond. IEEE Journal on Selected Areas in Communications, 2021, 39, 615-637.	14.0	347
35	An Approach to Preamble Collision Reduction in Grant-Free Random Access With Massive MIMO. IEEE Transactions on Wireless Communications, 2021, 20, 1557-1566.	9.2	17
36	PDRS: A Fast Non-Iterative Scheme for Massive Grant-Free Access in Massive MIMO. IEEE Wireless Communications Letters, 2021, 10, 760-764.	5.0	1

CITATION REPORT

#	Article	IF	CITATIONS
37	Performance Analysis of 2-Step Random Access With CDMA in Machine-Type Communication. IEEE Transactions on Communications, 2021, 69, 2387-2397.	7.8	6
38	Uplink transmission design for crowded correlated cell-free massive MIMO-OFDM systems. Science China Information Sciences, 2021, 64, 1.	4.3	8
39	Low Complexity Multi-User Detector for Grant-free Massive Access with Massive MIMO with Consideration of both Temporal and Spatial Correlation. , 2021, , .		0
40	Smart Beamforming for Direct LEO Satellite Access of Future IoT. Sensors, 2021, 21, 4877.	3.8	11
41	Multi-Channel Estimation of Devices with Preamble Collision in Distributed MTC. , 2021, , .		3
42	On the channel tracking under uncertain state model for multiuser massive MIMO in high-rate Internet-of-Things. Physical Communication, 2021, 48, 101434.	2.1	2
43	Multiple Access Schemes for Machine-Type Communications: A Literature Review. Wireless Networks, 2020, , 13-54.	0.5	0
44	Conclusions and Future Works. Wireless Networks, 2020, , 187-191.	0.5	0
45	User-Centric Cell-Free Massive MIMO Networks: A Survey of Opportunities, Challenges and Solutions. IEEE Communications Surveys and Tutorials, 2022, 24, 611-652.	39.4	115
46	Irregular Superimposed Multi-pilot for Grant-free Massive MIMO. , 2021, , .		0
47	Grant-Free Code-Domain Random Access for Massive Access in Internet of Things. , 2022, , .		1
48	A Novel Multiple Access Scheme for 6G Assisted Massive Machine Type Communication. IEEE Access, 2022, 10, 117638-117645.	4.2	3
49	Code-Domain Collision Resolution Grant-Free Random Access for Massive Access in IoT. IEEE Transactions on Wireless Communications, 2023, 22, 4611-4624.	9.2	1
50	Activity Detection in Distributed Massive MIMO With Pilot-Hopping and Activity Correlation. IEEE Wireless Communications Letters, 2023, 12, 272-276.	5.0	0
51	An Efficient Two-Stage SPARC Decoder for Massive MIMO Unsourced Random Access. IEEE Transactions on Wireless Communications, 2023, 22, 8275-8289.	9.2	2
52	An Interference Aware User-Group Pilot Assignment for Cell-Free Massive MIMO Systems. IEEE Wireless Communications Letters, 2023, 12, 1169-1173.	5.0	2
53	A Left-Null-Space-Based Massive Access Method for Cell-Free Massive MIMO IoT Systems. Sensors, 2023, 23, 5285.	3.8	0
54	One-Shot Messaging at Any Load Through Random Sub-Channeling in OFDM. IEEE Transactions on Information Theory, 2023, , 1-1.	2.4	0

CITATION REPORT

#	Article	IF	CITATIONS
55	Composite Preambles Based on Differential Phase Rotations for Grant-free Random Access Systems. IEEE Internet of Things Journal, 2023, , 1-1.	8.7	0
56	Noncoherent SIMO Transmission via MOCZ for Short Packet-Based Machine-Type Communications in Frequency-Selective Fading Environments. IEEE Open Journal of the Communications Society, 2023, 4, 1544-1550.	6.9	0
57	Dynamic Provisioning of Random Access Capacity in mMTC Slice Based on Beam Splitting/Merging. IEEE Internet of Things Journal, 2023, , 1-1.	8.7	1
58	A Left-Null-Space-Based Massive Access Method for Cell-Free Massive MIMO Systems. , 2023, , .		0
59	Beam Selection for Two-Step Random Access in MTC With a Small Number of Antennas. IEEE Access, 2023, 11, 139903-139914.	4.2	0
60	Joint User Detection and Channel Estimation in Grant-Free Random Access for Massive MIMO Systems. Journal of Electrical and Computer Engineering, 2023, 2023, 1-14.	0.9	0