The effects of metallic engineered nanoparticles upon p examination of scientific evidence

Science of the Total Environment 579, 93-106 DOI: 10.1016/j.scitotenv.2016.10.229

Citation Report

CIT	TION	ים בס ו	ODT

#	Article	IF	CITATIONS
1	Effect of ZnO nanoparticles on corn seedlings at different temperatures; X-ray absorption spectroscopy and ICP/OES studies. Microchemical Journal, 2017, 134, 54-61.	2.3	39
2	Nanoparticle and Ionic Zn Promote Nutrient Loading of Sorghum Grain under Low NPK Fertilization. Journal of Agricultural and Food Chemistry, 2017, 65, 8552-8559.	2.4	169
3	Uptake, transportation, and accumulation of C60 fullerene and heavy metal ions (Cd, Cu, and Pb) in rice plants grown in an agricultural soil. Environmental Pollution, 2018, 235, 330-338.	3.7	72
4	Nanofertilizers: New Products for the Industry?. Journal of Agricultural and Food Chemistry, 2018, 66, 6462-6473.	2.4	297
5	Morphological, proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to Phaseolus vulgaris L. under soil or foliar application. Science of the Total Environment, 2018, 616-617, 1540-1551.	3.9	162
6	Phytotoxicity of silver nanoparticles to Lemna minor: Surface coating and exposure period-related effects. Science of the Total Environment, 2018, 618, 1389-1399.	3.9	48
8	Effects of Nanoparticles on Germination, Growth, and Plant Crop Development. , 2018, , 77-110.		8
9	Nanoparticle-Associated Phytotoxicity and Abiotic Stress Under Agroecosystems. , 2018, , 241-268.		7
10	Current findings on terrestrial plants – Engineered nanomaterial interactions: Are plants capable of phytoremediating nanomaterials from soil?. Current Opinion in Environmental Science and Health, 2018, 6, 9-15.	2.1	35
11	Different forms of copper and kinetin impacted element accumulation and macromolecule contents in kidney bean (Phaseolus vulgaris) seeds. Science of the Total Environment, 2018, 636, 1534-1540.	3.9	16
12	Effects of Manganese Nanoparticle Exposure on Nutrient Acquisition in Wheat (Triticum aestivum L.). Agronomy, 2018, 8, 158.	1.3	91
13	Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Science of the Total Environment, 2019, 688, 926-934.	3.9	196
14	An Assessment of the Effect of Green Synthesized Silver Nanoparticles Using Sage Leaves (Salvia) Tj ETQq0 0 0 r	gBT /Over 1.9	ock 10 Tf 50
15	Induction of Plant Defense Machinery Against Nanomaterials Exposure. , 2019, , 241-263.		6
16	Synthesis and production of engineered nanomaterials for laboratory and industrial use. , 2019, , 3-30.		2
17	Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Advances, 2019, 9, 18835-18843.	1.7	120
18	Addition-omission of zinc, copper, and boron nano and bulk oxide particles demonstrate element and size -specific response of soybean to micronutrients exposure. Science of the Total Environment, 2019, 665, 606-616.	3.9	62
19	Nanotechnology for Agriculture. , 2019, , .		12

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
20	TiO2 nanoparticles in a biosolid-amended soil and their implication in soil nutrients, microorganisms and Pisum sativum nutrition. Ecotoxicology and Environmental Safety, 2020, 190, 110095.	2.9	29
21	Interactions of metal-based nanoparticles (MBNPs) and metal-oxide nanoparticles (MONPs) with crop plants: a critical review of research progress and prospects. Environmental Reviews, 2020, 28, 294-310.	2.1	28
22	Guiding the design space for nanotechnology to advance sustainable crop production. Nature Nanotechnology, 2020, 15, 801-810.	15.6	119
23	Importance of nanofertilizers in fruit nutrition. , 2020, , 497-508.		6
24	Nanocatalyst types and their potential impacts in agroecosystems: An overview. , 2020, , 323-344.		8
25	Toxicology and Safety Aspects of Nanosensor on Environment, Food, and Agriculture. Environmental Chemistry for A Sustainable World, 2021, , 139-156.	0.3	2
26	Transition Metals Doped Nanocrystals: Synthesis, Characterization, and Applications. , 0, , .		1
27	In vitro exposed magnesium oxide nanoparticles enhanced the growth of legume Macrotyloma uniflorum. Environmental Science and Pollution Research, 2022, 29, 13635-13645.	2.7	14
28	Cytotoxicity, phytotoxicity, and photocatalytic assessment of biopolymer cellulose-mediated silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127270.	2.3	12
29	Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review. Ecotoxicology and Environmental Safety, 2021, 225, 112769.	2.9	50
30	In vitro exposure of magnesium oxide nanoparticles adversely affects the vegetative growth and biochemical parameters of black gram. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100483.	1.7	8
31	Beneficial Effects of Metal- and Metalloid-Based Nanoparticles on Crop Production. , 2019, , 161-219.		8
32	In vitro exposure of magnesium oxide nanoparticles negatively regulate the growth of Vigna radiata. International Journal of Environmental Science and Technology, 2022, 19, 10679-10690.	1.8	8
34	Silicon nanoparticles decrease arsenic translocation and mitigate phytotoxicity in tomato plants. Environmental Science and Pollution Research, 2022, 29, 34147-34163.	2.7	22
35	Impact of copper-based nanoparticles on economically important plants. , 2022, , 293-339.		3
36	Titanium and Zinc Based Nanomaterials in Agriculture: A Promising Approach to Deal with (A)biotic Stresses?. Toxics, 2022, 10, 172.	1.6	25
37	MgO nanoparticles mediated seed priming inhibits the growth of lentil (Lens culinaris). Vegetos, 2022, 35, 1128-1141.	0.8	8
38	Effects of Zinc, Copper and Iron Oxide Nanoparticles on Induced DNA Methylation, Genomic Instability and LTR Retrotransposon Polymorphism in Wheat (Triticum aestivum L.). Plants, 2022, 11, 2193.	1.6	8

#	Article	IF	CITATIONS
39	Biocontrol potential of mycogenic copper oxide nanoparticles against Alternaria brassicae. Frontiers in Chemistry, 0, 10, .	1.8	9
40	Nanoparticles: The Plant Saviour under Abiotic Stresses. Nanomaterials, 2022, 12, 3915.	1.9	41
41	Interaction of Nanomaterials with Plant Macromolecules: Nucleic Acid, Proteins and Hormones. , 2023, , 231-271.		0
45	Uptake, accumulation, toxicity, and interaction of metallic-based nanoparticles with plants: current challenges and future perspectives. Environmental Geochemistry and Health, 2023, 45, 4165-4179.	1.8	2
48	Nanoformulation Synthesis and Mechanisms of Interactions with Biological Systems. , 2023, , 18-35.		0
52	Introduction to engineered nanomaterials. , 2024, , 1-23.		0

CITATION REPORT