Bright Multicolor Bandgap Fluorescent Carbon Quantur Lightâ€Emitting Diodes

Advanced Materials 29, 1604436 DOI: 10.1002/adma.201604436

Citation Report

#	Article	IF	CITATIONS
1	Quantumâ€Dot Lightâ€Emitting Diodes for Largeâ€Area Displays: Towards the Dawn of Commercialization. Advanced Materials, 2017, 29, 1607022.	11.1	620
2	Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. Journal of Materials Chemistry B, 2017, 5, 5272-5277.	2.9	209
3	Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. Journal of Materials Chemistry B, 2017, 5, 3794-3809.	2.9	264
4	Rationally Designed Carbon Nanodots towards Pure White‣ight Emission. Angewandte Chemie, 2017, 129, 4234-4237.	1.6	22
5	Rationally Designed Carbon Nanodots towards Pure Whiteâ€Light Emission. Angewandte Chemie - International Edition, 2017, 56, 4170-4173.	7.2	99
6	Highly crystalline carbon dots from fresh tomato: UV emission and quantum confinement. Nanotechnology, 2017, 28, 485705.	1.3	81
7	Preparation of an Efficient Ratiometric Fluorescent Nanoprobe (<i>m</i> -CDs@[Ru(bpy) ₃] ²⁺) for Visual and Specific Detection of Hypochlorite on Site and in Living Cells. ACS Sensors, 2017, 2, 1684-1691.	4.0	61
8	Selfâ€Powered Nanoscale Photodetectors. Small, 2017, 13, 1701848.	5.2	227
9	Facile conversion of coal tar to orange fluorescent carbon quantum dots and their composite encapsulated by liposomes for bioimaging. New Journal of Chemistry, 2017, 41, 14444-14451.	1.4	30
10	Solvatochromism of bright carbon dots with tunable long-wavelength emission from green to red and their application as solid-state materials for warm WLEDs. RSC Advances, 2017, 7, 41552-41560.	1.7	73
11	Fullâ€Color Inorganic Carbon Dot Phosphors for Whiteâ€Lightâ€Emitting Diodes. Advanced Optical Materials, 2017, 5, 1700416.	3.6	360
12	53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm Whiteâ€Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1702910.	11.1	563
13	A novel mechanism for red emission carbon dots: hydrogen bond dominated molecular states emission. Nanoscale, 2017, 9, 13042-13051.	2.8	251
14	Self-trapped exciton emission from carbon dots investigated by polarization anisotropy of photoluminescence and photoexcitation. Nanoscale, 2017, 9, 12637-12646.	2.8	49
15	Scalable synthesis of organic-soluble carbon quantum dots: superior optical properties in solvents, solids, and LEDs. Nanoscale, 2017, 9, 13195-13202.	2.8	117
16	Carbonization conditions influence the emission characteristics and the stability against photobleaching of nitrogen doped carbon dots. Nanoscale, 2017, 9, 11730-11738.	2.8	83
17	Modulating the fluorescent color of carbon nanodots via photon reabsorption and carbonization degree. Applied Physics Letters, 2017, 111, .	1.5	7
18	Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes. Frontiers of Optoelectronics, 2017, 10, 329-352.	1.9	32

#	Article	IF	CITATIONS
19	Hybridizing Carbon Nitride Colloids with a Shell of Water-Soluble Conjugated Polymers for Tunable Full-Color Emission and Synergistic Cell Imaging. ACS Applied Materials & Interfaces, 2017, 9, 43966-43974.	4.0	26
20	One‣tep Hydrothermal Synthesis of Nitrogenâ€Ðoped Conjugated Carbonized Polymer Dots with 31% Efficient Red Emission for In Vivo Imaging. Small, 2018, 14, e1703919.	5.2	317
21	Room temperature synthesis of pH-switchable polyaniline quantum dots as a turn-on fluorescent probe for acidic biotarget labeling. Nanoscale, 2018, 10, 6660-6670.	2.8	21
22	Ultrahigh Brightness Carbon Dot–Based Blue Electroluminescent LEDs by Host–Guest Energy Transfer Emission Mechanism. Advanced Optical Materials, 2018, 6, 1800181.	3.6	51
23	Highly Efficient Carbon Dots with Reversibly Switchable Green–Red Emissions for Trichromatic White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 16005-16014.	4.0	147
24	Enriched carbon dots/graphene microfibers towards high-performance micro-supercapacitors. Journal of Materials Chemistry A, 2018, 6, 14112-14119.	5.2	80
25	Metal Charge Transfer Doped Carbon Dots with Reversibly Switchable, Ultra-High Quantum Yield Photoluminescence. ACS Applied Nano Materials, 2018, 1, 1886-1893.	2.4	64
26	Single-hole hollow molecularly imprinted polymer embedded carbon dot for fast detection of tetracycline in honey. Talanta, 2018, 185, 542-549.	2.9	61
27	Nearâ€Infrared Excitation/Emission and Multiphotonâ€Induced Fluorescence of Carbon Dots. Advanced Materials, 2018, 30, e1705913.	11.1	349
28	Photoluminescent F-doped carbon dots prepared by ring-opening reaction for gene delivery and cell imaging. RSC Advances, 2018, 8, 6053-6062.	1.7	45
29	Carbon dots with efficient solid-state red-light emission through the step-by-step surface modification towards light-emitting diodes. Dalton Transactions, 2018, 47, 3811-3818.	1.6	48
30	Origin of green luminescence in carbon quantum dots: specific emission bands originate from oxidized carbon groups. New Journal of Chemistry, 2018, 42, 4603-4611.	1.4	58
31	A Magnetofluorescent Carbon Dot Assembly as an Acidic H ₂ O ₂ â€Ðriven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy. Advanced Materials, 2018, 30, e1706090.	11.1	385
32	Cuttingâ€Edge Nanomaterials for Advanced Multimodal Bioimaging Applications. Small Methods, 2018, 2, 1700265.	4.6	32
33	A solvent-engineered molecule fusion strategy for rational synthesis of carbon quantum dots with multicolor bandgap fluorescence. Carbon, 2018, 130, 153-163.	5.4	132
34	Synthesis, mechanical investigation, and application of nitrogen and phosphorus co-doped carbon dots with a high photoluminescent quantum yield. Nano Research, 2018, 11, 3691-3701.	5.8	75
35	Exploring the optimal ratio of d-glucose/l-aspartic acid for targeting carbon dots toward brain tumor cells. Materials Science and Engineering C, 2018, 85, 1-6.	3.8	39
36	Emitting color tunable carbon dots by adjusting solvent towards light-emitting devices. Nanotechnology, 2018, 29, 085705.	1.3	77

ARTICLE IF CITATIONS # Highly Crystalline Multicolor Carbon Nanodots for Dual-Modal Imaging-Guided Photothermal 37 4.0 63 Therapy of Glioma. ACS Applied Materials & amp; Interfaces, 2018, 10, 4031-4040. Carbon Dots: Bottomâ€Up Syntheses, Properties, and Lightâ€Harvesting Applications. Chemistry - an Asian 1.7 101 Journal, 2018, 13, 586-598. Facile preparation of carbon-dot-supported nanoflowers for efficient photothermal therapy of 39 1.6 15 cancer cells. Dalton Transactions, 2018, 47, 1777-1781. From Large-Scale Synthesis to Lighting Device Applications of Ternary l–Ill–VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters. Journal of Physical Chemistry Letters, 2018, 9, 136 435-445. Solventâ€Controlled Synthesis of Highly Luminescent Carbon Dots with a Wide Color Gamut and 41 5.2 449 Narrowed Emission Peak Widths. Small, 2018, 14, e1800612. Selective detection of copper ion in complex real samples based on nitrogen-doped carbon quantum dots. Analytical and Bioanalytical Chemistry, 2018, 410, 4301-4309. Low turn-on voltage and highly bright Ag–In–Zn–S quantum dot light-emitting diodes. Journal of 43 2.7 28 Materials Chemistry C, 2018, 6, 4683-4690. Photostable and Low-Toxic Yellow-Green Carbon Dots for Highly Selective Detection of Explosive 2,4,6-Trinitrophenol Based on the Dual Electron Transfer Mechanism. ACS Applied Materials & amp; 44 4.0 121 Interfaces, 2018, 10, 13040-13047. Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications. 45 6.2 536 Nano Today, 2018, 19, 201-218. Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost 6.6 389 dielectric loss behavior. Chemical Engineering Journal, 2018, 333, 519-528. Engineering carbon quantum dots for photomediated theranostics. Nano Research, 2018, 11, 1-41. 47 5.8216 Supramolecular Cross-Link-Regulated Emission and Related Applications in Polymer Carbon Dots. ACS 48 4.0 Applied Materials & amp; Interfaces, 2018, 10, 12262-12277. One-step solvothermal synthesis of high-emissive amphiphilic carbon dots <i>via</i> 49 3.7 71 derivation. Chemical Science, 2018, 9, 1323-1329. Color-Tunable Carbon Dots Possessing Solid-State Emission for Full-Color Light-Emitting Diodes Applications. ACS Photonics, 2018, 5, 502-510. 3.2 Water-induced poly(vinyl alcohol)/carbon quantum dot nanocomposites with tunable shape recovery 51 2.9 23 performance and fluorescence. Journal of Materials Chemistry B, 2018, 6, 7444-7450. Effect of dark states on the fluorescence of carbon nanodots. Physical Chemistry Chemical Physics, 2018, 20, 29045-29050. All-solution-processed perovskite light-emitting diodes with all metal oxide transport layers. 53 2.242 Chemical Communications, 2018, 54, 13283-13286. Carbon quantum dots derived by direct carbonization of carbonaceous microcrystals in mesophase 54 2.8 pitch. Nanoscale, 2018, 10, 21492-21498.

#	Article	IF	CITATIONS
55	Highly Photoluminescent and Stable N-Doped Carbon Dots as Nanoprobes for Hg2+ Detection. Nanomaterials, 2018, 8, 900.	1.9	50
56	Tuning Carbon Dots' Optoelectronic Properties with Polymers. Polymers, 2018, 10, 1312.	2.0	19
57	Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications. Materials Today Energy, 2018, 10, 222-240.	2.5	87
58	Manipulating the Tradeâ€off Between Quantum Yield and Electrical Conductivity for Highâ€Brightness Quasiâ€2D Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1804187.	7.8	113
59	Recognition of Latent Fingerprints and Ink-Free Printing Derived from Interfacial Segregation of Carbon Dots. ACS Applied Materials & amp; Interfaces, 2018, 10, 39205-39213.	4.0	51
60	The Effect of Ligands and Solvents on Nonradiative Transitions in Semiconductor Quantum Dots (A) Tj ETQq1 1 (0.784314 0.2	rgBT /Overloo
61	Exploration of the synthesis of three types of multicolor carbon dot originating from isomers. Chemical Communications, 2018, 54, 11312-11315.	2.2	42
62	Supramolecular-Enhanced Charge Transfer within Entangled Polyamide Chains as the Origin of the Universal Blue Fluorescence of Polymer Carbon Dots. Journal of the American Chemical Society, 2018, 140, 12862-12869.	6.6	242
63	Bottomâ€Up Synthesis of Carbon Quantum Dots With High Performance Photo―and Electroluminescence. Particle and Particle Systems Characterization, 2018, 35, 1800080.	1.2	23
64	The synthesis of green fluorescent carbon dots for warm white LEDs. RSC Advances, 2018, 8, 19585-19595.	1.7	37
65	Carbon dot-based white and yellow electroluminescent light emitting diodes with a record-breaking brightness. Nanoscale, 2018, 10, 11211-11221.	2.8	67
66	In Situ Nanoreactors: Controllable Photoluminescent Carbonâ€Rich Polymer Nanodots Derived from Fatty Acid under Photoirradiation. Macromolecular Rapid Communications, 2018, 39, e1800152.	2.0	11
67	Tricolor White-Light-Emitting Carbon Dots with Multiple-Cores@Shell Structure for WLED Application. ACS Applied Materials & amp; Interfaces, 2018, 10, 19796-19805.	4.0	88
68	Photoluminescence mechanism and applications of Zn-doped carbon dots. RSC Advances, 2018, 8, 17254-17262.	1.7	28
69	A self-quenching-resistant carbon dots powder with tunable solid-state fluorescence and their applications in light-emitting diodes and fingerprints detection. Dyes and Pigments, 2018, 159, 245-251.	2.0	47
70	Nitrogen-Rich D-ï€-A Structural Carbon Quantum Dots with a Bright Two-Photon Fluorescence for Deep-Tissue Imaging. ACS Applied Bio Materials, 2018, 1, 853-858.	2.3	37
71	Carbon Dot Fluorescence-Lifetime-Encoded Anti-Counterfeiting. ACS Applied Materials & Interfaces, 2018, 10, 29902-29908.	4.0	183
72	Citrateâ€Based Fluorescent Biomaterials. Advanced Healthcare Materials, 2018, 7, e1800532.	3.9	51

#	Article	IF	CITATIONS
73	Multilevel Data Encryption Using Thermalâ€Treatment Controlled Room Temperature Phosphorescence of Carbon Dot/Polyvinylalcohol Composites. Advanced Science, 2018, 5, 1800795.	5.6	173
74	Green and Facile Synthesis of Nitrogen and Phosphorus Co-Doped Carbon Quantum Dots towards Fluorescent Ink and Sensing Applications. Nanomaterials, 2018, 8, 386.	1.9	76
75	Novel properties and applications of carbon nanodots. Nanoscale Horizons, 2018, 3, 565-597.	4.1	274
76	A rapid microwave synthesis of green-emissive carbon dots with solid-state fluorescence and pH-sensitive properties. Royal Society Open Science, 2018, 5, 180245.	1.1	52
77	Transient and flexible polymer memristors utilizing full-solution processed polymer nanocomposites. Nanoscale, 2018, 10, 14824-14829.	2.8	64
78	Highly efficient carbon dots and their nanohybrids for trichromatic white LEDs. Journal of Materials Chemistry C, 2018, 6, 5957-5963.	2.7	34
79	Precisely Controlled Up/Downâ€Conversion Liquid and Solid State Photoluminescence of Carbon Dots. Advanced Optical Materials, 2018, 6, 1800115.	3.6	79
80	In-situ embedding of carbon dots in a trisodium citrate crystal matrix for tunable solid-state fluorescence. Carbon, 2018, 136, 359-368.	5.4	78
81	Yellow emissive carbon dots with quantum yield up to 68.6% from manganese ions. Carbon, 2018, 135, 253-259.	5.4	68
82	Current status and prospects on chemical structure driven photoluminescence behaviour of carbon dots. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 37, 1-22.	5.6	147
83	High efficiency red emission carbon dots based on phenylene diisocyanate for trichromatic white and red LEDs. Journal of Materials Chemistry C, 2018, 6, 9631-9635.	2.7	50
84	Red C-dots and C-dot films: solvothermal synthesis, excitation-independent emission and solid-state-lighting. RSC Advances, 2018, 8, 29855-29861.	1.7	19
85	Fullerenols Revisited: Highly Monodispersed Photoluminescent Nanomaterials as Ideal Building Blocks for Supramolecular Chemistry. Chemistry - A European Journal, 2018, 24, 16609-16619.	1.7	17
86	Hydrothermal Addition Polymerization for Ultrahighâ€Yield Carbonized Polymer Dots with Room Temperature Phosphorescence via Nanocomposite. Chemistry - A European Journal, 2018, 24, 11303-11308.	1.7	117
87	Bright, stable, and tunable solid-state luminescence of carbon nanodot organogels. Physical Chemistry Chemical Physics, 2018, 20, 18089-18096.	1.3	16
88	Malic Acid Carbon Dots: From Super-resolution Live-Cell Imaging to Highly Efficient Separation. ACS Nano, 2018, 12, 5741-5752.	7.3	135
89	Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nature Communications, 2018, 9, 2249.	5.8	676
90	Reversible "Off–On―Fluorescence of Zn ²⁺ -Passivated Carbon Dots: Mechanism and Potential for the Detection of EDTA and Zn ²⁺ . Langmuir, 2018, 34, 7767-7775.	1.6	69

#	Article	IF	CITATIONS
91	Solvent-dependent carbon dots and their applications in the detection of water in organic solvents. Journal of Materials Chemistry C, 2018, 6, 7527-7532.	2.7	149
92	Carbon dots: advances in nanocarbon applications. Nanoscale, 2019, 11, 19214-19224.	2.8	267
93	Nucleolus-Targeted Red Emissive Carbon Dots with Polarity-Sensitive and Excitation-Independent Fluorescence Emission: High-Resolution Cell Imaging and in Vivo Tracking. ACS Applied Materials & Interfaces, 2019, 11, 32647-32658.	4.0	163
94	Encapsulation of yellow phosphors into nanocrystalline metal–organic frameworks for blue-excitable white light emission. Chemical Communications, 2019, 55, 10669-10672.	2.2	32
95	Carbonized Polymer Dots: A Brand New Perspective to Recognize Luminescent Carbon-Based Nanomaterials. Journal of Physical Chemistry Letters, 2019, 10, 5182-5188.	2.1	197
96	Recent progress in the device architecture of white quantum-dot light-emitting diodes. Journal of Information Display, 2019, 20, 169-180.	2.1	14
97	Tailoring the Photoluminescence Excitation Dependence of the Carbon Dots via an Alkali Treatment. Journal of Physical Chemistry Letters, 2019, 10, 4596-4602.	2.1	26
98	Solvent-controlled and solvent-dependent strategies for the synthesis of multicolor carbon dots for pH sensing and cell imaging. Journal of Materials Chemistry C, 2019, 7, 9709-9718.	2.7	71
99	Wash-induced multicolor tuning of carbon nano-dot/micro-belt hybrids with full recyclability and stable color convertibility. Nanoscale, 2019, 11, 14592-14597.	2.8	3
100	Design, Synthesis, and Functionalization Strategies of Tailored Carbon Nanodots. Accounts of Chemical Research, 2019, 52, 2070-2079.	7.6	172
101	A Recyclable Nanocarbon White Emitter via the Synergy between Carbon Dots and Organic Sheet. ACS Sustainable Chemistry and Engineering, 2019, 7, 14677-14684.	3.2	3
102	The fluorescence mechanismÂof carbon dots, and methods for tuning their emission color: a review. Mikrochimica Acta, 2019, 186, 583.	2.5	278
103	White Emissive Carbon Dots Actuated by the H-/J-Aggregates and Förster Resonance Energy Transfer. Journal of Physical Chemistry Letters, 2019, 10, 3849-3857.	2.1	53
104	Ultrasensitive fluorometric determination of iron(<scp>iii</scp>) and inositol hexaphosphate in cancerous and bacterial cells by using carbon dots with bright yellow fluorescence. Analyst, The, 2019, 144, 5010-5021.	1.7	27
105	Deep-Ultraviolet Emissive Carbon Nanodots. Nano Letters, 2019, 19, 5553-5561.	4.5	56
106	Redox Modifications of Carbon Dots Shape Their Optoelectronics. Journal of Physical Chemistry C, 2019, 123, 27937-27944.	1.5	19
107	Orange‣missive Carbon Quantum Dots: Toward Application in Wound pH Monitoring Based on Colorimetric and Fluorescent Changing. Small, 2019, 15, e1902823.	5.2	142
108	Combined Surface-Enhanced Raman Scattering Emissions for High-Throughput Optical Labels on Micrometer-Scale Objects. Analytical Chemistry, 2019, 91, 13866-13873.	3.2	26

#	Article	IF	CITATIONS
109	Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Advanced Science, 2019, 6, 1901316.	5.6	760
110	Fluorescence Solvatochromism of Carbon Dot Dispersions Prepared from Phenylenediamine and Optimization of Red Emission. Langmuir, 2019, 35, 15257-15266.	1.6	61
111	On the Emission Properties of Carbon Dots: Reviewing Data and Discussing Models. Journal of Carbon Research, 2019, 5, 60.	1.4	105
112	Multifunctional pâ€Type Carbon Quantum Dots: a Novel Hole Injection Layer for Highâ€Performance Perovskite Lightâ€Emitting Diodes with Significantly Enhanced Stability. Advanced Optical Materials, 2019, 7, 1901299.	3.6	52
113	Fluorescence–phosphorescence dual emissive carbon nitride quantum dots show 25% white emission efficiency enabling single-component WLEDs. Chemical Science, 2019, 10, 9801-9806.	3.7	115
114	Highly Yellow-Emitting Photoluminescent Carbon Dots Derived from Dendrimer Toward Fluorescent Nanocomposites and White LEDs. Nano, 2019, 14, 1950091.	0.5	4
115	pH-Responsive Mn-Doped Carbon Dots for White-Light-Emitting Diodes, Fingerprinting, and Bioimaging. ACS Applied Nano Materials, 2019, 2, 5900-5909.	2.4	51
116	Fluorescent Nano-Biomass Dots: Ultrasonic-Assisted Extraction and Their Application as Nanoprobe for Fe3+ detection. Nanoscale Research Letters, 2019, 14, 130.	3.1	40
117	Carbon-Based Nanomaterials in Sensors for Food Safety. Nanomaterials, 2019, 9, 1330.	1.9	59
118	Preparation, functionalization and characterization of engineered carbon nanodots. Nature Protocols, 2019, 14, 2931-2953.	5.5	96
119	Production of carbon dots during the liquid phase exfoliation of MoS2 quantum dots. Carbon, 2019, 155, 243-249.	5.4	11
120	Multicolor tunable highly luminescent carbon dots for remote force measurement and white light emitting diodes. Chemical Communications, 2019, 55, 12164-12167.	2.2	33
121	Highly porous self-assembly of nitrogen-doped graphene quantum dots over reduced graphene sheets for photo-electrocatalytic electrode. Journal of Colloid and Interface Science, 2019, 557, 174-184.	5.0	29
122	Photodetection Characteristics of Gold Coated AFM Tips and n-Silicon Substrate nano-Schottky Interfaces. Scientific Reports, 2019, 9, 13586.	1.6	20
123	Quench-resistant and stable nanocarbon dot/sheet emitters with tunable solid-state fluorescence <i>via</i> aggregation-induced color switching. Nanoscale, 2019, 11, 2131-2137.	2.8	18
124	Carbon dots produced <i>via</i> space-confined vacuum heating: maintaining efficient luminescence in both dispersed and aggregated states. Nanoscale Horizons, 2019, 4, 388-395.	4.1	82
125	Nitrogen-doped carbon dots derived from electrospun carbon nanofibers for Cu(ii) ion sensing. New Journal of Chemistry, 2019, 43, 1812-1817.	1.4	26
126	Carbon dots decorated graphene oxide nanosheets prepared by a novel technique with enhanced nonlinear optical properties. AIP Advances, 2019, 9, 015219.	0.6	6

#	Article	IF	CITATIONS
127	Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. Nanoscale, 2019, 11, 1475-1504.	2.8	134
128	Direct blending of multicolor carbon quantum dots into fluorescent films for white light emitting diodes with an adjustable correlated color temperature. Journal of Materials Chemistry C, 2019, 7, 1502-1509.	2.7	55
129	Surface Sensitive Photoluminescence of Carbon Nanodots: Coupling between the Carbonyl Group and Ï€-Electron System. Journal of Physical Chemistry Letters, 2019, 10, 3621-3629.	2.1	61
130	Metal-triggered fluorescence enhancement of multicolor carbon dots in sensing and bioimaging. Optical Materials, 2019, 94, 363-370.	1.7	13
131	Highly efficient and ultra-narrow bandwidth orange emissive carbon dots for microcavity lasers. Nanoscale, 2019, 11, 11577-11583.	2.8	66
132	Origins of Efficient Multiemission Luminescence in Carbon Dots. Chemistry of Materials, 2019, 31, 4732-4742.	3.2	113
133	2,4-Dinitrobenzenesulfonate-functionalized carbon dots as a turn-on fluorescent probe for imaging of biothiols in living cells. Mikrochimica Acta, 2019, 186, 402.	2.5	25
134	Future Perspectives and Review on Organic Carbon Dots in Electronic Applications. ACS Nano, 2019, 13, 6224-6255.	7.3	266
135	Farâ€Red to Nearâ€Infrared Carbon Dots: Preparation and Applications in Biotechnology. Small, 2019, 15, e1901507.	5.2	169
136	Red carbon dots: Optical property regulations and applications. Materials Today, 2019, 30, 52-79.	8.3	221
137	Realization of the Photostable Intrinsic Core Emission from Carbon Dots through Surface Deoxidation by Ultraviolet Irradiation. Journal of Physical Chemistry Letters, 2019, 10, 3094-3100.	2.1	50
138	Luminescence modulation of carbon dots assemblies. Journal of Materials Chemistry C, 2019, 7, 6337-6343.	2.7	8
139	Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays. Nano Research, 2019, 12, 1669-1674.	5.8	107
140	Direct white light emission from carbon nanodots (C-dots) in solution processed light emitting diodes. Nanoscale, 2019, 11, 11315-11321.	2.8	29
141	Carbon quantum dots: an emerging material for optoelectronic applications. Journal of Materials Chemistry C, 2019, 7, 6820-6835.	2.7	225
142	Concentration-tuned multicolor carbon dots: microwave-assisted synthesis, characterization, mechanism and applications. New Journal of Chemistry, 2019, 43, 8950-8957.	1.4	23
143	Multi-color fluorescent carbon dots with single wavelength excitation for white light-emitting diodes. Journal of Alloys and Compounds, 2019, 793, 613-619.	2.8	51
144	Controllable acidophilic dual-emission fluorescent carbonized polymer dots for selective imaging of bacteria. Nanoscale, 2019, 11, 9526-9532.	2.8	36

#	Article	IF	CITATIONS
145	Diamond-like carbon structure-doped carbon dots: A new class of self-quenching-resistant solid-state fluorescence materials toward light-emitting diodes. Carbon, 2019, 149, 342-349.	5.4	49
146	Prevailing Strategies to Tune Emission Color of Lanthanideâ€Activated Phosphors for WLED Applications. Advanced Optical Materials, 2019, 7, 1900319.	3.6	174
147	Recent Advances in Synthesis, Optical Properties, and Biomedical Applications of Carbon Dots. ACS Applied Bio Materials, 2019, 2, 2317-2338.	2.3	226
148	Ultrabroad-band, red sufficient, solid white emission from carbon quantum dot aggregation for single component warm white light emitting diodes with a 91 high color rendering index. Chemical Communications, 2019, 55, 6531-6534.	2.2	62
149	The One-Step Preparation of Green-Emissioned Carbon Dots through Hydrothermal Route and Its Application. Journal of Nanomaterials, 2019, 2019, 1-10.	1.5	6
150	Electroluminescent Warm White Lightâ€Emitting Diodes Based on Passivation Enabled Bright Red Bandgap Emission Carbon Quantum Dots. Advanced Science, 2019, 6, 1900397.	5.6	174
151	One‣tep Synthesis of Silicaâ€Coated Carbon Dots with Controllable Solid‣tate Fluorescence for White Lightâ€Emitting Diodes. Small, 2019, 15, e1901161.	5.2	90
152	Bright and Multicolor Chemiluminescent Carbon Nanodots for Advanced Information Encryption. Advanced Science, 2019, 6, 1802331.	5.6	120
153	Solid-state silicon nanoparticles with color-tunable photoluminescence and multifunctional applications. Journal of Materials Chemistry C, 2019, 7, 5962-5969.	2.7	15
154	Morphological and Interfacial Engineering of Cobalt-Based Electrocatalysts by Carbon Dots for Enhanced Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 7047-7057.	3.2	65
155	Preparation of N-doped yellow carbon dots and N, P co-doped red carbon dots for bioimaging and photodynamic therapy of tumors. New Journal of Chemistry, 2019, 43, 6332-6342.	1.4	101
156	Design and fabrication of carbon dots for energy conversion and storage. Chemical Society Reviews, 2019, 48, 2315-2337.	18.7	552
157	A Carbonâ€Dotâ€Based Fluorescent Probe for the Sensitive and Selective Detection of Copper(II) Ions. ChemistrySelect, 2019, 4, 2392-2397.	0.7	19
158	Low-voltage multicolor electroluminescence from all-inorganic carbon dots/Si-heterostructured light-emitting diodes. Journal of Materials Science, 2019, 54, 8492-8503.	1.7	9
159	Aggregation-induced emission enhancement of carbon quantum dots and applications in light emitting devices. Journal of Materials Chemistry C, 2019, 7, 5148-5154.	2.7	42
160	The roles of self–absorption and radiative energy transfer in photoluminescence of N–doped carbon nanodots in solution. AIP Advances, 2019, 9, 035135.	0.6	5
161	Preparation of Multicolor Photoluminescent Carbon Dots by Tuning Surface States. Nanomaterials, 2019, 9, 529.	1.9	70
162	Redâ€Shifted Absorption of Câ€Dots for Utilization in Hybrid Nanoâ€Optoelectronics by Application of Systematically Synthesized Precursor Molecules. Physica Status Solidi (B): Basic Research, 2019, 256, 1800493.	0.7	2

#	Article	IF	CITATIONS
163	Spectrally Tunable Solid State Fluorescence and Roomâ€Temperature Phosphorescence of Carbon Dots Synthesized via Seeded Growth Method. Advanced Optical Materials, 2019, 7, 1801599.	3.6	122
164	Structural, chemical and electronic differences between bare and nitrogen-doped carbon nanoparticles. Carbon Letters, 2019, 29, 255-262.	3.3	6
165	Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence. Applied Catalysis B: Environmental, 2019, 248, 157-166.	10.8	165
166	Polyelectrolyte-Mediated Nontoxic AgGa _{<i>x</i>} In _{1–<i>x</i>} S ₂ QDs/Low-Density Lipoprotein Nanoprobe for Selective 3D Fluorescence Imaging of Cancer Stem Cells. ACS Applied Materials & Interfaces, 2019, 11, 9884-9892.	4.0	22
167	Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale, 2019, 11, 4634-4652.	2.8	301
168	Insights into supramolecular-interaction-regulated piezochromic carbonized polymer dots. Nanoscale, 2019, 11, 5072-5079.	2.8	29
169	A novel graphene-based electroluminescent gas sensor for carbon dioxide detection. Applied Surface Science, 2019, 479, 525-531.	3.1	56
170	Isolating hydrogen from oxygen in photocatalytic water splitting with a carbon-quantum-dot/carbon-nitride hybrid. Journal of Materials Chemistry A, 2019, 7, 6143-6148.	5.2	32
171	Frontiers in carbon dots: design, properties and applications. Materials Chemistry Frontiers, 2019, 3, 2571-2601.	3.2	118
172	Facile one-pot synthesis of long-term thermally stable CDs@AlOOH toward white-light illumination. Journal of Materials Chemistry C, 2019, 7, 14717-14724.	2.7	9
173	Engineering carbon quantum dots for enhancing the broadband photoresponse in a silicon process-line compatible photodetector. Journal of Materials Chemistry C, 2019, 7, 13182-13191.	2.7	21
174	Enhancing the luminescence of carbon nanodots in films by tailoring the functional groups through alkylamine-functionalization and reduction. Physical Chemistry Chemical Physics, 2019, 21, 26095-26101.	1.3	4
175	Synthesis, applications and potential photoluminescence mechanism of spectrally tunable carbon dots. Nanoscale, 2019, 11, 20411-20428.	2.8	96
176	A carbon dot based theranostic platform for dual-modal imaging and free radical scavenging. Nanoscale, 2019, 11, 20917-20931.	2.8	36
177	Advances in the application of high pressure in carbon dots. Materials Chemistry Frontiers, 2019, 3, 2617-2626.	3.2	19
178	Preparation of CdTe superparticles for white light-emitting diodes without Förster resonance energy transfer. RSC Advances, 2019, 9, 30797-30802.	1.7	1
179	Direct white emissive Cl-doped graphene quantum dots-based flexible film as a single luminophore for remote tunable UV-WLEDs. Chemical Engineering Journal, 2019, 361, 773-782.	6.6	48
180	Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots. ACS Applied Materials & amp; Interfaces, 2019, 11, 3044-3052.	4.0	147

#	Article	IF	CITATIONS
181	Graphitic Nitrogen and Highâ€Crystalline Triggered Strong Photoluminescence and Roomâ€Temperature Ferromagnetism in Carbonized Polymer Dots. Advanced Science, 2019, 6, 1801192.	5.6	98
182	Ultrastable and Lowâ€Threshold Random Lasing from Narrowâ€Bandwidthâ€Emission Triangular Carbon Quantum Dots. Advanced Optical Materials, 2019, 7, 1801202.	3.6	67
183	Yellow-emissive carbon dots with a large Stokes shift are viable fluorescent probes for detection and cellular imaging ofÂsilver ions and glutathione. Mikrochimica Acta, 2019, 186, 113.	2.5	98
184	Recent advances in quantum dot-based light-emitting devices: Challenges and possible solutions. Materials Today, 2019, 24, 69-93.	8.3	213
185	A facile, green synthesis of biomass carbon dots coupled with molecularly imprinted polymers for highly selective detection of oxytetracycline. Journal of Industrial and Engineering Chemistry, 2019, 69, 455-463.	2.9	104
186	Passivation of the grain boundaries of CH ₃ NH ₃ PbI ₃ using carbon quantum dots for highly efficient perovskite solar cells with excellent environmental stability. Nanoscale, 2019, 11, 115-124.	2.8	164
187	Optical detection of anthrax biomarkers in an aqueous medium: the combination of carbon quantum dots and europium ions within alginate hydrogels. Journal of Materials Science, 2019, 54, 2526-2534.	1.7	21
188	Synthesis of carbon dots with a tunable photoluminescence and their applications for the detection of acetone and hydrogen peroxide. Chinese Chemical Letters, 2020, 31, 487-493.	4.8	25
189	Green preparation of palm powder-derived carbon dots co-doped with sulfur/chlorine and their application in visible-light photocatalysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 227, 117659.	2.0	58
190	Recent Advances and Sensing Applications of Carbon Dots. Small Methods, 2020, 4, 1900387.	4.6	145
191	Carbon Dots with Dualâ€Emissive, Robust, and Aggregationâ€Induced Roomâ€Temperature Phosphorescence Characteristics. Angewandte Chemie, 2020, 132, 1279-1285.	1.6	18
192	Carbon Dots with Dualâ€Emissive, Robust, and Aggregationâ€Induced Roomâ€Temperature Phosphorescence Characteristics. Angewandte Chemie - International Edition, 2020, 59, 1263-1269.	7.2	198
193	Carbon quantum dots embedded electrospun nanofibers for efficient antibacterial photodynamic inactivation. Materials Science and Engineering C, 2020, 108, 110377.	3.8	48
194	Synthesizing green carbon dots with exceptionally high yield from biomass hydrothermal carbon. Cellulose, 2020, 27, 415-428.	2.4	46
195	Oxygen/nitrogen-related surface states controlled carbon nanodots with tunable full-color luminescence: Mechanism and bio-imaging. Carbon, 2020, 160, 298-306.	5.4	49
196	Carbon Dots Doped with N and S towards Controlling Emitting. Journal of Fluorescence, 2020, 30, 81-89.	1.3	15
197	<i>In situ</i> synthesis of stretchable and highly stable multi-color carbon-dots/polyurethane composite films for light-emitting devices. RSC Advances, 2020, 10, 1281-1286.	1.7	9
198	Complexation and fluorescence behavior of proflavin with chemically engineered amine capped carbon nanodots and its subsequent release into DNA environments. New Journal of Chemistry, 2020, 44, 1045-1053.	1.4	2

# 199	ARTICLE Bright tricolor ultrabroad-band emission carbon dots for white light-emitting diodes with a 96.5	IF 2.7	Citations
200	high color rendering index. Journal of Materials Chemistry C, 2020, 8, 1286-1291. Electrostatically assembled carbon dots/boron nitride nanosheet hybrid nanostructures for thermal quenching-resistant white phosphors. Nanoscale, 2020, 12, 524-529.	2.8	21
201	Rational synthesis of highly efficient ultra-narrow red-emitting carbon quantum dots for NIR-II two-photon bioimaging. Nanoscale, 2020, 12, 1589-1601.	2.8	89
202	Carbon dots: a booming material for biomedical applications. Materials Chemistry Frontiers, 2020, 4, 821-836.	3.2	150
203	Soft conducting polymer hydrogels in situ doped by sulfonated graphene quantum dots for enhanced electrochemical activity. Journal of Materials Science: Materials in Electronics, 2020, 31, 2153-2161.	1.1	16
204	Photoactivated Fluorescence Enhancement in F,Nâ€Doped Carbon Dots with Piezochromic Behavior. Angewandte Chemie - International Edition, 2020, 59, 9986-9991.	7.2	139
205	Multicolor emissive sulfur, nitrogen co-doped carbon dots and their application in ion detection and solid lighting. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117859.	2.0	18
206	The formation mechanism and fluorophores of carbon dots synthesized <i>via</i> a bottom-up route. Materials Chemistry Frontiers, 2020, 4, 400-420.	3.2	166
207	Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Research, 2020, 13, 52-60.	5.8	126
208	Rapid and Largeâ€6cale Production of Multiâ€Fluorescence Carbon Dots by a Magnetic Hyperthermia Method. Angewandte Chemie, 2020, 132, 3123-3129.	1.6	11
209	Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nature Photonics, 2020, 14, 171-176.	15.6	303
210	Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Research, 2020, 13, 18-37.	5.8	214
211	Rapid and Largeâ€Scale Production of Multiâ€Fluorescence Carbon Dots by a Magnetic Hyperthermia Method. Angewandte Chemie - International Edition, 2020, 59, 3099-3105.	7.2	97
212	Photoactivated Fluorescence Enhancement in F,Nâ€Doped Carbon Dots with Piezochromic Behavior. Angewandte Chemie, 2020, 132, 10072-10077.	1.6	27
213	Enhancement of Fluorescence Emission for Tricolor Quantum Dots Assembled in Polysiloxane toward Solar Spectrum‣imulated White Lightâ€Emitting Devices. Small, 2020, 16, e1905266.	5.2	16
214	Preparation and application of carbon dots with tunable luminescence by controlling surface functionalization. Optical Materials, 2020, 108, 110450.	1.7	14
215	Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites. Science Advances, 2020, 6, .	4.7	135
216	Charge transfer mediated photoluminescence enhancement in carbon dots embedded in TiO2 nanotube matrix. Carbon, 2020, 161, 535-541.	5.4	19

#	Article	IF	CITATIONS
217	Solid-state fluorescent carbon dots: quenching resistance strategies, high quantum efficiency control, multicolor tuning, and applications. Materials Advances, 2020, 1, 3122-3142.	2.6	39
218	DES-N-doped oxygenated carbon dot colloidal solutions for light harvesting and bio-imaging applications. Materials Advances, 2020, 1, 3476-3482.	2.6	4
219	Exploring Solvent-Related Reactions and Corresponding Band Gap Tuning Strategies for Carbon Nanodots Based on Solvothermal Synthesis. Journal of Physical Chemistry Letters, 2020, 11, 10439-10445.	2.1	9
220	Water-Soluble Carbon Quantum Dots Modified by Amino Groups for Polarization Fluorescence Detection of Copper (II) Ion in Aqueous Media. Processes, 2020, 8, 1573.	1.3	7
221	Ultrastable and ultrasensitive pH-switchable carbon dots with high quantum yield for water quality identification, glucose detection, and two starch-based solid-state fluorescence materials. Nano Research, 2020, 13, 3012-3018.	5.8	48
222	Optimization of Ionic Liquid-Mediated Red-Emission Carbon Dots and Their Imaging Application in Living Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 16979-16989.	3.2	25
223	Imidazolium-type ionic liquid-based carbon quantum dot doped gels for information encryption. Nanoscale, 2020, 12, 20965-20972.	2.8	19
224	One-step synthesis of a carbon dot-based fluorescent probe for colorimetric and ratiometric sensing of tetracycline. Analytical Methods, 2020, 12, 5097-5102.	1.3	11
225	Toward Bright Red-Emissive Carbon Dots through Controlling Interaction among Surface Emission Centers. Journal of Physical Chemistry Letters, 2020, 11, 8121-8127.	2.1	34
226	Aggregation-Induced Emission Behavior of Dual-NIR-Emissive Zinc-Doped Carbon Nanosheets for Ratiometric Anthrax Biomarker Detection. ACS Applied Bio Materials, 2020, 3, 9031-9042.	2.3	9
227	Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Central Science, 2020, 6, 2179-2195.	5.3	793
228	Reaction kinetic acceleration induced by atomic-hybridized channels in carbon quantum dot/ReS2 composites for efficient Cr(VI) reduction. Applied Catalysis B: Environmental, 2022, 300, 119807.	10.8	15
229	Self-formed C-dot-based 2D polysiloxane with high photoluminescence quantum yield and stability. Nanoscale, 2020, 12, 10771-10780.	2.8	6
230	Surface Engineered Hybrid Core–Shell Siâ€Nanowires for Efficient and Stable Broadband Photodetectors. Advanced Optical Materials, 2020, 8, 2000228.	3.6	18
231	Inverted Hybrid Light-Emitting Diodes Using Carbon Dots as Selective Contacts: The Effect of Surface Ligands. ACS Applied Electronic Materials, 2020, 2, 1388-1394.	2.0	9
232	Preparation of shape-specific (trilateral and quadrilateral) carbon quantum dots towards multiple color emission. Nanoscale, 2020, 12, 11947-11959.	2.8	33
233	Ti ₃ C ₂ MXene Photoexciting Nanoflakes for Localization of Supercontinuum Lasing of Aqueous-Phase Quantum Dots. Journal of Physical Chemistry C, 2020, 124, 13385-13392.	1.5	2
234	Novel Processing for Color-Tunable Luminescence Carbon Dots and Their Advantages in Biological Systems. ACS Sustainable Chemistry and Engineering, 2020, 8, 8585-8592.	3.2	49

#	Article	IF	CITATIONS
235	Colloidal quantum dot hybrids: an emerging class of materials for ambient lighting. Journal of Materials Chemistry C, 2020, 8, 10676-10695.	2.7	46
236	Deep Eutectic Solvent-assisted Synthesis of Nitrogen-doped Carbon Quantum Dots for Cell Imaging. Chemical Research in Chinese Universities, 2020, 36, 955-961.	1.3	11
237	Perspectives on plasma-assisted synthesis of N-doped nanoparticles as nanopesticides for pest control in crops. Reaction Chemistry and Engineering, 2020, 5, 1374-1396.	1.9	21
238	Earth abundant colloidal carbon quantum dots for luminescent solar concentrators. Materials Advances, 2020, 1, 119-138.	2.6	37
239	An excitation-dependent ratiometric dual-emission strategy for the large-scale enhancement of fluorescent tint control. Nanoscale, 2020, 12, 12773-12778.	2.8	9
240	Surface states of carbon dots and their influences on luminescence. Journal of Applied Physics, 2020, 127, .	1.1	180
241	Conformational Behavior and Optical Properties of a Fluorophore Dimer as a Model of Luminescent Centers in Carbon Dots. Journal of Physical Chemistry C, 2020, 124, 14327-14337.	1.5	25
242	Photocycle of Excitons in Nitrogen-Rich Carbon Nanodots: Implications for Photocatalysis and Photovoltaics. ACS Applied Nano Materials, 2020, 3, 6925-6934.	2.4	11
243	Recent Advances in Energy Conversion Applications of Carbon Dots: From Optoelectronic Devices to Electrocatalysis. Small, 2020, 16, e2001295.	5.2	113
244	Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications. Carbon, 2020, 167, 322-344.	5.4	164
245	White luminescent single-crystalline chlorinated graphene quantum dots. Nanoscale Horizons, 2020, 5, 928-933.	4.1	47
246	Advances in carbon dots: from the perspective of traditional quantum dots. Materials Chemistry Frontiers, 2020, 4, 1586-1613.	3.2	208
247	Deep Red Emissive Carbonized Polymer Dots with Unprecedented Narrow Full Width at Half Maximum. Advanced Materials, 2020, 32, e1906641.	11.1	271
248	Confined synthesis of carbon dots with tunable long-wavelength emission in a 2-dimensional layered double hydroxide matrix. Nanoscale, 2020, 12, 7888-7894.	2.8	15
249	One-step synthesis of green emission carbon dots for selective and sensitive detection of nitrite ions and cellular imaging application. RSC Advances, 2020, 10, 10067-10075.	1.7	11
250	Nearâ€Infrared Chemiluminescent Carbon Nanodots and Their Application in Reactive Oxygen Species Bioimaging. Advanced Science, 2020, 7, 1903525.	5.6	143
251	Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nature Biomedical Engineering, 2020, 4, 704-716.	11.6	243
252	Efficient full-color emitting carbon-dot-based composite phosphors by chemical dispersion. Nanoscale, 2020, 12, 15823-15831.	2.8	39

		CITATION REPORT		
#	Article		IF	Citations
253	InP Quantum Dots: Synthesis and Lighting Applications. Small, 2020, 16, e2002454.		5.2	129
254	Plasmonic/magnetic molybdenum trioxide and graphitic carbon nitride quantum dots- fluoroimmunosensing system for influenza virus. Sensors and Actuators B: Chemical, 2 128494.	based 2020, 321,	4.0	42
255	Rapid conversion from common precursors to carbon dots in large scale: Spectral consensing, cellular imaging and LEDs application. Journal of Colloid and Interface Science 88-98.	trols, optical 2, 2020, 580,	5.0	31
256	Blue quantum dot-based electroluminescent light-emitting diodes. Materials Chemistr 2020, 4, 1340-1365.	y Frontiers,	3.2	40
257	Deep-blue carbon dots offer high colour purity. Nature Photonics, 2020, 14, 130-131.		15.6	20
258	One-Step Facile Synthesis of Fluorescent Carbon Dots via Magnetic Hyperthermia Met & Engineering Chemistry Research, 2020, 59, 4968-4976.	thod. Industrial	1.8	15
259	Polyaromatic hydrocarbon inner-structured carbon nanodots for interfacial enhancem fiber composite. RSC Advances, 2020, 10, 411-423.	ent of carbon	1.7	1
260	Facile Preparation of Stable Solid-State Carbon Quantum Dots with Multi-Peak Emissic Nanomaterials, 2020, 10, 303.	on.	1.9	23
261	Layer-by-Layer Self-Assembly of Hollow Nitrogen-Doped Carbon Quantum Dots on Cat Crystalline Silicon Solar Cells for an Efficient Energy Down-Shift. ACS Applied Materials Interfaces, 2020, 12, 10369-10381.		4.0	21
262	Surface modification strategy for fluorescence solvatochromism of carbon dots prepa <i>p</i> -phenylenediamine. Chemical Communications, 2020, 56, 2174-2177.	red from	2.2	44
263	Ordered mesoporous silica encapsulated carbon quantum dots and its application in F Ceramics International, 2020, 46, 11115-11123.	e3+ detection.	2.3	20
264	Energy Level Modification with Carbon Dot Interlayers Enables Efficient Perovskite Sol Quantum Dot Based Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 3	ar Cells and 0, 1910530.	7.8	72
265	Biowasteâ€Derived, Selfâ€Organized Arrays of Highâ€Performance 2D Carbon Emitte Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e1906176.	rs for Organic	11.1	27
266	Multinary copper-based chalcogenide semiconductor nanocrystals: synthesis and appl light-emitting diodes and bioimaging. Journal of Nanoparticle Research, 2020, 22, 1.	ications in	0.8	19
267	ZnCl2 Enabled Synthesis of Highly Crystalline and Emissive Carbon Dots with Exceptic Generate O2â<–. Matter, 2020, 2, 495-506.	nal Capability to	5.0	63
268	Recent advances in white light-emitting diodes of carbon quantum dots. Nanoscale, 2 4826-4832.	020, 12,	2.8	98
269	High-Efficiency Fluorescence through Bioinspired Supramolecular Self-Assembly. ACS I 2798-2807.	Nano, 2020, 14,	7.3	49
270	Red-Emissive Carbon Quantum Dots for Nuclear Drug Delivery in Cancer Stem Cells. Jo Physical Chemistry Letters, 2020, 11, 1357-1363.	burnal of	2.1	127

#	Article	IF	CITATIONS
271	Toward near-white electroluminescence with enhanced blue emission from carbon dots in PEDOT:PSS/ZnO organic/inorganic hybrid heterojunctions. Journal of Luminescence, 2020, 224, 117230.	1.5	10
272	Effect of Solvent-Derived Highly Luminescent Multicolor Carbon Dots for White-Light-Emitting Diodes and Water Detection. Langmuir, 2020, 36, 5287-5295.	1.6	74
273	Recent advances in crystalline carbon dots for superior application potential. Materials Advances, 2020, 1, 525-553.	2.6	92
274	Carbon quantum dots: A bright future as photosensitizers for in vitro antibacterial photodynamic inactivation. Journal of Photochemistry and Photobiology B: Biology, 2020, 206, 111864.	1.7	74
275	Citric Acid Based Carbon Dots with Amine Type Stabilizers: pH-Specific Luminescence and Quantum Yield Characteristics. Journal of Physical Chemistry C, 2020, 124, 8894-8904.	1.5	63
276	Cross-Linked Polyamide Chains Enhanced the Fluorescence of Polymer Carbon Dots. ACS Omega, 2020, 5, 8219-8229.	1.6	9
277	Fluorescence mechanism of xylan-derived carbon dots: Toward investigation on excitation-related emission behaviors. Journal of Luminescence, 2020, 223, 117199.	1.5	14
278	The Rapid and Large cale Production of Carbon Quantum Dots and their Integration with Polymers. Angewandte Chemie - International Edition, 2021, 60, 8585-8595.	7.2	88
279	The Rapid and Largeâ€Scale Production of Carbon Quantum Dots and their Integration with Polymers. Angewandte Chemie, 2021, 133, 8668-8678.	1.6	9
280	Preparation of nanogels based on kappa-carrageenan/chitosan and N-doped carbon dots: study of drug delivery behavior. Polymer Bulletin, 2021, 78, 2709-2726.	1.7	19
281	Recent advances and future trends on molecularly imprinted polymer-based fluorescence sensors with luminescent carbon dots. Talanta, 2021, 223, 121411.	2.9	85
282	Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices. Renewable and Sustainable Energy Reviews, 2021, 135, 110391.	8.2	144
283	Carbon quantum dots synthesis from waste and by-products: Perspectives and challenges. Materials Letters, 2021, 282, 128764.	1.3	52
284	Visible-light-driven hydrogen evolution using nitrogen-doped carbon quantum dot-implanted polymer dots as metal-free photocatalysts. Applied Catalysis B: Environmental, 2021, 283, 119659.	10.8	94
285	Bright blue emissions N-doped carbon dots from a single precursor and their application in the trace detection of Fe3+ and Fâ^'. Inorganica Chimica Acta, 2021, 515, 120087.	1.2	16
286	Cucurbituril-assisted formation of tunable carbon dots from single organic precursors in water. Organic Chemistry Frontiers, 2021, 8, 224-230.	2.3	11
287	Conjugate area-controlled synthesis of multiple-color carbon dots and application in sensors and optoelectronic devices. Sensors and Actuators B: Chemical, 2021, 329, 129263.	4.0	28
288	Rational Design of Multi olorâ€Emissive Carbon Dots in a Single Reaction System by Hydrothermal. Advanced Science, 2021, 8, 2001453.	5.6	194

#	Article	IF	Citations
289	Conjugated nanomaterials for solar fuel production. Nanoscale, 2021, 13, 634-646.	2.8	21
290	Recent Advance in Carbon Dots: From Properties to Applications. Chinese Journal of Chemistry, 2021, 39, 1364-1388.	2.6	24
291	Insights into photoluminescence mechanisms of carbon dots: advances and perspectives. Science Bulletin, 2021, 66, 839-856.	4.3	288
292	Carbon Nanodots With Nearly Unity Fluorescent Efficiency Realized via Localized Excitons. SSRN Electronic Journal, 0, , .	0.4	1
293	Preparation and Applications of Carbonâ€Based Fluorescent Nanothermometers. Particle and Particle Systems Characterization, 2021, 38, 2000261.	1.2	11
294	Functionalized Advanced Carbon-Based Nanomaterials for Sensing. , 2021, , .		0
295	Long-term effects of impurities on the particle size and optical emission of carbon dots. Nanoscale Advances, 2021, 3, 182-189.	2.2	18
296	Greener synthesis of carbon dots. , 2021, , 219-244.		2
297	Multicolor polymeric carbon dots: synthesis, separation and polyamide-supported molecular fluorescence. Chemical Science, 2021, 12, 2441-2455.	3.7	82
298	Red, green, and blue light-emitting carbon dots prepared from <i>o</i> -phenylenediamine. RSC Advances, 2021, 11, 26915-26919.	1.7	29
299	Fundamental photophysical properties of fluorescent carbon dots and their applications in metal ion sensing and bioimaging. , 2021, , 159-209.		0
300	Red, orange, yellow and green luminescence by carbon dots: hydrogen-bond-induced solvation effects. Nanoscale, 2021, 13, 6846-6855.	2.8	49
301	Insights and Perspectives Regarding Nanostructured Fluorescent Materials toward Tackling COVID-19 and Future Pandemics. ACS Applied Nano Materials, 2021, 4, 911-948.	2.4	29
302	Fluorescent Carbon Dots: Fantastic Electroluminescent Materials for Lightâ€Emitting Diodes. Advanced Science, 2021, 8, 2001977.	5.6	141
303	Applications of Carbon Dots in Optoelectronics. Nanomaterials, 2021, 11, 364.	1.9	51
304	Clusteringâ€Induced White Light Emission from Carbonized Polymer Dots. Advanced Photonics Research, 2021, 2, 2000161.	1.7	8
305	Carbon Dots and Stability of Their Optical Properties. Particle and Particle Systems Characterization, 2021, 38, 2000271.	1.2	45
306	Color Emission Carbon Dots with Quench-ResixAstant Solid-State Fluorescence for Light-Emitting Diodes. ACS Sustainable Chemistry and Engineering, 2021, 9, 3901-3908.	3.2	46

#	Article	IF	CITATIONS
307	Carbonâ€Dotâ€Based Whiteâ€Lightâ€Emitting Diodes with Adjustable Correlated Color Temperature Guided by Machine Learning. Angewandte Chemie - International Edition, 2021, 60, 12585-12590.	7.2	60
308	Regulation of fluorescence emission of carbon dots via hydrogen bonding assembly. Inorganic Chemistry Communication, 2021, 126, 108500.	1.8	4
309	Development of an impedimetric sensor based on carbon dots and chitosan nanocomposite modified electrode for Cu(II) detection in water. Journal of Solid State Electrochemistry, 2021, 25, 1797-1806.	1.2	10
310	Carbonâ€Dotâ€Based Whiteâ€Lightâ€Emitting Diodes with Adjustable Correlated Color Temperature Guided by Machine Learning. Angewandte Chemie, 2021, 133, 12693-12698.	1.6	8
311	Green-emissive carbon quantum dots with high fluorescence quantum yield: Preparation and cell imaging. Frontiers of Materials Science, 2021, 15, 253-265.	1.1	24
312	Electrochemical synthesis of FeNx doped carbon quantum dots for sensitiveÂdetection of Cu2+ ion. Green Energy and Environment, 2023, 8, 141-150.	4.7	9
313	Multicolor carbon dots: Induced by sp2-sp3 hybridized domains and their application in ion detection and WLED. Optical Materials, 2021, 115, 111064.	1.7	10
314	Graphitic Dots Combining Photophysical Characteristics of Organic Molecular Fluorophores and Inorganic Quantum Dots. Jacs Au, 2021, 1, 843-851.	3.6	14
315	Thermally Driven Amorphousâ€Crystalline Phase Transition of Carbonized Polymer Dots for Multicolor Roomâ€Temperature Phosphorescence. Advanced Optical Materials, 2021, 9, 2100421.	3.6	38
316	Combinations of Superior Inorganic Phosphors for Levelâ€∓unable Information Hiding and Encoding. Advanced Optical Materials, 2021, 9, 2100281.	3.6	37
317	Crown-ether-bridging bis-diphenylacrylonitrile macrocycle: The effective fluorescence sensor for oxytetracycline. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 412, 113219.	2.0	17
318	Dual-Emission Ratiometric Fluorescent Probe Based on Lanthanide-Functionalized Carbon Quantum Dots for White Light Emission and Chemical Sensing. ACS Omega, 2021, 6, 14629-14638.	1.6	14
319	Recent Progress in Luminous Particleâ€Encapsulated Host–Guest Metalâ€Organic Frameworks for Optical Applications. Advanced Optical Materials, 2021, 9, 2100283.	3.6	39
320	Subcellular imaging and diagnosis of cancer using engineered nanoparticles. Current Pharmaceutical Design, 2021, 27, .	0.9	4
321	A hybrid imprinted polymer based on magnetic graphene oxide and carbon dots for ultrasonic assisted dispersive solid-phase microextraction of oxycodone. Microchemical Journal, 2021, 164, 105988.	2.3	16
322	Progress toward blue-emitting (460–475Ânm) nanomaterials in display applications. Nanophotonics, 2021, 10, 1801-1836.	2.9	20
323	Synthesizing Red Fluorescent Carbon Dots from Rigid Polycyclic Conjugated Molecules: Dualâ€Mode Sensing and Bioimaging in Biochemical Applications. Particle and Particle Systems Characterization, 2021, 38, 2100076.	1.2	9
324	Red-emitting, self-oxidizing carbon dots for the preparation of white LEDs with super-high color rendering index. Science China Chemistry, 2021, 64, 1547-1553.	4.2	103

#	Article	IF	CITATIONS
325	Ethanol-derived white emissive carbon dots: the formation process investigation and multi-color/white LEDs preparation. Nano Research, 2022, 15, 942-949.	5.8	91
326	Carbon Dots for Photocatalytic Degradation of Aqueous Pollutants: Recent Advancements. Advanced Optical Materials, 2021, 9, 2100532.	3.6	80
327	Gramâ€5cale Synthesis of Highly Efficient Rareâ€Earthâ€Elementâ€Free Red/Green/Blue Solidâ€State Bandgap Fluorescent Carbon Quantum Rings for White Lightâ€Emitting Diodes. Angewandte Chemie, 2021, 133, 16479-16484.	1.6	11
328	Gramâ€Scale Synthesis of Highly Efficient Rareâ€Earthâ€Elementâ€Free Red/Green/Blue Solidâ€State Bandgap Fluorescent Carbon Quantum Rings for White Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2021, 60, 16343-16348.	7.2	70
329	Multicolor Carbon Dots Prepared by Singleâ€Factor Control of Graphitization and Surface Oxidation for Highâ€Quality White Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100688.	3.6	79
330	Controlled synthesis of fluorescent carbon materials with the assistance of capillary electrophoresis. Talanta, 2021, 228, 122224.	2.9	8
331	Two-dimensional closely-packed gold nanoislands: A platform for optical data storage and carbon dot generation. Applied Surface Science, 2021, 555, 149586.	3.1	5
332	Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): the nomenclature. Light: Science and Applications, 2021, 10, 142.	7.7	104
333	Carbon Quantum Dots for Energy Applications: A Review. ACS Applied Nano Materials, 2021, 4, 6515-6541.	2.4	145
334	Magnetic Field Probes the Impact of the Ionic Micellar Interface on Photoinduced Charge-Transfer Kinetics of Carbon Dots. Journal of Physical Chemistry C, 2021, 125, 17418-17427.	1.5	7
335	Ultralow Threshold Lasing from Carbon Dot–Ormosil Gel Hybrid-Based Planar Microcavity. Nanomaterials, 2021, 11, 1762.	1.9	3
336	Fluorescent Carbon Dots an Effective Nano-Thermometer in Vitro Applications. ACS Applied Bio Materials, 2021, 4, 5786-5796.	2.3	14
337	Unraveling the surface states related Stokes shift dependent electrocatalytic activity of N-doped carbon quantum dots for photovoltaic applications. Carbon, 2021, 181, 155-168.	5.4	23
338	Metal Cation-Responsive and Excitation-Dependent Nontraditional Multicolor Fluorescent Hydrogels for Multidimensional Information Encryption. ACS Applied Materials & amp; Interfaces, 2021, 13, 39967-39975.	4.0	53
339	Deciphering the Relaxation Mechanism of Red-Emitting Carbon Dots Using Ultrafast Spectroscopy and Global Target Analysis. Journal of Physical Chemistry Letters, 2021, 12, 8080-8087.	2.1	26
340	Red Emission Carbon Dots Prepared by 1,4-Diaminonaphthalene for Light-Emitting Diode Application and Metal Ion Detection. Materials, 2021, 14, 4716.	1.3	10
341	Carbon dots: An innovative luminescent nanomaterial. Aggregate, 2022, 3, e108.	5.2	31
342	Towards Red Emissive Systems Based on Carbon Dots. Nanomaterials, 2021, 11, 2089.	1.9	15

#	Article	IF	Citations
343	One-Step Green Solvothermal Synthesis of Full-Color Carbon Quantum Dots Based on a Doping Strategy. Journal of Physical Chemistry Letters, 2021, 12, 8939-8946.	2.1	55
344	Synthesis of blue emissive carbon quantum dots from Hibiscus Sabdariffa flower: Surface functionalization analysis by FT-IR spectroscopy. Materialia, 2021, 19, 101182.	1.3	9
345	One-pot synthesis of metal-free, yellow-emitting phosphor with organic single crystal as a matrix. Dyes and Pigments, 2021, 193, 109518.	2.0	6
346	A novel dual-excitation and dual-emission fluorescent probe (CQDs-O-NBD) based on carbon quantum dots for detection and discrimination of Cys/Hcy and GSH/H2S in living cells. Dyes and Pigments, 2021, 193, 109554.	2.0	21
347	One-step hydrothermal method for preparing carbon dots and its determination of lead (II). Journal of Physics: Conference Series, 2021, 2011, 012101.	0.3	0
348	A facile strategy to realize metal-free room-temperature phosphorescence by construct nitrogen doped carbon dots-based nanocomposite. Microchemical Journal, 2022, 172, 106878.	2.3	12
349	Dual-emitter polymer carbon dots with spectral selection towards nanomolar detection of iron and aluminum ions. Arabian Journal of Chemistry, 2021, 14, 103452.	2.3	12
350	Multifunctional room-temperature phosphorescent carbon dots for relative humidity determination and information encryption. Talanta, 2021, 233, 122541.	2.9	21
351	Highly stable yellow-emitting fluorescent film based on graphene quantum dots for white laser-emitting devices. Journal of Luminescence, 2021, 238, 118275.	1.5	4
352	Synthesis and modulation of multicolor fluorescent carbon dots from p-phenylenediamine and dansyl derivative for white light emitting diodes. Optical Materials, 2021, 121, 111502.	1.7	13
353	Dimensional engineering of carbon dots derived sulfur and nitrogen co-doped carbon as efficient oxygen reduction reaction electrocatalysts for aluminum-air batteries. Chemical Engineering Journal, 2021, 425, 130603.	6.6	36
354	Lightweight and high-efficiency microwave absorption of reduced graphene oxide loaded with irregular magnetic quantum dots. Journal of Alloys and Compounds, 2021, 886, 161330.	2.8	28
355	Oxidation-induced quenching mechanism of ultrabright red carbon dots and application in antioxidant RCDs/PVA film. Chemical Engineering Journal, 2021, 425, 131653.	6.6	36
356	Synthesis of carbon dots with high photocatalytic reactivity by tailoring heteroatom doping. Journal of Colloid and Interface Science, 2022, 605, 330-341.	5.0	30
357	Applications of carbon dots on tumour theranostics. View, 2021, 2, 20200061.	2.7	30
358	A universal strategy for preparing carbon quantum dot-based composites with blue and green afterglow luminescence. Materials Chemistry Frontiers, 2021, 5, 8161-8170.	3.2	10
359	Carbogenic π-conjugated domains as the origin of afterglow emissions in carbon dot-based organic composite films. Materials Chemistry Frontiers, 2021, 5, 4272-4279.	3.2	13
360	Aggregation-induced room temperature phosphorescent carbonized polymer dots with wide-range tunable lifetimes for optical multiplexing. Journal of Materials Chemistry C, 2021, 9, 6781-6788.	2.7	27

ARTICLE IF CITATIONS # Facile synthesis of carbon dots using tender coconut water for the fluorescence detection of heavy 361 0.9 14 metal ions. Materials Today: Proceedings, 2021, 43, 3821-3825. Study on the fluorescence of double-emission carbon quantum dots by improved intercept method. 1.1 Methods and Applications in Fluorescence, 2021, 9, 015004. Glycothermally Synthesized Carbon Dots with Narrow-Bandwidth and Color-Tunable Solvatochromic 363 1.6 23 Fluorescence for Wide-Color-Gamut Displays. ACS Omega, 2021, 6, 1741-1750. Great enhancement of red emitting carbon dots with B/Al/Ga doping for dual mode 364 anti-counterfeiting. Chemical Engineering Journal, 2020, 397, 125487. Carbon Dots in Solar-to-Hydrogen Conversion. Trends in Chemistry, 2020, 2, 623-637. 365 4.4 47 A facile microwave-assisted synthesis of highly crystalline red carbon dots by adjusting the reaction 1.3 solvent for white light-emitting diodes. Nanotechnology, 2020, 31, 215704 Citric Acid Derived Carbon Dots, the Challenge of Understanding the Synthesis-Structure 367 1.4 38 Relationship. Journal of Carbon Research, 2021, 7, 2. Highly stable and bright blue light-emitting diodes based on carbon dots with a chemically inert 368 surface. Nanoscale Advances, 2021, 3, 6949-6955. Highly efficient carbon dot-based room-temperature fluorescence–phosphorescence dual emitter. 369 2.7 15 Journal of Materials Chemistry C, 2021, 9, 15577-15582. Band Alignment with Selfâ€Assembled 2D Layer of Carbon Derived from Waste to Balance Charge 370 Injection in Perovskite Crystals Based Rigid and Flexible Light Emitting Diodes. Advanced Materials Technologies, 2022, 7, 2100583. Recent Advances in Functional Carbon Quantum Dots for Antitumour. International Journal of 371 3.3 14 Nanomedicine, 2021, Volume 16, 7195-7229. Blueâ€"Green Electroluminescent Carbon Dots Derived from Fenugreek Seeds for Display and Lighting 2.4 Applications. ACS Applied Nano Materials, 2021, 4, 12472-12480. Generating longâ€wavelength absorption bands with enhanced deep red fluorescence and 373 5.2 28 photothermal performance in fused carbon dots aggregates. Aggregate, 2021, 2, e139. Carbon Dots as a Sustainable New Platform for Organic Light Emitting Diode. Coatings, 2021, 11, 5. 374 1.2 Carbon quantum dot fluorescent probes for food safety detection: Progress, opportunities and 375 2.8 40 challenges. Food Control, 2022, 133, 108591. Near Infrared-Emitting Carbon Nanomaterials for Biomedical Applications., 2020, , 133-161. Bright Electroluminescent Whiteâ€Lightâ€Emitting Diodes Based on Carbon Dots with Tunable Correlated 377 5.2 34 Color Temperature Enabled by Aggregation. Small, 2021, 17, e2104551. Red Phosphorescent Carbon Quantum Dot Organic Framework-Based Electroluminescent 378 Light-Emitting Diodes Exceeding 5% External Quantum Efficiency. Journal of the American Chemical 54 6.6 Society, 2021, 143, 18941-18951.

#	Article	IF	CITATIONS
379	Recent progress in the development of carbon quantum dots for cell imaging. Oxford Open Materials Science, 2020, 1, .	0.5	1
380	Carbon dot based nucleus targeted fluorescence imaging and detection of nuclear hydrogen peroxide in living cells. Nanoscale Advances, 2021, 4, 138-149.	2.2	16
381	One-step synthesized single component white emitting carbon microspheres for lighting. Journal of Luminescence, 2022, 242, 118606.	1.5	1
382	Preparation and Fluorescent Wavelength Control of Multi-Color Nitrogen-Doped Carbon Nano-Dots. Nanomaterials, 2021, 11, 3190.	1.9	3
383	Tailored Fabrication of Carbon Dot Composites with Fullâ€Color Ultralong Roomâ€Temperature Phosphorescence for Multidimensional Encryption. Advanced Science, 2022, 9, e2103833.	5.6	100
384	White Light Afterglow in Carbon Dots Achieved via Synergy between the Roomâ€Temperature Phosphorescence and the Delayed Fluorescence. Small, 2022, 18, e2105415.	5.2	44
385	A versatile and facile strategy for full-color emitting carbonized polymer dots. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	3
386	Carbonaceous nanomaterial-TiO2 heterojunctions for visible-light-driven photocatalytic degradation of aqueous organic pollutants. Applied Catalysis A: General, 2022, 630, 118460.	2.2	26
387	High Performance Pt(II) Complex and its Hybridized Carbon Quantum Dots: Synthesis and the Synergistic Enhanced Optical Limiting Property. SSRN Electronic Journal, 0, , .	0.4	0
388	Recent advances in luminescent metal–organic frameworks and their photonic applications. Chemical Communications, 2021, 57, 13678-13691.	2.2	22
389	Carbon dots prepared from citric acid and urea by microwave-assisted irradiation as a turn-on fluorescent probe for allantoin determination. New Journal of Chemistry, 2021, 45, 22424-22431.	1.4	8
390	Regulating the photoluminescence of carbon dots <i>via</i> a green fluorine-doping-derived surface-state-controlling strategy. Journal of Materials Chemistry C, 2021, 9, 17357-17364.	2.7	11
391	Rapid Synthesis of Rare-Earth-Element-Free Yellow-Emissive Carbon Quantum Ring-Based Crystals in a Large Scale for White Light-Emitting Diodes. ACS Sustainable Chemistry and Engineering, 2022, 10, 1195-1204.	3.2	8
392	Lighting up of carbon dots for copper(<scp>ii</scp>) detection using an aggregation-induced enhanced strategy. Analyst, The, 2022, 147, 417-422.	1.7	8
393	A pH-controlled synthetic route to violet, green, and orange fluorescent carbon dots for multicolor light-emitting diodes. Chemical Engineering Journal, 2022, 431, 134172.	6.6	77
394	Sulfuric-acid-mediated synthesis strategy for multi-colour aggregation-induced emission fluorescent carbon dots: Application in anti-counterfeiting, information encryption, and rapid cytoplasmic imaging. Journal of Colloid and Interface Science, 2022, 612, 650-663.	5.0	31
395	Difunctional ligands assist a facile scalable strategy for the synthesis of spherical polymer brushes. Journal of Nanoparticle Research, 2022, 24, 1.	0.8	0
396	Carbon Dots: Synthesis, Properties and Applications. Nanomaterials, 2021, 11, 3419.	1.9	115

		CITATION REPORT		
#	Article		IF	CITATIONS
397	Aggregation and luminescence in carbonized polymer dots. Aggregate, 2022, 3, e169.		5.2	77
398	Distinctive optical transitions of tunable multicolor carbon dots. Nanoscale Advances,	0, , .	2.2	6
399	Violet phosphorus quantum dots. Journal of Materials Chemistry A, 2021, 10, 245-250		5.2	27
400	Quantum yield optimization of carbon dots using response surface methodology and control of Fe ³⁺ ion levels in drinking water. Materials Research Express, 2		0.8	15
401	The light of carbon dots: From mechanism to applications. Matter, 2022, 5, 110-149.		5.0	374
402	Self-carbonization synthesis of highly-bright red/near-infrared carbon dots by solvent-fi Journal of Materials Chemistry C, 2022, 10, 3153-3162.	ree method.	2.7	32
403	Crystalline-Induced Luminescence of Carbon Dots for the WLED and Fingerprint Recog 2022, 17, .	nition. Nano,	0.5	2
404	F,N-Doped carbon dots as efficient Type I photosensitizers for photodynamic therapy. Transactions, 2022, 51, 2296-2303.	Dalton	1.6	43
405	Ionic Liquidâ€Assisted Fast Synthesis of Carbon Dots with Strong Fluorescence and Th Multicolor Emission. Small, 2022, 18, e2106683.	eir Tunable	5.2	60
406	Two-photon excitable membrane targeting polyphenolic carbon dots for long-term ima pH-responsive chemotherapeutic drug delivery for synergistic tumor therapy. Biomater 2022, 10, 1680-1696.	iging and Tials Science,	2.6	15
407	"Light on―fluorescence carbon dots with intramolecular hydrogen bond-regulate for cell imaging and temperature sensing. Journal of Materials Chemistry A, 2022, 10, 2	d co-planarization 2085-2095.	5.2	28
408	Narrowâ€bandwidth emissive carbon dots: A rising star in the fluorescent material fam 88-114.	ily. , 2022, 4,		49
409	Progress of graphite carbon nitride with different dimensions in the photocatalytic deg dyes: A review. Journal of Alloys and Compounds, 2022, 901, 163589.	gradation of	2.8	80
410	A review on advancements in carbon quantum dots and their application in photovolta Advances, 2022, 12, 4714-4759.	iics. RSC	1.7	62
411	Localized Excitonic Electroluminescence from Carbon Nanodots. Journal of Physical Ch Letters, 2022, 13, 1587-1595.	iemistry	2.1	18
412	Synthesis and Photoluminescence properties oforange-red carbon dots from the paper precursor. Applied Optics, 2022, 61, 2118-2124.	tissuesas the	0.9	1
413	Carbon dots based photocatalysis for environmental applications. Journal of Environm Engineering, 2022, 10, 107336.	ental Chemical	3.3	55
414	Carbon dots promote the carrier recombination in Poly (9-vinyl carbazole) to enhance electroluminescence. Applied Surface Science, 2022, 585, 152649.	its	3.1	5

#	ARTICLE	IF	CITATIONS
415	New prospects on solvothermal carbonisation assisted by organic solvents, ionic liquids and eutectic mixtures – A critical review. Progress in Materials Science, 2022, 126, 100932.	16.0	18
416	Structural Engineering toward High Monochromaticity of Carbon Dots-Based Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 12107-12113.	2.1	8
417	Endowing matrix-free carbon dots with color-tunable ultralong phosphorescence by self-doping. Chemical Science, 2022, 13, 4406-4412.	3.7	51
418	RGB-multicolor fluorescent carbon dots by changing the reaction solvent type for white light-emitting diodes. New Journal of Chemistry, 2022, 46, 4979-4982.	1.4	10
419	Small Size, Big Impact: Recent Progress in Bottomâ€Up Synthesized Nanographenes for Optoelectronic and Energy Applications. Advanced Science, 2022, 9, e2106055.	5.6	54
420	A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nature Nanotechnology, 2022, 17, 112-130.	15.6	370
421	Visible-Light-Promoted Photocatalytic Applications of Carbon Dots: A Review. ACS Applied Nano Materials, 2022, 5, 3087-3109.	2.4	43
422	Dual Role of MoS ₂ Quantum Dots in a Cross-Dehydrogenative Coupling Reaction. ACS Organic & Inorganic Au, 2022, 2, 205-213.	1.9	21
423	Structural defects in graphene quantum dots: A review. International Journal of Quantum Chemistry, 2022, 122, .	1.0	17
424	Carbon nanodots: A metal-free, easy-to-synthesize, and benign emitter for light-emitting electrochemical cells. Nano Research, 2022, 15, 5610-5618.	5.8	14
425	Rational Synthesis of Solid‣tate Ultraviolet B Emitting Carbon Dots via Acetic Acidâ€Promoted Fractions of sp ³ Bonding Strategy. Advanced Materials, 2022, 34, e2200011.	11.1	46
426	Carbon Dots Confined in Silica Nanoparticles for Triplet-to-Singlet Föster Resonance Energy-Transfer-Induced Delayed Fluorescence. ACS Applied Nano Materials, 2022, 5, 5168-5175.	2.4	11
427	Recent Progress in Micro‣EDâ€Based Display Technologies. Laser and Photonics Reviews, 2022, 16, .	4.4	76
428	Microâ€Lightâ€Emitting Diodes Based on InGaN Materials with Quantum Dots. Advanced Materials Technologies, 2022, 7, .	3.0	15
429	Simple Strategy for Scalable Preparation Carbon Dots: RTP, Timeâ€Đependent Fluorescence, and NIR Behaviors. Advanced Science, 2022, 9, e2104278.	5.6	31
430	Engineering organic–inorganic perovskite planar heterojunction for efficient carbon dots based light-emitting diodes. Applied Physics Reviews, 2022, 9, .	5.5	7
431	Green synthesis of carbon quantum dots and their environmental applications. Environmental Research, 2022, 212, 113283.	3.7	83
433	Preparation of multicolor-emissive carbon dots with high quantum yields and their epoxy composites for fluorescence anti-counterfeiting and light-emitting devices. Journal of Materials Chemistry C, 2022, 10, 8441-8458.	2.7	17

	CITATION REPORT		
Article	IF	CITATIONS	
Solvent-free synthesis of nitrogen doped carbon dots with dual emission and their biological and sensing applications. Materials Today Nano, 2022, 18, 100205.	2.3	9	
Stability ascent in perovskite solar cells employing star poly(3-hexylthiophene)/quantum dot nanostructures. Organic Electronics, 2022, 108, 106547.	1.4	1	
Carbon dots with tunable emission based on pH values. Materials Express, 2022, 12, 271-277.	0.2	1	
The role of fluorescent carbon dots in crops: Mechanism and applications. SmartMat, 2022, 3, 20	8-225. 6.4	21	
High-quality full-color carbon quantum dots synthesized under an unprecedentedly mild conditior IScience, 2022, 25, 104421.	n. 1.9	16	
Gradient heating-induced bi-phase synthesis of carbon quantum dots (CQDs) on graphene-coatec carbon cloth for efficient photoelectrocatalysis. Carbon, 2022, 196, 649-662.	5.4	22	
Wet chemistry-based processing of tunable polychromatic carbon quantum dots for multicolor bioimaging and enhanced NIR-triggered photothermal bactericidal efficacy. Applied Surface Scienc 2022, 597, 153630.	ce, 3.1	14	
Surface-Modified Carbon Dots with Improved Photoluminescence Quantum Yield for Color Conversion in White-Light-Emitting Diodes. ACS Applied Nano Materials, 2022, 5, 7664-7669.	2.4	19	
Phenolic Hydroxyl Group–Carbon Dots as a Fluorescent Probe for the Detection of Hydrogen Peroxide and Glucose in Milk. Journal of Applied Spectroscopy, 0, , .	0.3	2	
pH and solvent induced discoloration behavior of multicolor fluorescent carbon dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129261.	2.3	9	
Preparation and luminescent modulation of yellow carbon dots for electroluminescent device. Journal of Luminescence, 2022, 249, 119036.	1.5	5	
Achieving full-color emission in coal-based humic acid derived carbon dots through intradot aggregation. Journal of Materials Chemistry C, 2022, 10, 10124-10131.	2.7	9	
Carbon dot/inorganic nanomaterial composites. Journal of Materials Chemistry A, 2022, 10, 1470	9-14731. 5.2	42	
Fluorescent carbon dots and noble metal nanoclusters for sensing applications: Minireview. Journ of the Chinese Chemical Society, 0, , .	al 0.8	2	
Characterization of Carbon Nanostructures by Photoelectron Spectroscopies. Materials, 2022, 15 4434.	5, 1.3	3	
Impact of Graphene Quantum Dot Edge Morphologies on Their Optical Properties. Journal of Phys Chemistry Letters, 2022, 13, 5801-5807.	sical 2.1	5	

450	Surface amino group modulation of carbon dots with blue, green and red emission as Cu2+ ion reversible detector. Applied Surface Science, 2022, 598, 153892.	3.1	12	
451	Probing the emission dynamics in nitrogen-doped carbon dots by reversible capping with	1.4	2	

401	mercury(<scp>ii</scp>) through surface chemist	try. New Journal of Chemist	ry, 2022, 46, 14690-14702.	1.7

#

434

436

438

440

442

444

446

#	Article	IF	CITATIONS
452	Comparative studies on carbon dots applications in plant systems. , 2022, , 199-224.		1
453	Optical properties of carbon dots and their applications. , 2022, , 135-153.		2
454	One-step high-yield preparation of nitrogen- and sulfur-codoped carbon dots with applications in chromium(<scp>vi</scp>) and ascorbic acid detection. RSC Advances, 2022, 12, 19686-19694.	1.7	3
455	A novel method for the synthesis of carbon dots assisted by free radicals. Nano Research, 2022, 15, 9470-9478.	5.8	13
456	Carbon Quantum Dots from Pomelo Peel as Fluorescence Probes for "Turn-Off–On―High-Sensitivity Detection of Fe3+ and L-Cysteine. Molecules, 2022, 27, 4099.	1.7	14
457	Facile Conjugatedâ€Polymerâ€Based Flexible Lighting Fabrication and Microdeformation Monitoring. Advanced Photonics Research, 0, , 2200030.	1.7	0
458	Excitation-independent deep-blue emitting carbon dots with 62% emission quantum efficiency and monoexponential decay profile for high-resolution fingerprint identification. Nanotechnology, 2022, 33, 445601.	1.3	4
459	Carbon Dots for Carbon Dummies: The Quantum and The Molecular Questions Among Some Others. Chemistry - A European Journal, 2022, 28, .	1.7	21
460	Carbon Dot-like Molecular Nanoparticles, Their Photophysical Properties, and Implications for LEDs. ACS Applied Nano Materials, 2022, 5, 11741-11751.	2.4	2
461	Green/red dual emissive carbon dots for ratiometric fluorescence detection of acid red 18 in food. Sensors and Actuators B: Chemical, 2022, 370, 132420.	4.0	29
462	Physical Mechanism of Fluorescence and Chirality of Functionalized Graphene Quantum Dots. Journal of Physical Chemistry C, 2022, 126, 12845-12859.	1.5	18
463	Quantum dots for modern display devices. , 2022, , 899-932.		0
464	Multicolor Emitting Carbon Dot-Reinforced PVA Composites as Edible Food Packaging Films and Coatings with Antimicrobial and UV-Blocking Properties. ACS Omega, 2022, 7, 29967-29983.	1.6	17
465	Improved performance with boron-doped carbon quantum dots in perovskite solar cells. Journal of Alloys and Compounds, 2022, 927, 166851.	2.8	4
466	Carbon nanodots: recent advances in synthesis and applications. Carbon Letters, 2022, 32, 1603-1629.	3.3	12
467	Stabilized perovskite photovoltaics via Supramolecules composed of carbon/graphene quantum dots and Triisoâ€Propylsilylethynyl agents. International Journal of Energy Research, 2022, 46, 22832-22844.	2.2	0
468	Carbon Nanodots with Nearly Unity Fluorescent Efficiency Realized via Localized Excitons. Advanced Science, 2022, 9, .	5.6	27
469	Confining carbon dots in amino-functionalized mesoporous silica: n→ï€* interaction triggered deep-red solid-state fluorescence. Nano Research, 2023, 16, 4170-4177.	5.8	7

#	Article	IF	CITATIONS
470	Carbon Quantum Dots doped Cholesteric Liquid Crystal Films and Microdroplets for Anti-Counterfeiting. ACS Applied Nano Materials, 2022, 5, 11912-11922.	2.4	12
471	Multicolor Nitrogen-Doped Carbon Quantum Dots for Environment-Dependent Emission Tuning. ACS Omega, 2022, 7, 27742-27754.	1.6	12
472	Strategy to Construct High Thermalâ€Stability Narrowâ€Band Greenâ€Emitting Siâ€CDs@MAs Phosphor for Wideâ€Colorâ€Gamut Backlight Displays. Advanced Optical Materials, 2022, 10, .	3.6	9
473	O, S-g-C3N4 nanotubes as photovoltaic boosters in quantum dot-sensitized all-weather solar cells: a synergistic approach for enhanced power conversion efficiency in dark-light conditions. Materials Today Chemistry, 2022, 26, 101125.	1.7	2
474	Acid treatment to tune the optical properties of carbon quantum dots. Applied Surface Science, 2022, 605, 154690.	3.1	11
475	Application of quantum dots in light-emitting diodes. , 2023, , 205-244.		1
476	Electrochemical control of emission enhancement in solid-state nitrogen-doped carbon quantum dots. Nanoscale, 2022, 14, 16170-16179.	2.8	2
477	Synthesis, optical properties and applications of red/near-infrared carbon dots. Journal of Materials Chemistry C, 2022, 10, 11827-11847.	2.7	22
478	N-doped carbon dots as robust fluorescent probes for the rapid detection of hypochlorite. RSC Advances, 2022, 12, 27170-27178.	1.7	3
479	Control of Electron Pathway in in-situ Synthesized Carbon Dot@Cellulose Nanofiber with Stable Solid-state Emission. Fibers and Polymers, 2022, 23, 2132-2138.	1.1	0
480	Preparation of Multicolour Solid Fluorescent Carbon Dots for Light-Emitting Diodes Using Phenylethylamine as a Co-Carbonization Agent. International Journal of Molecular Sciences, 2022, 23, 11071.	1.8	5
481	One-pot Solvothermal Synthesis of Full-color Carbon Quantum Dots for Application in Light Emitting Diodes. Nano Structures Nano Objects, 2022, 32, 100917.	1.9	9
482	Modification of Cotton Fabric with Molecularly Imprinted Polymer-Coated Carbon Dots as a Sensor for 17 α-methyltestosterone. Molecules, 2022, 27, 7257.	1.7	5
483	The Advance and Critical Functions of Energetic Carbon Dots in Carbon Dioxide Photo/Electroreduction Reactions. Small Methods, 2022, 6, .	4.6	7
484	Structure–Optical Property Relationship of Carbon Dots with Molecular-like Blue-Emitting Centers. Journal of Physical Chemistry C, 2022, 126, 18170-18176.	1.5	5
485	A review on mechanism, applications and influencing factors of carbon quantum dots based photocatalysis. Ceramics International, 2022, 48, 35986-35999.	2.3	20
486	Multicolor and Single-Component White Light-Emitting Carbon Dots from a Single Precursor for Light-Emitting Diodes. ACS Applied Nano Materials, 2022, 5, 15914-15924.	2.4	23
487	Green synthesis of surface-group-tunable red emissive carbon dots and their applications for Fe3+ and pyrophosphate detection. Microchemical Journal, 2022, 183, 108123.	2.3	6

#	Article	IF	CITATIONS
488	The Emerging Development of Multicolor Carbon Dots. Small, 2022, 18, .	5.2	82
489	Hydrothermal vs microwave nanoarchitechtonics of carbon dots significantly affects the structure, physicochemical properties, and anti-cancer activity against a specific neuroblastoma cell line. Journal of Colloid and Interface Science, 2023, 630, 306-321.	5.0	11
490	Application of Fluorescent CQDs for Enhancing the Performance of Solar Cells and WLEDs. , 0, , .		0
491	Regulating photochemical properties of carbon dots for theranostic applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	10
493	Recent advances in the graphene quantum dot-based biological and environmental sensors. Sensors and Actuators Reports, 2022, 4, 100130.	2.3	3
494	Ultralight Ti3C2Tx-derivative chrysanthemum-like Na2Ti3O7/Ti3C2Tx MXene quantum dots 3D/0D heterostructure with advanced microwave absorption performance. Chemical Engineering Journal, 2023, 456, 140985.	6.6	13
495	Enhanced chemodynamic and photoluminescence efficiencies of Fe–O ₄ coordinated carbon dots <i>via</i> the core–shell synergistic effect. Nanoscale, 2022, 15, 376-386.	2.8	18
496	Balance of photon management and charge collection from carbon-quantum-dot layers as self-powered broadband photodetectors. Nanoscale Advances, 2023, 5, 1086-1094.	2.2	5
497	Dual emissive carbon dots: Synthesis strategies, properties and its ratiometric sensing applications. Nano Structures Nano Objects, 2023, 33, 100931.	1.9	9
498	A highly efficient molecularly imprinted fluorescence sensor for assessing whole wheat grains by the rapid and sensitive detection of alkylresorcinols. Biosensors and Bioelectronics, 2023, 223, 115032.	5.3	7
499	A state-of-the-art review on carbon quantum dots: Prospective, advances, zebrafish biocompatibility and bioimaging in vivo and bibliometric analysis. Sustainable Materials and Technologies, 2023, 35, e00529.	1.7	3
500	Cutting-edge stability in perovskite solar cells through quantum dot-covered P3HT nanofibers. Polymer-Plastics Technology and Materials, 2023, 62, 162-176.	0.6	1
501	N-Dopant Site Formulation for White-Light-Emitting Carbon Dots with Tunable Chromaticity. ACS Sustainable Chemistry and Engineering, 2022, 10, 16136-16149.	3.2	2
502	Review of 2D MnO ₂ Nanosheets as FRET-Based Nanodot Fluorescence Quenchers in Chemosensing Applications. ACS Applied Nano Materials, 2022, 5, 17373-17412.	2.4	8
503	Facile Access to Fabricate Carbon Dots and Perspective of Largeâ \in Scale Applications. Small, 2023, 19, .	5.2	21
504	Carbon Dots Derived from Tea Polyphenols as Photosensitizers for Photodynamic Therapy. Molecules, 2022, 27, 8627.	1.7	12
505	RNAâ€Targeting Carbon Dots for Live ell Imaging of Granule Dynamics. Advanced Materials, 2023, 35, .	11.1	33
506	Targeted Degradation of PD‣1 and Activation of the STING Pathway by Carbonâ€Dotâ€Based PROTACs for Cancer Immunotherapy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	27

	Ста	CITATION REPORT	
#	Article	IF	CITATIONS
507	Fluorescent Carbon Dots for Super-Resolution Microscopy. Materials, 2023, 16, 890.	1.3	4
508	The Formation Process and Mechanism of Carbon Dots Prepared from Aromatic Compounds as Precursors: A Review. Small, 2023, 19, .	5.2	27
509	Synthesis of broad-spectrum tunable photoluminescent organosilicon nanodots from lac dye for cell imaging. Dyes and Pigments, 2023, , 111090.	2.0	0
510	See the Unseen: Redâ€Emissive Carbon Dots for Visualizing the Nucleolar Structures in Two Model Animals and In Vivo Drug Toxicity. Small, 2023, 19, .	5.2	13
511	Targeted Degradation of PD‣1 and Activation of the STING Pathway by Carbonâ€Dotâ€Based PROTA Cancer Immunotherapy. Angewandte Chemie, 2023, 135, .	ACs for 1.6	1
512	Multiple Stimuliâ€Response Polychromatic Carbon Dots for Advanced Information Encryption and Safety. Small, 2023, 19, .	5.2	22
513	Fabrication of Carbonâ€Based Quantum Dots via a "Bottomâ€Up―Approach: Topology, Chirality, a Radical Processes in "Building Blocks― Small, 2023, 19, .	and Free 5.2	13
514	Aggregation-induced emission solid-state multicolor fluorescent carbon dots for LEDs and fingerprints applications. Journal of Luminescence, 2023, 256, 119625.	1.5	8
515	Colloidal Quantum Dots: Synthesis, Composition, Structure, and Emerging Optoelectronic Applications. Laser and Photonics Reviews, 2023, 17, .	4.4	14
516	Carbon Dots in Perovskite Solar Cells: Properties, Applications, and Perspectives. Energy & Fuels, 2023, 37, 876-901.	2.5	7
517	Magnetic and nanophotonics applications of carbon quantum dots. , 2023, , 377-396.		0
518	Characterization and physical properties of carbon quantum dots. , 2023, , 55-90.		0
519	Light-emitting diode application of carbon quantum dots. , 2023, , 159-181.		0
520	Open system synthesis of narrow-bandwidth red-fluorescent carbon quantum dots with a function of multi-metal ion sensing. Journal of Materials Chemistry C, 2023, 11, 4143-4152.	2.7	1
521	Carbon Quantum Dots with Nearâ€Unity Quantum Yield Bandgap Emission for Electroluminescent Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	28
522	Rapid adsorption and detection of copper ions in water by dual-functional ion-imprinted polymers doping with carbon dots. Separation and Purification Technology, 2023, 315, 123666.	3.9	11
523	Surficial amino groups coupling induced concentration-dependent fluorescence and fluorescence quantum yield of nitrogen-dopped carbon quantum dots via efficient charge transfer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 294, 122542.	2.0	10
524	Rare-earth free solid-state fluorescent carbon-quantum dots: Multi-color emission and its application as optical dual-mode sensor. Journal of Alloys and Compounds, 2023, 941, 168985.	2.8	4

#	Article	IF	CITATIONS
525	Effect of fluorescence color of carbon quantum dots on the optical properties of LaFe0.5Cu0.5O3 nanocomposite and quinoline photocatalytic degradation. Applied Surface Science, 2023, 626, 157213.	3.1	1
526	Multiple-color room-temperature phosphorescence regulated by graphitization and carbonyls. Chemical Engineering Journal, 2023, 459, 141635.	6.6	2
527	Reaction Time-Controlled Synthesis of Multicolor Carbon Dots for White Light-Emitting Diodes. ACS Applied Nano Materials, 2023, 6, 2478-2490.	2.4	15
528	Gramâ€5cale Roomâ€Temperature Synthesis of Solidâ€State Fluorescent Carbon Nanodots for Bright Electroluminescent Light Emitting Diodes. Small, 2023, 19, .	5.2	17
529	Solid-State Luminescence in Self-Assembled Chlorosalicylaldehyde-Modified Carbon Dots. , 2023, 5, 846-853.		23
530	Bandgap Engineering of Scandium Microspheres for Antiâ€Counterfeiting and Multicolor Imaging. Advanced Optical Materials, 2023, 11, .	3.6	6
531	Advances in Fluorescent Sensing Carbon Dots: An Account of Food Analysis. ACS Omega, 2023, 8, 9031-9039.	1.6	10
532	Ionic liquid capped white luminescent carbon dots: application in sensing and bioimaging. Materials Today Chemistry, 2023, 29, 101437.	1.7	3
533	Flexible Quantum Dot Lightâ€Emitting Device for Emerging Multifunctional and Smart Applications. Advanced Materials, 2023, 35, .	11.1	13
534	Enhanced energy density at elevated temperature in polyetherimide based all-organic dielectrics via UV irradiation. Applied Physics Letters, 2023, 122, .	1.5	4
535	Carbon Quantum Dots with Nearâ€Unity Quantum Yield Bandgap Emission for Electroluminescent Lightâ€Emitting Diodes. Angewandte Chemie, 2023, 135, .	1.6	5
536	Carbon Dots for Electroluminescent Lightâ€Emitting Diodes: Recent Progress and Future Prospects. Advanced Materials, 2023, 35, .	11.1	26
537	Blue, Yellow, and Red Carbon Dots from Aromatic Precursors for Light-Emitting Diodes. Molecules, 2023, 28, 2957.	1.7	6
538	Fluorescent Carbon Dots Derived From Soy Sauce for Picric Acid Detection and Cell Imaging. Journal of Fluorescence, 2023, 33, 1981-1993.	1.3	3
539	Biomass-based carbon quantum dots for polycrystalline silicon solar cells with enhanced photovoltaic performance. Energy, 2023, 274, 127354.	4.5	14
540	Conventional and Inverted Light-Emitting Diodes with 386 nm Emission Wavelength Based on Metal-Free Carbon Dots. ACS Applied Materials & Interfaces, 2023, 15, 18045-18054.	4.0	5
541	Triphenylamineâ€Derived Solidâ€State Emissive Carbon Dots for Multicolor Highâ€Efficiency Electroluminescent Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
542	Single-component electroluminescent white light-emitting diodes based on zinc oxide quantum dots with high color rendition and tunable correlated color temperature. Journal of Materials Chemistry C, 2023, 11, 5402-5410.	2.7	2

#	Article	IF	CITATIONS
543	All-organic nanocomposite dielectrics contained with polymer dots for high-temperature capacitive energy storage. Nano Research, 2023, 16, 10183-10190.	5.8	8
544	Intense Circularly Polarized Fluorescence and Room-Temperature Phosphorescence in Carbon Dots/Chiral Helical Polymer Composite Films. ACS Nano, 2023, 17, 6912-6921.	7.3	17
545	Triphenylamineâ€Derived Solidâ€State Emissive Carbon Dots for Multicolor Highâ€Efficiency Electroluminescent Lightâ€Emitting Diodes. Angewandte Chemie, 2023, 135, .	1.6	3
546	Role of functionalization in the fluorescence quantum yield of graphene quantum dots. Applied Physics Letters, 2023, 122, .	1.5	2
547	Highly stable N-doped carbon dots as the sensitive probe for the detection of Fe3+. Current Applied Physics, 2023, 50, 168-175.	1.1	3
548	Fundamentals of ceramics for photonics applications. , 2023, , 365-394.		0
566	Progress on the luminescence mechanism and application of carbon quantum dots based on biomass synthesis. RSC Advances, 2023, 13, 19173-19194.	1.7	2
580	Synthetic strategies, properties and sensing application of multicolor carbon dots: recent advances and future challenges. Journal of Materials Chemistry B, 2023, 11, 8117-8135.	2.9	3
589	The emergence and prospects of carbon dots with solid-state photoluminescence for light-emitting diodes. Materials Horizons, 0, , .	6.4	1
605	Synthesis, applications in therapeutics, and bioimaging of traditional Chinese medicine-derived carbon dots. Carbon Letters, 0, , .	3.3	0
607	Cucurbit[7]uril-based carbon dots for recognizing histamine. Chemical Communications, 2023, 59, 13851-13854.	2.2	0
608	Introduction to Photoluminescent Carbon Dots. , 2023, , 1-26.		0
619	Graphene quantum dots and carbon nanodots: modeling of zero-dimensional carbon nanomaterials. , 2024, , 411-482.		1
625	Redox properties of zero-dimensional carbon–based nanomaterials. , 2024, , 249-290.		0
626	Carbon-based nanomaterials for photocatalytic application. , 2024, , 153-178.		0