ISLES 2015 - A public evaluation benchmark for ischem multispectral MRI

Medical Image Analysis 35, 250-269 DOI: 10.1016/j.media.2016.07.009

Citation Report

#	Article	IF	CITATIONS
1	Longitudinal multiple sclerosis lesion segmentation: Resource and challenge. NeuroImage, 2017, 148, 77-102.	2.1	215
2	Comparison of classification methods for voxel-based prediction of acute ischemic stroke outcome following intra-arterial intervention. Proceedings of SPIE, 2017, , .	0.8	3
3	Statistical appearance models based on probabilistic correspondences. Medical Image Analysis, 2017, 37, 146-159.	7.0	11
4	Combining deep learning with anatomical analysis for segmentation of the portal vein for liver SBRT planning. Physics in Medicine and Biology, 2017, 62, 8943-8958.	1.6	65
5	Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks. NeuroImage: Clinical, 2017, 15, 633-643.	1.4	221
6	Automated Infarct Core Volumetry Within the Hypoperfused Tissue. Journal of Computer Assisted Tomography, 2017, 41, 515-520.	0.5	11
7	Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical Image Analysis, 2017, 36, 61-78.	7.0	2,382
8	Prostate detection and segmentation based on convolutional neural network and topological derivative. , 2017, , .		6
9	Multicomponent and Longitudinal Imaging Seen as a Communication Channel—An Application to Stroke. Entropy, 2017, 19, 187.	1.1	4
10	Effects and mechanism of dexmedetomidine on neuronal cell injury induced by hypoxia-ischemia. BMC Anesthesiology, 2017, 17, 117.	0.7	22
11	Neuropsychology and cognitive neuroscience in the fMRI era: A recapitulation of localizationist and connectionist views Neuropsychology, 2017, 31, 972-980.	1.0	20
12	A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Scientific Data, 2018, 5, 180011.	2.4	170
13	MRI Augmentation via Elastic Registration forÂBrain Lesions Segmentation. Lecture Notes in Computer Science, 2018, , 369-380.	1.0	7
14	Enhancing interpretability of automatically extracted machine learning features: application to a RBM-Random Forest system on brain lesion segmentation. Medical Image Analysis, 2018, 44, 228-244.	7.0	76
15	Segmentation of Ischemic Stroke Lesion in Brain MRI Based on Social Group Optimization and Fuzzy-Tsallis Entropy. Arabian Journal for Science and Engineering, 2018, 43, 4365-4378.	1.7	95
16	White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. NeuroImage: Clinical, 2018, 17, 918-934.	1.4	164
17	3D Randomized Connection Network With Graph-Based Label Inference. IEEE Transactions on Image Processing, 2018, 27, 3883-3892.	6.0	3
18	Automatic Segmentation of Acute Ischemic Stroke From DWI Using 3-D Fully Convolutional DenseNets. IEEE Transactions on Medical Imaging, 2018, 37, 2149-2160.	5.4	141

#	Article	IF	CITATIONS
19	VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage, 2018, 170, 446-455.	2.1	539
20	NeXt for neuroâ€radiosurgery: A fully automatic approach for necrosis extraction in brain tumor MRI using an unsupervised machine learning technique. International Journal of Imaging Systems and Technology, 2018, 28, 21-37.	2.7	41
21	[OA216] Development of breast tumours models database. Physica Medica, 2018, 52, 82.	0.4	1
22	[OA215] Impact of tube potential and beam width of CBCT scans on size-specific dose estimate (SSDE) factors. Physica Medica, 2018, 52, 82.	0.4	0
23	An Approach to Segment Computed Tomography Images using Bat Algorithm. , 2018, , .		2
24	Symmetry determined superpixels for efficient lesion segmentation of ischemic stroke from MRI. , 2018, 2018, 742-745.		4
25	Why rankings of biomedical image analysis competitions should be interpreted with care. Nature Communications, 2018, 9, 5217.	5.8	198
26	Learning to Predict Ischemic Stroke Growth on Acute CT Perfusion Data by Interpolating Low-Dimensional Shape Representations. Frontiers in Neurology, 2018, 9, 989.	1.1	27
27	Stroke Lesion Outcome Prediction Based on MRI Imaging Combined With Clinical Information. Frontiers in Neurology, 2018, 9, 1060.	1.1	55
28	[OA214] An experience with open source machine learning software deepmedic. Physica Medica, 2018, 52, 81-82.	0.4	0
29	Local spatio-temporal encoding of raw perfusion MRI for the prediction of final lesion in stroke. Medical Image Analysis, 2018, 50, 117-126.	7.0	23
30	Towards Clinical Diagnosis: Automated Stroke Lesion Segmentation on Multi-Spectral MR Image Using Convolutional Neural Network. IEEE Access, 2018, 6, 57006-57016.	2.6	52
31	Detection of Brain Tumor based on Features Fusion and Machine Learning. Journal of Ambient Intelligence and Humanized Computing, 2024, 15, 983-999.	3.3	79
32	Pipeline for Analyzing Lesions After Stroke (PALS). Frontiers in Neuroinformatics, 2018, 12, 63.	1.3	19
33	Feasibility of Deep Learning–Based PET/MR Attenuation Correction in the Pelvis Using Only Diagnostic MR Images. Tomography, 2018, 4, 138-147.	0.8	42
34	How to Exploit Weaknesses in Biomedical Challenge Design and Organization. Lecture Notes in Computer Science, 2018, , 388-395.	1.0	10
35	ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI. Frontiers in Neurology, 2018, 9, 679.	1.1	117
36	Multi-scale neural network for automatic segmentation of ischemic strokes on acute perfusion images. , 2018, , .		9

#	Article	IF	CITATIONS
37	Rapid Automated Quantification of Cerebral Leukoaraiosis on CT Images: A Multicenter Validation Study. Radiology, 2018, 288, 573-581.	3.6	25
38	Algorithms for left atrial wall segmentation and thickness – Evaluation on an open-source CT and MRI image database. Medical Image Analysis, 2018, 50, 36-53.	7.0	40
39	Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images. NeuroImage, 2018, 183, 650-665.	2.1	155
40	Neurologist-level classification of stroke using a Structural Co-Occurrence Matrix based on the frequency domain. Computers and Electrical Engineering, 2018, 71, 398-407.	3.0	15
41	Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images. NeuroImage, 2018, 183, 150-172.	2.1	80
42	Ischemic stroke lesion segmentation using stacked sparse autoencoder. Computers in Biology and Medicine, 2018, 99, 38-52.	3.9	49
43	Segmentation of ischemic stroke lesion from 3d mr images using random forest. Multimedia Tools and Applications, 2019, 78, 6559-6579.	2.6	12
44	Adaptive Feature Recombination and Recalibration for Semantic Segmentation With Fully Convolutional Networks. IEEE Transactions on Medical Imaging, 2019, 38, 2914-2925.	5.4	58
45	Semiâ€automated infarct segmentation from followâ€up noncontrast CT scans in patients with acute ischemic stroke. Medical Physics, 2019, 46, 4037-4045.	1.6	15
46	A comparison of automated lesion segmentation approaches for chronic stroke T1â€weighted MRI data. Human Brain Mapping, 2019, 40, 4669-4685.	1.9	49
47	Social-Group-Optimization based tumor evaluation tool for clinical brain MRI of Flair/diffusion-weighted modality. Biocybernetics and Biomedical Engineering, 2019, 39, 843-856.	3.3	70
48	Convolutional neural networks for multi-class brain disease detection using MRI images. Computerized Medical Imaging and Graphics, 2019, 78, 101673.	3.5	192
49	Data on MRI brain lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization. Data in Brief, 2019, 27, 104628.	0.5	24
50	A New Approach for Brain Tumor Segmentation and Classification Based on Score Level Fusion Using Transfer Learning. Journal of Medical Systems, 2019, 43, 326.	2.2	98
51	Delineation of Ischemic Core and Penumbra Volumes from MRI using MSNet Architecture. , 2019, 2019, 6730-6733.		2
52	Classification of Ischemic Stroke Lesions Based on Cascaded Branch Compression Neural Network. IOP Conference Series: Materials Science and Engineering, 2019, 563, 042003.	0.3	4
53	Understanding Deep Learning Techniques for Image Segmentation. ACM Computing Surveys, 2020, 52, 1-35.	16.1	214
54	Neural Network–derived Perfusion Maps for the Assessment of Lesions in Patients with Acute Ischemic Stroke. Radiology: Artificial Intelligence, 2019, 1, e190019.	3.0	13

#	Article	IF	CITATIONS
55	A deep supervised approach for ischemic lesion segmentation from multimodal MRI using Fully Convolutional Network. Applied Soft Computing Journal, 2019, 84, 105685.	4.1	49
56	Automated segmentation of haematoma and perihaematomal oedema in MRI of acute spontaneous intracerebral haemorrhage. Computers in Biology and Medicine, 2019, 106, 126-139.	3.9	10
57	Evaluation of Enhanced Learning Techniques for Segmenting Ischaemic Stroke Lesions in Brain Magnetic Resonance Perfusion Images Using a Convolutional Neural Network Scheme. Frontiers in Neuroinformatics, 2019, 13, 33.	1.3	19
58	Stroke Lesion Segmentation in FLAIR MRI Datasets Using Customized Markov Random Fields. Frontiers in Neurology, 2019, 10, 541.	1.1	30
59	Ensemble of Convolutional Neural Networks Improves Automated Segmentation of Acute Ischemic Lesions Using Multiparametric Diffusion-Weighted MRI. American Journal of Neuroradiology, 2019, 40, 938-945.	1.2	41
60	Semi-supervised Brain Lesion Segmentation with an Adapted Mean Teacher Model. Lecture Notes in Computer Science, 2019, , 554-565.	1.0	103
61	Efficient multi-kernel DCNN with pixel dropout for stroke MRI segmentation. Neurocomputing, 2019, 350, 117-127.	3.5	28
62	Segmentation Squeeze-and-Excitation Blocks in Stroke Lesion Outcome Prediction. , 2019, , .		1
63	3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. European Radiology Experimental, 2019, 3, 8.	1.7	55
64	Multi-scale Deep Convolutional Neural Network for Stroke Lesions Segmentation on CT Images. Lecture Notes in Computer Science, 2019, , 283-291.	1.0	4
65	RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge. IEEE Transactions on Medical Imaging, 2019, 38, 1858-1874.	5.4	139
66	Ischemic Stroke Lesion Segmentation in CT Perfusion Scans Using Pyramid Pooling and Focal Loss. Lecture Notes in Computer Science, 2019, , 352-363.	1.0	23
67	Perfusion Parameter Estimation Using Neural Networks and Data Augmentation. Lecture Notes in Computer Science, 2019, , 439-446.	1.0	4
68	An Effective Approach for Sub-acute Ischemic Stroke Lesion Segmentation by Adopting Meta-Heuristics Feature Selection Technique Along with Hybrid Naive Bayes and Sample-Weighted Random Forest Classification. Sensing and Imaging, 2019, 20, 1.	1.0	13
69	Combining Good Old Random Forest and DeepLabv3+ for ISLES 2018 CT-Based Stroke Segmentation. Lecture Notes in Computer Science, 2019, , 335-342.	1.0	3
70	voxel-GAN: Adversarial Framework for Learning Imbalanced Brain Tumor Segmentation. Lecture Notes in Computer Science, 2019, , 321-333.	1.0	14
71	Brain Ischemic Stroke Segmentation from Brain MRI Between Clustering Methods and Region Based Methods. Studies in Big Data, 2019, , 144-154.	0.8	2
72	Dense Multi-path U-Net for Ischemic Stroke Lesion Segmentation in Multiple Image Modalities. Lecture Notes in Computer Science, 2019, , 271-282.	1.0	39

#	Article	IF	Citations
73	Combination of hand-crafted and unsupervised learned features for ischemic stroke lesion detection from Magnetic Resonance Images. Biocybernetics and Biomedical Engineering, 2019, 39, 410-425.	3.3	8
74	Ischemic Stroke Lesion Segmentation Using Adversarial Learning. Lecture Notes in Computer Science, 2019, , 292-300.	1.0	7
75	V-Net and U-Net for Ischemic Stroke Lesion Segmentation in a Small Dataset of Perfusion Data. Lecture Notes in Computer Science, 2019, , 301-309.	1.0	8
76	Automatic Brain Structures Segmentation Using Deep Residual Dilated U-Net. Lecture Notes in Computer Science, 2019, , 385-393.	1.0	6
77	A Novel Domain Adaptation Framework for Medical Image Segmentation. Lecture Notes in Computer Science, 2019, , 289-298.	1.0	25
78	ISLES Challenge: U-Shaped Convolution Neural Network with Dilated Convolution for 3D Stroke Lesion Segmentation. Lecture Notes in Computer Science, 2019, , 319-327.	1.0	10
79	Hybrid loss guided densely connected convolutional neural network for Ischemic Stroke Lesion segmentation. , 2019, , .		2
80	Simplified Automated Segmentation of Acute Ischemic Stroke Lesions from Multimodal MRI: A knowledge-based learning approach. , 2019, , .		0
81	Automatic Detection of Ischemic Stroke Lesion from Multimodal MR Image. , 2019, , .		3
82	Learning-based CT Perfusion Image Denoising with Only Noisy Training Data. , 2019, , .		2
83	Adversarially Trained Convolutional Neural Networks for Semantic Segmentation of Ischaemic Stroke Lesion using Multisequence Magnetic Resonance Imaging. , 2019, 2019, 1010-1013.		7
84	CT-To-MR Conditional Generative Adversarial Networks for Ischemic Stroke Lesion Segmentation. , 2019, , .		8
85	Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Artificial Intelligence in Medicine, 2019, 95, 64-81.	3.8	257
86	Unsupervised pathology detection in medical images using conditional variational autoencoders. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 451-461.	1.7	52
87	Sleep as a model to understand neuroplasticity and recovery after stroke: Observational, perturbational and interventional approaches. Journal of Neuroscience Methods, 2019, 313, 37-43.	1.3	13
88	Deep learning based vein segmentation from susceptibility-weighted images. Computing (Vienna/New) Tj ETQq1	1 0.7843	L4 _r gBT /Ove
89	Shannon's Entropy and Watershed Algorithm Based Technique to Inspect Ischemic Stroke Wound. Smart Innovation, Systems and Technologies, 2019, , 23-31.	0.5	35
90	Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality MRI. Neural Computing and Applications, 2020, 32, 6545-6558.	3.2	53

#	Article	IF	CITATIONS
91	Missing MRI Pulse Sequence Synthesis Using Multi-Modal Generative Adversarial Network. IEEE Transactions on Medical Imaging, 2020, 39, 1170-1183.	5.4	96
92	Registration with probabilistic correspondences — Accurate and robust registration for pathological and inhomogeneous medical data. Computer Vision and Image Understanding, 2020, 190, 102839.	3.0	5
93	Convolutional neural network with batch normalization for glioma and stroke lesion detection using MRI. Cognitive Systems Research, 2020, 59, 304-311.	1.9	50
94	Fully Automated and Real-Time Volumetric Measurement of Infarct Core and Penumbra in Diffusion- and Perfusion-Weighted MRI of Patients with Hyper-Acute Stroke. Journal of Digital Imaging, 2020, 33, 262-272.	1.6	15
95	Uncertainty quantification using Bayesian neural networks in classification: Application to biomedical image segmentation. Computational Statistics and Data Analysis, 2020, 142, 106816.	0.7	233
96	A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Computing and Applications, 2020, 32, 15897-15908.	3.2	69
97	Automatic Neuroimage Processing and Analysis in Stroke—A Systematic Review. IEEE Reviews in Biomedical Engineering, 2020, 13, 130-155.	13.1	23
98	A Fast Circle Detection Method Based on a Tri-Class Thresholding for High Detail FPC Images. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 1327-1335.	2.4	10
99	BCEFCM_S: Bias correction embedded fuzzy c-means with spatial constraint to segment multiple spectral images with intensity inhomogeneities and noises. Signal Processing, 2020, 168, 107347.	2.1	24
100	Simulated perfusion MRI data to boost training of convolutional neural networks for lesion fate prediction in acute stroke. Computers in Biology and Medicine, 2020, 116, 103579.	3.9	10
101	lschemic stroke segmentation in multi-sequence MRI by symmetry determined superpixel based hierarchical clustering. Computers in Biology and Medicine, 2020, 116, 103536.	3.9	13
102	Deep convolutional neural network for accurate segmentation and quantification of white matter hyperintensities. Neurocomputing, 2020, 384, 231-242.	3.5	24
103	3D Deep Neural Network Segmentation of Intracerebral Hemorrhage: Development and Validation for Clinical Trials. Neuroinformatics, 2021, 19, 403-415.	1.5	31
104	Neuroimaging and deep learning for brain stroke detection - A review of recent advancements and future prospects. Computer Methods and Programs in Biomedicine, 2020, 197, 105728.	2.6	50
105	Floor of log: a novel intelligent algorithm for 3D lung segmentation in computer tomography images. Multimedia Systems, 2022, 28, 1151-1163.	3.0	4
106	Artificial Intelligence and Stroke Imaging. Neuroimaging Clinics of North America, 2020, 30, 479-492.	0.5	10
107	Attention convolutional neural network for accurate segmentation and quantification of lesions in ischemic stroke disease. Medical Image Analysis, 2020, 65, 101791.	7.0	63
108	Multimodal MR Image Synthesis Using Gradient Prior and Adversarial Learning. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1176-1188.	7.3	46

#	Article	IF	Citations
109	Automatic ischemic stroke lesion segmentation from computed tomography perfusion images by image synthesis and attention-based deep neural networks. Medical Image Analysis, 2020, 65, 101787.	7.0	48
110	Fully Automated Segmentation of Connective Tissue Compartments for CT-Based Body Composition Analysis. Investigative Radiology, 2020, 55, 357-366.	3.5	36
111	Multi-Receptive-Field CNN for Semantic Segmentation of Medical Images. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3215-3225.	3.9	58
112	Predicting Clinical Outcome in Acute Ischemic Stroke Using Parallel Multi-Parametric Feature Embedded Siamese Network. Diagnostics, 2020, 10, 858.	1.3	13
113	Lowâ€Field MRI of Stroke: Challenges and Opportunities. Journal of Magnetic Resonance Imaging, 2021, 54, 372-390.	1.9	40
114	Improved Segmentation and Detection Sensitivity of Diffusion-weighted Stroke Lesions with Synthetically Enhanced Deep Learning. Radiology: Artificial Intelligence, 2020, 2, e190217.	3.0	16
115	A webâ€based brain metastases segmentation and labeling platform for stereotactic radiosurgery. Medical Physics, 2020, 47, 3263-3276.	1.6	12
116	Evaluating White Matter Lesion Segmentations with Refined SÃ,rensen-Dice Analysis. Scientific Reports, 2020, 10, 8242.	1.6	94
117	Brain Lesion Detection Using A Robust Variational Autoencoder and Transfer Learning. , 2020, 2020, 786-790.		11
118	Pseudo-healthy synthesis with pathology disentanglement and adversarial learning. Medical Image Analysis, 2020, 64, 101719.	7.0	26
119	A survey on U-shaped networks in medical image segmentations. Neurocomputing, 2020, 409, 244-258.	3.5	157
120	Ischemic Stroke Lesion Segmentation Using Multi-Plane Information Fusion. IEEE Access, 2020, 8, 45715-45725.	2.6	26
121	Artificial intelligence in glioma imaging: challenges and advances. Journal of Neural Engineering, 2020, 17, 021002.	1.8	26
122	Hi-Net: Hybrid-Fusion Network for Multi-Modal MR Image Synthesis. IEEE Transactions on Medical Imaging, 2020, 39, 2772-2781.	5.4	177
123	Artificial intelligence: The dawn of a new era for cutting-edge technology based diagnosis and treatment for stroke. Brain Hemorrhages, 2020, 1, 1-5.	0.4	0
124	RFDCR: Automated brain lesion segmentation using cascaded random forests with dense conditional random fields. NeuroImage, 2020, 211, 116620.	2.1	40
125	Brain SegNet: 3D local refinement network for brain lesion segmentation. BMC Medical Imaging, 2020, 20, 17.	1.4	30
126	Machine Learning for Detecting Early Infarction in Acute Stroke with Non–Contrast-enhanced CT. Radiology, 2020, 294, 638-644.	3.6	110

#	Article	IF	CITATIONS
127	Sample-Adaptive GANs: Linking Global and Local Mappings for Cross-Modality MR Image Synthesis. IEEE Transactions on Medical Imaging, 2020, 39, 2339-2350.	5.4	22
128	CSNet: A new DeepNet framework for ischemic stroke lesion segmentation. Computer Methods and Programs in Biomedicine, 2020, 193, 105524.	2.6	32
129	The <scp>ENIGMA</scp> Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke. Human Brain Mapping, 2022, 43, 129-148.	1.9	54
130	MI-UNet: Multi-Inputs UNet Incorporating Brain Parcellation for Stroke Lesion Segmentation From T1-Weighted Magnetic Resonance Images. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 526-535.	3.9	48
131	Delineation of ischemic lesion from brain MRI using attention gated fully convolutional network. Biomedical Engineering Letters, 2021, 11, 3-13.	2.1	11
132	Artificial intelligence in stroke imaging: Current and future perspectives. Clinical Imaging, 2021, 69, 246-254.	0.8	43
133	The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 challenge. Medical Image Analysis, 2021, 67, 101821.	7.0	226
134	Ischemic Lesion Segmentation using Ensemble of Multi-Scale Region Aligned CNN. Computer Methods and Programs in Biomedicine, 2021, 200, 105831.	2.6	15
135	Dualâ€pathway DenseNets with fully lateral connections for multimodal brain tumor segmentation. International Journal of Imaging Systems and Technology, 2021, 31, 364-378.	2.7	2
136	Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems. , 2021, , .		3
137	F-UNet: A Modified U-Net Architecture for Segmentation of Stroke Lesion. Communications in Computer and Information Science, 2021, , 32-43.	0.4	2
138	Deep Learning-Based Acute Ischemic Stroke Lesion Segmentation Method on Multimodal MR Images Using a Few Fully Labeled Subjects. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-13.	0.7	11
139	Automatic brain lesion segmentation on standard magnetic resonance images: a scoping review. BMJ Open, 2021, 11, e042660.	0.8	14
140	Rethinking the Dice Loss for Deep Learning Lesion Segmentation in Medical Images. Journal of Shanghai Jiaotong University (Science), 2021, 26, 93-102.	0.5	27
141	Quantile Regression for Uncertainty Estimation in VAEs with Applications to Brain Lesion Detection. Lecture Notes in Computer Science, 2021, 12729, 689-700.	1.0	2
142	Improved Brain Lesion Segmentation with Anatomical Priors from Healthy Subjects. Lecture Notes in Computer Science, 2021, , 186-195.	1.0	0
143	Artificial Intelligence Applications in Stroke. , 2021, , 261-273.		0
144	An Improved Machine Learning Approach for Predicting Ischemic Stroke. SSRG International Journal of Engineering Trends and Technology, 2021, 69, 111-115.	0.3	1

#	Article	IF	CITATIONS
145	Low-Dose Dynamic CT Perfusion Denoising Without Training Data. Lecture Notes in Computer Science, 2021, , 168-179.	1.0	0
146	Image fusion practice to improve the ischemic-stroke-lesion detection for efficient clinical decision making. Evolutionary Intelligence, 2021, 14, 1089-1099.	2.3	7
147	MR Images, Brain Lesions, and Deep Learning. Applied Sciences (Switzerland), 2021, 11, 1675.	1.3	14
148	Costunolide attenuates oxygen‑glucose deprivation/reperfusion‑induced mitochondrial‑mediated apoptosis in PC12 cells. Molecular Medicine Reports, 2021, 23, .	1.1	9
149	Knowledge transfer between brain lesion segmentation tasks with increased model capacity. Computerized Medical Imaging and Graphics, 2021, 88, 101842.	3.5	4
150	Systematic review protocol to assess artificial intelligence diagnostic accuracy performance in detecting acute ischaemic stroke and large-vessel occlusions on CT and MR medical imaging. BMJ Open, 2021, 11, e043665.	0.8	3
151	Automated Detection of Brain Abnormality using Deep-Learning-Scheme: A Study. , 2021, , .		14
152	MRI Diffusionâ€Weighted Imaging to Measure Infarct Volume: Assessment of Manual Segmentation Variability. Journal of Neuroimaging, 2021, 31, 541-550.	1.0	2
153	A Survey on Multimodal Deep Learning for Image Synthesis. , 2021, , .		3
154	Effect of triangular electrode schemes on Broca's cortical stimulation: conventional and HD-tDCS study. Medical and Biological Engineering and Computing, 2021, 59, 913-924.	1.6	2
155	U-Net Supported Segmentation of Ischemic-Stroke-Lesion from Brain MRI Slices. , 2021, , .		14
156	Post Training Uncertainty Calibration Of Deep Networks For Medical Image Segmentation. , 2021, , .		11
157	Combining unsupervised and supervised learning for predicting the final stroke lesion. Medical Image Analysis, 2021, 69, 101888.	7.0	14
158	mustGAN: multi-stream Generative Adversarial Networks for MR Image Synthesis. Medical Image Analysis, 2021, 70, 101944.	7.0	68
160	Multi-scale fully convolutional neural networks for histopathology image segmentation: From nuclear aberrations to the global tissue architecture. Medical Image Analysis, 2021, 70, 101996.	7.0	52
161	EIS-Net: Segmenting early infarct and scoring ASPECTS simultaneously on non-contrast CT of patients with acute ischemic stroke. Medical Image Analysis, 2021, 70, 101984.	7.0	29
162	Learning U-Net Based Multi-Scale Features in Encoding-Decoding for MR Image Brain Tissue Segmentation. Sensors, 2021, 21, 3232.	2.1	7
163	Self-Supervised Dynamic CT Perfusion Image Denoising With Deep Neural Networks. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 350-361.	2.7	32

#	Article	IF	CITATIONS
164	Artificial intelligence in clinical decision support and outcome prediction – applications in stroke. Journal of Medical Imaging and Radiation Oncology, 2021, 65, 518-528.	0.9	14
165	Cerebral CT Perfusion in Acute Stroke: The Effect of Lowering the Tube Load and Sampling Rate on the Reproducibility of Parametric Maps. Diagnostics, 2021, 11, 1121.	1.3	7
166	Inter-vendor performance of deep learning in segmenting acute ischemic lesions on diffusion-weighted imaging: a multicenter study. Scientific Reports, 2021, 11, 12434.	1.6	6
168	Predicting Infarct Core From Computed Tomography Perfusion in Acute Ischemia With Machine Learning: Lessons From the ISLES Challenge. Stroke, 2021, 52, 2328-2337.	1.0	41
169	Comparison of metrics for the evaluation of medical segmentations using prostate MRI dataset. Computers in Biology and Medicine, 2021, 134, 104497.	3.9	29
170	Improving Ischemic Stroke Care With MRI and Deep Learning Artificial Intelligence. Topics in Magnetic Resonance Imaging, 2021, 30, 187-195.	0.7	12
171	Multi-view iterative random walker for automated salvageable tissue delineation in ischemic stroke from multi-sequence MRI. Journal of Neuroscience Methods, 2021, 360, 109260.	1.3	2
172	MCA-DN: Multi-path convolution leveraged attention deep network for salvageable tissue detection in ischemic stroke from multi-parametric MRI. Computers in Biology and Medicine, 2021, 136, 104724.	3.9	4
173	An approach for surface roughness measurement of helical gears based on image segmentation of region of interest. Measurement: Journal of the International Measurement Confederation, 2021, 183, 109905.	2.5	30
174	MTANS: Multi-Scale Mean Teacher Combined Adversarial Network with Shape-Aware Embedding for Semi-Supervised Brain Lesion Segmentation. NeuroImage, 2021, 244, 118568.	2.1	24
175	AIFNet: Automatic vascular function estimation for perfusion analysis using deep learning. Medical Image Analysis, 2021, 74, 102211.	7.0	10
176	Spatio-temporal multi-task network cascade for accurate assessment of cardiac CT perfusion. Medical Image Analysis, 2021, 74, 102207.	7.0	3
177	Perfusion Imaging: An Advection Diffusion Approach. IEEE Transactions on Medical Imaging, 2021, 40, 3424-3435.	5.4	3
178	Machine learning identifies stroke features between species. Theranostics, 2021, 11, 3017-3034.	4.6	12
180	Pattern Descriptors Orientation and MAP Firefly Algorithm Based Brain Pathology Classification Using Hybridized Machine Learning Algorithm. IEEE Access, 2022, 10, 3848-3863.	2.6	27
181	Application of Deep Learning Method on Ischemic Stroke Lesion Segmentation. Journal of Shanghai Jiaotong University (Science), 2022, 27, 99-111.	0.5	16
182	Tumor Delineation for Brain Radiosurgery by a ConvNet and Non-uniform Patch Generation. Lecture Notes in Computer Science, 2018, , 122-129.	1.0	4
183	Enhancing Clinical MRI Perfusion Maps with Data-Driven Maps of Complementary Nature for Lesion Outcome Prediction. Lecture Notes in Computer Science, 2018, , 107-115.	1.0	16

#	Article	IF	CITATIONS
184	Volumetric Adversarial Training for Ischemic Stroke Lesion Segmentation. Lecture Notes in Computer Science, 2019, , 343-351.	1.0	3
185	Weakly Supervised Brain Lesion Segmentation via Attentional Representation Learning. Lecture Notes in Computer Science, 2019, , 211-219.	1.0	11
186	OctopusNet: A Deep Learning Segmentation Network for Multi-modal Medical Images. Lecture Notes in Computer Science, 2020, , 17-25.	1.0	19
187	Skull-Stripping of Glioblastoma MRI Scans Using 3D Deep Learning. Lecture Notes in Computer Science, 2020, 11992, 57-68.	1.0	11
188	Knowledge Distillation from Multi-modal to Mono-modal Segmentation Networks. Lecture Notes in Computer Science, 2020, , 772-781.	1.0	42
189	State-of-the-Art in Brain Tumor Segmentation and Current Challenges. Lecture Notes in Computer Science, 2020, , 189-198.	1.0	4
190	DeepMedic for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2016, , 138-149.	1.0	170
191	Predicting Stroke Lesion and Clinical Outcome with Random Forests. Lecture Notes in Computer Science, 2016, , 219-230.	1.0	10
192	Prediction of Ischemic Stroke Lesion and Clinical Outcome in Multi-modal MRI Images Using Random Forests. Lecture Notes in Computer Science, 2016, , 244-255.	1.0	5
193	Dice Overlap Measures for Objects of Unknown Number: Application to Lesion Segmentation. Lecture Notes in Computer Science, 2018, 10670, 3-14.	1.0	5
194	Sub-acute and Chronic Ischemic Stroke Lesion MRI Segmentation. Lecture Notes in Computer Science, 2018, , 111-122.	1.0	6
195	Acute and sub-acute stroke lesion segmentation from multimodal MRI. Computer Methods and Programs in Biomedicine, 2020, 194, 105521.	2.6	35
196	Technical considerations of multi-parametric tissue outcome prediction methods in acute ischemic stroke patients. Scientific Reports, 2019, 9, 13208.	1.6	16
199	Glioma grading using structural magnetic resonance imaging and molecular data. Journal of Medical Imaging, 2019, 6, 1.	0.8	19
200	Benchmarking Wilms' tumor in multisequence MRI data: why does current clinical practice fail? Which popular segmentation algorithms perform well?. Journal of Medical Imaging, 2019, 6, 1.	0.8	11
201	Segmentation of subcutaneous fat within mouse skin in 3D OCT image data using random forests. , 2018, , .		2
202	Interpretable explanations of black box classifiers applied on medical images by meaningful perturbations using variational autoencoders. , 2019, , .		15
203	Cascaded convolutional neural networks for spine chordoma tumor segmentation from MRI. , 2019, , .		3

#	Article	IF	CITATIONS
204	A Hybrid Approach for Sub-Acute Ischemic Stroke Lesion Segmentation Using Random Decision Forest and Gravitational Search Algorithm. Current Medical Imaging, 2019, 15, 170-183.	0.4	3
205	Stroke Lesion Segmentation and Analysis using Entropy/Otsu's Function – A Study with Social Group Optimization. Current Bioinformatics, 2019, 14, 305-313.	0.7	6
206	A Crossbred Approach for Effective Brain Stroke Lesion Segmentation. International Journal of Intelligent Engineering and Systems, 2018, 11, 286-295.	0.8	3
207	Evaluation of Ischemic Stroke Region From CT/MR Images Using Hybrid Image Processing Techniques. Advances in Multimedia and Interactive Technologies Book Series, 2018, , 194-219.	0.1	14
208	MH UNet: A Multi-Scale Hierarchical Based Architecture for Medical Image Segmentation. IEEE Access, 2021, 9, 148384-148408.	2.6	25
209	Probabilistic Segmentation of Brain White Matter Lesions Using Texture-Based Classification. Lecture Notes in Computer Science, 2017, , 71-78.	1.0	3
212	Bayesian inference for uncertainty quantification in point-based deformable image registration. , 2019,		3
213	Learning imbalanced semantic segmentation through cross-domain relations of multi-agent generative adversarial networks. , 2019, , .		2
215	Active learning strategy and hybrid training for infarct segmentation on diffusion MRI with a U-shaped network. Journal of Medical Imaging, 2019, 6, 1.	0.8	3
216	Deep Learning Models with Applications to Brain Image Analysis. , 2020, , 433-462.		1
217	Semi-supervised Learning Approach to Generate Neuroimaging Modalities with Adversarial Training. Lecture Notes in Computer Science, 2020, , 409-421.	1.0	1
218	Universal Loss Reweighting to Balance Lesion Size Inequality in 3D Medical Image Segmentation. Lecture Notes in Computer Science, 2020, , 523-532.	1.0	4
220	A comparison study of automated approaches for brain lesions segmentation in ischemic stroke. , 2020, , .		1
221	The effect of electrode shapes at tDCS in study of stroke patients. , 2020, , .		0
222	Increasing the efficiency of the Lesion segmentation tools to detect brain lesions in stroke. , 2020, , .		0
223	Differentiable Deconvolution for Improved Stroke Perfusion Analysis. Lecture Notes in Computer Science, 2020, , 593-602.	1.0	2
224	Convolutional neural network with coarse-to-fine resolution fusion and residual learning structures for cross-modality image synthesis. Biomedical Signal Processing and Control, 2022, 71, 103199.	3.5	1
225	Image translation for medical image generation: Ischemic stroke lesion segmentation. Biomedical Signal Processing and Control, 2022, 72, 103283.	3.5	13

#	Article	IF	CITATIONS
226	A 3D+2D CNN Approach Incorporating Boundary Loss for Stroke Lesion Segmentation. Lecture Notes in Computer Science, 2020, , 101-110.	1.0	3
227	PIANO: Perfusion Imaging via Advection-Diffusion. Lecture Notes in Computer Science, 2020, , 688-698.	1.0	1
228	Predicting Clinical Outcome of Stroke Patients with Tractographic Feature. Lecture Notes in Computer Science, 2020, 11992, 32-43.	1.0	4
229	Ischemic Stroke Lesion Segmentation Based on Thermal Analysis Model Using U-Net Fully Convolutional Neural Networks on GPUs. Advances in Intelligent Systems and Computing, 2020, , 99-106.	0.5	1
230	Modelling Brain Lesion Volume in Patches with CNN-based Poisson Regression. , 2020, , .		0
231	Discovering Hidden Physics Behind Transport Dynamics. , 2021, , .		2
232	Deep Learning Framework to Detect Ischemic Stroke Lesion in Brain MRI Slices of Flair/DW/T1 Modalities. Symmetry, 2021, 13, 2080.	1.1	5
234	Rehabilitation training inhibits neuronal apoptosis by down-regulation of TLR4/MyD88 signaling pathway in mice with cerebral ischemic stroke. American Journal of Translational Research (discontinued), 2021, 13, 2213-2223.	0.0	0
235	An end-to-end approach to segmentation in medical images with CNN and posterior-CRF. Medical Image Analysis, 2022, 76, 102311.	7.0	16
236	Prediction of Tissue Damage Using a User-Independent Machine Learning Algorithm vs. Tmax Threshold Maps. Clinical and Translational Neuroscience, 2021, 5, 21.	0.4	0
237	Variability assessment of manual segmentations of ischemic lesion volume on 24-h non-contrast CT. Neuroradiology, 2022, 64, 1165-1173.	1.1	2
238	A Survey of Stroke Image Analysis Techniques. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2022, , 446-467.	0.2	0
239	A robust variational autoencoder using beta divergence. Knowledge-Based Systems, 2022, 238, 107886.	4.0	11
240	Simulated diagnostic performance of low-field MRI: Harnessing open-access datasets to evaluate novel devices. Magnetic Resonance Imaging, 2022, 87, 67-76.	1.0	9
241	BORDE: Boundary and Sub-Region Denormalization for Semantic Brain Image Synthesis. , 2021, , .		1
242	UCATR: Based on CNN and Transformer Encoding and Cross-Attention Decoding for Lesion Segmentation of Acute Ischemic Stroke in Non-contrast Computed Tomography Images. , 2021, 2021, 3565-3568.		4
243	Acute Infarct Volume Prediction Based on CT Perfusion Metrics Derived from an Automated Software Package using Machine Learning Models. , 2021, , .		1
244	Medical image segmentation using deep learning: A survey. IET Image Processing, 2022, 16, 1243-1267.	1.4	166

#	ARTICLE	IF	CITATIONS
245	A fully convolutional network (FCN) based automated ischemic stroke segment method using chemical exchange saturation transfer imaging. Medical Physics, 2022, 49, 1635-1647.	1.6	3
246	Uncertainty Quantification using Variational Inference for Biomedical Image Segmentation. , 2022, , .		6
247	Automated segmentation of chronic stroke lesion using efficient U-Net architecture. Biocybernetics and Biomedical Engineering, 2022, 42, 285-294.	3.3	10
248	Introduction to image-assisted disease screening. , 2022, , 1-27.		0
249	Automated detection of ischemic stroke with brain MRI using machine learning and deep learning features. , 2022, , 147-174.		3
250	Magnetic resonance imaging: recording and reconstruction. , 2022, , 29-47.		0
251	Automatic Segmentation of the Brain Stroke Lesions from MR Flair Scans Using Improved U-Net Framework. SSRN Electronic Journal, 0, , .	0.4	0
252	Automatic CT Angiography Lesion Segmentation Compared to CT Perfusion in Ischemic Stroke Detection: a Feasibility Study. Journal of Digital Imaging, 2022, 35, 551-563.	1.6	6
253	Neuroanatomic Markers of Posttraumatic Epilepsy Based on MR Imaging and Machine Learning. American Journal of Neuroradiology, 2022, 43, 347-353.	1.2	2
254	Primer reporte de inmaduros de Cryptocephalus Geoffroy, 1762 (Coleoptera: Chrysomelidae) de Brasil con notas de su bioecologÃa sobre Wedelia goyazensis Gardner (Asteraceae) y sAntesis de los registros de presencia del género en territorio brasileño. Graellsia, 2022, 78, e158.	0.1	0
255	METrans: Multiâ€encoder transformer for ischemic stroke segmentation. Electronics Letters, 2022, 58, 340-342.	0.5	5
256	Deep learning-based simultaneous registration and unsupervised non-correspondence segmentation of medical images with pathologies. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 699-710.	1.7	5
257	Laminarin Alleviates the Ischemia/Reperfusion Injury in PC12 Cells via Regulation of PTEN/PI3K/AKT Pathway. Advances in Polymer Technology, 2022, 2022, 1-8.	0.8	1
258	Stroke lesion localization in 3D MRI datasets with deep reinforcement learning. , 2022, , .		0
259	Forward Model and Deep Learning Based Iterative Deconvolution for Robust Dynamic CT Perfusion. , 2021, 2021, 3543-3546.		1
260	A Quantitative Analysis in CTP images for Ischemic Stroke Lesion Segmentation. , 2021, , .		0
261	Co-optimization Learning Network for MRI Segmentation of Ischemic Penumbra Tissues. Frontiers in Neuroinformatics, 2021, 15, 782262.	1.3	1
263	Medical image segmentation with 3D convolutional neural networks: A survey. Neurocomputing, 2022, 493, 397-413.	3.5	37

#	Article	IF	CITATIONS
268	Towards Improved Robustness of Low-Dose CT Perfusion Imaging Via Joint Estimation of Structural CT and Functional CBF Images. , 2022, , .		0
269	USSL Net: Focusing on Structural Similarity with Light U-Structure for Stroke Lesion Segmentation. Journal of Shanghai Jiaotong University (Science), 0, , 1.	0.5	1
270	End-to-End Deep Learning Approach for Perfusion Data: A Proof-of-Concept Study to Classify Core Volume in Stroke CT. Diagnostics, 2022, 12, 1142.	1.3	2
271	Automatic Segmentation in Acute Ischemic Stroke: Prognostic Significance of Topological Stroke Volumes on Stroke Outcome. Stroke, 2022, 53, 2896-2905.	1.0	7
272	DWT-CV: Dense weight transfer-based cross validation strategy for model selection in biomedical data analysis. Future Generation Computer Systems, 2022, 135, 20-29.	4.9	3
273	CAU-Net: A Deep Learning Method for Deep Gray Matter Nuclei Segmentation. Frontiers in Neuroscience, 2022, 16, .	1.4	2
277	A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms. Scientific Data, 2022, 9, .	2.4	33
278	Learning disentangled representations in the imaging domain. Medical Image Analysis, 2022, 80, 102516.	7.0	26
279	Deep Learning Applications for Acute Stroke Management. Annals of Neurology, 2022, 92, 574-587.	2.8	16
280	Towards an Accurate MRI Acute Ischemic Stroke Lesion Segmentation Based on Bioheat Equation and U-Net Model. International Journal of Biomedical Imaging, 2022, 2022, 1-12.	3.0	0
281	Automatic segmentation of the brain stroke lesions from MR flair scans using improved U-net framework. Biomedical Signal Processing and Control, 2022, 78, 103978.	3.5	4
282	Mutual ensemble learning for brain tumor segmentation. Neurocomputing, 2022, 504, 68-81.	3.5	16
283	Outcome Prediction Based on Automatically Extracted Infarct Core Image Features in Patients with Acute Ischemic Stroke. Diagnostics, 2022, 12, 1786.	1.3	8
284	Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: a review. Artificial Intelligence Review, 2023, 56, 2923-2969.	9.7	17
285	Automated Identification of Multiple Findings on Brain MRI for Improving Scan Acquisition and Interpretation Workflows: A Systematic Review. Diagnostics, 2022, 12, 1878.	1.3	0
286	Is There a Relationship Between the National Institutes of Health Stroke Scale Scores and Magnetic Resonance Volumetric Measurements in Acute Stroke?. The Journal of Tepecik Education and Research Hospital, 2022, 32, 289-295.	0.2	0
287	Combine unlabeled with labeled MR images to measure acute ischemic stroke lesion by stepwise learning. IET Image Processing, 0, , .	1.4	0
289	AGMR-Net: Attention-guided multiscale recovery framework for stroke segmentation. Computerized Medical Imaging and Graphics, 2022, 101, 102120.	3.5	4

#	Article	IF	Citations
" 290	Stroke Lesion Segmentation fromÂLow-Quality andÂFew-Shot MRIs viaÂSimilarity-Weighted Self-ensembling Framework. Lecture Notes in Computer Science, 2022, , 87-96.	1.0	2
291	Small Lesion Segmentation inÂBrain MRIs withÂSubpixel Embedding. Lecture Notes in Computer Science, 2022, , 75-87.	1.0	0
292	CNN-LSTM Based Multimodal MRI and Clinical Data Fusion for Predicting Functional Outcome in Stroke Patients. , 2022, , .		5
293	A deep CT to MRI unpaired translation that preserve ischemic stroke lesions. , 2022, , .		1
294	CrossMoDA 2021 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation. Medical Image Analysis, 2023, 83, 102628.	7.0	25
295	A lightweight asymmetric U-Net framework for acute ischemic stroke lesion segmentation in CT and CTP images. Computer Methods and Programs in Biomedicine, 2022, 226, 107157.	2.6	3
296	Gabor Filter-Embedded U-Net withÂTransformer-Based Encoding forÂBiomedical Image Segmentation. Lecture Notes in Computer Science, 2022, , 76-88.	1.0	0
297	Learning a Prototype Discriminator With RBF for Multimodal Image Synthesis. IEEE Transactions on Image Processing, 2022, 31, 6664-6678.	6.0	4
298	A spatiotemporal correlation deep learning network for brain penumbra disease. Neurocomputing, 2023, 520, 274-283.	3.5	2
299	Data synthesis and adversarial networks: A review and meta-analysis in cancer imaging. Medical Image Analysis, 2023, 84, 102704.	7.0	9
300	ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset. Scientific Data, 2022, 9, .	2.4	19
302	PerfU-Net: Baseline infarct estimation from CT perfusion source data for acute ischemic stroke. Medical Image Analysis, 2023, 85, 102749.	7.0	5
303	A literature survey of MR-based brain tumor segmentation with missing modalities. Computerized Medical Imaging and Graphics, 2023, 104, 102167.	3.5	5
304	MCA-UNet: multi-scale cross co-attentional U-Net for automatic medical image segmentation. Health Information Science and Systems, 2023, 11, .	3.4	10
305	Use of semi-synthetic data for catheter segmentation improvement. Computerized Medical Imaging and Graphics, 2023, 106, 102188.	3.5	1
306	Unsupervised Anomaly Segmentation forÂBrain Lesions Using Dual Semantic-Manifold Reconstruction. Lecture Notes in Computer Science, 2023, , 133-144.	1.0	1
307	Multi-class disease detection using deep learning and human brain medical imaging. Biomedical Signal Processing and Control, 2023, 85, 104875.	3.5	12
308	Unsupervised anomaly detection in brain MRI: Learning abstract distribution from massive healthy brains. Computers in Biology and Medicine, 2023, 154, 106610.	3.9	3

#	Article	IF	CITATIONS
309	Deep Learning for Image Segmentation: A Focus on Medical Imaging. Computers, Materials and Continua, 2023, 75, 1995-2024.	1.5	2
310	Region-of-interest Attentive Heteromodal Variational Encoder-Decoder forÂSegmentation withÂMissing Modalities. Lecture Notes in Computer Science, 2023, , 132-148.	1.0	1
311	Performance Analysis of Ischemic Stroke Lesion Segmentation in Brain MR Images using Histogram based Filter Enhanced FCM. , 2023, , .		2
312	Generalized Knowledge Distillation for Unimodal Glioma Segmentation from Multimodal Models. Electronics (Switzerland), 2023, 12, 1516.	1.8	3
313	TSRL-Net: Target-aware supervision residual learning for stroke segmentation. Computers in Biology and Medicine, 2023, , 106840.	3.9	0
314	MyoPS: A benchmark of myocardial pathology segmentation combining three-sequence cardiac magnetic resonance images. Medical Image Analysis, 2023, 87, 102808.	7.0	6
318	MRI-Based Early Diagnosis and Quantification of Trans-Ischemic Stroke Using Machine Learning—An Overview. Lecture Notes in Networks and Systems, 2023, , 363-376.	0.5	0
322	Prototype Knowledge Distillation for Medical Segmentation with Missing Modality. , 2023, , .		2
324	Contrastive Representations for Unsupervised Anomaly Detection and Localization. Informatik Aktuell, 2023, , 246-252.	0.4	1
325	MidFusNet: Mid-dense Fusion Network for Multi-modal Brain MRI Segmentation. Lecture Notes in Computer Science, 2023, , 102-114.	1.0	0
328	Medical Image Segmentation Using Deep Learning. Neuromethods, 2023, , 391-434.	0.2	0
329	Machine Learning for Cerebrovascular Disorders. Neuromethods, 2023, , 921-961.	0.2	0
331	Cross-contrast Fusion and Aggregation Network for Multi-contrast MRI Super-resolution. , 2023, , .		0
333	Difficulty Metrics Study for Curriculum-Based Deep Learning in the Context of Stroke Lesion Segmentation. , 2023, , .		0
339	A survey on brain tumor image analysis. Medical and Biological Engineering and Computing, 0, , .	1.6	1
340	Automatic Report Generation on A Large-Scale Stroke MRI Dataset. , 2023, , .		0
344	Trust Your Neighbours: Penalty-Based Constraints forÂModel Calibration. Lecture Notes in Computer Science, 2023, , 572-581.	1.0	2
345	Many Tasks Make Light Work: Learning toÂLocalise Medical Anomalies fromÂMultiple Synthetic Tasks. Lecture Notes in Computer Science, 2023, , 162-172.	1.0	0

#	Article	IF	CITATIONS
352	Improved Attention U-Net Combined with Conditional Random Field for Ischemic Lesion Segmentation from Magnetic Resonance Images. , 2023, , .		0
353	Deep Learning Techniques forÂ3D-Volumetric Segmentation ofÂBiomedical Images. Studies in Computational Intelligence, 2023, , 1-41.	0.7	0