Silicon based lithium-ion battery anodes: A chronicle pe

Nano Energy 31, 113-143 DOI: 10.1016/j.nanoen.2016.11.013

Citation Report

#	Article	IF	CITATIONS
1	Porous sphere-like LiNi0.5Mn1.5O4-CeO2 composite with high cycling stability as cathode material for lithium-ion battery. Journal of Alloys and Compounds, 2017, 703, 103-113.	2.8	47
2	Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy, 2017, 36, 134-155.	8.2	326
3	Silicon/graphene/carbon hierarchical structure nanofibers for high performance lithium ion batteries. Materials Letters, 2017, 200, 128-131.	1.3	17
4	A high-performance Li-ion anode from direct deposition of Si nanoparticles. Nano Energy, 2017, 38, 477-485.	8.2	67
5	Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview. Nano Research, 2017, 10, 3942-3969.	5.8	88
6	One-pot ball-milling synthesis of a Ni-Ti-Si based composite as anode material for Li-ion batteries. Electrochimica Acta, 2017, 245, 497-504.	2.6	21
7	Self-Templating Construction of 3D Hierarchical Macro-/Mesoporous Silicon from 0D Silica Nanoparticles. ACS Nano, 2017, 11, 889-899.	7.3	100
8	Room-Temperature Solution Synthesis of Mesoporous Silicon for Lithium Ion Battery Anodes. ACS Applied Materials & Interfaces, 2017, 9, 40386-40393.	4.0	41
9	High performance carbon-coated hollow Ni ₁₂ P ₅ nanocrystals decorated on GNS as advanced anodes for lithium and sodium storage. Journal of Materials Chemistry A, 2017, 5, 22316-22324.	5.2	65
10	Urchin-like V ₂ O ₃ /C Hollow Nanosphere Hybrid for High-Capacity and Long-Cycle-Life Lithium Storage. ACS Sustainable Chemistry and Engineering, 2017, 5, 11238-11245.	3.2	39
11	Allâ€Nanomat Lithiumâ€ion Batteries: A New Cell Architecture Platform for Ultrahigh Energy Density and Mechanical Flexibility. Advanced Energy Materials, 2017, 7, 1701099.	10.2	34
12	A sustainable route from fly ash to silicon nanorods for high performance lithium ion batteries. Chemical Engineering Journal, 2017, 330, 1052-1059.	6.6	47
13	Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Conversion and Management, 2017, 150, 304-330.	4.4	786
14	Self-supported Zn/Si core-shell arrays as advanced electrodes for lithium ion batteries. Materials Research Bulletin, 2017, 95, 414-418.	2.7	4
15	MoS2 nanosheets grown on N-doped carbon micro-tubes derived from willow catkins as a high-performance anode material for lithium-ion batteries. Materials Letters, 2017, 209, 396-399.	1.3	16
16	Effects of the Formulations of Siliconâ€Based Composite Anodes on their Mechanical, Storage, and Electrochemical Properties. ChemSusChem, 2017, 10, 4080-4089.	3.6	12
17	Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy. Environmental Science & Technology, 2017, 51, 11960-11966.	4.6	284
18	Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries. Joule, 2017, 1, 47-60.	11.7	329

#	Article	IF	CITATIONS
19	Nanoconfined Iron Oxychloride Material as a High-Performance Cathode for Rechargeable Chloride Ion Batteries. ACS Energy Letters, 2017, 2, 2341-2348.	8.8	87
20	Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 25905-25918.	1.3	162
21	Scalable Synthesis of Dual-Carbon Enhanced Silicon-Suboxide/Silicon Composite as Anode for Lithium Ion Batteries. Nano, 2017, 12, 1750084.	0.5	2
22	Challenges and Recent Progress in the Development of Si Anodes for Lithiumâ€lon Battery. Advanced Energy Materials, 2017, 7, 1700715.	10.2	709
23	Surface and Interface Engineering of Siliconâ€Based Anode Materials for Lithiumâ€lon Batteries. Advanced Energy Materials, 2017, 7, 1701083.	10.2	354
24	A Hierarchical, Nanofibrous, Tinâ€Oxide/Silicon Composite Derived from Cellulose as a Highâ€Performance Anode Material for Lithiumâ€ŀon Batteries. ChemistrySelect, 2017, 2, 5667-5676.	0.7	7
25	Porous-Nickel-Scaffolded Tin–Antimony Anodes with Enhanced Electrochemical Properties for Li/Na-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 25250-25256.	4.0	34
26	Colloidal Synthesis of Silicon–Carbon Composite Material for Lithiumâ€Ion Batteries. Angewandte Chemie, 2017, 129, 10920-10925.	1.6	36
27	Colloidal Synthesis of Silicon–Carbon Composite Material for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2017, 56, 10780-10785.	7.2	94
28	Water Soluble Binder, an Electrochemical Performance Booster for Electrode Materials with High Energy Density. Advanced Energy Materials, 2017, 7, 1701185.	10.2	248
29	Shoring Up the Lithium Ion Batteries with Multi-Component Silicon Yolk-Shell Anodes for Grid-Scale Storage Systems: Experimental and Computational Mechanical Studies. Journal of the Electrochemical Society, 2017, 164, A2238-A2250.	1.3	17
30	Nanoscale Heterogeneity of Multilayered Si Anodes with Embedded Nanoparticle Scaffolds for Li″on Batteries. Advanced Science, 2017, 4, 1700180.	5.6	32
31	Silicon Anode Design for Lithium-Ion Batteries: Progress and Perspectives. Journal of Physical Chemistry C, 2017, 121, 27775-27787.	1.5	169
32	Zn ₂ GeO ₄ nanorods grown on carbon cloth as high performance flexible lithium-ion battery anodes. RSC Advances, 2017, 7, 51807-51813.	1.7	43
33	Alloyâ€Based Anode Materials toward Advanced Sodiumâ€lon Batteries. Advanced Materials, 2017, 29, 1700622.	11.1	613
34	Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries. Polymers, 2017, 9, 657.	2.0	16
35	Self-templating synthesis of silicon nanorods from natural sepiolite for high-performance lithium-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 6356-6362.	5.2	67
36	Rigid Polyimide Buffering Layer Enabling Silicon Nanoparticles Prolonged Cycling Life for Lithium Storage. ACS Applied Energy Materials, 2018, 1, 948-955.	2.5	12

#	Article	IF	Citations
	Artificial Composite Anode Comprising Highâ€Capacity Silicon and Carbonaceous Nanostructures for		
37	Long Cycle Life Lithiumâ€lon Batteries. Batteries and Śupercaps, 2018, 1, 27-32.	2.4	8
38	Advances in In Situ Techniques for Characterization of Failure Mechanisms of Liâ€lon Battery Anodes. Advanced Sustainable Systems, 2018, 2, 1700182.	2.7	20
39	Carbon dioxide as a green carbon source for the synthesis of carbon cages encapsulating porous silicon as high performance lithium-ion battery anodes. Nanoscale, 2018, 10, 5626-5633.	2.8	40
40	Graphene Oxides Used as a New "Dual Role―Binder for Stabilizing Silicon Nanoparticles in Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 15665-15672.	4.0	56
41	Si@void@C Nanofibers Fabricated Using a Self-Powered Electrospinning System for Lithium-Ion Batteries. ACS Nano, 2018, 12, 4835-4843.	7.3	115
42	Synergistic Effect between LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ and LiFe _{0.15} Mn _{0.85} PO ₄ /C on Rate and Thermal Performance for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 16458-16466.	4.0	23
43	Microstructure Controlled Porous Silicon Particles as a High Capacity Lithium Storage Material via Dual Step Pore Engineering. Advanced Functional Materials, 2018, 28, 1800855.	7.8	106
44	Agglomeration Mechanism and a Protective Role of Al ₂ O ₃ for Prolonged Cycle Life of Si Anode in Lithium-Ion Batteries. Chemistry of Materials, 2018, 30, 3233-3243.	3.2	55
45	Graphene nanosheets and polyacrylic acid grafted silicon composite anode for lithium ion batteries. Journal of Power Sources, 2018, 391, 41-50.	4.0	21
46	Fabrication and characterization of double protective carbon aerogel (CA)/α-Fe2O3@Polypyrrole (PPy) composites as an anode material for high performance lithium ion batteries. Solid State Ionics, 2018, 321, 1-7.	1.3	12
47	Carbon fibers as three-dimensional current collectors for silicon/reduced graphene oxide lithium ion battery anodes with improved rate performance and cycle life. New Journal of Chemistry, 2018, 42, 9058-9064.	1.4	13
48	K ₂ Nb ₈ O ₂₁ nanotubes with superior electrochemical performance for ultrastable lithium storage. Journal of Materials Chemistry A, 2018, 6, 8620-8632.	5.2	51
49	Efficient conversion of sand to nano-silicon and its energetic Si-C composite anode design for high volumetric capacity lithium-ion battery. Journal of Power Sources, 2018, 382, 56-68.	4.0	48
50	Lithiation Mechanism of Methylated Amorphous Silicon Unveiled by Operando ATRâ€FTIR Spectroscopy. Advanced Energy Materials, 2018, 8, 1702568.	10.2	20
51	Stressâ€Relieved Nanowires by Silicon Substitution for Highâ€Capacity and Stable Lithium Storage. Advanced Energy Materials, 2018, 8, 1702805.	10.2	29
52	An amorphous Si material with a sponge-like structure as an anode for Li-ion and Na-ion batteries. Nanoscale, 2018, 10, 3153-3158.	2.8	65
53	Polypyrrole@ silica composites as high performance electrode materials for Lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 6098-6104.	1.1	6
54	Electrochemical and structural analysis of Mg substitution in lithium-rich layered oxide for lithium-ion battery. lonics, 2018, 24, 3347-3356.	1.2	5

#	Article	IF	CITATIONS
55	Research progress on silicon/carbon composite anode materials for lithium-ion battery. Journal of Energy Chemistry, 2018, 27, 1067-1090.	7.1	291
56	Synthesis of Co ₂ V ₂ O ₇ Hollow Cylinders with Enhanced Lithium Storage Properties using H ₂ O ₂ as an Etching Agent. ChemElectroChem, 2018, 5, 737-742.	1.7	15
57	Effects of lithium excess amount on the microstructure and electrochemical properties of LiNi0.5Mn1.5O4 cathode material. Ionics, 2018, 24, 2241-2250.	1.2	6
58	Synthesis of Si nanosheets by using Sodium Chloride as template for high-performance lithium-ion battery anode material. Journal of Power Sources, 2018, 379, 20-25.	4.0	51
59	Fundamental Understanding of Nanostructured Si Electrodes: Preparation and Characterization. ChemNanoMat, 2018, 4, 319-337.	1.5	19
60	Multi-channel and porous SiO@N-doped C rods as anodes for high-performance lithium-ion batteries. Applied Surface Science, 2018, 439, 336-342.	3.1	35
61	Highly porous carbon-coated silicon nanoparticles with canyon-like surfaces as a high-performance anode material for Li-ion batteries. Journal of Materials Chemistry A, 2018, 6, 3028-3037.	5.2	70
62	Si/Ag/C Nanohybrids with <i>in Situ</i> Incorporation of Super-Small Silver Nanoparticles: Tiny Amount, Huge Impact. ACS Nano, 2018, 12, 861-875.	7.3	67
63	Mechanical Property Evolution of Silicon Composite Electrodes Studied by Environmental Nanoindentation. Advanced Energy Materials, 2018, 8, 1702578.	10.2	51
64	Mesoporous germanium nanoparticles synthesized in molten zinc chloride at low temperature as a high-performance anode for lithium-ion batteries. Dalton Transactions, 2018, 47, 7402-7406.	1.6	22
65	Recent Advances in Designing Highâ€Capacity Anode Nanomaterials for Liâ€Ion Batteries and Their Atomicâ€Scale Storage Mechanism Studies. Advanced Science, 2018, 5, 1700902.	5.6	63
66	Stabilization of planar tetra-coordinate silicon in a 2D-layered extended system and design of a high-capacity anode material for Li-ion batteries. Nanoscale, 2018, 10, 10450-10458.	2.8	41
67	Ti ₂ Nb _{2x} O _{4+5x} anode materials for lithium-ion batteries: a comprehensive review. Journal of Materials Chemistry A, 2018, 6, 9799-9815.	5.2	101
68	Rigid TiO _{2â^'x} coated mesoporous hollow Si nanospheres with high structure stability for lithium-ion battery anodes. RSC Advances, 2018, 8, 15094-15101.	1.7	10
69	Zeolitic imidazolate framework-8-derived N-doped porous carbon coated olive-shaped FeOx nanoparticles for lithium storage. Journal of Power Sources, 2018, 384, 187-195.	4.0	28
70	A nanopore-embedded graphitic carbon shell on silicon anode for high performance lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 8013-8020.	5.2	81
71	A Review: Enhanced Anodes of Li/Na-Ion Batteries Based on Yolk–Shell Structured Nanomaterials. Nano-Micro Letters, 2018, 10, 40.	14.4	92
72	Oriented MoS ₂ Nanoflakes on Nâ€Doped Carbon Nanosheets Derived from Dodecylamineâ€Intercalated MoO ₃ for Highâ€Performance Lithiumâ€Ion Battery Anodes. ChemElectroChem, 2018, 5, 1350-1356.	1.7	21

#	Article	IF	CITATIONS
73	Healable Structure Triggered by Thermal/Electrochemical Force in Layered GeSe ₂ for High Performance Liâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1703635.	10.2	59
74	Crosslinked carboxymethyl cellulose-sodium borate hybrid binder for advanced silicon anodes in lithium-ion batteries. Chinese Chemical Letters, 2018, 29, 1773-1776.	4.8	38
75	Silicon Microparticle Anodes with Self-Healing Multiple Network Binder. Joule, 2018, 2, 950-961.	11.7	316
76	From natural clay minerals to porous silicon nanoparticles. Microporous and Mesoporous Materials, 2018, 260, 76-83.	2.2	18
77	Simple synthesis of Si/Sn@C-G anodes with enhanced electrochemical properties for Li-ion batteries. Electrochimica Acta, 2018, 259, 1081-1088.	2.6	46
78	Rationally Designed Silicon Nanostructures as Anode Material for Lithiumâ€lon Batteries. Advanced Engineering Materials, 2018, 20, 1700591.	1.6	97
79	Theoretical optimization of electrode design parameters of Si based anodes for lithium-ion batteries. Journal of Energy Storage, 2018, 15, 181-190.	3.9	21
80	Potassiumâ€lon Battery Anode Materials Operating through the Alloying–Dealloying Reaction Mechanism. Advanced Functional Materials, 2018, 28, 1703857.	7.8	305
81	Nâ€Type Doped Silicon Thin Film on a Porous Cu Current Collector as the Negative Electrode for Liâ€lon Batteries. ChemistryOpen, 2018, 7, 92-96.	0.9	35
82	In Operando Small-Angle Neutron Scattering Study of Single-Ion Copolymer Electrolyte for Li-Metal Batteries. ACS Energy Letters, 2018, 3, 1-6.	8.8	25
83	Performance of n-type silicon/silver composite anode material in lithium ion batteries: A study on effect of work function matching degree. Chinese Physics B, 2018, 27, 108201.	0.7	1
84	Rapid fabrication of porous silicon/carbon microtube composites as anode materials for lithium-ion batteries. RSC Advances, 2018, 8, 41101-41108.	1.7	6
85	Hollow Silicon–Tin Nanospheres Encapsulated by N-Doped Carbon as Anode Materials for Lithium-Ion Batteries. ACS Applied Nano Materials, 2018, 1, 6989-6999.	2.4	51
86	Robust AlF ₃ Atomic Layer Deposition Protective Coating on LiMn _{1.5} Ni _{0.5} O ₄ Particles: An Advanced Li-Ion Battery Cathode Material Powder. ACS Applied Energy Materials, 2018, 1, 6809-6823.	2.5	53
87	Interfacial Contact is Required for Metalâ€Assisted Plasma Etching of Silicon. Advanced Materials Interfaces, 2018, 5, 1800836.	1.9	12
88	Research Progress on Surface Coating Layers on the Positive Electrode for Lithium Ion Batteries. Nano, 2018, 13, 1830007.	0.5	8
89	Silicon Nanoparticles with a Polymer-Derived Carbon Shell for Improved Lithium-Ion Batteries: Investigation into Volume Expansion, Gas Evolution, and Particle Fracture. ACS Omega, 2018, 3, 16706-16713.	1.6	27
90	Lithium Permeability Increase in Nanosized Amorphous Silicon Layers. Journal of Physical Chemistry C, 2018, 122, 28528-28536.	1.5	12

#	Article	IF	CITATIONS
91	Coalescence in Hybrid Materials: The Key to High-Capacity Electrodes. ACS Applied Energy Materials, 2018, 1, 7085-7092.	2.5	1
92	Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells. Beilstein Journal of Nanotechnology, 2018, 9, 2381-2395.	1.5	14
93	Magnetron Sputtering Silicon Thin Film Electrodes for Lithium-Ion Batteries. International Journal of Electrochemical Science, 2018, 13, 2860-2874.	0.5	17
94	Symmetrical Sandwich-Structured SiN/Si/SiN Composite for Lithium-Ion Battery Anode with Improved Cyclability and Rate Capacity. Journal of the Electrochemical Society, 2018, 165, A3397-A3402.	1.3	10
95	Effect of Hydrofluoric Acid Etching on Performance of Si/C Composite as Anode Material for Lithium-Ion Batteries. Journal of Nanomaterials, 2018, 2018, 1-6.	1.5	0
96	Interpenetrated 3D porous silicon as high stable anode material for Li-Ion battery. Journal of Power Sources, 2018, 406, 167-175.	4.0	30
97	Clay minerals derived nanostructured silicon with various morphology: Controlled synthesis, structural evolution, and enhanced lithium storage properties. Journal of Power Sources, 2018, 405, 61-69.	4.0	34
98	Tracing the Impact of Hybrid Functional Additives on a High-Voltage (5 V-class) SiO _{<i>x</i>} -C/LiNi _{0.5} Mn _{1.5} O ₄ Li-Ion Battery System. Chemistry of Materials, 2018, 30, 8291-8302.	3.2	70
99	Comprehensive Aging Analysis of Volumetric Constrained Lithium-Ion Pouch Cells with High Concentration Silicon-Alloy Anodes. Energies, 2018, 11, 2948.	1.6	39
100	Electrical Characterization and Micro X-ray Computed Tomography Analysis of Next-Generation Silicon Alloy Lithium-Ion Cells. World Electric Vehicle Journal, 2018, 9, 43.	1.6	19
101	Size and Surface Effects of Silicon Nanocrystals in Graphene Aerogel Composite Anodes for Lithium Ion Batteries. Chemistry of Materials, 2018, 30, 7782-7792.	3.2	50
102	In Situ Transmission Electron Microsopy of Oxide Shell-Induced Pore Formation in (De)lithiated Silicon Nanowires. ACS Energy Letters, 2018, 3, 2829-2834.	8.8	25
103	Enhanced conductive core–shell structured Si/Ag@SiOx particles as high performance anode material for lithium ion batteries. Materials Letters, 2018, 233, 228-232.	1.3	14
104	Leveraging Titanium to Enable Silicon Anodes in Lithiumâ€ion Batteries. Small, 2018, 14, e1802051.	5.2	37
105	Embedding Co ₂ P Nanoparticles in N-Doped Carbon Nanotubes Grown on Porous Carbon Polyhedra for High-Performance Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2018, 57, 13019-13025.	1.8	21
106	Common Battery Anode Testing Protocols Are Not Suitable for New Combined Alloying and Conversion Materials. ChemElectroChem, 2018, 5, 3757-3763.	1.7	1
107	The hollow mesoporous silicon nanobox dually encapsulated by SnO2/C as anode material of lithium ion battery. Electrochimica Acta, 2018, 288, 61-70.	2.6	45
108	2D-Pnictogens: alloy-based anode battery materials with ultrahigh cycling stability. Chemical Society Reviews, 2018, 47, 6964-6989.	18.7	100

#	Article	IF	CITATIONS
109	Highly conductive carbon nanotube micro-spherical network for high-rate silicon anode. Journal of Power Sources, 2018, 394, 94-101.	4.0	60
110	In situ electron microscopy and X-ray photoelectron spectroscopy for high capacity anodes in next-generation ionic liquid-based Li batteries. Electrochimica Acta, 2018, 279, 136-142.	2.6	20
111	Crossed carbon skeleton enhances the electrochemical performance of porous silicon nanowires for lithium ion battery anode. Electrochimica Acta, 2018, 280, 86-93.	2.6	38
112	A unique intricate hollow Si nanocomposite designed for lithium storage. Journal of Alloys and Compounds, 2018, 758, 177-183.	2.8	13
113	A mini-review on the development of Si-based thin film anodes for Li-ion batteries. Materials Today Energy, 2018, 9, 49-66.	2.5	92
114	Carbon-coated Si particles with self-supported Si nanowires as anode material for lithium-ion batteries. Materials Research Express, 2018, 5, 075006.	0.8	2
115	Putting Nanoarmors on Yolk–Shell Si@C Nanoparticles: A Reliable Engineering Way To Build Better Si-Based Anodes for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 24157-24163.	4.0	46
116	Economic implications of lithium ion battery degradation for Vehicle-to-Grid (V2X) services. Journal of Power Sources, 2018, 396, 691-709.	4.0	105
117	Grafting Functional Groups in Polymeric Binder toward Enhancing Structural Integrity of Li <i>_x</i> SiO ₂ Anode during Electrochemical Cycling. Journal of Physical Chemistry C, 2018, 122, 17190-17198.	1.5	7
118	Amorphous silicon dioxide-based composites for high-performance Li-ion battery anodes. Electrochimica Acta, 2018, 284, 220-225.	2.6	25
119	Fabrication of Si Nanoparticles@Conductive Carbon Framework@Polymer Composite as Highâ€Areal apacity Anode of Lithiumâ€Ion Batteries. ChemElectroChem, 2018, 5, 3258-3265.	1.7	20
120	Interactions between Lithium, an Ionic Liquid, and Si(111) Surfaces Studied by X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 4673-4678.	2.1	7
121	Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges. Batteries, 2018, 4, 4.	2.1	251
122	Electrochemical properties of MgH2 – TiH2 nanocomposite as active materials for all-solid-state lithium batteries. Journal of Power Sources, 2018, 397, 143-149.	4.0	15
123	Solution-Plasma-Mediated Synthesis of Si Nanoparticles for Anode Material of Lithium-Ion Batteries. Nanomaterials, 2018, 8, 286.	1.9	14
124	Hierarchical C/SiO <i> _x </i> /TiO ₂ ultrathin nanobelts as anode materials for advanced lithium ion batteries. Nanotechnology, 2018, 29, 405602.	1.3	20
125	Boron Embedded in Metal Iron Matrix as a Novel Anode Material of Excellent Performance. Advanced Materials, 2018, 30, e1801409.	11.1	35
126	Citric Acid Based Pre-SEI for Improvement of Silicon Electrodes in Lithium Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A1991-A1996.	1.3	23

#	Article	IF	CITATIONS
127	Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Materials, 2018, 15, 422-446.	9.5	292
128	Materials Engineering of High-Performance Anodes as Layered Composites with Self-Assembled Conductive Networks. Journal of Physical Chemistry C, 2018, 122, 14014-14028.	1.5	7
129	Aligned Copper Zinc Tin Sulfide Nanorods as Lithium-Ion Battery Anodes with High Specific Capacities. Journal of Physical Chemistry C, 2018, 122, 20090-20098.	1.5	25
130	Strong anchoring effect of ferric chloride-graphite intercalation compounds (FeCl ₃ -ClCs) with tailored epoxy groups for high-capacity and stable lithium storage. Journal of Materials Chemistry A, 2018, 6, 17982-17993.	5.2	35
131	One-Dimensional Porous Silicon Nanowires with Large Surface Area for Fast Charge–Discharge Lithium-Ion Batteries. Nanomaterials, 2018, 8, 285.	1.9	42
132	Carbon encapsulation of elemental nanoparticles by spark discharge. Journal of Materials Science, 2018, 53, 14350-14360.	1.7	8
133	Operando Neutron Depth Profiling to Determine the Spatial Distribution of Li in Li-ion Batteries. Frontiers in Energy Research, 2018, 6, .	1.2	30
134	Interconnected silicon nanoparticles originated from halloysite nanotubes through the magnesiothermic reduction: A high-performance anode material for lithium-ion batteries. Applied Clay Science, 2018, 162, 499-506.	2.6	29
135	Freestanding silicon microparticle and self-healing polymer composite design for effective lithiation stress relaxation. Journal of Materials Chemistry A, 2018, 6, 11353-11361.	5.2	25
136	In Operando Small-Angle X-ray Scattering Investigation of Nanostructured Polymer Electrolyte for Lithium-Ion Batteries. ACS Energy Letters, 2018, 3, 1525-1530.	8.8	31
137	Study on solid electrolyte interphase excessive growth caused by Mn (II) deposition on silicon anode. Electrochimica Acta, 2018, 282, 602-608.	2.6	9
138	Co2SiO4/SiO2/RGO nanosheets: Boosting the lithium storage capability of tetravalent Si by using highly-dispersed Co element. Electrochimica Acta, 2018, 282, 609-617.	2.6	41
139	Nanocrystalline silicon embedded in an alloy matrix as an anode material for high energy density lithium-ion batteries. Journal of Power Sources, 2018, 395, 328-335.	4.0	35
140	Encapsulating silicon nanoparticles into N-doped carbon film as a high-performance anode for lithium ion batteries. Functional Materials Letters, 2018, 11, 1850067.	0.7	8
141	Dual stabilized architecture of hollow Si@TiO2@C nanospheres as anode of high-performance Li-ion battery. Chemical Engineering Journal, 2018, 351, 269-279.	6.6	92
142	Fabrication of phosphorus-doped carbon-decorated Li4Ti5O12 anode and its lithium storage performance for Li-ion batteries. Ceramics International, 2018, 44, 17544-17547.	2.3	14
143	Recent progress in phosphorus based anode materials for lithium/sodium ion batteries. Energy Storage Materials, 2019, 16, 290-322.	9.5	221
144	Rational design of a Si–Sn–C ternary anode having exceptional rate performance. Energy Storage Materials, 2019, 17, 62-69.	9.5	20

#	Article	IF	CITATIONS
145	Synthesis of cage-like silicon/carbon microspheres and their high-rate performance anode materials for lithium-ion batteries. Vacuum, 2019, 168, 108853.	1.6	5
146	Multiscale Buffering Engineering in Silicon–Carbon Anode for Ultrastable Li-Ion Storage. ACS Nano, 2019, 13, 10179-10190.	7.3	73
147	High Surface Area Mesoporous Silicon Nanoparticles Prepared via Two-Step Magnesiothermic Reduction for Stoichiometric CO ₂ to CH ₃ OH Conversion. ACS Applied Nano Materials, 2019, 2, 5713-5719.	2.4	23
148	Waste Liquid-Crystal Display Glass-Directed Fabrication of Silicon Particles for Lithium-Ion Battery Anodes. ACS Sustainable Chemistry and Engineering, 2019, 7, 15329-15338.	3.2	13
149	Ultrafast synthesis of graphene nanosheets encapsulated Si nanoparticles via deflagration of energetic materials for lithium-ion batteries. Nano Energy, 2019, 65, 104028.	8.2	24
150	Synthesis of Co/SnO2 core-shell nanowire arrays and their electrochemical performance as anodes of lithium-ion batteries. Ionics, 2019, 25, 4651-4658.	1.2	6
151	Electrostatic Self-assembly of 0D–2D SnO2 Quantum Dots/Ti3C2Tx MXene Hybrids as Anode for Lithium-Ion Batteries. Nano-Micro Letters, 2019, 11, 65.	14.4	112
152	Fluoro-Ether as a Bifunctional Interphase Electrolyte Additive with Graphite/LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Full Cell. ACS Applied Energy Materials, 2019, 2, 6404-6416.	2.5	19
153	Everlasting Living and Breathing Gyroid 3D Network in Si@SiOx/C Nanoarchitecture for Lithium Ion Battery. ACS Nano, 2019, 13, 9607-9619.	7.3	165
154	Prediction of the heavy charging current effect on nickel-rich/silicon-graphite power batteries based on adiabatic rate calorimetry measurement. Journal of Power Sources, 2019, 438, 226971.	4.0	23
155	Surface Film Formation and Dissolution in Si/C Anodes of Li-Ion Batteries: A Glow Discharge Optical Emission Spectroscopy Depth Profiling Study. Journal of Physical Chemistry C, 2019, 123, 18795-18803.	1.5	21
156	Study on thermal stability of nickel-rich/silicon-graphite large capacity lithium ion battery. Applied Thermal Engineering, 2019, 161, 114144.	3.0	24
157	Preparation of MOF-derived NiCoP nanocages as anodes for lithium ion batteries. Powder Technology, 2019, 354, 834-841.	2.1	31
158	Ordered mesoporous Si microspheres with nitrogen-doped carbon coating for advanced lithium-ion battery anodes. Journal of Alloys and Compounds, 2019, 800, 198-207.	2.8	22
159	Nitrogen Plasma-Treated Core–Bishell Si@SiO _{<i>x</i>} @TiO _{2â^Î^} : Nanoparticles with Significantly Improved Lithium Storage Performance. ACS Applied Materials & Interfaces, 2019, 11, 27658-27666.	4.0	44
160	Structure design and mechanism analysis of silicon anode for lithium-ion batteries. Science China Materials, 2019, 62, 1515-1536.	3.5	80
161	Mussel-Inspired Self-Healing Metallopolymers for Silicon Nanoparticle Anodes. ACS Nano, 2019, 13, 8364-8373.	7.3	101
162	Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem, 2019, 1, 100003.	10.1	146

#	Article	IF	CITATIONS
164	Nanostructured Si-FeSi ₂ -Graphite-C Composite: An Optimized and Practical Solution for Si-Based Anodes for Superior Li-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A2221-A2229.	1.3	16
165	Silicon Carbide as a Protective Layer to Stabilize Si-Based Anodes by Inhibiting Chemical Reactions. Nano Letters, 2019, 19, 5124-5132.	4.5	91
166	Mesoporous Si–Cu nanocomposite anode for a lithium ion battery produced by magnesiothermic reduction and electroless deposition. Nanotechnology, 2019, 30, 405401.	1.3	12
167	Stable Silicon Anode for Lithium-Ion Batteries through Covalent Bond Formation with a Binder via Esterification. ACS Applied Materials & amp; Interfaces, 2019, 11, 26753-26763.	4.0	75
168	α-MnO ₂ @In ₂ O ₃ ÂNanotubes as Cathode Material for Aqueous Rechargeable Zn-Ion Battery with High Electrochemical Performance. Journal of the Electrochemical Society, 2019, 166, A3362-A3368.	1.3	29
169	Electrodeposition Technologies for Liâ€Based Batteries: New Frontiers of Energy Storage. Advanced Materials, 2020, 32, e1903808.	11.1	70
170	Lowâ€ŧemperature synthesis of graphitic carbon oated silicon anode materials. , 2019, 1, 246-252.		43
171	Blending project goals and performance goals in ecological planning: Ian McHarg's contributions to landscape performance evaluation. Socio-Ecological Practice Research, 2019, 1, 209-225.	0.9	5
172	One-pot prepared silicon-silver-polydopamine ternary composite anode materials with high specific capacity and cycling stability. Journal of Alloys and Compounds, 2019, 810, 151820.	2.8	4
173	Novel design and synthesis of carbon-coated porous silicon particles as high-performance lithium-ion battery anodes. Journal of Power Sources, 2019, 439, 227027.	4.0	50
174	An eggshell-structured N-doped silicon composite anode with high anti-pulverization and favorable electronic conductivity. Journal of Power Sources, 2019, 443, 227265.	4.0	26
175	Carbon-coated silicon/crumpled graphene composite as anode material for lithium-ion batteries. Current Applied Physics, 2019, 19, 1349-1354.	1.1	27
176	Trifluoropropylene Carbonateâ€Driven Interface Regulation Enabling Greatly Enhanced Lithium Storage Durability of Siliconâ€Based Anodes. Advanced Functional Materials, 2019, 29, 1906548.	7.8	49
177	High capacity, power density and cycling stability of silicon Li-ion battery anodes with a few layer black phosphorus additive. Sustainable Energy and Fuels, 2019, 3, 245-250.	2.5	18
178	Research on Damping Mode of Passenger Vehicle Air Suspension System. IOP Conference Series: Earth and Environmental Science, 2019, 267, 042171.	0.2	0
179	Ionothermal Synthesis of Crystalline Nanoporous Silicon and Its Use as Anode Materials in Lithium-Ion Batteries. Nanoscale Research Letters, 2019, 14, 196.	3.1	3
180	Non-contrast-enhanced MR angiography of the foot with flow spoiled-fresh blood imaging (FS-FBI): feasibility study and comparison of different scanning parameters. Chinese Journal of Academic Radiology, 2019, 1, 85-93.	0.4	0
181	Going beyond Intercalation Capacity of Aqueous Batteries by Exploiting Conversion Reactions of Mn and Zn electrodes for Energyâ€Dense Applications. Advanced Energy Materials, 2019, 9, 1902270.	10.2	59

ARTICLE IF CITATIONS Silicon Nanoparticles in Graphene Sponge for Long-Cycling-Life and High-Capacity Anode of Lithium 182 1.1 7 Ion Battery. IEEE Nanotechnology Magazine, 2019, 18, 1097-1102. First-Principles Characterization of Lithium Cobalt Pyrophosphate as a Cathode Material for 1.5 Solid-State Li-Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 29623-29629. The effect of carbon coating on graphite@nano-Si composite as anode materials for Li-ion batteries. 184 1.2 16 Journal of Solid State Electrochemistry, 2019, 23, 3363-3372. Research on the ingot shrinkage in the electroslag remelting withdrawal process for 9Cr3Mo roller. 185 High Temperature Materials and Processes, 2019, 38, 672-682. Ball Milled Si-W Alloys: Part II. Thermal Behavior and Performance in Li Cells. Journal of the 186 1.35 Electrochemical Society, 2019, 166, A2791-A2796. Silicon and reduced graphene oxide employed as additives to enhance the performances of artificial graphite anode for lithium-ion battery. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 1.0 887-894. Ultrahigh-capacity tetrahydroxybenzoquinone grafted graphene material as a novel anode for 188 5.4 33 lithium-ion batteries. Carbon, 2019, 155, 445-452. A Novel Anode in High-Performance Lithium-Ion Battery Based on Advanced Nanomaterials and Nanofabrication Technology., 2019,,. A review on strategies addressing interface incompatibilities in inorganic all-solid-state lithium 190 2.5 83 batteries. Sustainable Energy and Fuels, 2019, 3, 3279-3309. Si/Cu3Si/Cu composite material synthesized by low cost and high efficiency method as anode materials 1.3 for lithium-ion batteries. Solid State Ionics, 2019, 342, 115057 High Temperature Resistant Separator of PVDF-HFP/DBP/C-TiO2 for Lithium-Ion Batteries. Materials, 192 1.3 16 2019, 12, 2813. Construction of Mn–Zn binary carbonate microspheres on interconnected rGO networks: creating an atomic-scale bimetallic synergy for enhancing lithium storage properties. Nanoscale, 2019, 11, 2.8 18290-18302. Enhancing Delithiation Reversibility of Li₁₅Si₄ Alloy of Silicon Nanoparticles-Carbon/Graphite Anode Materials for Stable-Cycling Lithium Ion Batteries by Restricting 194 4.0 37 the Silicon Particle Size. ACS Applied Materials & amp; Interfaces, 2019, 11, 35809-35819. Electrochemical Interaction of Sn-Containing MAX Phase (Nb₂SnC) with Li-Ions. ACS 8.8 36 Energy Letters, 2019, 4, 2452-2457. Silicon-Core–Carbon-Shell Nanoparticles for Lithium-Ion Batteries: Rational Comparison between 196 4.5 75 Amorphous and Graphitic Carbon Coatings. Nano Letters, 2019, 19, 7236-7245. Experimental Methods to Study Environmental Sustainability of Silicon-based Lithium Ion Battery 1.9 Manufacturing. Procedia Manufacturing, 2019, 33, 501-507. Simple synthesis of TiNb6O17/C composite toward high-rate lithium storage. Journal of Materials 198 1.7 8 Science, 2019, 54, 14825-14833. Insights into Reactivity of Silicon Negative Electrodes: Analysis Using Isothermal Microcalorimetry. 199 28 ACS Applied Materials & amp; Interfaces, 2019, 11, 37567-37577.

#	Article	IF	Citations
200	Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage. Materials Today Nano, 2019, 8, 100057.	2.3	31
201	In-depth study of annealed porous silicon: Understand the morphological properties effect on negative LiB electrode performance. Electrochimica Acta, 2019, 323, 134758.	2.6	16
202	Porous Si/C anode materials by Al–Si dealloying method with PEA surfactant assisted cross-linked carbon coating for lithium-ion battery applications. Electrochimica Acta, 2019, 327, 134995.	2.6	23
203	Simultaneous growth of SiOx/carbon bilayers on Si nanoparticles for improving cycling stability. Electrochimica Acta, 2019, 323, 134840.	2.6	24
204	Fracture toughness of Li <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e513" altimg="si23.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mrow </mml:msub></mml:math> Si alloys in lithium ion battery. Extreme Mechanics Letters, 2019, 32, 100555.	2.0	9
205	An FeP@C nanoarray vertically grown on graphene nanosheets: an ultrastable Li-ion battery anode with pseudocapacitance-boosted electrochemical kinetics. Nanoscale, 2019, 11, 1304-1312.	2.8	53
206	MXene/Si@SiO _{<i>x</i>} @C Layer-by-Layer Superstructure with Autoadjustable Function for Superior Stable Lithium Storage. ACS Nano, 2019, 13, 2167-2175.	7.3	154
207	Employing MXene as a matrix for loading amorphous Si generated upon lithiation towards enhanced lithium-ion storage. Journal of Energy Chemistry, 2019, 38, 50-54.	7.1	28
208	Double-Network Gel-Enabled Uniform Incorporation of Metallic Matrices with Silicon Anodes Realizing Enhanced Lithium Storage. ACS Applied Energy Materials, 2019, 2, 2268-2275.	2.5	19
209	Dimethylacrylamide, a novel electrolyte additive, can improve the electrochemical performances of silicon anodes in lithium-ion batteries. RSC Advances, 2019, 9, 435-443.	1.7	25
210	Achieving high energy density for lithium-ion battery anodes by Si/C nanostructure design. Journal of Materials Chemistry A, 2019, 7, 2165-2171.	5.2	113
211	Modified Chestnut-Like Structure Silicon Carbon Composite as Anode Material for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 10415-10424.	3.2	84
212	Facile Sprayâ€Drying Synthesis of Dualâ€5hell Structure Si@SiO _{<i>x</i>} @Graphite/Graphene as Stable Anode for Liâ€lon Batteries. Energy Technology, 2019, 7, 1900464.	1.8	12
213	Effects of thermal annealing on performance of silicon nitride anode for lithium-ion battery applications. Journal of Electroanalytical Chemistry, 2019, 845, 119-125.	1.9	5
214	Si nanoparticles embedded in 3D carbon framework constructed by sulfur-doped carbon fibers and graphene for anode in lithium-ion battery. Inorganic Chemistry Frontiers, 2019, 6, 1996-2003.	3.0	16
215	High-performance silicon-carbon anode material via aerosol spray drying and magnesiothermic reduction. Nano Energy, 2019, 63, 103845.	8.2	57
216	Vanadium-based polyoxometalate as electron/ion sponge for lithium-ion storage. Journal of Power Sources, 2019, 435, 226702.	4.0	30
217	Facile Scalable Synthesis of Carbonâ€Coated Ge@C and GeX@C (X=S, Se) Anodes for High Performance Lithiumâ€lon Batteries. ChemistrySelect, 2019, 4, 6587-6592.	0.7	10

#	Article	IF	CITATIONS
218	Facile fabrication of porous NiMoO4@C nanowire as high performance anode material for lithium ion batteries. Ceramics International, 2019, 45, 18462-18470.	2.3	24
219	Selective leaching of Al from hypereutectic Al-Si alloy to produce nano-porous silicon (NPS) anodes for lithium ion batteries. Electrochimica Acta, 2019, 317, 654-662.	2.6	34
220	Low-cost SiOx-coated Si particles prepared via wet oxidation as anode materials for lithium-ion batteries with excellent cycling stability. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	6
221	Recent Advances in Rochowâ€Müller Process Research: Driving to Molecular Catalysis and to A More Sustainable Silicone Industry. ChemCatChem, 2019, 11, 2757-2779.	1.8	39
222	Improving Cycling Performance of Si-Based Lithium Ion Batteries Anode with Se-Loaded Carbon Coating. ACS Applied Energy Materials, 2019, 2, 5124-5132.	2.5	15
223	Micro/nanostructured MnCo2O4.5 anodes with high reversible capacity and excellent rate capability for next generation lithium-ion batteries. Applied Energy, 2019, 252, 113452.	5.1	13
224	A hollow Co2SiO4 nanosheet Li-ion battery anode with high electrochemical performance and its dynamic lithiation/delithiation using in situ transmission electron microscopy technology. Applied Surface Science, 2019, 490, 510-515.	3.1	14
225	Graphene quantum dots modified nanoporous SiAl composite as an advanced anode for lithium storage. Electrochimica Acta, 2019, 318, 228-235.	2.6	33
226	Enhanced electrochemical properties of cellular CoPS@C nanocomposites for HER, OER and Li-ion batteries. RSC Advances, 2019, 9, 14859-14867.	1.7	10
227	Conductive metal–organic framework with redox metal center as cathode for high rate performance lithium ion battery. Journal of Power Sources, 2019, 429, 22-29.	4.0	133
228	Porous Fe2O3/Fe3O4@Carbon octahedron arrayed on three-dimensional graphene foam for lithium-ion battery. Composites Part B: Engineering, 2019, 171, 130-137.	5.9	61
229	The effects of carbonization conditions on electrochemical performance of attapulgite-based anode material for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2019, 30, 10342-10351.	1.1	2
230	Silicon@graphene composite prepared by spray–drying method as anode for lithium ion batteries. Journal of Electroanalytical Chemistry, 2019, 844, 86-90.	1.9	32
231	Recent Progress in Advanced Characterization Methods for Siliconâ€Based Lithiumâ€Ion Batteries. Small Methods, 2019, 3, 1900158.	4.6	30
232	Green Synthesis of Dual Carbon Conductive Network-Encapsulated Hollow SiO _{<i>x</i>} Spheres for Superior Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 19959-19967.	4.0	77
233	Direct and Indirect Recycling Strategies of Expired Oxytetracycline for the Anode Material in Lithium Ion Batteries. Frontiers in Materials, 2019, 6, .	1.2	7
234	A hybrid supercapacitor constructed by graphene wrapped ordered meso-porous Si based electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 576, 15-21.	2.3	6
235	Highly robust silicon bimorph plate anode and its mechanical analysis upon electrochemical lithiation. Energy Storage Materials, 2019, 23, 292-298.	9.5	2

#	Article	IF	CITATIONS
236	Uniform coating of nano-carbon layer on SiOx in aggregated fluidized bed as high-performance anode material. Carbon, 2019, 149, 462-470.	5.4	38
237	In Situ TEM of Phosphorus-Dopant-Induced Nanopore Formation in Delithiated Silicon Nanowires. ACS Applied Materials & Interfaces, 2019, 11, 17313-17320.	4.0	11
238	Synergistic effects from super-small sized TiO2 and SiOx nanoparticles within TiO2/SiOx/carbon nanohybrid lithium-ion battery anode. Ceramics International, 2019, 45, 14327-14337.	2.3	17
239	Modeling of substitutionally modified graphene structures to prevent the shuttle mechanism in lithium-sulfur batteries. Electrochimica Acta, 2019, 309, 402-414.	2.6	21
240	A Versatile Polymeric Precursor to Highâ€Performance Silicon Composite Anode for Lithiumâ€lon Batteries. Energy Technology, 2019, 7, 1900239.	1.8	8
241	Solution Synthesis of Porous Silicon Particles as an Anode Material for Lithium Ion Batteries. Chemistry - A European Journal, 2019, 25, 9071-9077.	1.7	25
242	Efficient modification of Si/SiO _{<i>x</i>} nanoparticles by pulse-modulated plasma flash evaporation for an improved capacity of lithium-ion storage. Journal Physics D: Applied Physics, 2019, 52, 325502.	1.3	17
243	Heterogeneous dual-wrapped architecture of hollow SiOx/MoS2-CNTs nanohybrids as anode materials for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2019, 842, 50-58.	1.9	13
244	Controllable synthesis of 3D nitrogen-doped carbon networks supported Sn P nanoparticles as high performance anode for lithium ion batteries. Applied Surface Science, 2019, 484, 899-905.	3.1	17
245	Insights into the Interfacial Instability between Carbon-Coated SiO Anode and Electrolyte in Lithium-Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 12902-12909.	1.5	23
246	Conjugated NH 2 â€Enhanced Crossâ€Linked Polymer Anode for Lithiumâ€Ion Batteries with High Reversible Capacity and Superior Cycling Stability. Energy Technology, 2019, 7, 1900263.	1.8	6
247	Kilogramâ€Scale Fabrication of Si/C Beanâ€Structured Materials as Stable Anodes for Liâ€Ion Storage. Energy Technology, 2019, 7, 1900037.	1.8	3
248	Elucidating the interfacial evolution and anisotropic dynamics on silicon anodes in lithium-ion batteries. Nano Energy, 2019, 61, 304-310.	8.2	27
249	<i>An in situ</i> formed graphene oxide–polyacrylic acid composite cage on silicon microparticles for lithium ion batteries <i>via</i> an esterification reaction. Journal of Materials Chemistry A, 2019, 7, 12763-12772.	5.2	31
250	Revisiting and improving the preparation of silicon-based electrodes for lithium-ion batteries: ball milling impact on poly(acrylic acid) polymer binders. Materials Chemistry Frontiers, 2019, 3, 881-891.	3.2	21
251	Anisotropic expansion and size-dependent fracture of silicon nanotubes during lithiation. Journal of Materials Chemistry A, 2019, 7, 15113-15122.	5.2	41
252	Role of Nickel Nanoparticles in Highâ€Performance TiO ₂ /Ni/Carbon Nanohybrid Lithium/Sodiumâ€lon Battery Anodes. Chemistry - an Asian Journal, 2019, 14, 1557-1569.	1.7	13
253	<i>In Situ</i> Synthesis of Multilayer Carbon Matrix Decorated with Copper Particles: Enhancing the Performance of Si as Anode for Li-lon Batteries. ACS Nano, 2019, 13, 3054-3062.	7.3	135

#	Article	IF	CITATIONS
254	Engineering the Distribution of Carbon in Silicon Oxide Nanospheres at the Atomic Level for Highly Stable Anodes. Angewandte Chemie, 2019, 131, 6741-6745.	1.6	16
255	Confronting the Challenges of Nextâ€Generation Silicon Anodeâ€Based Lithiumâ€lon Batteries: Role of Designer Electrolyte Additives and Polymeric Binders. ChemSusChem, 2019, 12, 2515-2539.	3.6	170
256	Engineering the Distribution of Carbon in Silicon Oxide Nanospheres at the Atomic Level for Highly Stable Anodes. Angewandte Chemie - International Edition, 2019, 58, 6669-6673.	7.2	209
258	A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery. Nano Research, 2019, 12, 1121-1127.	5.8	47
259	Recent progress in Ti-based nanocomposite anodes for lithium ion batteries. Journal of Advanced Ceramics, 2019, 8, 1-18.	8.9	101
260	Amorphous carbon-encapsulated Si nanoparticles loading on MCMB with sandwich structure for lithium ion batteries. Electrochimica Acta, 2019, 306, 590-598.	2.6	41
261	Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries. Nano Energy, 2019, 60, 485-492.	8.2	156
262	Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries. Nano Research, 2019, 12, 1739-1749.	5.8	79
263	Analysis of the effect of applying external mechanical pressure on next generation silicon alloy lithium-ion cells. Electrochimica Acta, 2019, 306, 387-395.	2.6	52
264	Dynamics of the Morphological Degradation of Siâ€Based Anodes for Liâ€Ion Batteries Characterized by In Situ Synchrotron Xâ€Ray Tomography. Advanced Energy Materials, 2019, 9, 1803947.	10.2	59
265	Coordination Engineering Construction of Si@ZnS@N,Sâ€Doped Reduced Graphene Oxide Nanocomposite as Anode Material with Enhanced Lithium Storage Performance. Energy Technology, 2019, 7, 1900186.	1.8	9
266	A versatile method for grafting polymers onto Li4Ti5O12 particles applicable to lithium-ion batteries. Journal of Power Sources, 2019, 421, 116-123.	4.0	10
267	Surface-Bound Silicon Nanoparticles with a Planar-Oriented N-Type Polymer for Cycle-Stable Li-Ion Battery Anode. ACS Applied Materials & Interfaces, 2019, 11, 13251-13256.	4.0	30
268	A Facile Strategy to Construct Silverâ€Modified, ZnOâ€Incorporated and Carbon oated Silicon/Porousâ€Carbon Nanofibers with Enhanced Lithium Storage. Small, 2019, 15, e1900436.	5.2	47
269	Submicron-sized α-Fe2O3 single crystals as anodes for high-performance lithium-ion batteries. Ceramics International, 2019, 45, 12072-12079.	2.3	21
270	Low Reversible Capacity of Nitridated Titanium Electrical Terminals. Batteries, 2019, 5, 17.	2.1	1
271	POSS-Derived Synthesis and Full Life Structural Analysis of Si@C as Anode Material in Lithium Ion Battery. Polymers, 2019, 11, 576.	2.0	11
272	Correlation between the physical parameters and the electrochemical performance of a silicon anode in lithium-ion batteries. Journal of Materiomics, 2019, 5, 164-175.	2.8	33

#	Article	IF	CITATIONS
273	Pitch-based carbon/nano-silicon composite, an efficient anode for Li-ion batteries. RSC Advances, 2019, 9, 10546-10553.	1.7	24
274	Neuron like Si-carbon nanotubes composite as a high-rate anode of lithium ion batteries. Journal of Alloys and Compounds, 2019, 787, 928-934.	2.8	32
275	A facile synthesis of FePS ₃ @C nanocomposites and their enhanced performance in lithium-ion batteries. Dalton Transactions, 2019, 48, 3819-3824.	1.6	21
276	Anode Interface Engineering and Architecture Design for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1806532.	11.1	172
277	Silicon/Mesoporous Carbon (Si/MC) Derived from Phenolic Resin for High Energy Anode Materials for Li-ion Batteries: Role of HF Etching and Vinylene Carbonate (VC) Additive. Batteries, 2019, 5, 11.	2.1	3
278	Effect of Fluorine-Containing Additive on the Electrochemical Properties of Silicon Anode for Lithium-Ion Batteries. Materials Science Forum, 2019, 944, 699-704.	0.3	2
279	Silica/Carbon Composites with Controllable Nanostructure from a Facile One‧tep Method for Lithiumâ€ion Batteries Application. Advanced Materials Interfaces, 2019, 6, 1801809.	1.9	16
280	Dualâ€Carbon Enhanced FeP Nanorods Vertically Grown on Carbon Nanotubes with Pseudocapacitanceâ€Boosted Electrochemical Kinetics for Superior Lithium Storage. Advanced Electronic Materials, 2019, 5, 1900006.	2.6	16
281	Lithiation of pure and methylated amorphous silicon: Monitoring by operando optical microscopy and ex situ atomic force microscopy. Electrochimica Acta, 2019, 302, 249-258.	2.6	12
282	Identification of the Solid Electrolyte Interface on the Si/C Composite Anode with FEC as the Additive. ACS Applied Materials & Interfaces, 2019, 11, 14066-14075.	4.0	110
283	Carbonâ€Nanotubeâ€Cored Cobalt Porphyrin as a 1D Nanohybrid Strategy for Highâ€Performance Lithiumâ€Ion Battery Anodes. Advanced Functional Materials, 2019, 29, 1806937.	7.8	35
284	A polyisoindigo derivative as novel n-type conductive binder inside Si@C nanoparticle electrodes for Li-ion battery applications. Journal of Power Sources, 2019, 420, 9-14.	4.0	28
285	Minimized Volume Expansion in Hierarchical Porous Silicon upon Lithiation. ACS Applied Materials & Interfaces, 2019, 11, 13257-13263.	4.0	51
286	Ultra-fast shock-wave combustion synthesis of nanostructured silicon from sand with excellent Li storage performance. Sustainable Energy and Fuels, 2019, 3, 1396-1405.	2.5	20
287	Facile conversion of waste glass into Li storage materials. Green Chemistry, 2019, 21, 1439-1447.	4.6	14
288	Dual Cross-Linked Fluorinated Binder Network for High-Performance Silicon and Silicon Oxide Based Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 46800-46807.	4.0	44
289	Intrinsic Properties of Individual Inorganic Silicon–Electrolyte Interphase Constituents. ACS Applied Materials & Interfaces, 2019, 11, 46993-47002.	4.0	21
290	Reaction Product Analysis of the Most Active "Inactive―Material in Lithium-Ion Batteries—The Electrolyte. II: Battery Operation and Additive Impact. Chemistry of Materials, 2019, 31, 9977-9983.	3.2	27

#	Article	IF	CITATIONS
291	Silicon: toward eco-friendly reduction techniques for lithium-ion battery applications. Journal of Materials Chemistry A, 2019, 7, 24715-24737.	5.2	61
292	Scalable chemical synthesis of doped silicon nanowires for energy applications. Nanoscale, 2019, 11, 22504-22514.	2.8	25
293	Silicon-Dominant Anodes Based on Microscale Silicon Particles under Partial Lithiation with High Capacity and Cycle Stability. Journal of the Electrochemical Society, 2019, 166, A3881-A3885.	1.3	22
294	Engineering of carbon and other protective coating layers for stabilizing silicon anode materials. , 2019, 1, 219-245.		94
295	Supremely elastic gel polymer electrolyte enables a reliable electrode structure for silicon-based anodes. Nature Communications, 2019, 10, 5586.	5.8	80
296	From sand to fast and stable silicon anode: Synthesis of hollow Si@void@C yolk–shell microspheres by aluminothermic reduction for lithium storage. Chinese Chemical Letters, 2019, 30, 610-617.	4.8	25
297	Cornlike ordered N-doped carbon coated hollow Fe3O4 by magnetic self-assembly for the application of Li-ion battery. Chemical Engineering Journal, 2019, 356, 746-755.	6.6	76
298	Lithium ion supercapacitor composed by Si-based anode and hierarchal porous carbon cathode with super long cycle life. Applied Surface Science, 2019, 463, 879-888.	3.1	21
299	Carbon Coated Si-Metal Silicide Composite Anode Materials Prepared by High-Energy Milling and Carburization for Li-Ion Rechargeable Batteries. Journal of the Electrochemical Society, 2019, 166, A5131-A5138.	1.3	7
300	A Modified Natural Polysaccharide as a High-Performance Binder for Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 4311-4317.	4.0	67
301	Engineering the Direct Deposition of Si Nanoparticles for Improved Performance in Li-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A5252-A5258.	1.3	3
302	Pure silicon thin-film anodes for lithium-ion batteries: A review. Journal of Power Sources, 2019, 414, 48-67.	4.0	147
303	Three-dimensional electronic resistivity mapping of solid electrolyte interphase on Si anode materials. Nano Energy, 2019, 55, 477-485.	8.2	56
304	Nanochannel-confined synthesis of Nb2O5/CNTs nanopeapods for ultrastable lithium storage. Electrochimica Acta, 2019, 295, 829-834.	2.6	32
305	Dimensionally Designed Carbon–Silicon Hybrids for Lithium Storage. Advanced Functional Materials, 2019, 29, 1806061.	7.8	140
306	Hierarchical Microspheres of Aggregated Silicon Nanoparticles with Nanometre Gaps as the Anode for Lithiumâ€ion Batteries with Excellent Cycling Stability. ChemElectroChem, 2019, 6, 1139-1148.	1.7	8
307	Effect of the presence of Si-oxide/sub-oxide surface layer(s) on â€~micron-sized' Si wires towards the electrochemical behavior as anode material for Li-ion battery. Electrochimica Acta, 2019, 297, 381-391.	2.6	19
308	Chemical and morphological characterization of photoactive SiOx films electrodeposited on Pt substrate. Journal of Electroanalytical Chemistry, 2019, 832, 311-320.	1.9	1

#	Article	IF	CITATIONS
309	Modified Stoney Model and Optimization of Electrode Structure Based on Stress Characteristics. Energy Technology, 2019, 7, 333-345.	1.8	7
310	Improved reaction kinetics and reserved spacial structure of Fe3C-SnO2@void@C toward high-performance lithium storage. Journal of Alloys and Compounds, 2019, 785, 925-931.	2.8	6
311	Lithiation Behavior of Coaxial Hollow Nanocables of Carbon–Silicon Composite. ACS Nano, 2019, 13, 2274-2280.	7.3	47
312	Nanoparticle Emissions From Metal-Assisted Chemical Etching of Silicon Nanowires for Lithium Ion Batteries. Journal of Micro and Nano-Manufacturing, 2019, 7, .	0.8	3
313	Solid Electrolyte Interphase on Native Oxide-Terminated Silicon Anodes for Li-Ion Batteries. Joule, 2019, 3, 762-781.	11.7	185
314	Sedimentation of lithium–iron–phosphate and carbon black particles in opaque suspensions used for lithium-ion-battery electrodes. Journal of Materials Science, 2019, 54, 5682-5694.	1.7	6
315	Functional Electrocatalysts Derived from Prussian Blue and its Analogues for Metalâ€Air Batteries: Progress and Prospects. Batteries and Supercaps, 2019, 2, 290-310.	2.4	36
316	Synthesis and Comparative Investigation of Silicon Transition Metal Silicide Composite Anodes for Lithium Ion Batteries. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 248-256.	0.6	10
317	Carbon particles modified macroporous Si/Ni composite as an advanced anode material for lithium ion batteries. International Journal of Hydrogen Energy, 2019, 44, 1078-1087.	3.8	22
318	Building thermally stable supercapacitors using temperature-responsive separators. Journal of Applied Electrochemistry, 2019, 49, 271-280.	1.5	11
319	Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Materials Today, 2019, 23, 87-104.	8.3	537
320	Nitrogen-doped amorphous carbon coated mesocarbon microbeads as excellent high rate Li storage anode materials. Journal of Materials Science and Technology, 2019, 35, 644-650.	5.6	14
321	Atomically thin two-dimensional metal oxide nanosheets and their heterostructures for energy storage Materials, 2019, 16, 455-480.	9.5	109
322	Facile synthesis of SiO2/C anode using PVC as carbon source for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2019, 30, 69-78.	1.1	8
323	Shuttle-like carbon-coated FeP derived from metal-organic frameworks for lithium-ion batteries with superior rate capability andAlong-life cycling performance. Carbon, 2019, 143, 116-124.	5.4	104
324	Partial lithiation strategies for suppressing degradation of silicon composite electrodes. Electrochimica Acta, 2019, 295, 778-786.	2.6	23
325	Topological construction of phosphorus and carbon composite and its application in energy storage. Energy Storage Materials, 2019, 20, 343-372.	9.5	43
326	Silicon/carbon lithium-ion battery anode with 3D hierarchical macro-/mesoporous silicon network: Self-templating synthesis via magnesiothermic reduction of silica/carbon composite. Journal of Power Sources, 2019, 412, 93-104.	4.0	77

#	Article	IF	CITATIONS
327	Diamond nanofeathers. Diamond and Related Materials, 2019, 91, 165-172.	1.8	9
328	In situ transmission electron microscopy observations of rechargeable lithium ion batteries. Nano Energy, 2019, 56, 619-640.	8.2	42
329	Electrochemical performances of graphene and MWCNT supported metallurgical grade silicon anodes. Journal of Materials Science: Materials in Electronics, 2019, 30, 2067-2079.	1.1	4
330	Surface structure inhibited lithiation of crystalline silicon probed with operando neutron reflectivity. Energy Storage Materials, 2019, 18, 182-189.	9.5	14
331	Coating nanoparticle-assembled Si microspheres with carbon for anode material in lithium-ion battery. Journal of Physics and Chemistry of Solids, 2019, 124, 312-317.	1.9	17
332	lon―and Electronâ€Conductive Buffering Layerâ€Modified Si Film for Use as a Highâ€Rate Longâ€Term Lithiumâ€Ion Battery Anode. ChemSusChem, 2019, 12, 252-260.	3.6	17
333	Si@Si3N4@C composite with egg-like structure as high-performance anode material for lithium ion batteries. Energy Storage Materials, 2020, 24, 565-573.	9.5	106
334	Novel silane-treated polyacrylonitrile as a promising negative electrode binder for LIBs. Journal of Alloys and Compounds, 2020, 815, 152481.	2.8	12
335	Structural Reorganization–Based Nanomaterials as Anodes for Lithiumâ€ l on Batteries: Design, Preparation, and Performance. Small, 2020, 16, e1902841.	5.2	32
336	Recent nanosheet-based materials for monovalent and multivalent ions storage. Energy Storage Materials, 2020, 25, 382-403.	9.5	14
337	Towards high cycle stability yolk-shell structured silicon/rGO/MWCNT hybrid composites for Li-ion battery negative electrodes. Materials Chemistry and Physics, 2020, 240, 122160.	2.0	13
338	Three-Dimensional Multilayered Interconnected Network of Conjugated Carbon Nanofibers Encapsulated Silicon/Graphene Oxide for Lithium Storage. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 801-807.	1.9	5
339	A Flexible Si@C Electrode with Excellent Stability Employing an MXene as a Multifunctional Binder for Lithiumâ€ion Batteries. ChemSusChem, 2020, 13, 1621-1628.	3.6	69
340	Key functional groups defining the formation of Si anode solid-electrolyte interphase towards high energy density Li-ion batteries. Energy Storage Materials, 2020, 25, 764-781.	9.5	61
341	Photo cured 3D porous silica-carbon (SiO2–C) membrane as anode material for high performance rechargeable Li-ion batteries. Journal of Alloys and Compounds, 2020, 812, 152127.	2.8	21
342	A graphene-modified flexible SiOC ceramic cloth for high-performance lithium storage. Energy Storage Materials, 2020, 25, 876-884.	9.5	53
343	Rolling up MXene sheets into scrolls to promote their anode performance in lithium-ion batteries. Journal of Energy Chemistry, 2020, 46, 256-263.	7.1	44
344	Ab initio molecular dynamics study of SiO2 lithiation. Chemical Physics Letters, 2020, 739, 136933.	1.2	8

#	Article	IF	CITATIONS
345	Engineering Carbon Distribution in Siliconâ€Based Anodes at Multiple Scales. Chemistry - A European Journal, 2020, 26, 1488-1496.	1.7	14
346	Heat-regulating effects of inert salts on magnesiothermic reduction preparation of silicon nanopowder for lithium storage. Ionics, 2020, 26, 1249-1259.	1.2	6
347	Understanding the effect of p-, n-type dopants and vinyl carbonate electrolyte additive on electrochemical performance of Si thin film anodes for lithium-ion battery. Electrochimica Acta, 2020, 330, 135179.	2.6	15
348	Energy and exergy evaluation of the evacuated tube solar collector using Cu2O/water nanofluid utilizing ANN methods. Sustainable Energy Technologies and Assessments, 2020, 37, 100578.	1.7	47
349	Impact of human disturbance on the biogeochemical silicon cycle in a coastal sea revealed by silicon isotopes. Limnology and Oceanography, 2020, 65, 515-528.	1.6	7
350	Topâ€Down Synthesis of Silicon/Carbon Composite Anode Materials for Lithiumâ€Ion Batteries: Mechanical Milling and Etching. ChemSusChem, 2020, 13, 1923-1946.	3.6	52
351	Fabrication of multi-shell coated silicon nanoparticles via in-situ electroless deposition as high performance anodes for lithium ion batteries. Journal of Energy Chemistry, 2020, 48, 160-168.	7.1	37
352	Nano-silicon @ soft carbon embedded in graphene scaffold: High-performance 3D free-standing anode for lithium-ion batteries. Journal of Power Sources, 2020, 450, 227692.	4.0	76
353	Materials and electrode engineering of high capacity anodes in lithium ion batteries. Journal of Power Sources, 2020, 450, 227697.	4.0	55
354	MnO/C cubo-polyhedrons derived from α-MnO ₂ @ZIF-8 as anode materials for high-performance lithium-ion batteries. Sustainable Energy and Fuels, 2020, 4, 633-642.	2.5	16
355	Scalable fabrication of gold nanoparticles with adjustable size distribution as catalytic nuclei for the CVD growth of silicon nanowires. Applied Surface Science, 2020, 502, 144203.	3.1	7
356	Three-dimensional polymer networks for solid-state electrochemical energy storage. Chemical Engineering Journal, 2020, 391, 123548.	6.6	44
357	Improvement of Reversibility and Cyclic Stability: A Monolithic Solid Electrolyte Interphase in SiO _{<i>x</i>} -Based Anode for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 2333-2339.	1.5	10
358	Influence of morphology on electrochemical and capacity performance of open-porous structured electrodes. Journal of Applied Electrochemistry, 2020, 50, 231-244.	1.5	13
359	Strategic Pore Architecture for Accommodating Volume Change from High Si Content in Lithiumâ€ l on Battery Anodes. Advanced Energy Materials, 2020, 10, 1903400.	10.2	50
360	3D Network Binder via In Situ Crossâ€Linking on Silicon Anodes with Improved Stability for Lithiumâ€lon Batteries. Macromolecular Chemistry and Physics, 2020, 221, 1900414.	1.1	29
361	Dramatic improvement enabled by incorporating thermal conductive TiN into Si-based anodes for lithium ion batteries. Energy Storage Materials, 2020, 29, 367-376.	9.5	55
362	Continuous-Flow Synthesis of Carbon-Coated Silicon/Iron Silicide Secondary Particles for Li-Ion Batteries. ACS Nano, 2020, 14, 698-707.	7.3	58

#	Article	IF	CITATIONS
363	Improving electrochemical performance of Nano-Si/N-doped carbon through tunning the microstructure from two dimensions to three dimensions. Electrochimica Acta, 2020, 332, 135507.	2.6	18
364	Scalable synthesis of lotus-seed-pod-like Si/SiOx@CNF: Applications in freestanding electrode and flexible full lithium-ion batteries. Carbon, 2020, 158, 163-171.	5.4	30
365	Investigation towards scalable processing of silicon/graphite nanocomposite anodes with good cycle stability and specific capacity. Nano Materials Science, 2020, 2, 297-308.	3.9	15
366	Thermal characteristics of evacuated tube solar collectors with coil inside: An experimental study and evolutionary algorithms. Renewable Energy, 2020, 151, 575-588.	4.3	51
367	Silicon Nanoparticles Preparation by Induction Plasma Technology for Li-ion Batteries Anode Material. Silicon, 2020, 12, 2259-2269.	1.8	9
368	A facile route to achieve Fe2O3 hollow sphere anchored on carbon nanotube for application in lithium-ion battery. Inorganic Chemistry Communication, 2020, 111, 107633.	1.8	27
369	Ab Initio-Based Structural and Thermodynamic Aspects of the Electrochemical Lithiation of Silicon Nanoparticles. Catalysts, 2020, 10, 8.	1.6	4
370	A scalable synthesis of 2D laminate Li ₃ VO ₄ /C for robust pseudocapacitive Li-ion storage. Journal of Materials Chemistry A, 2020, 8, 21122-21130.	5.2	44
371	Building sandwich-like carbon coated Si@CNTs composites as high-performance anode materials for lithium-ion batteries. Electrochimica Acta, 2020, 364, 137278.	2.6	33
372	Improving cycle stability of Si anode through partially carbonized polydopamine coating. Journal of Electroanalytical Chemistry, 2020, 876, 114738.	1.9	18
373	Microclusters of Kinked Silicon Nanowires Synthesized by a Recyclable Iodide Process for Highâ€Performance Lithiumâ€Ion Battery Anodes. Advanced Energy Materials, 2020, 10, 2002108.	10.2	57
374	Lithium-ion batteries – Current state of the art and anticipated developments. Journal of Power Sources, 2020, 479, 228708.	4.0	401
375	A fast method for evaluating stability of lithium ion batteries at high C-rates. Journal of Power Sources, 2020, 480, 228856.	4.0	3
376	The importance of design in lithium ion battery recycling – a critical review. Green Chemistry, 2020, 22, 7585-7603.	4.6	190
377	Pomegranate-Like Structured Si@SiOx Composites With High-Capacity for Lithium-Ion Batteries. Frontiers in Chemistry, 2020, 8, 666.	1.8	7
378	Crystallinity of Silicon Nanoparticles: Direct Influence on the Electrochemical Performance of Lithium Ion Battery Anodes. ChemElectroChem, 2020, 7, 4349-4353.	1.7	23
379	Layered ferric vanadate nanosheets as a high-rate NH4+ storage electrode. Electrochimica Acta, 2020, 360, 137008.	2.6	46
380	A Review of the Design of Advanced Binders for Highâ€Performance Batteries. Advanced Energy Materials, 2020, 10, 2002508.	10.2	202

#	Article	IF	CITATIONS
381	Millimeter Silicon-Derived Secondary Submicron Materials as High-Initial Coulombic Efficiency Anode for Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10255-10260.	2.5	14
382	Unveiling the intrinsic reaction between silicon-graphite composite anode and ionic liquid electrolyte in lithium-ion battery. Journal of Power Sources, 2020, 473, 228481.	4.0	19
383	Design and Cost Modeling of High Capacity Lithium Ion Batteries for Electric Vehicles through A Techno-economic Analysis Approach. Procedia Manufacturing, 2020, 49, 24-31.	1.9	9
384	Understanding Protection Mechanisms of Graphene-Encapsulated Silicon Anodes with <i>Operando</i> Raman Spectroscopy. ACS Applied Materials & Interfaces, 2020, 12, 35532-35541.	4.0	17
385	Construction of a secondary conductive and buffer structure towards high-performance Si anodes for Li-ion batteries. Electrochimica Acta, 2020, 354, 136767.	2.6	10
386	Cascading use of barley husk ash to produce silicon for composite anodes of Li-ion batteries. Materials Chemistry and Physics, 2020, 245, 122736.	2.0	14
387	Elucidating the evolution of silicon anodes in lithium based batteries. MRS Advances, 2020, 5, 2525-2534.	0.5	3
388	High-Safety and Long-Life Silicon-Based Lithium-Ion Batteries via a Multifunctional Binder. ACS Applied Materials & Interfaces, 2020, 12, 54842-54850.	4.0	26
389	A review on conversion of crayfish-shell derivatives to functional materials and their environmental applications. Journal of Bioresources and Bioproducts, 2020, 5, 238-247.	11.8	88
390	Improving Interface Stability of Si Anodes by Mg Coating in Li-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 11534-11539.	2.5	10
391	Impact of the Crystalline Li ₁₅ Si ₄ Phase on the Self-Discharge Mechanism of Silicon Negative Electrodes in Organic Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 55903-55912.	4.0	12
392	Copper Doped Li 3 VO 4 as Anode Material for Lithiumâ€ion Batteries. Electroanalysis, 2020, 32, 2635-2641.	1.5	9
393	SiO ₂ Is Wasted Space in Single-Nanometer-Scale Silicon Nanoparticle-Based Composite Anodes for Li-Ion Electrochemical Energy Storage. ACS Applied Energy Materials, 2020, 3, 10993-11001.	2.5	11
394	Investigating the role of crystallographic orientation of single crystalline silicon on their electrochemical lithiation behavior: Surface chemistry of Si determines the bulk lithiation. Surfaces and Interfaces, 2020, 20, 100585.	1.5	0
395	Carbon-coated porous Si/C composite anode materials via two-step etching/coating processes for lithium-ion batteries. Ceramics International, 2020, 46, 26598-26607.	2.3	22
396	A stretchable solid-state zinc ion battery based on a cellulose nanofiber–polyacrylamide hydrogel electrolyte and a Mg _{0.23} V ₂ O ₅ ·1.0H ₂ O cathode. Journal of Materials Chemistry A, 2020, 8, 18327-18337.	5.2	66
397	From cluster design to energy storage device engineering. Frontiers of Nanoscience, 2020, , 31-58.	0.3	0
398	Insight into Si/SiCO thin films anodes for lithium-ion batteries with high capacity and cycling stability. Applied Materials Today, 2020, 20, 100773.	2.3	8

#	Article	IF	CITATIONS
399	Morphological evolution of a single crystal silicon battery electrode during lithiation and delithiation: An operando phase-contrast imaging study. Energy Storage Materials, 2020, 32, 377-385.	9.5	4
400	Silicon cages with tailored mesopores as anodes for high rate performance lithium ion batteries. Journal of Alloys and Compounds, 2020, 848, 156539.	2.8	7
401	Ni–Sn intermetallics as an efficient buffering matrix of Si anodes in Li-ion batteries. Journal of Materials Chemistry A, 2020, 8, 18132-18142.	5.2	19
402	Calenderingâ€Compatible Macroporous Architecture for Silicon–Graphite Composite toward Highâ€Energy Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e2003286.	11.1	111
403	Recent advances and perspectives of 2D silicon: Synthesis and application for energy storage and conversion. Energy Storage Materials, 2020, 32, 115-150.	9.5	74
404	Heteroatom-doped carbon networks enabling robust and flexible silicon anodes for high energy Li-ion batteries. Journal of Materials Chemistry A, 2020, 8, 18338-18347.	5.2	47
405	Hard SiOC Microbeads as a High-Performance Lithium-Ion Battery Anode. ACS Applied Energy Materials, 2020, 3, 10183-10191.	2.5	22
406	Conducting polymer composites as water-dispersible electrode matrices for Li-Ion batteries: Synthesis and characterization. Journal of Power Sources Advances, 2020, 6, 100033.	2.6	7
407	Critical review on battery thermal management and role of nanomaterial in heat transfer enhancement for electrical vehicle application. Journal of Energy Storage, 2020, 32, 102003.	3.9	71
408	Carbon foams: 3D porous carbon materials holding immense potential. Journal of Materials Chemistry A, 2020, 8, 23699-23723.	5.2	86
409	Moderate-Concentration Fluorinated Electrolyte for High-Energy-Density Si//LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 16252-16261.	3.2	10
410	Polymer-Derived SiOC Integrated with a Graphene Aerogel As a Highly Stable Li-Ion Battery Anode. ACS Applied Materials & Interfaces, 2020, 12, 46045-46056.	4.0	66
411	Minimizing two-dimensional Ti ₃ C ₂ T _x MXene nanosheet loading in carbon-free silicon anodes. Nanoscale, 2020, 12, 20699-20709.	2.8	18
412	Research Progress of Silicon/Carbon Anode Materials for Lithiumâ€lon Batteries: Structure Design and Synthesis Method. ChemElectroChem, 2020, 7, 4289-4302.	1.7	56
413	Facile and Scalable Synthesis of Porous Si/SiO _{<i>x</i>} Nanoplates from Talc for Lithium-Ion Battery Anodes. ACS Applied Energy Materials, 2020, 3, 8803-8811.	2.5	9
414	Improved High Rate and Temperature Stability Using an Anisotropically Aligned Pillar-Type Solid Electrolyte Interphase for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 42781-42789.	4.0	9
415	TiO ₂ Nanocrystalâ€Framed Li ₂ TiSiO ₅ Platelets for Lowâ€Voltage Lithium Battery Anode. Advanced Functional Materials, 2020, 30, 2001909.	7.8	25
416	<i>In Operando</i> X-ray Studies of High-Performance Lithium-Ion Storage in Keplerate-Type Polyoxometalate Anodes. ACS Applied Materials & amp; Interfaces, 2020, 12, 40296-40309.	4.0	17

#	Article	IF	CITATIONS
417	First-Principles Study on the Mechanical Properties of Polymers Formed by the Electrochemical Reduction of Fluoroethylene Carbonate and Vinylene Carbonate. Journal of Physical Chemistry C, 2020, 124, 19937-19944.	1.5	15
418	Recent Advances of Emerging 2D MXene for Stable and Dendriteâ€Free Metal Anodes. Advanced Functional Materials, 2020, 30, 2004613.	7.8	140
419	Rational Design and Mechanical Understanding of Three-Dimensional Macro-/Mesoporous Silicon Lithium-Ion Battery Anodes with a Tunable Pore Size and Wall Thickness. ACS Applied Materials & Interfaces, 2020, 12, 43785-43797.	4.0	24
420	Synthesis and characterization of SiO2/Ti3C2 anode materials for lithium-ion batteries via different methods. Ionics, 2020, 26, 5325-5331.	1.2	15
421	Intrinsic self-healing polymers for advanced lithium-based batteries: Advances and strategies. Applied Physics Reviews, 2020, 7, .	5.5	58
422	SiGe@Cu films as stable and high energy density anodes for lithium-ion microbatteries. Emergent Materials, 2020, 3, 779-790.	3.2	2
423	Micron-sized SiO _x /N-doped carbon composite spheres fabricated with biomass chitosan for high-performance lithium-ion battery anodes. RSC Advances, 2020, 10, 38524-38531.	1.7	13
424	Metalâ€Tellurium Batteries: A Rising Energy Storage System. Small Structures, 2020, 1, 2000005.	6.9	46
425	Electrogravimetry and Structural Properties of Thin Silicon Layers Deposited in Sulfolane and Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 57526-57538.	4.0	6
426	The Effect of Using a Metal Tube on Laser Welding of the Battery Case and the Tab for Lithium-Ion Battery. Materials, 2020, 13, 4460.	1.3	5
427	Review—Conducting Polymer-Based Binders for Lithium-Ion Batteries and Beyond. Journal of the Electrochemical Society, 2020, 167, 065501.	1.3	120
428	Biomass-Derived 3D Interconnected Porous Carbon-Encapsulated Nano-FeS ₂ for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 5589-5596.	2.5	32
429	Review of the Design of Current Collectors for Improving the Battery Performance in Lithium-Ion and Post-Lithium-Ion Batteries. Electrochem, 2020, 1, 124-159.	1.7	53
430	Highly Stretchable Polymer Binder Engineered with Polysaccharides for Silicon Microparticles as Highâ€Performance Anodes. ChemSusChem, 2020, 13, 3887-3892.	3.6	18
431	A Chronicle Review of Nonsilicon (Sn, Sb, Ge)â€Based Lithium/Sodiumâ€Ion Battery Alloying Anodes. Small Methods, 2020, 4, 2000218.	4.6	220
432	Interfacial Engineering with Liquid Metal for Si-Based Hybrid Electrodes in Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 5147-5152.	2.5	20
433	Synthesis of pomegranate-structured Si/C microspheres using P123 as surfactant for high-energy lithium-ion batteries. Journal of Electroanalytical Chemistry, 2020, 864, 114102.	1.9	12
434	Polyimide binder for a high-energy-density composite anode electrode with graphite and silicon. Journal of Electroanalytical Chemistry, 2020, 871, 114317.	1.9	22

#	Article	IF	Citations
435	Controllable electrolytic formation of Ti ₂ O as an efficient sulfur host in lithium–sulfur (Li–S) batteries. Journal of Materials Chemistry A, 2020, 8, 11224-11232.	5.2	32
436	Impact of the silicon particle size on the pre-lithiation behavior of silicon/carbon composite materials for lithium ion batteries. Journal of Power Sources, 2020, 464, 228224.	4.0	40
437	A carbon-doped anatase TiO2-Based flexible silicon anode with high-performance and stability for flexible lithium-ion battery. Journal of Power Sources, 2020, 466, 228339.	4.0	29
438	Slime-inspired polyacrylic acid-borax crosslinked binder for high-capacity bulk silicon anodes in lithium-ion batteries. Journal of Power Sources, 2020, 468, 228365.	4.0	33
439	SiO@C/TiO2 nanospheres with dual stabilized architecture as anode material for high-performance Li-ion battery. Journal of Alloys and Compounds, 2020, 836, 155407.	2.8	17
440	Synthesis of Ni-Rich Layered-Oxide Nanomaterials with Enhanced Li-Ion Diffusion Pathways as High-Rate Cathodes for Li-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 6583-6590.	2.5	37
441	Enabling high electrochemical activity of a hollow SiO ₂ anode by decorating it with ultrafine cobalt nanoparticles and a carbon matrix for long-lifespan lithium ion batteries. Nanoscale, 2020, 12, 13442-13449.	2.8	25
442	Mechanically Robust Tapioca Starch Composite Binder with Improved Ionic Conductivity for Sustainable Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 9857-9865.	3.2	42
443	First Exploration on Electrochemical Activation of Lowâ€Cost Albite Mineral for Boosting Lithium Storage Capability. Advanced Sustainable Systems, 2020, 4, 2000057.	2.7	8
444	A Pearl-Chain-like Anode Composed of Silicon–Porphyrin Hits Peaks in Lithium-Ion Capacity. ACS Applied Energy Materials, 2020, 3, 6098-6106.	2.5	9
445	Revealing the multilevel thermal safety of lithium batteries. Energy Storage Materials, 2020, 31, 72-86.	9.5	94
446	A cycling robust network binder for high performance Si–based negative electrodes for lithium-ion batteries. Journal of Colloid and Interface Science, 2020, 578, 452-460.	5.0	35
447	Design of Thin-Film Interlayer between Silicon Electrode and Current Collector Using a Chemo-Mechanical Degradation Model. Journal of the Electrochemical Society, 2020, 167, 080542.	1.3	5
448	Building a Cycle-Stable Fe–Si Alloy/Carbon Nanocomposite Anode for Li-Ion Batteries through a Covalent-Bonding Method. ACS Applied Materials & Interfaces, 2020, 12, 30503-30509.	4.0	34
449	Pure-phase β-Mn ₂ V ₂ O ₇ interconnected nanospheres as a high-performance lithium ion battery anode. Chemical Communications, 2020, 56, 8043-8046.	2.2	10
450	Suppressing the Side Reaction by a Selective Blocking Layer to Enhance the Performance of Si-Based Anodes. Nano Letters, 2020, 20, 5176-5184.	4.5	39
451	Silicon oxycarbide-antimony nanocomposites for high-performance Li-ion battery anodes. Nanoscale, 2020, 12, 13540-13547.	2.8	22
452	Covalently Bonded Silicon/Carbon Nanocomposites as Cycle-Stable Anodes for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 16411-16416.	4.0	55

~		_
CITAT	ION	Report
CITAL		REFORT

#	Article	IF	CITATIONS
453	Rational design of the pea-pod structure of SiO _x /C nanofibers as a high-performance anode for lithium ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 1762-1769.	3.0	31
454	Silicon-nanoparticle-based composites for advanced lithium-ion battery anodes. Nanoscale, 2020, 12, 7461-7484.	2.8	60
455	Acrylic random copolymer and network binders for silicon anodes in lithium-ion batteries. Journal of Power Sources, 2020, 458, 228054.	4.0	37
456	Protective coatings on silicon particles and their effect on energy density and specific energy in lithium ion battery cells: A model study. Journal of Energy Storage, 2020, 29, 101376.	3.9	18
457	Boosting initial coulombic efficiency of Si-based anodes: a review. Emergent Materials, 2020, 3, 369-380.	3.2	21
458	High-Energy Density Li–O ₂ Battery with a Polymer Electrolyte-Coated CNT Electrode via the Layer-by-Layer Method. ACS Applied Materials & Interfaces, 2020, 12, 17385-17395.	4.0	21
459	Expanded graphite/copper oxide composite electrodes for cell kinetic balancing of lithium-ion capacitor. Journal of Alloys and Compounds, 2020, 829, 154566.	2.8	12
460	Fabrication of SiOx-G/PAA-PANi/Graphene Composite With Special Cross-Doped Conductive Hydrogels as Anode Materials for Lithium Ion Batteries. Frontiers in Chemistry, 2020, 8, 96.	1.8	12
461	Enhanced Energy Storage of Fe ₃ O ₄ Nanoparticles Embedded in Nâ€Doped Graphene. ChemElectroChem, 2020, 7, 1456-1464.	1.7	12
462	Lithium–Oxygen Batteries and Related Systems: Potential, Status, and Future. Chemical Reviews, 2020, 120, 6626-6683.	23.0	593
463	Embedding Silicon in Pineconeâ€Derived Porous Carbon as a Highâ€Performance Anode for Lithiumâ€lon Batteries. ChemElectroChem, 2020, 7, 2889-2895.	1.7	17
464	The effect of ethyl cellulose coating on the surface of silicon–carbon composite as lithium anode material. Journal of Materials Science: Materials in Electronics, 2020, 31, 11238-11246.	1.1	8
465	Electrochemical and structural characterization of lithiation in spray deposited ordered mesoporous titania as an anode for Li ion batteries. RSC Advances, 2020, 10, 20279-20287.	1.7	2
466	Hierarchical porous architectures derived from low-cost biomass equisetum arvense as a promising anode material for lithium-ion batteries. Journal of Molecular Structure, 2020, 1221, 128794.	1.8	10
467	Three-Dimensional Si Anodes with Fast Diffusion, High Capacity, High Rate Capability, and Long Cycle Life. ACS Applied Materials & Interfaces, 2020, 12, 34763-34770.	4.0	11
468	Ante-mortem analysis, electrical, thermal, and ageing testing of state-of-the-art cylindrical lithium-ion cells. Elektrotechnik Und Informationstechnik, 2020, 137, 169-176.	0.7	29
469	An efficient prelithiation of graphene oxide nanoribbons wrapping silicon nanoparticles for stable Li+ storage. Carbon, 2020, 168, 392-403.	5.4	34
470	A novel raspberry-like yolk-shell structured Si/C micro/nano-spheres as high-performance anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 844, 156201.	2.8	41

ARTICLE IF CITATIONS Multi-step low-cost synthesis of ultrafine silicon porous structures for high-reversible lithium-ion 471 1.7 4 battery anodes. Journal of Materials Science, 2020, 55, 13938-13950. Optimal Quantity of Nano-Silicon for Electrospun Silicon/Carbon Fibers as High Capacity Anodes. 1.8 9 Frontiers in Chemistry, 2019, 7, 867. Advances in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives for anode of lithium-ion 473 9.5 141 batteries. Coordination Chemistry Reviews, 2020, 410, 213221. Silicon Anodes for Highâ€Performance Storage Devices: Structural Design, Material Compounding, 474 24 Advances in Electrolytes and Binders. ChemNanoMat, 2020, 6, 720-738. Toward quantifying capacity losses due to solid electrolyte interphase evolution in silicon thin film 475 1.2 25 batteries. Journal of Chemical Physics, 2020, 152, 084702. Nanostructured Silicon as Potential Anode Material for Li-Ion Batteries. Molecules, 2020, 25, 891. 1.7 Enhancement of the lithium titanium oxide anode performance by the copolymerization of conductive polypyrrole with poly(acrylonitrile/butyl acrylate) binder. Journal of Applied Electrochemistry, 2020, 50, 431-438. 477 1.5 10 Interface engineering in amorphous silicon thin-films using ultra-thin TiO2 interlayers and its effect 478 1.5 on Li-ion storage. Surfaces and Interfaces, 2020, 19, 100462. In Situ Growth of CoP 3 /Carbon Polyhedron/CoO/NF Nanoarrays as Binderâ€Free Anode for Lithiumâ€Ion 479 5.2 23 Batteries with Enhanced Specific Capacity. Small, 2020, 16, 1907468. Analysis of Scale-up Parameters in 3D Silicon-Nanowire Lithium-Battery Anodes. Journal of the 1.3 Electrochemical Society, 2020, 167, 050511. Improved adhesion of cross-linked binder and SiO2-coating enhances structural and cyclic stability of 481 4.056 silicon electrodes for lithium-ion batteries. Journal of Power Sources, 2020, 454, 227907. Pragmatic Approach to Design Silicon Alloy Anode by the Equilibrium Method. ACS Applied Materials 4.0 & Interfaces, 2020, 12, 17406-17414. Controlled synthesis of copper reinforced nanoporous silicon microsphere with boosted 483 4.0 15 electrochemical performance. Journal of Power Sources, 2020, 455, 227967. The influence of compact and ordered carbon coating on solidâ€state behaviors of silicon during 484 electrochemical processes., 2020, 2, 143-150. A review on silicon nanowire-based anodes for next-generation high-performance lithium-ion 485 2.598 batteries from a material-based perspective. Sustainable Energy and Fuels, 2020, 4, 1577-1594. Rational structure design to realize high-performance SiOx@C anode material for lithium ion 486 5.8 batteries. Nano Research, 2020, 13, 527-532. Mechanical behavior of Silicon-Graphite pouch cells under external compressive load: Implications 487 4.0 31 and opportunities for battery pack design. Journal of Power Sources, 2020, 451, 227774. Synthesis and electrochemical performance of Pb3(OH)2(CO3)2/C anode material for lithium-ion 1.2 battery application. lonics, 2020, 26, 3289-3295.

#	Article	IF	CITATIONS
489	High-energy density Li Si-S full cell based on 3D current collector of few-wall carbon nanotube sponge. Carbon, 2020, 161, 612-621.	5.4	9
490	Ionization-induced annealing in silicon upon dual-beam irradiation. Journal of Materials Science, 2020, 55, 5938-5947.	1.7	13
491	Novel bread-like nitrogen-doped carbon anchored nano-silicon as high-stable anode for lithium-ion batteries. Applied Surface Science, 2020, 511, 145609.	3.1	34
492	Role of silicon and carbon on the structural and electrochemical properties of Si-Ni3.4Sn4-Al-C anodes for Li-ion batteries. Materials Today Communications, 2020, 23, 101160.	0.9	3
493	Dynamic bonded supramolecular binder enables high-performance silicon anodes in lithium-ion batteries. Journal of Power Sources, 2020, 463, 228208.	4.0	57
494	Mesoporous-Si embedded and anchored by hierarchical Sn nano-particles as promising anode for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 832, 154935.	2.8	9
495	Toward Green Battery Cells: Perspective on Materials and Technologies. Small Methods, 2020, 4, 2000039.	4.6	177
496	Mechanistic investigation of silicon-graphite/LiNi0.8Mn0.1Co0.1O2 commercial cells for non-intrusive diagnosis and prognosis. Journal of Power Sources, 2020, 459, 227882.	4.0	60
497	Ultra-efficient polymer binder for silicon anode in high-capacity lithium-ion batteries. Nano Energy, 2020, 73, 104804.	8.2	57
498	MXene Frameworks Promote the Growth and Stability of LiF-Rich Solid–Electrolyte Interphases on Silicon Nanoparticle Bundles. ACS Applied Materials & Interfaces, 2020, 12, 18541-18550.	4.0	44
499	Synthesis and Electrochemical Performance of π-Conjugated Molecule Bridged Silicon Quantum Dot Cluster as Anode Material for Lithium-Ion Batteries. ACS Omega, 2020, 5, 8629-8637.	1.6	9
500	Low temperature growth of graphitic carbon on porous silicon for high-capacity lithium energy storage. Journal of Power Sources, 2020, 463, 228245.	4.0	13
501	A simple method to fabricate size and porosity tunable Si by Al–Si alloy as lithium ion battery anode material. Electrochimica Acta, 2020, 345, 136242.	2.6	24
502	In Situ Incorporation of Superâ€&mall Metallic High Capacity Nanoparticles and Mesoporous Structures for Highâ€Performance TiO ₂ /SnO ₂ /Sn/Carbon Nanohybrid Lithiumâ€Ion Battery Anodes. Energy Technology, 2020, 8, 2000034.	1.8	4
503	Polydopamine sacrificial layer mediated SiO _x /C@C yolk@shell structure for durable lithium storage. Materials Chemistry Frontiers, 2020, 4, 1656-1663.	3.2	49
504	Examining the Long-Term Cyclabilities of Li[Ni _{1/2} Mn _{3/2}]O ₄ and Li[Li _{0.1} Al _{0.1} Mn _{1.8}]O ₄ Using a Full-Cell Configuration Including LTO-Counter Electrodes with Extra Capacity. Journal of the Electrochemical Society, 2020, 167. 060532.	1.3	9
505	Yolk–Shell Nanostructures: Syntheses and Applications for Lithium-Ion Battery Anodes. Nanomaterials, 2020, 10, 675.	1.9	21
506	Study about thermal runaway behavior of high specific energy density Li-ion batteries in a low state of charge. Journal of Energy Chemistry, 2021, 52, 20-27.	7.1	27

# 507	ARTICLE Rational architecture design of yolk/double-shells Si-based anode material with double buffering carbon layers for high performance lithium-ion battery. Green Energy and Environment, 2021, 6, 517-527.	IF 4.7	Citations 21
508	Wellâ€Defined Nanostructures for Electrochemical Energy Conversion and Storage. Advanced Energy Materials, 2021, 11, 2001537.	10.2	102
509	βâ€cyclodextrin as Lithiumâ€ion Diffusion Channel with Enhanced Kinetics for Stable Silicon Anode. Energy and Environmental Materials, 2021, 4, 72-80.	7.3	36
510	Si-on-Graphite fabricated by fluidized bed process for high-capacity anodes of Li-ion batteries. Chemical Engineering Journal, 2021, 407, 126603.	6.6	31
511	Novel approach for controlling free-carbon domain in silicone oil-derived silicon oxycarbide (SiOC) as an anode material in secondary batteries. Chemical Engineering Journal, 2021, 404, 126581.	6.6	30
512	Partially lithiated ternary graft copolymer with enhanced elasticity as aqueous binder for Si anode. Journal of Applied Polymer Science, 2021, 138, 49950.	1.3	4
513	Failure analysis of LiNiO·83CoO·12MnO·05O2/graphite–SiOx pouch batteries cycled at high temperature. Journal of Power Sources, 2021, 482, 228978.	4.0	23
514	Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry, 2021, 57, 451-468.	7.1	245
515	Redox MXene Artificial Synapse with Bidirectional Plasticity and Hypersensitive Responsibility. Advanced Functional Materials, 2021, 31, .	7.8	53
516	Electrochemically induced high ion and electron conductive interlayer in porous multilayer Si film anode with enhanced lithium storage properties. Journal of Power Sources, 2021, 481, 228833.	4.0	9
517	Recovery of Co, Ni, Mn, and Li from Li-ion batteries by smelting reduction - Part I: A laboratory-scale study. Journal of Power Sources, 2021, 483, 228936.	4.0	27
518	Enhancing lithium storage performance by strongly binding silicon nanoparticles sandwiching between spherical graphene. Applied Surface Science, 2021, 539, 148191.	3.1	20
519	Coral-like porous composite material of silicon and carbon synthesized by using diatomite as self-template and precursor with a good performance as anode of lithium-ions battery. Journal of Alloys and Compounds, 2021, 854, 157253.	2.8	33
520	One-step synthesis of nanoporous silicon @ graphitized carbon composite and its superior lithium storage properties. Journal of Alloys and Compounds, 2021, 861, 157955.	2.8	17
521	Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode. Journal of Materials Science and Technology, 2021, 76, 156-165.	5.6	6
522	Sn stabilized pyrovanadate structure rearrangement for zinc ion battery. Nano Energy, 2021, 81, 105584.	8.2	41
523	Silicon-doped carbon xerogel with poly(sodium 4-styrenesulfonate) as a novel protective coating and binder. Microporous and Mesoporous Materials, 2021, 310, 110622.	2.2	0
524	Correlation between lithium-ion accessibility to the electrolyte–active material interface and low-temperature electrochemical performance. Journal of Alloys and Compounds, 2021, 856, 158233.	2.8	8

#	Article	IF	CITATIONS
525	A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy, 2021, 81, 105654.	8.2	141
526	All-Solid-State Lithium Batteries with Sulfide Electrolytes and Oxide Cathodes. Electrochemical Energy Reviews, 2021, 4, 101-135.	13.1	227
527	In situ imaging analysis of the inhibition effect of functional coating on the volume expansion of silicon anodes. Chemical Engineering Journal, 2021, 417, 128122.	6.6	20
528	Imaging of electric failure in Si-alloy/graphite-blended anodes for Li-ion batteries. Journal of Power Sources, 2021, 485, 229311.	4.0	5
529	Applications of Lowâ€Meltingâ€Point Metals in Rechargeable Metal Batteries. Chemistry - A European Journal, 2021, 27, 6407-6421.	1.7	15
530	Si-based composite deriving from wok ash waste as high-performance anode for Li-ion battery. Journal of Alloys and Compounds, 2021, 858, 157680.	2.8	7
531	Multi-electron Reaction Materials for High-Energy-Density Secondary Batteries: Current Status and Prospective. Electrochemical Energy Reviews, 2021, 4, 35-66.	13.1	68
532	A selenium-doped carbon anode of high performance for lithium ion batteries. Journal of Solid State Electrochemistry, 2021, 25, 457-464.	1.2	10
533	Poly (acrylic acid-co-N-methylol acrylamide-co-butyl acrylate) copolymer grafted carboxymethyl cellulose binder for silicon anode in lithium ion batteries. Journal of Applied Electrochemistry, 2021, 51, 131-141.	1.5	15
534	Elasticity-oriented design of solid-state batteries: challenges and perspectives. Journal of Materials Chemistry A, 2021, 9, 13804-13821.	5.2	12
535	Na ₃ VO ₄ as a new anode material for lithium-ion batteries. New Journal of Chemistry, 2021, 45, 11506-11511.	1.4	10
536	Molecular design of a multifunctional binder <i>via</i> grafting and crosslinking for high performance silicon anodes. Journal of Materials Chemistry A, 2021, 9, 8416-8424.	5.2	30
537	Pre-Lithiating SiO Anodes for Lithium-Ion Batteries by a Simple, Effective, and Controllable Strategy Using Stabilized Lithium Metal Powder. ACS Sustainable Chemistry and Engineering, 2021, 9, 648-657.	3.2	60
538	Enhancing Co/Co ₂ VO ₄ Li-ion battery anode performances <i>via</i> 2D–2D heterostructure engineering. Nanoscale, 2021, 13, 13065-13071.	2.8	8
539	A Low ost and Scalable Carbon Coated SiOâ€Based Anode Material for Lithiumâ€lon Batteries. ChemistryOpen, 2021, 10, 380-386.	0.9	13
540	Facile fabrication of oxide layer for si anode with enhanced lithium storage performances via plasma oxidation. Journal of Materials Science: Materials in Electronics, 2021, 32, 2158-2171.	1.1	4
541	Recent Advances in Heterostructured Anode Materials with Multiple Anions for Advanced Alkaliâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2003058.	10.2	60
542	Improved Electrochemical Properties of Li ₄ Ti ₅ O ₁₂ Nanopowders (NPs) via Addition of LiAlO ₂ and Li ₆ SiON Polymer Electrolytes, Derived from Agricultural Waste. ACS Applied Energy Materials, 2021, 4, 1894-1905.	2.5	7

#	Article	IF	CITATIONS
543	A facile and low-cost Al ₂ O ₃ coating as an artificial solid electrolyte interphase layer on graphite/silicon composites for lithium-ion batteries. Nanotechnology, 2021, 32, 144001.	1.3	15
544	A multilayered sturdy shell protects silicon nanoparticle Si@void C@TiO ₂ as an advanced lithium ion battery anode. Physical Chemistry Chemical Physics, 2021, 23, 3934-3941.	1.3	10
545	A review of covalent organic framework electrode materials for rechargeable metal-ion batteries. New Carbon Materials, 2021, 36, 1-18.	2.9	23
546	A high-performance silicon/carbon composite as anode material for lithium ion batteries. Nano Express, 2021, 2, 010021.	1.2	9
547	Binder-free silicon anodes wrapped in multiple graphene shells for high-performance lithium-ion batteries. Journal of Power Sources, 2021, 486, 229350.	4.0	32
548	Porous silicon derived from 130Ânm Stöber silica as lithiumâ€ion battery anode. Nano Select, 2021, 2, 1554-1565.	1.9	0
549	Hydrophobic versus Hydrophilic Interfacial Coatings on Silicon Nanoparticles Teach Us How to Design the Solid Electrolyte Interphase in Silicon-Based Li-Ion Battery Anodes. ACS Applied Energy Materials, 2021, 4, 1628-1636.	2.5	21
550	Synthesis of porous Si nanoparticles for high performances anode material in lithium-ion batteries. Materials Research Express, 2021, 8, 025008.	0.8	1
551	Formation mechanism of amorphous silicon nanoparticles with additional counter-flow quenching gas by induction thermal plasma. Chemical Engineering Science, 2021, 230, 116217.	1.9	16
552	Temperature, Ageing and Thermal Management of Lithium-Ion Batteries. Energies, 2021, 14, 1248.	1.6	54
553	Quantitative Analysis of Solid Electrolyte Interphase and Its Correlation with The Electrochemical Performance of Lithium Ion Batteries Using Concentrated LiPF ₆ /propylene Carbonate. Journal of the Electrochemical Society, 2021, 168, 020530.	1.3	15
554	Amorphous silicon from low-temperature reduction of silica in the molten salts and its lithium-storage performance. Chinese Chemical Letters, 2021, 32, 598-603.	4.8	8
555	Highly elastic cobweb-like SiO/CNF composites with reconstructed heterostructure for high-efficient lithium storage. Chinese Chemical Letters, 2021, 32, 2914-2918.	4.8	4
556	Molecular Understanding of Electrochemical–Mechanical Responses in Carbon-Coated Silicon Nanotubes during Lithiation. Nanomaterials, 2021, 11, 564.	1.9	7
557	Chemical Leaching of Al3Ni and Al3Ti Alloys at Room Temperature. Chemistry and Chemical Technology, 2021, 15, 81-88.	0.2	1
558	Nitrogen-Doped Carbon-Coating Disproportionated SiO Materials as Long Cycling Stable Anode for Lithium Ion Batteries. Molecules, 2021, 26, 1536.	1.7	13
559	Yolk-shell silicon/carbon composites prepared from aluminum-silicon alloy as anode materials for lithium-ion batteries. Ionics, 2021, 27, 1939-1948.	1.2	4
560	Reduction of Graphene Oxide Using an Environmentally Friendly Method and Its Application to Energy-Related Materials. Coatings, 2021, 11, 297.	1.2	9

#	Article	IF	CITATIONS
561	Expanded MoSe ₂ Nanosheets Vertically Bonded on Reduced Graphene Oxide for Sodium and Potassium-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 13158-13169.	4.0	83
562	Flexible Carbon Nanotubes Confined Yolk-Shelled Silicon-Based Anode with Superior Conductivity for Lithium Storage. Nanomaterials, 2021, 11, 699.	1.9	16
563	Pencil lead based low cost and binder-free anode for lithium-ion batteries: effect of different pencil grades on electrochemical performance. Proceedings of the Indian National Science Academy, 2021, 87, 156-162.	0.5	1
564	An Overview on Protecting Metal Anodes with Alloyâ€Type Coating. Batteries and Supercaps, 2021, 4, 1252-1266.	2.4	13
565	Sustainable Battery Materials for Nextâ€Generation Electrical Energy Storage. Advanced Energy and Sustainability Research, 2021, 2, 2000102.	2.8	52
566	Customizing Active Materials and Polymeric Binders: Stern Requirements to Realize Silicon-Graphite Anode Based Lithium-Ion Batteries Journal of Energy Storage, 2021, 35, 102098.	3.9	24
567	A low-cost silicon-graphite anode made from recycled graphite of spent lithium-ion batteries. Journal of Electroanalytical Chemistry, 2021, 884, 115073.	1.9	34
568	Frontiers in Hybrid Ion Capacitors: A Review on Advanced Materials and Emerging Devices. ChemElectroChem, 2021, 8, 1393-1429.	1.7	43
569	Scalable Synthesis of Porous SiFe@C Composite with Excellent Lithium Storage. Chemistry - A European Journal, 2021, 27, 6963-6972.	1.7	4
570	BN nanosheets in-situ mosaic on MOF-5 derived porous carbon skeleton for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2021, 857, 157571.	2.8	16
571	Advanced silicon nanostructures derived from natural silicate minerals for energy storage and conversion. Green Energy and Environment, 2022, 7, 205-220.	4.7	15
573	Controllable synthesis Honeycombâ€like structure SiOx/C composites as anode for high-performance lithium-ion batteries. Vacuum, 2021, 186, 110044.	1.6	19
574	Enhancing the Capacity and Stability of a Tungsten Disulfide Anode in a Lithium-Ion Battery Using Excess Sulfur. ACS Applied Materials & amp; Interfaces, 2021, 13, 20213-20221.	4.0	8
575	Dealloying: An effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage. Nano Today, 2021, 37, 101094.	6.2	93
576	Effect of deposition temperature on mechanical properties of nanotwinned Cu fabricated by rotary electroplating. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 811, 141065.	2.6	31
577	Revealing the structural degradation mechanism of the Ni-rich cathode surface: How thick is the surface?. Journal of Power Sources, 2021, 490, 229542.	4.0	17
578	Challenges and Recent Progress on Siliconâ€Based Anode Materials for Nextâ€Generation Lithiumâ€lon Batteries. Small Structures, 2021, 2, 2100009.	6.9	117
579	Enhanced Cycle Stability of Crumpled Graphene-Encapsulated Silicon Anodes via Polydopamine Sealing. ACS Omega, 2021, 6, 12293-12305.	1.6	8

#	Article	IF	CITATIONS
580	Mechanistic Insights into the Pre‣ithiation of Silicon/Graphite Negative Electrodes in "Dry State―and After Electrolyte Addition Using Passivated Lithium Metal Powder. Advanced Energy Materials, 2021, 11, 2100925.	10.2	46
581	Electrochemical performance of Si thin-film with buckypaper for flexible lithium-ion batteries. Diamond and Related Materials, 2021, 115, 108351.	1.8	7
582	Computational Study of Quenching Effects on Growth Processes and Size Distributions of Silicon Nanoparticles at a Thermal Plasma Tail. Nanomaterials, 2021, 11, 1370.	1.9	13
583	Boosting cyclability performance of the LiNi0.8Co0.15Al0.05O2 cathode by a polyacrylonitrile-induced conductive carbon surface coating. Ceramics International, 2021, 47, 12706-12715.	2.3	11
584	Interconnected Hollow Si/C Hybrids Engineered by the Carbon Dioxide-Introduced Magnesiothermic Reduction of Biosilica from Reed Plants for Lithium Storage. Energy & Fuels, 2021, 35, 10241-10249.	2.5	11
585	Multiscale observation of Li plating for lithium-ion batteries. Rare Metals, 2021, 40, 3038.	3.6	68
586	Characterization and Quantification of Depletion and Accumulation Layers in Solidâ€State Li ⁺ â€Conducting Electrolytes Using In Situ Spectroscopic Ellipsometry. Advanced Materials, 2021, 33, e2100585.	11.1	17
587	Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide. Renewable and Sustainable Energy Reviews, 2021, 141, 110798.	8.2	51
588	Synthesis of porosity controllable nanoporous silicon with a self-coated nickel layer for lithium-ion batteries. Journal of Power Sources, 2021, 495, 229802.	4.0	9
589	Boosting reversible lithium storage in two-dimensional C3N4 by achieving suitable adsorption energy via Si doping. Carbon, 2021, 176, 480-487.	5.4	21
590	Study on Si-based Anodes for All-solid-state Lithium-ion Batteries. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2021, 28, 130-134.	0.0	0
591	Silicon Single Walled Carbon Nanotube-Embedded Pitch-Based Carbon Spheres Prepared by a Spray Process with Modified Antisolvent Precipitation for Lithium Ion Batteries. Energy & Fuels, 2021, 35, 9705-9713.	2.5	11
592	Good Structural Stability of Si Anodes Achieved through Dispersant Addition and Use of Carbon Fabric as Conductive Framework. Journal of the Electrochemical Society, 2021, 168, 060517.	1.3	3
593	State-of-Charge Estimation of Li-ion Battery Using Gated Recurrent Unit With One-Cycle Learning Rate Policy. IEEE Transactions on Industry Applications, 2021, 57, 2964-2971.	3.3	28
594	Yolk-shell structured silicon/carbonized polyacrylonitrile composites as anode materials for lithium-ion batteries. International Journal of Electrochemical Science, 2021, 16, 21061.	0.5	2
595	Influence of the Polyacrylic Acid Binder Neutralization Degree on the Initial Electrochemical Behavior of a Silicon/Graphite Electrode. ACS Applied Materials & Interfaces, 2021, 13, 28304-28323.	4.0	21
596	Covalent Organic Frameworks for Batteries. Advanced Functional Materials, 2021, 31, 2100505.	7.8	154
597	Rational design of MXene-based films for energy storage: Progress, prospects. Materials Today, 2021, 46, 183-211.	8.3	83

#	Article	IF	CITATIONS
598	Enhanced Electrochemical Performance and Safety of Silicon by a Negative Thermal Expansion Material of ZrW ₂ 0 ₈ . ACS Applied Materials & Interfaces, 2021, 13, 30468-30478.	4.0	11
599	Phosphate Polyanion Materials as High-Voltage Lithium-Ion Battery Cathode: A Review. Energy & Fuels, 2021, 35, 10428-10450.	2.5	80
600	Enhanced cycling performance of binder free silicon-based anode by application of electrochemically formed microporous substrate. Electrochimica Acta, 2021, 380, 138216.	2.6	4
601	Binder-Free, Flexible, and Self-Standing Non-Woven Fabric Anodes Based on Graphene/Si Hybrid Fibers for High-Performance Li-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 27270-27277.	4.0	27
602	Platinum Nanoparticle Decorated Expired Drug-Derived N-Doped Ketjenblack Carbon as Efficient Catalyst for PEM Fuel Cells. Journal of the Electrochemical Society, 2021, 168, 064517.	1.3	6
603	Recent advances in acoustic diagnostics for electrochemical power systems. JPhys Energy, 2021, 3, 032011.	2.3	20
604	An integrated highly stable anode enabled by carbon nanotube-reinforced all-carbon binder for enhanced performance in lithium-ion battery. Carbon, 2021, 182, 749-757.	5.4	9
605	Investigating Ternary Li–Mg–Si Zintl Phase Formation and Evolution for Si Anodes in Li-Ion Batteries with Mg(TFSI) ₂ Electrolyte Additive. Chemistry of Materials, 2021, 33, 4960-4970.	3.2	10
606	Reliability of Silicon Battery Technology and Power Electronics Based Energy Conversion. IEEE Power Electronics Magazine, 2021, 8, 60-69.	0.6	3
607	Research Progress and Application of Modified Silicon-Based Anode Materials for Lithium-Ion Batteries. Materials Science Forum, 0, 1036, 35-44.	0.3	2
608	Carbon nanotubes-enhanced lithium storage capacity of recovered silicon/carbon anodes produced from solar-grade silicon kerf scrap. Electrochimica Acta, 2021, 381, 138269.	2.6	19
609	Facile Synthesis of MPS ₃ /C (M = Ni and Sn) Hybrid Materials and Their Application in Lithium-Ion Batteries. ACS Omega, 2021, 6, 17247-17254.	1.6	9
610	Controllable synthesis of Li3VO4/N doped C nanofibers toward high-capacity and high-rate Li-ion storage. Electrochimica Acta, 2021, 384, 138386.	2.6	16
611	Design Strategies of Si/C Composite Anode for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2021, 27, 12237-12256.	1.7	29
612	Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges. Nano-Micro Letters, 2021, 13, 156.	14.4	71
613	Preparation of Carbon-Coated Silicon Nanoparticles with Different Hydrocarbon Gases in Induction Thermal Plasma. Journal of Physical Chemistry C, 2021, 125, 15551-15559.	1.5	11
614	Electrochemical Properties and Reaction Mechanism of NiTi ₂ S ₄ Ternary Metal Sulfide as an Anode for Lithium Ion Battery. ACS Sustainable Chemistry and Engineering, 2021, 9, 9680-9688.	3.2	13
615	Comprehensive review on carbon nanotubes embedded in different metal and polymer matrix: fabrications and applications. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 837-864.	6.8	31

#	Article	IF	CITATIONS
616	Sustainable okra gum for silicon anode in lithium-ion batteries. Sustainable Materials and Technologies, 2021, 28, e00283.	1.7	9
617	Structural Lithium-Ion Battery Cathodes and Anodes Based on Branched Aramid Nanofibers. ACS Applied Materials & Interfaces, 2021, 13, 34807-34817.	4.0	17
618	Self-sacrificial-reaction guided formation of hierarchical electronic/ionic conductive shell enabling high-performance nano-silicon anode. Chemical Engineering Journal, 2021, 415, 128998.	6.6	31
619	Formation and quantitative analysis of internal structure of Si nanoparticles developed via bead-milling. AIP Advances, 2021, 11, 075101.	0.6	3
620	Unified NCNT@rGO bounded porous silicon composite as an anode material for Lithium-ion batteries. Korean Journal of Chemical Engineering, 2021, 38, 1923-1933.	1.2	11
621	A key strategy to form a LiF-based SEI layer for a lithium-ion battery anode with enhanced cycling stability by introducing a semi-ionic C F bond. Journal of Industrial and Engineering Chemistry, 2021, 99, 48-54.	2.9	40
622	Carbon-Coated SiO2 Composites as Promising Anode Material for Li-Ion Batteries. Molecules, 2021, 26, 4531.	1.7	14
623	Ion-conductive self-healing polymer network based on reversible imine bonding for Si electrodes. Journal of Power Sources, 2021, 499, 229968.	4.0	20
624	Recent trends in silicon/graphene nanocomposite anodes for lithium-ion batteries. Journal of Power Sources, 2021, 501, 229709.	4.0	46
625	Construction of Sb ₂ S ₃ @SnS@C Tubular Heterostructures as High-Performance Anode Materials for Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 11280-11289.	3.2	31
626	Tunable oxygen defect density and location for enhancement of energy storage. Journal of Energy Chemistry, 2021, 59, 736-747.	7.1	13
627	Mitigation and In Situ Probing of Volume Expansion in Silicon/Graphene Hybrid Anodes for High apacity, Highâ€Rateâ€Capable Lithiumâ€ion Batteries. Advanced Energy and Sustainability Research, 20. 2, 2100125.	2 12.8	5
628	A flexible, heat-resistant and self-healable "rocking-chair―zinc ion microbattery based on MXene-TiS2 (de)intercalation anode. Journal of Power Sources, 2021, 504, 230076.	4.0	33
629	Micro-nano structured VNb9O25 anode with superior electronic conductivity for high-rate and long-life lithium storage. Journal of Materials Science and Technology, 2021, 83, 66-74.	5.6	12
630	Facile synthesis of N-C/Si@G nanocomposite as a high-performance anode material for Li-ion batteries. Journal of Alloys and Compounds, 2021, 872, 159716.	2.8	15
631	Encapsulating Nanoscale Silicon inside Carbon Fiber as Flexible Self-Supporting Anode Material for Lithium-Ion Battery. ACS Applied Energy Materials, 2021, 4, 8529-8537.	2.5	24
632	Effect of Cu Ion Concentration on Microstructures and Mechanical Properties of Nanotwinned Cu Foils Fabricated by Rotary Electroplating. Nanomaterials, 2021, 11, 2135.	1.9	21
633	Two-Dimensional Boron-Rich Monolayer B _{<i>x</i>} N as High Capacity for Lithium-Ion Batteries: A First-Principles Study. ACS Applied Materials & Interfaces, 2021, 13, 41169-41181.	4.0	20

#	Article	IF	CITATIONS
634	N-doped C/Si@DAMO composite material using PVP as the carbon source for lithium-ion batteries anode. Ionics, 2021, 27, 4185-4196.	1.2	1
635	A Micrometerâ€6ized Silicon/Carbon Composite Anode Synthesized by Impregnation of Petroleum Pitch in Nanoporous Silicon. Advanced Materials, 2021, 33, e2103095.	11.1	99
636	A controllable and byproduct-free synthesis method of carbon-coated silicon nanoparticles by induction thermal plasma for lithium ion battery. Advanced Powder Technology, 2021, 32, 2828-2838.	2.0	7
637	Revealing the Failure Mechanism of Partially Lithiated Silicon-Dominant Anodes Based on Microscale Silicon Particles. Journal of the Electrochemical Society, 2021, 168, 080531.	1.3	9
638	Gifts from Nature: Bioâ€Inspired Materials for Rechargeable Secondary Batteries. Advanced Materials, 2021, 33, e2006019.	11.1	30
639	Optimizing the function of SiOx in the porous Si/SiOx network via a controllable magnesiothermic reduction for enhanced lithium storage. Journal of Alloys and Compounds, 2021, 874, 159914.	2.8	10
640	Dopamine-modified carboxymethyl cellulose as an improved aqueous binder for silicon anodes in lithium-ion batteries. Electrochimica Acta, 2021, 389, 138806.	2.6	23
641	Quantification of aging mechanisms of carbon-coated and uncoated silicon thin film anodes in lithium metal and lithium ion cells. Journal of Energy Storage, 2021, 41, 102812.	3.9	9
642	A nanotubular TiO2/SiOx/Si composite derived from cellulosic cotton as an anode material for lithium-ion batteries with enhanced electrochemical performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126870.	2.3	8
643	Supercapacitor performances of titanium–polymeric nanocomposites: a review study. Iranian Polymer Journal (English Edition), 2022, 31, 31-57.	1.3	6
644	Key Factors for Binders to Enhance the Electrochemical Performance of Silicon Anodes through Molecular Design. Small, 2022, 18, e2101680.	5.2	34
645	The triad "electrode – solid electrolyte interphase – electrolyte―as a ground for the use of conversion type reactions in lithium-ion batteries. Himia, Fizika Ta Tehnologia Poverhni, 2021, 12, 226-279.	0.2	0
646	Dual-confined SiO encapsulated in PVA derived carbon layer and chitin derived N-doped carbon nanosheets for high-performance lithium storage. Chemical Engineering Journal, 2021, 420, 129754.	6.6	24
647	Elucidation of the influence of operating temperature in LiNi0.8Co0.15Al0.05O2/silicon and LiNi0.8Co0.15Al0.05O2/graphite pouch cells batteries cycle-life degradation. Journal of Energy Storage, 2021, 41, 102989.	3.9	7
648	Quantifying lithium loss in amorphous silicon thin-film anodes via titration-gas chromatography. Cell Reports Physical Science, 2021, 2, 100597.	2.8	14
649	Cause and Mitigation of Lithium-Ion Battery Failure—A Review. Materials, 2021, 14, 5676.	1.3	37
650	Doped and reactive silicon thin film anodes for lithium ion batteries: A review. Journal of Power Sources, 2021, 506, 230194.	4.0	40
651	A critical review and assessment of 3D columnar silicon electrode architectures and their performance as negative electrodes in Li-ion cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115278.	1.7	2

#	Article	IF	CITATIONS
652	A Physically Cross-Linked Hydrogen-Bonded Polymeric Composite Binder for High-Performance Silicon Anodes. ACS Applied Energy Materials, 2021, 4, 10886-10895.	2.5	14
653	Research Progress on Coating Structure of Silicon Anode Materials for Lithiumâ€ion Batteries. ChemSusChem, 2021, 14, 5135-5160.	3.6	38
654	Robust and Fast Lithium Storage Enabled by Polypyrrole-Coated Nitrogen and Phosphorus Co-Doped Hollow Carbon Nanospheres for Lithium-Ion Capacitors. Frontiers in Chemistry, 2021, 9, 760473.	1.8	8
655	Stabilizing a Si Anode via an Inorganic Oligomer Binder Enabled by Robust Polar Interfacial Interactions. ACS Applied Materials & Interfaces, 2021, 13, 44312-44320.	4.0	17
656	Negative electrode materials for high-energy density Li- and Na-ion batteries. Current Opinion in Electrochemistry, 2022, 31, 100840.	2.5	9
657	Residual silica removal and nanopore generation on industrial waste silicon using ammonium fluoride and its application to lithium-ion battery anodes. Chemical Engineering Journal, 2021, 419, 129389.	6.6	16
658	Undervalued Roles of Binder in Modulating Solid Electrolyte Interphase Formation of Silicon-Based Anode Materials. ACS Applied Materials & Interfaces, 2021, 13, 45139-45148.	4.0	36
659	Electrochemical characterization of bi-layered graphite anodes combining high and low porosity in lithium-ion cells to improve cell performance. Electrochimica Acta, 2021, 391, 138966.	2.6	8
660	The preparation of mass producible, highly-cycling stable Si/C anode materials with nano-sized silicon crystals embedded in highly amorphous silicon matrix. Nanotechnology, 2021, 32, 485404.	1.3	6
661	A highly crosslinked polymeric binder for silicon anode in lithium-ion batteries. Materials Today Communications, 2021, 28, 102530.	0.9	8
662	Closely packed Si@C and Sn@C nano-particles anchored by reduced graphene oxide sheet boosting anode performance of lithium ion batteries. Journal of Materials Science and Technology, 2021, 87, 18-28.	5.6	17
663	Understanding Componentâ€Specific Contributions and Internal Dynamics in Silicon/Graphite Blended Electrodes for Highâ€Energy Lithiumâ€Ion Batteries. Batteries and Supercaps, 2022, 5, .	2.4	23
664	Mg2Si promoted magnesio-mechanical reduction of silica into silicon nanoparticles for high-performance Li-ion batteries. Journal of Solid State Chemistry, 2021, 302, 122408.	1.4	7
665	Chemo-mechanical analysis of ratcheting deformation in silicon particle electrode under cyclic charging and discharging. Mechanics of Materials, 2021, 162, 104062.	1.7	3
666	Grain size effect of nanocrystalline-Si embedded in buffering alloy-matrix as anode for Li-ion batteries. Journal of Alloys and Compounds, 2021, 882, 160558.	2.8	5
667	Towards a 3D-resolved model of Si/Graphite composite electrodes from manufacturing simulations. Journal of Power Sources, 2021, 512, 230486.	4.0	17
668	Hollow Si nanospheres with amorphous TiO2 layer used as anode for high-performance Li-ion battery. Applied Surface Science, 2021, 566, 150682.	3.1	15
669	Electrospinning-enabled SiO @TiO2/C fibers as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 888, 161635.	2.8	9

#	Article	IF	CITATIONS
670	Recent progress and perspectives on silicon anode: Synthesis and prelithiation for LIBs energy storage. Journal of Energy Chemistry, 2022, 64, 615-650.	7.1	127
671	Nitrogen-plasma doping of carbon film for a high-quality layered Si/C composite anode. Journal of Colloid and Interface Science, 2022, 605, 463-471.	5.0	28
672	Understanding lithium, sodium, and potassium storage mechanisms in silicon oxycarbide. Chemical Engineering Journal, 2022, 428, 131072.	6.6	20
673	Bamboo-like SiO /C nanotubes with carbon coating as a durable and high-performance anode for lithium-ion battery. Chemical Engineering Journal, 2022, 428, 131060.	6.6	20
674	A leaf-like Co-Silicate/CNT hybrid film as free-standing anode for lithium and sodium storage. Journal of Alloys and Compounds, 2022, 891, 162077.	2.8	9
675	Silicon-based hybrid nanoparticles: An introduction. , 2022, , 1-9.		0
676	Composites of Silicon@Li ₄ Ti ₅ O ₁₂ and Graphite for High-Capacity Lithium-Ion Battery Anode Materials. Journal of the Electrochemical Society, 2021, 168, 010524.	1.3	4
677	Mechanically robust and superior conductive n-type polymer binders for high-performance micro-silicon anodes in lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 3472-3481.	5.2	34
678	Recent Advances in SiO2 Based Composite Electrodes for Supercapacitor Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3221-3239.	1.9	32
679	Biomineralization-inspired: rapid preparation of a silicon-based composite as a high-performance lithium-ion battery anode. Journal of Materials Chemistry A, 2021, 9, 11614-11622.	5.2	10
680	Covalent organic frameworks (COFs) for electrochemical applications. Chemical Society Reviews, 2021, 50, 6871-6913.	18.7	461
681	Advanced Electrode Materials in Lithium Batteries: Retrospect and Prospect. Energy Material Advances, 2021, 2021, .	4.7	179
682	Comparative Analysis on Battery Used in Solar Refrigerated E-Rickshaw in India. Smart Innovation, Systems and Technologies, 2020, , 239-248.	0.5	1
683	Carbon dot-modified silicon nanoparticles for lithium-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1603-1610.	2.4	11
684	Dealloyed nanoporous materials for rechargeable lithium batteries. Electrochemical Energy Reviews, 2020, 3, 541-580.	13.1	49
685	Molecular dynamic investigation of the structure and stress in crystalline and amorphous silicon during lithiation. Computational Materials Science, 2020, 183, 109811.	1.4	7
686	An integral interface with dynamically stable evolution on micron-sized SiOx particle anode. Nano Energy, 2020, 74, 104890.	8.2	84
687	Silicon Nanoparticles for the Reactivity and Energetic Density Enhancement of Energetic-Biocidal Mesoparticle Composites. ACS Applied Materials & Interfaces, 2021, 13, 458-467.	4.0	21

#	Article	IF	CITATIONS
688	An Advanced Microstructural and Electrochemical Datasheet on 18650 Li-Ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes. Journal of the Electrochemical Society, 2020, 167, 140530.	1.3	39
690	Spray-Pyrolysis Preparation of Li4Ti5O12/Si Composites for Lithium-Ion Batteries. Eurasian Chemico-Technological Journal, 2019, , 69.	0.3	2
691	Lithium ion car batteries: Present analysis and future predictions. Environmental Engineering Research, 2019, 24, 699-710.	1.5	27
692	Silicon nanosheets derived from silicate minerals: controllable synthesis and energy storage application. Nanoscale, 2021, 13, 18410-18420.	2.8	3
693	High specific capacity of carbon coating lemon-like SiO2 hollow spheres for lithium-ion batteries. Electrochimica Acta, 2022, 401, 139497.	2.6	22
694	Physical Vapor Deposition Cluster Arrival Energy Enhances the Electrochemical Performance of Silicon Thin-Film Anodes for Li-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 12243-12256.	2.5	3
695	Formation, lithium storage properties and mechanism of nanoporous germanium fabricated by dealloying. Journal of Chemical Physics, 2021, 155, 184702.	1.2	2
696	Selfâ€Adapting Electrochemical Grinding Strategy for Stable Silicon Anode. Advanced Functional Materials, 2022, 32, 2109887.	7.8	14
697	Stable SEI Formation on Al-Si-Mn Metallic Glass Li-Ion Anode. Journal of the Electrochemical Society, 2021, 168, 100521.	1.3	3
698	A Comprehensive Review of Graphene-Based Anode Materials for Lithium-ion Capacitors. Chemistry, 2021, 3, 1215-1246.	0.9	14
699	Carbon Yarnâ€Ballâ€Entangled SiO ₂ Anode with Excellent Electrochemical Performance for		10
	Lithiumâ€lon Batteries. Small, 2021, 17, e2103878.	5.2	12
700		5.2 2.0	7
700 701	Lithiumâ€lon Batteries. Small, 2021, 17, e2103878. Rheological Properties of Aqueous Sodium Alginate Slurries for LTO Battery Electrodes. Polymers,		
	Lithiumâ€Ion Batteries. Small, 2021, 17, e2103878. Rheological Properties of Aqueous Sodium Alginate Slurries for LTO Battery Electrodes. Polymers, 2021, 13, 3582. Si/SiOC/Carbon Lithiumâ€Ion Battery Negative Electrode with Multiple Buffer Media Derived from	2.0	7
701	Lithiumâ€lon Batteries. Small, 2021, 17, e2103878. Rheological Properties of Aqueous Sodium Alginate Slurries for LTO Battery Electrodes. Polymers, 2021, 13, 3582. Si/SiOC/Carbon Lithiumâ€lon Battery Negative Electrode with Multiple Buffer Media Derived from Crossâ€Linked Dimethacrylate and Poly (dimethyl siloxane). ChemistrySelect, 2021, 6, 10348-10354.	2.0 0.7	7
701 702	Lithiumâ€ion Batteries. Small, 2021, 17, e2103878. Rheological Properties of Aqueous Sodium Alginate Slurries for LTO Battery Electrodes. Polymers, 2021, 13, 3582. Si/SiOC/Carbon Lithiumâ€ion Battery Negative Electrode with Multiple Buffer Media Derived from Crossâ€Linked Dimethacrylate and Poly (dimethyl siloxane). ChemistrySelect, 2021, 6, 10348-10354. Si/Cu-Zn(ox)/C composite as anode material for Li-ion batteries. Solid State Ionics, 2021, 372, 115774. Synergistic effect of vinylene carbonate (VC) and LiNO3 as functional additives on interphase	2.0 0.7 1.3	7 1 5
701 702 703	 Lithiumâ€kon Batteries. Small, 2021, 17, e2103878. Rheological Properties of Aqueous Sodium Alginate Slurries for LTO Battery Electrodes. Polymers, 2021, 13, 3582. Si/SiOC/Carbon Lithiumâ€kon Battery Negative Electrode with Multiple Buffer Media Derived from Crossâ€Linked Dimethacrylate and Poly (dimethyl siloxane). ChemistrySelect, 2021, 6, 10348-10354. Si/Cu-Zn(ox)/C composite as anode material for Li-ion batteries. Solid State Ionics, 2021, 372, 115774. Synergistic effect of vinylene carbonate (VC) and LiNO3 as functional additives on interphase modulation for high performance SiO anodes. Journal of Power Sources, 2021, 514, 230595. Facile Synthesis of Porous SnSb Alloy Anode for Li-Ion Battery. Materials Sciences and Applications, 	2.00.71.34.0	7 1 5 14

#	Article	IF	CITATIONS
708	Clusterâ€Bridgingâ€Coordinated Bimetallic Metalâ~'Organic Framework as Highâ€Performance Anode Material for Lithiumâ€ion Storage. Small Structures, 2021, 2, 2100122.	6.9	25
709	Improving the electrochemical behaviors and discharge performance of as-rolled Mg-4Li alloys through multicomponent alloying. Journal of Alloys and Compounds, 2022, 895, 162536.	2.8	11
710	Nanotubular Nickel Hydrosilicate and Its Thermal Annealing Products as Anode Materials for Lithium Ion Batteries. Inorganic Materials, 2020, 56, 1248-1257.	0.2	4
711	Suitable thickness of carbon coating layers for silicon anode. Carbon, 2022, 186, 530-538.	5.4	57
712	Preparation of Silicon Nanoparticles by Pyrolysis of Organosilicon Compounds inside the Porous Carbon. Journal of Materials Science and Chemical Engineering, 2020, 08, 1-6.	0.2	0
713	Effect of Temperature and FEC on Silicon Anode Heat Generation Measured by Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2021, 168, 110509.	1.3	7
714	Charge Storage Behavior of Carbon Nanoparticles toward Alkali Metal Ions at Fast-Charging Rates. ACS Applied Energy Materials, 0, , .	2.5	2
715	In Situ Room-Temperature Cross-Linked Highly Branched Biopolymeric Binder Based on the Diels–Alder Reaction for High-Performance Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 56095-56108.	4.0	11
716	Homogenizing Silicon Domains in SiO _{<i>x</i>} Anode during Cycling and Enhancing Battery Performance via Magnesium Doping. ACS Applied Materials & Interfaces, 2021, 13, 52202-52214.	4.0	20
717	Al2O3 protective coating on silicon thin film electrodes and its effect on the aging mechanisms of lithium metal and lithium ion cells. Journal of Energy Storage, 2021, 44, 103479.	3.9	13
718	The Influence of Diffusion Barriers on the Capacitance Properties of Composite Anodes with Si–CuSi–Cu Composition. Technical Physics Letters, 2020, 46, 943-946.	0.2	0
719	Biowaste-derived Si@SiOx/C anodes for sustainable lithium-ion batteries. Electrochimica Acta, 2022, 403, 139580.	2.6	23
720	Anatase titanium dioxide as rechargeable ion battery electrode - A chronological review. Energy Storage Materials, 2022, 45, 201-264.	9.5	45
721	A nanosilver-actuated high-performance porous silicon anode from recycling of silicon waste. Materials Today Nano, 2022, 17, 100162.	2.3	7
722	A 2D covalent organic framework with ultra-large interlayer distance as high-rate anode material for lithium-ion batteries. Nano Research, 2022, 15, 9779-9784.	5.8	27
723	Bipyridine carboxylic acid as a high-performance anode material for lithium- and sodium-ion batteries. Electrochimica Acta, 2022, 405, 139628.	2.6	8
724	Optimal Synthesis and Application of a Si–Ti–Al Ternary Alloy as an Anode Material for Lithium-Ion Batteries. Materials, 2021, 14, 6912.	1.3	2
725	Controlling homogeneity of the first lithiation in methylated amorphous silicon. Electrochimica Acta, 2022, 403, 139655.	2.6	1

#	Article	IF	CITATIONS
726	NiP2/C nanocomposite as a high performance anode for sodium ion batteries. Electrochimica Acta, 2022, 403, 139686.	2.6	7
727	Dual carbon and void space confined SiOx/C@void@Si/C yolk-shell nanospheres with high-rate performances and outstanding cyclability for lithium-ion batteries anodes. Journal of Colloid and Interface Science, 2022, 610, 583-591.	5.0	22
728	Incorporation of aniline tetramer into alginate-grafted-polyacrylamide as polymeric binder for high-capacity silicon/graphite anodes. Chemical Engineering Journal, 2022, 433, 133553.	6.6	10
729	Threeâ€Dimensional Porous Carbon Framework Confined Si@TiO ₂ Nanoparticles as Anode Material for Highâ€Capacity Lithiumâ€lon Batteries. ChemElectroChem, 2022, 9, .	1.7	4
730	Silicon nanorod formation from powder feedstock through co-condensation in plasma flash evaporation and its feasibility for lithium-ion batteries. Scientific Reports, 2021, 11, 22445.	1.6	5
731	Interfacial nitrogen engineering of robust silicon/MXene anode toward high energy solid-state lithium-ion batteries. Journal of Energy Chemistry, 2022, 67, 727-735.	7.1	46
732	A low-cost and sustainable cross-linked dextrin as aqueous binder for silicon anodes in lithium-ion batteries. Solid State Ionics, 2021, 373, 115807.	1.3	6
733	Spontaneous nanominiaturization of silicon microparticles with structural stability as flexible anodes for lithium ion batteries. Carbon, 2022, 188, 238-245.	5.4	24
734	Large-Sized Nickel–Cobalt–Manganese Composite Oxide Agglomerate Anode Material for Long-Life-Span Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 13811-13818.	2.5	5
735	Strategies for improving rechargeable lithium-ion batteries: From active materials to CO ₂ emissions. Nanotechnology Reviews, 2021, 10, 1993-2026.	2.6	9
736	Interfacing Siâ€Based Electrodes: Impact of Liquid Electrolyte and Its Components. Advanced Materials Interfaces, 2022, 9, .	1.9	9
737	Nitrogen Plasma-Assisted Functionalization of Silicon/Graphite Anodes to Enable Fast Kinetics. ACS Applied Materials & Interfaces, 2022, 14, 5237-5246.	4.0	14
738	Piezoelectric-driven self-accelerated anion migration for SiOX-C/PbZr0.52Ti0.48O3 with durable lithium storage performance. Ceramics International, 2022, 48, 11257-11264.	2.3	7
739	Critical roles of reduced graphene oxide in the electrochemical performance of silicon/reduced graphene oxide hybrids for high rate capable lithium-ion battery anodes. Electrochimica Acta, 2022, 404, 139753.	2.6	4
740	Binary silicon-based thin-film anodes for lithium-ion batteries: A review. Journal of Power Sources, 2022, 520, 230871.	4.0	9
741	Self-healing and ultrastable anode based on room temperature liquid metal reinforced two-dimensional siloxene for high-performance lithium-ion batteries. Applied Materials Today, 2022, 26, 101300.	2.3	12
742	Tailoring a multifunctional, boron and fluoride-enriched solid-electrolyte interphase precursor towards high-rate and stable-cycling silicon anodes. Nano Energy, 2022, 93, 106811.	8.2	33
743	Distinct capacity fade modes of Nickel-rich/Graphite-SiOx power lithium ion battery. Journal of Energy Storage, 2022, 47, 103830.	3.9	7

#	Article	IF	CITATIONS
744	State-of-Charge Estimation of Li-ion Battery at Variable Ambient Temperature with Gated Recurrent Unit Network. , 2020, , .		9
745	Simulation of thermal runaway prediction model for nickel-rich Lithium ion batteries. , 2020, , .		4
746	Liquid electrolyte development for low-temperature lithium-ion batteries. Energy and Environmental Science, 2022, 15, 550-578.	15.6	159
747	Effect of Methane Injection Methods on the Preparation of Silicon Nanoparticles with Carbon Coating in Induction Thermal Plasma. Journal of Chemical Engineering of Japan, 2022, 55, 22-28.	0.3	2
748	Si-based polymer-derived ceramics for energy conversion and storage. Journal of Advanced Ceramics, 2022, 11, 197-246.	8.9	55
749	Dealloying of modified Al-Si alloy to prepare porous silicon as Lithium-ion battery anode material. International Journal of Green Energy, 2022, 19, 1658-1664.	2.1	1
750	Self-Constructed Intimate Interface on a Silicon Anode Enabled by a Phase-Convertible Electrolyte for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 805-813.	4.0	6
751	Orange–Red Si Quantum Dot LEDs from Recycled Rice Husks. ACS Sustainable Chemistry and Engineering, 2022, 10, 1765-1776.	3.2	17
752	In Situ Polymerized and Imidized Si@Polyimide Microcapsules with Flexible Solidâ€Electrolyte Interphase and Enhanced Electrochemical Activity for Liâ€Storage. ChemElectroChem, 2022, 9, .	1.7	5
753	Lithium Silicates in Anode Materials for Li-Ion and Li Metal Batteries. Batteries, 2022, 8, 2.	2.1	19
754	A Study on the Heat Effect during Magnesiothermic Reduction of Porous SiO2. Silicon, 2022, 14, 8409-8416.	1.8	4
755	Planar Si 5 and Ge 5 Pentagons beside Isolated Phosphide Anions in Lithium Phosphide Tetrelides Li 10+x Si 5 P and Li 10+x Ge 5 P. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	0
756	Trash to Treasure: Harmful Fly Ash Derived Silicon Nanoparticles for Enhanced Lithium-Ion Batteries. Silicon, 2022, 14, 7983-7990.	1.8	4
757	Structurally Reinforced Silicon/Graphene Composite for Lithiumâ€Ion Battery Anodes: Carbon Anchor as a Conductive Structural Support. ChemSusChem, 2022, 15, .	3.6	6
758	A High Performance Polyacrylonitrile Composite Separator with Cellulose Acetate and Nano-Hydroxyapatite for Lithium-Ion Batteries. Membranes, 2022, 12, 124.	1.4	12
759	New insights on MXene and its advanced hybrid materials for lithium-ion batteries. Sustainable Energy and Fuels, 2022, 6, 971-1013.	2.5	18
760	Na ₃ VO ₄ Nanoparticles on Honeycomb Carbon Networks for Enhanced Lithium Storage Performance. ACS Applied Nano Materials, 2022, 5, 2405-2413.	2.4	5
761	Single-crystal structure helps enhance the thermal performance of Ni-rich layered cathode materials for lithium-ion batteries. Chemical Engineering Journal, 2022, 434, 134638.	6.6	32

#	Article	IF	CITATIONS
762	Polyacrylic acid and β-cyclodextrin polymer cross-linking binders to enhance capacity performance of silicon/carbon composite electrodes in lithium-ion batteries. Journal of Colloid and Interface Science, 2022, 613, 857-865.	5.0	18
763	Ultrathin 2D Hexagon CoP/N-Doped Carbon Nanosheets for Robust Sodium Storage. SSRN Electronic Journal, 0, , .	0.4	0
764	Challenges of prelithiation strategies for next generation high energy lithium-ion batteries. Energy Storage Materials, 2022, 47, 297-318.	9.5	74
765	Synthetic Methodologies for Siâ€Containing Liâ€Storage Electrode Materials. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	6
766	To achieve controlled specific capacities of silicon-based anodes for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2022, 905, 164189.	2.8	14
767	A multifunctional polyimide enabled high performance silicon composite anode materials for Li-Ion batteries. Journal of Power Sources, 2022, 525, 231124.	4.0	8
768	A porous silicon anode prepared by dealloying a Sr-modified Al–Si eutectic alloy for lithium ion batteries. RSC Advances, 2022, 12, 7892-7897.	1.7	3
769	An Environmental Sustainability Analysis Tool for Next Generation Lithium Ion Batteries of Electric Vehicles. Procedia CIRP, 2022, 105, 489-494.	1.0	2
770	Multicoated composites of nano silicon and graphene nanoplatelets as anodes in Li-ion batteries. Materials Advances, 0, , .	2.6	1
771	First-principles calculations of bulk, surface and interfacial phases and properties of silicon graphite composites as anode materials for lithium ion batteries. Physical Chemistry Chemical Physics, 2022, , .	1.3	4
772	Bonding dependent lithium storage behavior of molybdenum oxides for next-generation Li-ion batteries. Journal of Materials Chemistry A, 2022, 10, 7718-7727.	5.2	7
773	Electrospun Ternary Composite Metal Oxide Fibers as an Anode for Lithium-Ion Batteries. Frontiers in Materials, 2022, 9, .	1.2	3
774	Influence of Additives on the Electrochemical and Interfacial Properties of SiO _{<i>x</i>} -Based Anode Materials for Lithium–Sulfur Batteries. Langmuir, 2022, 38, 2423-2434.	1.6	6
775	Encapsulating a Responsive Hydrogel Core for Void Space Modulation in High-Stability Graphene-Wrapped Silicon Anodes. ACS Applied Materials & Interfaces, 2022, 14, 10363-10372.	4.0	11
776	A Practical Guide for Using Electrochemical Dilatometry as Operando Tool in Battery and Supercapacitor Research. Energy Technology, 2022, 10, .	1.8	13
777	Lowâ€Oxidized Siloxene Nanosheets with High Capacity, Capacity Retention, and Rate Capability in Lithiumâ€Based Batteries. Advanced Materials Interfaces, 2022, 9, .	1.9	8
778	Effect of Pitch Coating on SiOx Alloy/Spherical Artificial Graphite Composites as Anode Materials for Lithiumâ€ion Batteries. ChemElectroChem, 2022, 9, .	1.7	3
779	Ionic Liquid@Metal-Organic Framework as a Solid Electrolyte in a Lithium-Ion Battery: Current Performance and Perspective at Molecular Level. Nanomaterials, 2022, 12, 1076.	1.9	12

#	Article	IF	CITATIONS
780	Interfaceâ€Adaptive Binder Enabled by Supramolecular Interactions for High apacity Si/C Composite Anodes in Lithiumâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	54
781	Facile synthesis of molybdenum disulfide adorned heteroatom-doped porous carbon for energy storage applications. Journal of Nanostructure in Chemistry, 2023, 13, 545-561.	5.3	5
782	Effects of LiCl template amount on structure, morphology, and electrochemical performance of porous Si@C anodes. Ionics, 0, , 1.	1.2	0
783	Effects of carbon impurities on the performance of silicon as an anode material for lithium ion batteries: An <i>ab initio</i> study. AIP Advances, 2022, 12, 035315.	0.6	5
784	Relationship between Mechanical and Electrochemical Property in Silicon Alloy Designed by Grain Size as Anode for Lithium-Ion Batteries. Journal of the Electrochemical Society, 0, , .	1.3	3
785	High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation. Nano-Micro Letters, 2022, 14, 94.	14.4	79
786	Real-Time Observation of Mechanical Evolution of Micro-Sized Si Anodes by In Situ Atomic Force Microscopy. , 2022, 4, 840-846.		9
787	Progress and perspectives on two-dimensional silicon anodes for lithium-ion batteries. ChemPhysMater, 2023, 2, 1-19.	1.4	5
788	A significant enhancement of cycling stability at fast charging rate through incorporation of Li3N into LiF-based SEI in SiO anode for Li-ion batteries. Electrochimica Acta, 2022, 412, 140107.	2.6	17
789	Hierarchically Structured Conductive Polymer Binders with Silver Nanowires for High-Performance Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17340-17347.	4.0	17
790	Quantification of lithium inventory loss in micro silicon anode via titration-gas chromatography. Journal of Power Sources, 2022, 531, 231327.	4.0	10
791	Mitigating irreversible capacity loss for higher-energy lithium batteries. Energy Storage Materials, 2022, 48, 44-73.	9.5	25
792	A lightweight localized high-concentration ether electrolyte for high-voltage Li-Ion and Li-metal batteries. Nano Energy, 2022, 96, 107102.	8.2	52
793	Fabrication of all-solid-state amorphous thin-film Lithium-ion batteries. , 2021, , .		1
794	Cross-Linked Sodium Alginate–Sodium Borate Hybrid Binders for High-Capacity Silicon Anodes in Lithium-Ion Batteries. Langmuir, 2022, 38, 402-410.	1.6	11
795	Influence of the Silicon–Carbon Interface on the Structure and Electrochemical Performance of a Phenolic Resin-Derived Si@C Core–Shell Nanocomposite-Based Anode. ACS Applied Materials & Interfaces, 2022, 14, 761-770.	4.0	11
796	Short-Process Multiscale Core–Shell Structure Buffer Control of a Ni/N Codoped Si@C Composite Using Waste Silicon Powder for Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 178-185.	2.5	5
797	Recent Applications of Molecular Structures at Silicon Anode Interfaces. Electrochem, 2021, 2, 664-676.	1.7	Ο

#	Article	IF	CITATIONS
799	A delicately designed functional binder enabling in situ construction of <scp>3D</scp> crossâ€ŀinking robust network for highâ€performance Si/graphite composite anode. Journal of Polymer Science, 2022, 60, 1835-1844.	2.0	8
800	Microâ€Mesoporous Carbons from Cyclodextrin Nanosponges Enabling Highâ€Capacity Silicon Anodes and Sulfur Cathodes for Lithiated Siâ€& Batteries. Chemistry - A European Journal, 2022, 28, .	1.7	48
801	Preparation of SiOx–TiO2/Si/CNTs composite microspheres as novel anodes for lithium-ion battery with good cycle stability. Journal of Materials Science: Materials in Electronics, 2022, 33, 11025-11037.	1.1	4
802	Recent Progress on Sb―and Biâ€based Chalcogenide Anodes for Potassiumâ€ŀon Batteries. Chemistry - an Asian Journal, 2022, 17, .	1.7	10
803	Direct-Contact Prelithiation of Si–C Anode Study as a Function of Time, Pressure, Temperature, and the Cell Ideal Time. ACS Applied Materials & Interfaces, 2022, 14, 17208-17220.	4.0	16
804	Crossâ€Linked Polymer Binder via Phthalic Acid for Stabilizing SiO _x Anodes. Macromolecular Chemistry and Physics, 0, , 2200068.	1.1	6
805	Influence of external pressure on silicon electrodes in lithium-ion cells. Electrochimica Acta, 2022, 419, 140354.	2.6	9
809	Metal-Organic Frameworks (Mofs) and Their Derivative as Electrode Materials for Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
810	Efficient Lithium Storage of Siâ€Based Anode Enabled by a Dualâ€Component Protection Strategy. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	6
811	Construction of air-stable pre-lithiated SiOx anodes for next-generation high-energy-density lithium-ion batteries. Cell Reports Physical Science, 2022, 3, 100872.	2.8	12
812	Alleviating expansion-induced mechanical degradation in lithium-ion battery silicon anodes via morphological design. Extreme Mechanics Letters, 2022, 54, 101746.	2.0	9
813	Synthesis of (Hyper)Branched Monohydroxyl Alkoxysilane Oligomers toward Silanized Urethane Prepolymers. Molecules, 2022, 27, 2790.	1.7	1
814	Ultrastable and Highâ€Rate 2D Siloxene Anode Enabled by Covalent Organic Framework Engineering for Advanced Lithiumâ€Ion Batteries. Small Methods, 2022, 6, e2200306.	4.6	18
815	Scalable Fabrication of Siliconâ€Graphite Microsphere by Mechanical Processing for Lithiumâ€lon Battery Anode with Large Capacity and High Cycling Stability. Batteries and Supercaps, 2022, 5, .	2.4	11
816	Silicon nanowire growth on carbon cloth for flexible Li-ion battery anodes. Materials Today Energy, 2022, 27, 101030.	2.5	11
817	Artificial solid electrolyte interphase coating to reduce lithium trapping in silicon anode for highly stable lithium storage. Surfaces and Interfaces, 2022, 31, 102029.	1.5	7
818	Environmentally Friendly Single-Step Laser Synthesis of Three-Dimensional C–Si–SiC Micro/Nanoporous Composite Lithium-ion Battery Electrodes and Electrochemical Performance. ACS Applied Energy Materials, 0, , .	2.5	1
819	Thermally Crosslinked Polyimide Binders for Si-alloy Anodes in Li-ion Batteries. Journal of Electrochemical Science and Technology, 0, , .	0.9	3

#	Article	IF	CITATIONS
820	Plasma-enabled synthesis and modification of advanced materials for electrochemical energy storage. Energy Storage Materials, 2022, 50, 161-185.	9.5	28
821	Recent Research Progress of Siliconâ€Based Anode Materials for Lithiumâ€Ion Batteries. ChemistrySelect, 2022, 7, .	0.7	15
822	Effect of Solvent Vapor Annealing on Diblock Copolymer-Templated Mesoporous Si/Ge/C Thin Films: Implications for Li-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 7278-7287.	2.4	2
823	Active material and interphase structures governing performance in sodium and potassium ion batteries. Chemical Science, 2022, 13, 6121-6158.	3.7	41
824	Enhanced rate performance of lithium-ion battery anodes using a cobalt-incorporated carbon conductive agent. Inorganic Chemistry Frontiers, 2022, 9, 3484-3493.	3.0	2
825	Microspheres comprise Si nanoparticles modified with TiO2 and wrapped by graphene as high-performance anode for lithium-ion batteries. Applied Surface Science, 2022, 598, 153790.	3.1	26
826	Facile silicon/graphene composite synthesis method for application in lithium-ion batteries. Ceramics International, 2022, 48, 25439-25444.	2.3	5
827	CTAB controlled electrochemical deposition of manganese dioxide with enhanced performance in aqueous Zn-ion battery. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 282, 115777.	1.7	4
828	High-areal-capacity of micron-sized silicon anodes in lithium-ion batteries by using wrinkled-multilayered-graphenes. Energy Storage Materials, 2022, 50, 234-242.	9.5	29
829	An interconnected and scalable hollow Si-C nanospheres/graphite composite for high-performance lithium-ion batteries. Journal of Colloid and Interface Science, 2022, 624, 555-563.	5.0	29
830	Ti-Fe-Si/C composites as anode materials for high energy li-ion batteries. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 5154-5171.	1.2	2
831	Cross-linked binder enables reversible volume changes of Si-based anodes from sustainable photovoltaic waste silicon. Materials Today Sustainability, 2022, 19, 100178.	1.9	8
832	Thermal-electrochemical parameters of a high energy lithium-ion cylindrical battery. Electrochimica Acta, 2022, 425, 140700.	2.6	8
833	Toward High Rate Performance Solid‣tate Batteries. Advanced Energy Materials, 2022, 12, .	10.2	24
834	Strategies for Controlling or Releasing the Influence Due to the Volume Expansion of Silicon inside Siâ °C Composite Anode for High-Performance Lithium-Ion Batteries. Materials, 2022, 15, 4264.	1.3	11
835	Nanoscale Visualization of the Electron Conduction Channel in the SiO/Graphite Composite Anode. ACS Applied Materials & Interfaces, 2022, 14, 30639-30648.	4.0	5
836	Electrochemical Characteristics of Amorphous Ni-P Electroplated Thin Film. Applied Sciences (Switzerland), 2022, 12, 5951.	1.3	0
837	Double-buffer-phase embedded Si/TiSi2/Li2SiO3 nanocomposite lithium storage materials by phase-selective reaction of SiO with metal hydrides. Energy Storage Materials, 2022, 50, 740-750.	9.5	9

#	Article	IF	CITATIONS
838	Enhancing the electronic properties of VLS-grown silicon nanowires by surface charge transfer. Applied Surface Science, 2022, 599, 153957.	3.1	4
839	Si Nanoparticles Confined in N, P- Doped Double Carbon as Efficient Anode Materials for Lithium Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
841	From Solid Waste to High-Performance Li3.25Si Anode: Towards High Initial Coulombic Efficiency Li-Si Alloy Electrodes for Li-Ion Batteries. New Journal of Chemistry, 0, , .	1.4	1
842	Internally inflated core-buffer-shell structural Si/EG/C composites as high-performance anodes for lithium-ion batteries. Science China Materials, 2022, 65, 2949-2957.	3.5	8
843	Integrating SEI into Layered Conductive Polymer Coatings for Ultrastable Silicon Anodes. Advanced Materials, 2022, 34, .	11.1	70
844	Low Temperature Aluminothermic Reduction of Natural Sepiolite to High-Performance Si Nanofibers for Li-Ion Batteries. Frontiers in Chemistry, 0, 10, .	1.8	2
845	Electrochemical Performance of Graphene Oxide/Black Arsenic Phosphorus/Carbon Nanotubes as Anode Material for LIBs. Materials, 2022, 15, 4576.	1.3	5
846	Enhancing the Interfacial Stability of Highâ€Energy Si/Graphite LiNi _{0.88} Co _{0.09} Mn _{0.03} O ₂ Batteries Employing a Dualâ€Anion Ionic Liquidâ€based Electrolyte. Batteries and Supercaps, 2022, 5, .	2.4	3
847	Emerging Organic Surface Chemistry for Si Anodes in Lithiumâ€lon Batteries: Advances, Prospects, and Beyond. Advanced Energy Materials, 2022, 12, .	10.2	60
848	A numerical study of mechanical degradation of Carbon-Coated Graphite Active Particles in Li-ion battery anodes. Journal of the Electrochemical Society, 0, , .	1.3	1
849	Electrochemical Patterning of Cu Current Collectors: An Enabler for Pure Silicon Anodes in Highâ€Energy Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2022, 9, .	1.9	6
850	Insights on polymeric materials for the optimization of high-capacity anodes. Composites Part B: Engineering, 2022, 243, 110131.	5.9	4
851	Enhancing Electrochemical Performance of Co(OH)2 Anode Materials by Introducing Graphene for Next-Generation Li-ion Batteries. Journal of Electrochemical Science and Technology, 2022, 13, 398-406.	0.9	4
852	A promising silicon/carbon xerogel composite for high-rate and high-capacity lithium-ion batteries. Electrochimica Acta, 2022, 426, 140790.	2.6	5
853	Thickness change and jelly roll deformation and its impact on the aging and lifetime of commercial 18650 cylindrical Li-ion cells with silicon containing anodes and nickel-rich cathodes. Journal of Energy Storage, 2022, 53, 105101.	3.9	8
854	Interfacial self-assembled Si@SiO @C microclusters with high tap density for high-performance Li-ion batteries. Materials Today Energy, 2022, , 101090.	2.5	7
855	A self-sacrifice template strategy to synthesize silicon@carbon with interior void space for boosting lithium storage performance. Advanced Composites and Hybrid Materials, 2022, 5, 3002-3011.	9.9	12
856	Advances and challenges in anode graphite recycling from spent lithium-ion batteries. Journal of Hazardous Materials, 2022, 439, 129678.	6.5	56

#	Article	IF	CITATIONS
857	ToF-SIMS Li Depth Profiling of Pure and Methylated Amorphous Silicon Electrodes After Their Partial Lithiation. ACS Applied Materials & Interfaces, 2022, 14, 35716-35725.	4.0	5
858	A flexible network polyimides binder for Si/graphite composite electrode in <scp>lithiumâ€ion</scp> batteries. International Journal of Energy Research, 2022, 46, 18100-18108.	2.2	6
859	Metal-organic frameworks (MOFs) and their derivative as electrode materials for lithium-ion batteries. Coordination Chemistry Reviews, 2022, 470, 214715.	9.5	50
860	Solid Electrolyte Interface Instability in Li-Ion Battery Anodes. SSRN Electronic Journal, O, , .	0.4	0
861	Facile Synthesis of Hybrid Anodes with Enhanced Lithium-Storage Performance Realized by a "Synergistic Effect― ACS Applied Materials & Interfaces, 2022, 14, 35769-35779.	4.0	6
862	Reduction of SiO ₂ by Metallic Li with a By-Product Soluble in Recyclable Molten LiCl Salt. ACS Applied Energy Materials, 2022, 5, 9402-9407.	2.5	1
863	C-Rate Capability of Ion-Beam Sputter Deposited Silicon, Carbon and Silicon/Carbon Multilayer Thin Films for Li-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 080525.	1.3	1
864	Functional Fiber Materials to Smart Fiber Devices. Chemical Reviews, 2023, 123, 613-662.	23.0	69
865	A Hierarchical Si/C Nanocomposite of Stable Conductive Network Formed Through Thermal Phase Separation of Asphaltenes for Highâ€Performance Liâ€ion Batteries. Small, 2022, 18, .	5.2	13
866	Epitaxial Metal–Organic Framework for Stabilizing the Formation of a Solid Electrolyte Interphase on the Si Anode of a Lithium-Ion Battery. ACS Sustainable Chemistry and Engineering, 2022, 10, 10615-10626.	3.2	2
867	Designer Cathode Additive for Stable Interphases on High-Energy Anodes. Journal of the American Chemical Society, 2022, 144, 15100-15110.	6.6	12
868	Insights into the Electrochemical Performance of 1.8 Ah Pouch and 18650 Cylindrical NMC:LFP Si:C Blend Li-ion Cells. Batteries, 2022, 8, 97.	2.1	2
869	Enabling Long-Cycling Life of Si-on-Graphite Composite Anodes via Fabrication of a Multifunctional Polymeric Artificial Solid–Electrolyte Interphase Protective Layer. ACS Applied Materials & Interfaces, 2022, 14, 38824-38834.	4.0	9
870	Progress Towards Extended Cycle Life Si-based Anodes: Investigation of Fluorinated Local High Concentration Electrolytes. Journal of the Electrochemical Society, 2022, 169, 090501.	1.3	4
871	2D/0D/1D Construction of Ti ₃ C ₂ @ZnCo ₂ O ₄ @Carbon Nanofibers for High-Capacity Lithium Storage. Industrial & Engineering Chemistry Research, 2022, 61, 12555-12566.	1.8	4
872	Quantitative Evaluation and Improvement of Interfacial Li ⁺ Transfer Between SiO _x Electrode and Garnetâ€Type Taâ€Doped Li ₇ La ₃ Zr ₂ O ₁₂ Electrolyte. ChemElectroChem, 2022, 9,	1.7	2
873	A Comparative Investigation of Various Binders for Silicon Anodes: Interactions with Other Components, Rheological Property, and Behavior in Operando Dilatometry. Macromolecular Materials and Engineering, 2022, 307, .	1.7	3
874	Si/Cu composite as anode material for lithium-ion batteries. Frontiers in Energy Research, 0, 10, .	1.2	2

#	Article	IF	CITATIONS
875	Effect of Si-Based Anode Lithiation on Charging Characteristics of All-Solid-State Lithium-Ion Battery. Batteries, 2022, 8, 87.	2.1	1
876	Facile co-electrodeposition of amorphous silicon anode with embedded nickel nanoparticles for enhancing rate capability in lithium-ion batteries. Thin Solid Films, 2022, 758, 139433.	0.8	0
877	A review of Li-ion batteries for autonomous mobile robots: Perspectives and outlook for the future. Journal of Power Sources, 2022, 545, 231943.	4.0	20
878	Propelling performance of silicon thin film lithium ion battery by appropriate dopants. Nano Energy, 2022, 102, 107688.	8.2	10
879	Oxygen-deficient Nb2O5-x decorated MCMB anode with much enhanced rate and cycle performances for Li-ion batteries. Applied Surface Science, 2022, 604, 154564.	3.1	4
880	Highly crystalline Prussian blue cubes filled with tin oxide as anode materials for lithium-ion batteries. Applied Surface Science, 2022, 604, 154533.	3.1	3
881	Interfacial design of silicon/carbon anodes for rechargeable batteries: A review. Journal of Energy Chemistry, 2023, 76, 576-600.	7.1	64
882	A Facile Carbon Coating on Mgâ€Embedded SiO <i>_x</i> Alloy for Fabrication of Highâ€Energy Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2022, 9, .	1.9	3
883	Reversible phosphorus-based five-electron transfer reaction for aluminium–phosphorus batteries. Energy Storage Materials, 2022, 53, 415-423.	9.5	3
884	Porous silicon particles embedded in N-doped graphene and carbon nanotube framework for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2022, 927, 167055.	2.8	8
885	Si Nanoparticles Confined in N, P- Doped Double Carbon as Efficient Anode Materials for Lithium Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
886	<i>In situ</i> growth of CoO nanosheets on a carbon fiber derived from corn cellulose as an advanced hybrid anode for lithium-ion batteries. New Journal of Chemistry, 2022, 46, 18664-18670.	1.4	3
887	Yolk–shell-structured Si@TiN nanoparticles for high-performance lithium-ion batteries. RSC Advances, 2022, 12, 19678-19685.	1.7	4
888	An Electrochemical Compatibility Study of Rtil-Based Electrolytes with Si-Based Anodes for Advanced Li-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
889	Tackling the Challenges in High Capacity Silicon Anodes for Li-Ion Cells. Engergy Systems in Electrical Engineering, 2022, , 149-180.	0.5	2
890	Design and mechanism exploration of single-crystalline NCM811 materials with superior comprehensive performance for Li-ion batteries. Chemical Engineering Journal, 2023, 452, 139431.	6.6	21
891	Multifunctional Self-Cross-Linked Copolymer Binder for High-Loading Silicon Anodes. ACS Applied Energy Materials, 2022, 5, 11386-11391.	2.5	4
892	The lithiation onset of amorphous silicon thin-film electrodes. Applied Physics Letters, 2022, 121, .	1.5	5

#	Article	IF	CITATIONS
893	Machine learning accelerated carbon neutrality research using big data—from predictive models to interatomic potentials. Science China Technological Sciences, 2022, 65, 2274-2296.	2.0	1
894	Assessment of Spherical Graphite for Lithiumâ€lon Batteries: Techniques, China's Status, Production Market, and Recommended Policies for Sustainable Development. Advanced Sustainable Systems, 2022, 6, .	2.7	1
895	Battery Management, Key Technologies, Methods, Issues, and Future Trends of Electric Vehicles: A Pathway toward Achieving Sustainable Development Goals. Batteries, 2022, 8, 119.	2.1	34
896	Random Copolymer Hydrogel as Elastic Binder for the SiO <i>_x</i> Microparticle Anode in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 42494-42503.	4.0	16
897	Impact of blending with polystyrene on the microstructural and electrochemical properties of SiOC ceramic. International Journal of Applied Ceramic Technology, 0, , .	1.1	0
898	Phase Control of Lithium Silicates for Processâ€Friendly Prelithiated SiO Anode Materials**. ChemElectroChem, 2022, 9, .	1.7	4
899	Amorphous MoO ₂ /C Nanospheres–Porous Graphene Composites for Pseudocapacitive Li Storage. ACS Applied Nano Materials, 2022, 5, 13463-13472.	2.4	4
900	A Liâ€Ion Battery Using Nanostructured Sn@C Alloying Anode and Highâ€Voltage LiNi _{0.35} Cu _{0.1} Mn _{1.45} Al _{0.1} O ₄ Spinel Cathode. Energy Technology, 2022, 10, .	1.8	3
901	Proton Storage in Metallic H _{1.75} MoO ₃ Nanobelts through the Grotthuss Mechanism. Journal of the American Chemical Society, 2022, 144, 17407-17415.	6.6	36
902	Silicon particles coated with a metal–organic framework as anodes for enhanced lithium-ion batteries. New Journal of Chemistry, 2022, 46, 21756-21761.	1.4	3
903	Co-intercalation-free ether electrolytes for graphitic anodes in lithium-ion batteries. Energy and Environmental Science, 2022, 15, 4823-4835.	15.6	24
904	Radical-Scavenging Activatable and Robust Polymeric Binder Based on Poly(acrylic acid) Cross-Linked with Tannic Acid for Silicon Anode of Lithium Storage System. Nanomaterials, 2022, 12, 3437.	1.9	5
905	High-Capacity and Long-Lived Silicon Anodes Enabled by Three-Dimensional Porous Conductive Network Design and Surface Reconstruction. ACS Applied Energy Materials, 2022, 5, 13877-13886.	2.5	9
906	Improving the Performance of Lithiumâ€Ion Batteries Using a Twoâ€Layer, Hard Carbonâ€Containing Silicon Anode for Use in Highâ€Energy Electrodes. Energy Technology, 2023, 11, .	1.8	6
907	Examining the Benefits of Using Boron Compounds in Lithium Batteries: A Comprehensive Review of Literature. Batteries, 2022, 8, 187.	2.1	7
908	Rechargeable Metasurfaces for Dynamic Color Display Based on a Compositional and Mechanical Dual-Altered Mechanism. Research, 2022, 2022, .	2.8	1
909	Silicon as Emerging Anode in Solid-State Batteries. ACS Energy Letters, 2022, 7, 4005-4016.	8.8	59
910	Water lily seed-inspired silicon/carbon composite anode synthesis for high-performance Li-ion battery. Journal of Materials Science, 2022, 57, 19006-19018.	1.7	2

#	Article	IF	CITATIONS
911	An analytical multiscale modeling of a nanocomposite anode with graphene nanosheets for lithium-ion battery. Acta Mechanica, 2022, 233, 5265-5281.	1.1	2
912	High-Temperature Magnesiothermic Reduction Enables HF-Free Synthesis of Porous Silicon with Enhanced Performance as Lithium-Ion Battery Anode. Molecules, 2022, 27, 7486.	1.7	3
913	Si nanoparticles confined in N, P- doped double carbon as efficient anode materials for lithium ion batteries. Journal of Alloys and Compounds, 2023, 935, 167850.	2.8	8
914	Mechanism study on the cycling stability of silicon-based lithium ion batteries as a function of temperature. Electrochimica Acta, 2023, 437, 141518.	2.6	2
915	Porous silicon covalently-grafted with chloro-styrenic carbons for fast Li+ diffusion and durable lithium-storage capability. Journal of Power Sources, 2023, 554, 232326.	4.0	7
916	V2O5-P2O5-TeO2 glass anodes for Li-ion batteries. Journal of Non-Crystalline Solids, 2023, 600, 122014.	1.5	2
917	Hollow Microscale and Nanoscale Structures as Anode Materials for Lithium-Ion Batteries. Chemistry of Materials, 2022, 34, 9803-9822.	3.2	3
918	Operando X-ray Studies of Ni-Containing Heteropolyvanadate Electrode for High-Energy Lithium-Ion Storage Applications. ACS Applied Materials & Interfaces, 2022, 14, 52035-52045.	4.0	3
919	Microstructure Engineered Silicon Alloy Anodes for Lithiumâ€lon Batteries: Advances and Challenges. Batteries and Supercaps, 2023, 6, .	2.4	12
920	Core-shell structured Si@Cu3Si-Cu nanoparticles coated by N-doped carbon as an enhanced capacity and high-rate anode for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2022, 927, 116973.	1.9	7
922	Partially Carbonized Polymer Binder with Polymer Dots for Silicon Anodes in Lithiumâ€Ion Batteries. Small, 2023, 19, .	5.2	9
923	A semi-fluid multi-functional binder for a high-performance silicon anode of lithium-ion batteries. Nanoscale, 0, , .	2.8	2
924	Modifying SiO as a ternary composite anode material((SiOx/G/SnO2)@C) for Lithium battery with high Li-ion diffusion and lower volume expansion. Electrochimica Acta, 2023, 439, 141655.	2.6	12
925	Micron SiOx encapsulated into amorphous B, N Co-doped carbon nanotube network for high-capacity and long-durable Li-ion half/full batteries. Chemical Engineering Journal, 2023, 455, 140820.	6.6	5
926	Exploration of metal organic frameworks and covalent organic frameworks for energy-related applications. Coordination Chemistry Reviews, 2023, 477, 214968.	9.5	77
927	Aluminum as a bi-functional reducing agent for the fabrication of graphene encapsulated silicon microspheres as anodes for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2023, 936, 168205.	2.8	2
928	Constructing practical micron silicon anodes via a homogeneous and robust network binder induced by a strong-affinity inorganic oligomer. Journal of Colloid and Interface Science, 2023, 634, 621-629.	5.0	1
929	Lithium-ion insertion properties of one-dimensional layered rhenium phosphide. Journal of Alloys and Compounds, 2023, 936, 168331.	2.8	2

#	Article	IF	CITATIONS
930	Silane coupling agent treated copper foil as a current collector for silicon anode. Journal of Central South University, 2022, 29, 3620-3629.	1.2	0
931	Recent advances in modification strategies of silicon-based lithium-ion batteries. Nano Research, 2023, 16, 3781-3803.	5.8	26
932	Porous-Induced Performance Enhancement of Flat Boron Sheets for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 21542-21549.	1.5	1
933	An electrochemical compatibility investigation of RTIL-based electrolytes with Si-based anodes for advanced Li-ion batteries. Materials Today Sustainability, 2023, 21, 100299.	1.9	2
934	Effective Formation of Superior Surface Films on Si Negative Electrodes in a Highly Concentrated Fluorinated Carbonate Ester Solvent/Diluent Electrolyte Solution System. ACS Applied Energy Materials, 0, , .	2.5	1
935	N-doped ZnC composites with gelatin coating as enhanced lithium-storage anode materials. Journal of Materials Science, 2022, 57, 21996-22005.	1.7	2
937	Constructing hierarchical porous structure in microsized silicon/carbon nanotubes composite anode with LiF-rich solid-electrolyte interfaces for highly stable lithium-ion batteries. JPhys Materials, 2023, 6, 014003.	1.8	1
938	Allâ€Solidâ€State Garnetâ€Based Lithium Batteries at Work–In Operando TEM Investigations of Delithiation/Lithiation Process and Capacity Degradation Mechanism. Advanced Science, 2023, 10, .	5.6	8
939	Strategies for Minimizing Charging Time in Commercial Nickel-Rich/Silicon-Graphite Lithium-Ion Batteries. Batteries, 2022, 8, 285.	2.1	0
940	Critical Review on Internal and External Battery Thermal Management Systems for Fast Charging Applications. Advanced Energy Materials, 2023, 13, .	10.2	14
941	Review on the Experimental Characterization of Fracture in Active Material for Lithium-Ion Batteries. Energies, 2022, 15, 9168.	1.6	9
941 942		1.6 1.7	9 0
	Energies, 2022, 15, 9168. High-performance SiGe anode materials obtained by dealloying a Sr-modified Al–Si–Ge eutectic		
942	 Energies, 2022, 15, 9168. High-performance SiGe anode materials obtained by dealloying a Sr-modified Al–Si–Ge eutectic precursor. RSC Advances, 2023, 13, 2672-2679. Preparation of Hollow Nanostructured Si Spheres by Zincothermic Reduction of SiO₂ to 	1.7	0
942 943	 Energies, 2022, 15, 9168. High-performance SiGe anode materials obtained by dealloying a Sr-modified Al–Si–Ge eutectic precursor. RSC Advances, 2023, 13, 2672-2679. Preparation of Hollow Nanostructured Si Spheres by Zincothermic Reduction of SiO₂ to Si for Lithium-Ion Batteries. ACS Applied Nano Materials, 2023, 6, 502-511. Understanding Interfacial Chemistry Interactions in Energy-Dense Lithium-Ion Electrodes. Accounts of 	1.7 2.4	0 4
942 943 944	 Energies, 2022, 15, 9168. High-performance SiGe anode materials obtained by dealloying a Sr-modified Al–Si–Ge eutectic precursor. RSC Advances, 2023, 13, 2672-2679. Preparation of Hollow Nanostructured Si Spheres by Zincothermic Reduction of SiO₂ to Si for Lithium-Ion Batteries. ACS Applied Nano Materials, 2023, 6, 502-511. Understanding Interfacial Chemistry Interactions in Energy-Dense Lithium-Ion Electrodes. Accounts of Materials Research, 2023, 4, 156-167. Improving Cycle Life of Silicon-Dominant Anodes Based on Microscale Silicon Particles under Partial 	1.7 2.4 5.9	0 4 3
942 943 944 945	 Energies, 2022, 15, 9168. High-performance SiGe anode materials obtained by dealloying a Sr-modified Al–Si–Ge eutectic precursor. RSC Advances, 2023, 13, 2672-2679. Preparation of Hollow Nanostructured Si Spheres by Zincothermic Reduction of SiO₂ to Si for Lithium-Ion Batteries. ACS Applied Nano Materials, 2023, 6, 502-511. Understanding Interfacial Chemistry Interactions in Energy-Dense Lithium-Ion Electrodes. Accounts of Materials Research, 2023, 4, 156-167. Improving Cycle Life of Silicon-Dominant Anodes Based on Microscale Silicon Particles under Partial Lithiation. Batteries, 2023, 9, 58. Recycling of graphite anode from spent lithiumâ€ion batteries: Advances and perspectives. EcoMat, 2023, 	1.7 2.4 5.9 2.1	0 4 3 1

#	Article	IF	CITATIONS
949	An Elastic Cross-Linked Binder for Silicon Anodes in Lithium-Ion Batteries with a High Mass Loading. ACS Applied Materials & Interfaces, 2023, 15, 6594-6602.	4.0	13
950	Modified preparation of Si@C@TiO ₂ porous microspheres as anodes for high-performance lithium-ion batteries. Dalton Transactions, 2023, 52, 2463-2471.	1.6	7
951	Effect of Graphite Morphology on the Electrochemical and Mechanical Properties of SiOx/Graphite Composite Anode. Batteries, 2023, 9, 78.	2.1	0
952	Control of nanoparticle dispersion, SEI composition, and electrode morphology enables long cycle life in high silicon content nanoparticle-based composite anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2023, 11, 5257-5266.	5.2	4
953	The utilization of black liquor from rice straw pretreatment stage on the syntheses of carbon-based materials using in anodes ion-lithium batteries production. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	4
954	Probing depth-dependent inhomogeneous lithium concentration in thick LiNi0.88Co0.09Al0.03O2 cathodes for lithium-ion batteries. Journal of Alloys and Compounds, 2023, 943, 169029.	2.8	4
955	A novel self-separating silicon nanowire thin film and application in lithium-ion batteries. Nano Express, 2022, 3, 045010.	1.2	0
956	Operando swelling measurement of silicon carbon composite based anode in pouch cell: Effect of external pressure, balancing and anode initial porosity. Journal of Energy Storage, 2023, 64, 107174.	3.9	2
957	Binders for Si based electrodes: Current status, modification strategies and perspective. Energy Storage Materials, 2023, 59, 102776.	9.5	3
958	A simple and green self-conversion method to construct silicon hollow spheres for high-performance Li-ion battery anodes. Electrochimica Acta, 2023, 443, 141950.	2.6	6
959	In Situ Preparation of High-Performance Silicon-Based Integrated Electrodes Using Cross-Linked Cyclodextrins. ACS Omega, 2023, 8, 5683-5691.	1.6	1
960	A review of research needs in nondestructive evaluation for quality verification in electric vehicle lithium-ion battery cell manufacturing. Journal of Power Sources, 2023, 561, 232742.	4.0	13
961	Carbon nanofibers with hybrid crystalline-amorphous silicon nanoparticles: high-rate capable lithium-ion battery. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
962	Development and Validation of a ReaxFF Reactive Force Field for Modeling Silicon–Carbon Composite Anode Materials in Lithium-Ion Batteries. Journal of Physical Chemistry C, 2023, 127, 2818-2834.	1.5	6
963	Current Challenges, Progress and Future Perspectives of Aluminum-Ion Batteries. Applied Solar Energy (English Translation of Geliotekhnika), 2022, 58, 334-354.	0.2	0
964	Poly(acrylic acid) locally enriched in slurry enhances the electrochemical performance of the SiO _{<i>x</i> (j>x (sub> lithium-ion battery anode. Journal of Materials Chemistry A, 2023, 11, 6205-6216.}	5.2	6
965	Investigation of Xanthan Gum and Carboxymethyl Cellulose Binders for the Silicon Anode of Lithium-Ion Batteries. Journal of the Electrochemical Society, 2023, 170, 020534.	1.3	1
966	Effects of Lithium Polysulfides on the Formation of Solid Electrolyte Interfaces in Silicon Anodes. ACS Applied Materials & Interfaces, 0, , .	4.0	0

#	Article	IF	CITATIONS
967	Recent Advances in the Structural Design of Silicon/Carbon Anodes for Lithium Ion Batteries: A Review. Coatings, 2023, 13, 436.	1.2	5
968	Incorporation of Embedded Protective Layers to Circumvent the Low LiNO ₃ Solubility Problem and Enhance Li Metal Anode Cycling Performance. ACS Applied Energy Materials, 2023, 6, 2311-2319.	2.5	1
969	Construction of a core–double-shell structured Si@graphene@Al ₂ O ₃ composite for a high-performance lithium-ion battery anode. New Journal of Chemistry, 2023, 47, 6313-6322.	1.4	2
970	High-performance SiO electrodes for lithium-ion batteries: merged effects of a new polyacrylate binder and an electrode-maturation process. Materials Advances, 2023, 4, 1637-1647.	2.6	2
971	Insight into the decay mechanism of non-ultra-thin silicon film anode for lithium-ion batteries. Electrochimica Acta, 2023, 448, 142112.	2.6	2
972	N-Type Polyoxadiazole Conductive Polymer Binders Derived High-Performance Silicon Anodes Enabled by Crosslinking Metal Cations. ACS Applied Materials & Interfaces, 2023, 15, 12946-12956.	4.0	3
973	The structural behavior of electrochemically delithiated LixNi0.8Co0.15Al0.05O2 (x<1) battery cathodes. Journal of Power Sources, 2023, 564, 232799.	4.0	4
974	Link between anisotropic electrochemistry and surface transformations at singleâ€crystal silicon electrodes: Implications for lithiumâ€ion batteries. Natural Sciences, 2023, 3, .	1.0	3
975	Invited: Investigation of Carbon/Copper Multilayer to Examine the Influence of Copper Coating on the Li-Storage Performance of Carbon. Energies, 2023, 16, 2740.	1.6	3
976	Enhancing the Electrochemical Properties of Silicon Nanoparticles by Grapheneâ€Based Aerogels. Energy Technology, 0, , .	1.8	0
977	State-of-art progress and perspectives on alloy-type anode materials for potassium-ion batteries. Materials Chemistry Frontiers, 2023, 7, 3011-3036.	3.2	9
978	Toward the Improvement of Silicon-Based Composite Electrodes via an In-Situ Si@C-Graphene Composite Synthesis for Li-Ion Battery Applications. Materials, 2023, 16, 2451.	1.3	2
979	Silicon nanoparticles encapsulated in Si ₃ N ₄ /carbon sheaths as an anode material for lithium-ion batteries. Nanotechnology, 2023, 34, 255401.	1.3	2
980	TiO2-Coated Silicon Nanoparticle Core-Shell Structure for High-Capacity Lithium-Ion Battery Anode Materials. Nanomaterials, 2023, 13, 1144.	1.9	3
981	3D reduced graphene oxide wrapped MoS2@Sb2S3 heterostructures for high performance sodium-ion batteries. Applied Surface Science, 2023, 624, 157106.	3.1	5
982	Two-Dimensional Mesoporous Materials for Energy Storage and Conversion: Current Status, Chemical Synthesis and Challenging Perspectives. Electrochemical Energy Reviews, 2023, 6, .	13.1	15
983	Recent Advances in Ball-Milling-Based Silicon Anodes for Lithium-Ion Batteries. Energies, 2023, 16, 3099.	1.6	3
984	Solid Electrolyte Interphase elastic instability in Li-ion battery anodes. Extreme Mechanics Letters, 2023, 61, 102014.	2.0	1

#	Article	IF	CITATIONS
985	From laboratory innovations to materials manufacturing for lithium-based batteries. Nature Energy, 2023, 8, 329-339.	19.8	69
986	Stable and high-capacity SiO negative electrode held in reversibly deformable sponge-like matrix of carbon nanotubes. Carbon, 2023, 209, 118014.	5.4	2
987	Upgraded lithium storage performance of defect-rich Si@C anode assisted by Fe2O3-induced pseudocapacitance. Electrochimica Acta, 2023, 455, 142430.	2.6	2
988	Adapting Simultaneous in Operando Electrochemical Quartz Crystal Microbalance and Electrochemical Impedance Spectroscopy to Studies of Solid Electrolyte Interface Layer Formation on Amorphous Silicon Anodes. Journal of the Electrochemical Society, 2023, 170, 050503.	1.3	1
989	Microwave-Assisted Metal-Organic Frameworks Derived Synthesis of Zn2GeO4 Nanowire Bundles for Lithium-Ion Batteries. Nanomaterials, 2023, 13, 1432.	1.9	1
1004	Open issues and future challenges. , 2023, , 491-519.		0
1005	Optimising the negative electrode material and electrolytes for lithium ion battery. AIP Conference Proceedings, 2023, , .	0.3	0
1023	<i>In Situ</i> Prelithiation by Direct Integration of Lithium Mesh into Battery Cells. Nano Letters, 2023, 23, 5042-5047.	4.5	8
1029	A review of silicon oxycarbide ceramics as next generation anode materials for lithium-ion batteries and other electrochemical applications. Journal of Materials Chemistry A, 2023, 11, 20324-20348.	5.2	5
1040	Battery safety. , 2023, , 825-878.		0
1048	Post-mortem studies of mesoporous carbon coated, nanostructured silicon anode of li-ion cell. AIP Conference Proceedings, 2023, , .	0.3	0
1084	The interface engineering and structure design of an alloying-type metal foil anode for lithium ion batteries: a review. Materials Horizons, 2024, 11, 903-922.	6.4	0