Isocitrate dehydrogenase mutations in myeloid maligna

Leukemia

31, 272-281

DOI: 10.1038/leu.2016.275

Citation Report

#	Article	IF	Citations
1	Pan-mutant-IDH1 inhibitor BAY1436032 is highly effective against human IDH1 mutant acute myeloid leukemia in vivo. Leukemia, 2017, 31, 2020-2028.	7.2	97
2	Emerging therapies for acute myeloid leukemia. Journal of Hematology and Oncology, 2017, 10, 93.	17.0	119
3	Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood, 2017, 130, 722-731.	1.4	1,173
4	Isocitrate Dehydrogenase Mutation and $(\langle i\rangle R\langle i\rangle)$ -2-Hydroxyglutarate: From Basic Discovery to Therapeutics Development. Annual Review of Biochemistry, 2017, 86, 305-331.	11.1	161
5	Targeted Therapy in AML: Something for Everyone?. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, S2-S3.	0.4	0
6	Midostaurin, enasidenib, CPX-351, gemtuzumab ozogamicin, and venetoclax bring new hope to AML. Blood, 2017, 130, 2469-2474.	1.4	110
7	Targeting IDH1 and IDH2 Mutations in Acute Myeloid Leukemia. Current Hematologic Malignancy Reports, 2017, 12, 537-546.	2.3	31
8	State of the Art Update and Next Questions: Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 703-709.	0.4	6
9	Clonal expansion and epigenetic reprogramming following deletion or amplification of mutant <i>IDH1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10743-10748.	7.1	109
10	Enasidenib: First Global Approval. Drugs, 2017, 77, 1705-1711.	10.9	120
11	IDH1 Mutation Is an Independent Inferior Prognostic Indicator for Patients with Myelodysplastic Syndromes. Acta Haematologica, 2017, 138, 143-151.	1.4	18
12	Allosteric inhibitor remotely modulates the conformation of the orthestric pockets in mutant IDH2/R140Q. Scientific Reports, 2017, 7, 16458.	3.3	18
13	Metabolic regulation of hematopoietic and leukemic stem/progenitor cells under homeostatic and stress conditions. International Journal of Hematology, 2017, 106, 18-26.	1.6	35
14	Recent Progress in the Understanding of Angioimmunoblastic T-cell Lymphoma. Journal of Clinical and Experimental Hematopathology: JCEH, 2017, 57, 109-119.	0.8	23
15	Novel Therapeutics in Acute Myeloid Leukemia. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 495-503.	3.8	12
16	Incorporating novel approaches in the management of MDS beyond conventional hypomethylating agents. Hematology American Society of Hematology Education Program, 2017, 2017, 460-469.	2.5	6
17	Targeting histone methyltransferase and demethylase in acute myeloid leukemia therapy. OncoTargets and Therapy, 2018, Volume 11, 131-155.	2.0	45
18	Understanding the molecular basis of acute myeloid leukemias: where are we now?. International Journal of Hematologic Oncology, 2017, 6, 43-53.	1.6	9

#	Article	IF	CITATIONS
19	Clinical relevance of $\langle i \rangle IDH1/2 \langle i \rangle$ mutant allele burden during follow-up in acute myeloid leukemia. A study by the French ALFA group. Haematologica, 2018, 103, 822-829.	3.5	36
20	A Phase I Study of CPI-613 in Combination with High-Dose Cytarabine and Mitoxantrone for Relapsed or Refractory Acute Myeloid Leukemia. Clinical Cancer Research, 2018, 24, 2060-2073.	7.0	72
21	Genetic alterations crossing the borders of distinct hematopoetic lineages and solid tumors: Diagnostic challenges in the era of high-throughput sequencing in hemato-oncology. Critical Reviews in Oncology/Hematology, 2018, 126, 64-79.	4.4	12
22	The role of metabolic enzymes in mesenchymal tumors and tumor syndromes: genetics, pathology, and molecular mechanisms. Laboratory Investigation, 2018, 98, 414-426.	3.7	22
23	Personalizing initial therapy in acute myeloid leukemia: incorporating novel agents into clinical practice. Therapeutic Advances in Hematology, 2018, 9, 109-121.	2.5	9
24	The emerging role and targetability of the TCA cycle in cancer metabolism. Protein and Cell, 2018, 9, 216-237.	11.0	345
25	Antineoplastic chemotherapy in Jehovah's Witness patients with acute myelogenous leukemia refusing blood products – a matched pair analysis. Hematology, 2018, 23, 324-329.	1.5	3
26	DNA-hypomethylating agents as epigenetic therapy before and after allogeneic hematopoietic stem cell transplantation in myelodysplastic syndromes and juvenile myelomonocytic leukemia. Seminars in Cancer Biology, 2018, 51, 68-79.	9.6	42
27	Current and Future Treatment Options for Myelodysplastic Syndromes: More Than Hypomethylating Agents and Lenalidomide?. Drugs, 2018, 78, 1873-1885.	10.9	1
28	Novel Agents for Acute Myeloid Leukemia. Cancers, 2018, 10, 429.	3.7	21
29	Genetic Hierarchy of Acute Myeloid Leukemia: From Clonal Hematopoiesis to Molecular Residual Disease. International Journal of Molecular Sciences, 2018, 19, 3850.	4.1	24
30	Bridging Cancer Biology with the Clinic: Comprehending and Exploiting IDH Gene Mutations in Gliomas. Cancer Genomics and Proteomics, 2018, 15, 421-436.	2.0	9
31	Incorporating newer agents in the treatment of acute myeloid leukemia. Leukemia Research, 2018, 74, 113-120.	0.8	9
32	How I treat the blast phase of Philadelphia chromosome–negative myeloproliferative neoplasms. Blood, 2018, 132, 2339-2350.	1.4	27
33	SOHO State of the Art Update and Next Questions: IDH Therapeutic Targeting in AML. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 769-772.	0.4	16
34	When to obtain genomic data in acute myeloid leukemia (AML) and which mutations matter. Hematology American Society of Hematology Education Program, 2018, 2018, 35-44.	2.5	22
35	New drugs for acute myeloid leukemia inspired by genomics and when to use them. Hematology American Society of Hematology Education Program, 2018, 2018, 45-50.	2.5	38
36	When to obtain genomic data in acute myeloid leukemia (AML) and which mutations matter. Blood Advances, 2018, 2, 3070-3080.	5.2	36

3

#	Article	IF	CITATIONS
37	Enasidenib for the treatment of acute myeloid leukemia. Expert Review of Clinical Pharmacology, 2018, 11, 755-760.	3.1	31
38	Solid papillary carcinoma with reverse polarity of the breast harbors specific morphologic, immunohistochemical and molecular profile in comparison with other benign or malignant papillary lesions of the breast: a comparative study of 9 additional cases. Modern Pathology, 2018, 31, 1367-1380.	5.5	42
39	Biological Role and Therapeutic Potential of IDH Mutations in Cancer. Cancer Cell, 2018, 34, 186-195.	16.8	234
40	Evolving Understanding of Chronic Myelomonocytic Leukemia: Implications for Future Treatment Paradigms. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 519-527.	0.4	0
41	The role of enasidenib in the treatment of mutant IDH2 acute myeloid leukemia. Therapeutic Advances in Hematology, 2018, 9, 163-173.	2.5	50
42	The Role for Myc in Coordinating Glycolysis, Oxidative Phosphorylation, Glutaminolysis, and Fatty Acid Metabolism in Normal and Neoplastic Tissues. Frontiers in Endocrinology, 2018, 9, 129.	3.5	142
43	Physician uncertainty aversion impacts medical decision making for older patients with acute myeloid leukemia: results of a national survey. Haematologica, 2018, 103, 2040-2048.	3.5	31
44	Multiple Ways to Detect IDH2 Mutations in Angioimmunoblastic T-Cell Lymphoma from Immunohistochemistry to Next-Generation Sequencing. Journal of Molecular Diagnostics, 2018, 20, 677-685.	2.8	21
45	Evolving Treatment Strategies for Elderly Leukemia Patients with IDH Mutations. Cancers, 2018, 10, 187.	3.7	27
46	Advances in the drug therapies of acute myeloid leukemia (except acute promyelocytic leukemia). Drug Design, Development and Therapy, 2018, Volume 12, 1009-1017.	4.3	7
47	Crystal structures of pan-IDH inhibitor AG-881 in complex with mutant human IDH1 and IDH2. Biochemical and Biophysical Research Communications, 2018, 503, 2912-2917.	2.1	51
48	Which are the most promising targets for minimal residual disease-directed therapy in acute myeloid leukemia prior to allogeneic stem cell transplant?. Haematologica, 2019, 104, 1521-1531.	3.5	18
49	Molecular landscape in adult acute myeloid leukemia: where we are where we going?. Journal of Laboratory and Precision Medicine, 0, 4, 17-17.	1.1	2
50	Novel therapies in low- and high-risk myelodysplastic syndrome. Expert Review of Hematology, 2019, 12, 893-908.	2.2	13
51	Acute Myeloid Leukemia: from Mutation Profiling to Treatment Decisions. Current Hematologic Malignancy Reports, 2019, 14, 386-394.	2.3	34
52	MRD in AML: The Role of New Techniques. Frontiers in Oncology, 2019, 9, 655.	2.8	93
53	The Induction of a Permissive Environment to Promote T Cell Immune Evasion in Acute Myeloid Leukemia: The Metabolic Perspective. Frontiers in Oncology, 2019, 9, 1166.	2.8	14
54	Pharmacological characterization of <scp>TQ</scp> 05310, a potent inhibitor of isocitrate dehydrogenase 2 R140Q and R172K mutants. Cancer Science, 2019, 110, 3306-3314.	3.9	13

#	Article	IF	CITATIONS
55	Oetection Of Mutations In The Isocitrate Dehydrogenase Genes (IDH1/IDH2) Using castPCR TM In Patients With AML And Their Clinical Impact In Mexico City. OncoTargets and Therapy, 2019, Volume 12, 8023-8031.	2.0	3
56	A personalized approach to acute myeloid leukemia therapy: current options. Pharmacogenomics and Personalized Medicine, 2019, Volume 12, 167-179.	0.7	7
57	An evaluation of enasidenib for the treatment of acute myeloid leukemia. Expert Opinion on Pharmacotherapy, 2019, 20, 1935-1942.	1.8	5
58	Trisomy 8 in acute myeloid leukemia. Expert Review of Hematology, 2019, 12, 947-958.	2.2	27
59	IDH Inhibitors in AML. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, S7-S9.	0.4	2
60	Guadecitabine (SGI-110): an investigational drug for the treatment of myelodysplastic syndrome and acute myeloid leukemia. Expert Opinion on Investigational Drugs, 2019, 28, 835-849.	4.1	41
61	<p>Enasidenib in acute myeloid leukemia: clinical development and perspectives on treatment</p> . Cancer Management and Research, 2019, Volume 11, 8073-8080.	1.9	10
62	IDH-1 deficiency induces growth defects and metabolic alterations in GSPD-1-deficient Caenorhabditis elegans. Journal of Molecular Medicine, 2019, 97, 385-396.	3.9	20
63	Mutant Isocitrate Dehydrogenase Inhibitors as Targeted Cancer Therapeutics. Frontiers in Oncology, 2019, 9, 417.	2.8	183
64	Enasidenib in the treatment of relapsed/refractory acute myeloid leukemia: an evidence-based review of its place in therapy. Core Evidence, 2019, Volume 14, 3-17.	4.7	20
65	The cancer driver genes IDH1/2, JARID1C/ KDM5C, and UTX/ KDM6A: crosstalk between histone demethylation and hypoxic reprogramming in cancer metabolism. Experimental and Molecular Medicine, 2019, 51, 1-17.	7.7	118
66	The Role of Forkhead Box Proteins in Acute Myeloid Leukemia. Cancers, 2019, 11, 865.	3.7	22
67	Recent Treatment Advances and the Role of Nanotechnology, Combination Products, and Immunotherapy in Changing the Therapeutic Landscape of Acute Myeloid Leukemia. Pharmaceutical Research, 2019, 36, 125.	3.5	46
68	Acute Myeloid Leukemia Mutations: Therapeutic Implications. International Journal of Molecular Sciences, 2019, 20, 2721.	4.1	17
69	Losing Sense of Self and Surroundings: Hematopoietic Stem Cell Aging and Leukemic Transformation. Trends in Molecular Medicine, 2019, 25, 494-515.	6.7	84
70	The assessment of minimal residual disease versus that of somatic mutations for predicting the outcome of acute myeloid leukemia patients. Cancer Cell International, 2019, 19, 83.	4.1	3
71	New Targeted Agents in Acute Myeloid Leukemia: New Hope on the Rise. International Journal of Molecular Sciences, 2019, 20, 1983.	4.1	68
72	Updates on Hematologic Malignancies in the Older Adult: Focus on Acute Myeloid Leukemia, Chronic Lymphocytic Leukemia, and Multiple Myeloma. Current Oncology Reports, 2019, 21, 35.	4.0	5

#	Article	IF	CITATIONS
73	Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nature Reviews Clinical Oncology, 2019, 16, 425-441.	27.6	452
74	Mutant and Wild-Type Isocitrate Dehydrogenase 1 Share Enhancing Mechanisms Involving Distinct Tyrosine Kinase Cascades in Cancer. Cancer Discovery, 2019, 9, 756-777.	9.4	18
75	Consequences of IDH1/2 Mutations in Gliomas and an Assessment of Inhibitors Targeting Mutated IDH Proteins. Molecules, 2019 , 24 , 968 .	3.8	72
76	Oncometabolites in cancer aggressiveness and tumour repopulation. Biological Reviews, 2019, 94, 1530-1546.	10.4	33
77	Sensitive Quantitative Proteomics of Human Hematopoietic Stem and Progenitor Cells by Data-independent Acquisition Mass Spectrometry. Molecular and Cellular Proteomics, 2019, 18, 1454-1467.	3.8	43
78	Current Therapeutic Results and Treatment Options for Older Patients with Relapsed Acute Myeloid Leukemia. Cancers, 2019, 11, 224.	3.7	46
79	Pharmacokinetics, absorption, metabolism, and excretion of [14C]ivosidenib (AG-120) in healthy male subjects. Cancer Chemotherapy and Pharmacology, 2019, 83, 837-848.	2.3	15
80	Novel Therapies in Acute Myeloid Leukemia. Seminars in Oncology Nursing, 2019, 35, 150955.	1.5	9
81	Mutation-Driven Therapy in MDS. Current Hematologic Malignancy Reports, 2019, 14, 550-560.	2.3	4
82	Persistent <i>IDH1/2</i> mutations in remission can predict relapse in patients with acute myeloid leukemia. Haematologica, 2019, 104, 305-311.	3.5	56
83	How I treat MDS after hypomethylating agent failure. Blood, 2019, 133, 521-529.	1.4	61
84	Reconciling environment-mediated metabolic heterogeneity with the oncogene-driven cancer paradigm in precision oncology. Seminars in Cell and Developmental Biology, 2020, 98, 202-210.	5.0	23
85	Emerging agents and regimens for treatment of relapsed and refractory acute myeloid leukemia. Cancer Gene Therapy, 2020, 27, 1-14.	4.6	10
86	Therapeutic Choice in Older Patients with Acute Myeloid Leukemia: A Matter of Fitness. Cancers, 2020, 12, 120.	3.7	39
87	Targeting Cell Metabolism as Cancer Therapy. Antioxidants and Redox Signaling, 2020, 32, 285-308.	5.4	32
88	Acute Myeloid Leukemia: Aging and Epigenetics. Cancers, 2020, 12, 103.	3.7	46
89	The face of remission induction. British Journal of Haematology, 2020, 188, 101-115.	2.5	3
90	Detection and management of acute myeloid leukemia measurable residual disease. Current Opinion in Hematology, 2020, 27, 81-87.	2.5	6

#	Article	IF	CITATIONS
91	Epigenetic alterations and advancement of treatment in peripheral T-cell lymphoma. Clinical Epigenetics, 2020, 12, 169.	4.1	40
92	Isocitrate dehydrogenase variants in cancer — Cellular consequences and therapeutic opportunities. Current Opinion in Chemical Biology, 2020, 57, 122-134.	6.1	35
93	Myelodysplastic syndromes: 2021 update on diagnosis, risk stratification and management. American Journal of Hematology, 2020, 95, 1399-1420.	4.1	119
94	Gene of the month: <i>IDH1</i> . Journal of Clinical Pathology, 2020, 73, 611-615.	2.0	8
95	Outcome of patients with IDH1/2-mutated post–myeloproliferative neoplasm AML in the era of IDH inhibitors. Blood Advances, 2020, 4, 5336-5342.	5.2	37
96	Management of higher risk myelodysplastic syndromes after hypomethylating agents failure: are we about to exit the black hole?. Expert Review of Hematology, 2020, 13, 1131-1142.	2.2	8
97	The role of autophagy in targeted therapy for acute myeloid leukemia. Autophagy, 2021, 17, 2665-2679.	9.1	44
98	Evaluating ivosidenib for the treatment of acute myeloid leukemia. Expert Opinion on Pharmacotherapy, 2020, 21, 2205-2213.	1.8	9
99	Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduction and Targeted Therapy, 2020, 5, 288.	17.1	98
100	Following in the footsteps of acute myeloid leukemia: are we witnessing the start of a therapeutic revolution for higher-risk myelodysplastic syndromes?. Leukemia and Lymphoma, 2020, 61, 2295-2312.	1.3	7
101	Myelodysplastic syndromes: a review of therapeutic progress over the past 10 years. Expert Review of Anticancer Therapy, 2020, 20, 465-482.	2.4	5
102	Advances in targeted therapy for acute myeloid leukemia. Biomarker Research, 2020, 8, 17.	6.8	41
103	The DNA methylation landscape of hematological malignancies: an update. Molecular Oncology, 2020, 14, 1616-1639.	4.6	26
104	Mitochondria: A Galaxy in the Hematopoietic and Leukemic Stem Cell Universe. International Journal of Molecular Sciences, 2020, 21, 3928.	4.1	18
105	Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma. Nature Communications, 2020, 11, 1228.	12.8	62
106	IDH1 mutated acute myeloid leukemia in a child with metaphyseal chondromatosis with D-2-hydroxyglutaric aciduria. Pediatric Hematology and Oncology, 2020, 37, 431-437.	0.8	1
107	Epigenetic Modulation of Self-Renewal Capacity of Leukemic Stem Cells and Implications for Chemotherapy. Epigenomes, 2020, 4, 3.	1.8	9
108	Digital Droplet PCR is a Specific and Sensitive Tool for Detecting IDH2 Mutations in Acute Myeloid LeuKemia Patients. Cancers, 2020, 12, 1738.	3.7	20

#	Article	IF	Citations
109	From Bench to Bedside and Beyond: Therapeutic Scenario in Acute Myeloid Leukemia. Cancers, 2020, 12, 357.	3.7	11
110	Driver mutations in acute myeloid leukemia. Current Opinion in Hematology, 2020, 27, 49-57.	2.5	44
111	Alterations of T-cell-mediated immunity in acute myeloid leukemia. Oncogene, 2020, 39, 3611-3619.	5.9	52
112	EVI1 triggers metabolic reprogramming associated with leukemogenesis and increases sensitivity to L-asparaginase. Haematologica, 2020, 105, 2118-2129.	3.5	17
113	Evolving therapies for lower-risk myelodysplastic syndromes. Annals of Hematology, 2020, 99, 677-692.	1.8	16
114	Novel therapies in myelodysplastic syndromes. Current Opinion in Hematology, 2020, 27, 58-65.	2.5	4
115	Advances in non-intensive chemotherapy treatment options for adults diagnosed with acute myeloid leukemia. Leukemia Research, 2020, 91, 106339.	0.8	20
116	NAD- and NADPH-Contributing Enzymes as Therapeutic Targets in Cancer: An Overview. Biomolecules, 2020, 10, 358.	4.0	51
117	Design and synthesis of novel 2-arylbenzimidazoles as selective mutant isocitrate dehydrogenase 2 R140Q inhibitors. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127070.	2.2	5
118	An Optimized Full-Length FLT3/CD3 Bispecific Antibody Demonstrates Potent Anti-leukemia Activity and Reversible Hematological Toxicity. Molecular Therapy, 2020, 28, 889-900.	8.2	25
119	Is the IDH Mutation a Good Target for Chondrosarcoma Treatment?. Current Molecular Biology Reports, 2020, 6, 1-9.	1.6	20
120	The PI3K-Akt-mTOR Signaling Pathway in Human Acute Myeloid Leukemia (AML) Cells. International Journal of Molecular Sciences, 2020, 21, 2907.	4.1	158
121	<i>IDH1</i> and <i>IDH2</i> mutations in lung adenocarcinomas: Evidences of subclonal evolution. Cancer Medicine, 2020, 9, 4386-4394.	2.8	18
122	Role of the mitochondrial stress response in human cancer progression. Experimental Biology and Medicine, 2020, 245, 861-878.	2.4	25
123	Individualizing Treatment for Newly Diagnosed Acute Myeloid Leukemia. Current Treatment Options in Oncology, 2020, 21, 34.	3.0	2
124	A chromatin perspective on metabolic and genotoxic impacts on hematopoietic stem and progenitor cells. Cellular and Molecular Life Sciences, 2020, 77, 4031-4047.	5.4	7
125	A phase 1 study of azacitidine with high-dose cytarabine and mitoxantrone in high-risk acute myeloid leukemia. Blood Advances, 2020, 4, 599-606.	5.2	9
126	Identification of a selective inhibitor of IDH2/R140Q enzyme that induces cellular differentiation in leukemia cells. Cell Communication and Signaling, 2020, 18, 55.	6.5	9

#	Article	IF	CITATIONS
127	Clinical implications of recurrent gene mutations in acute myeloid leukemia. Experimental Hematology and Oncology, 2020, 9, 4.	5.0	47
128	The Role of Somatic Mutations in Acute Myeloid Leukemia Pathogenesis. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a034975.	6.2	8
129	Ivosidenib or enasidenib combined with intensive chemotherapy in patients with newly diagnosed AML: a phase 1 study. Blood, 2021, 137, 1792-1803.	1.4	123
130	Effects of azacitidine in 93 patients with <i>IDH1/2</i> mutated acute myeloid leukemia/myelodysplastic syndromes: a French retrospective multicenter study. Leukemia and Lymphoma, 2021, 62, 438-445.	1.3	5
131	<i>IDH1</i> mutation contributes to myeloid dysplasia in mice by disturbing heme biosynthesis and erythropoiesis. Blood, 2021, 137, 945-958.	1.4	16
132	Mutant Isocitrate Dehydrogenase 1 Inhibitor Ivosidenib in Combination With Azacitidine for Newly Diagnosed Acute Myeloid Leukemia. Journal of Clinical Oncology, 2021, 39, 57-65.	1.6	118
133	Application of Next Generation Sequencing in Laboratory Medicine. Annals of Laboratory Medicine, 2021, 41, 25-43.	2.5	99
134	Acute Myeloid Leukemia and Allogeneic Hematopoietic Cell Transplant. , 2021, , 231-250.		0
135	Advances in the Treatment of Adult Relapsed/Refractory Acute Myeloid Leukemia. Advances in Clinical Medicine, 2021, 11, 24-33.	0.0	0
136	Chemotherapy Knowledge Base Management in the Era of Precision Oncology. JCO Clinical Cancer Informatics, 2021, 5, 30-35.	2.1	2
137	Recent Clinical Update of Acute Myeloid Leukemia: Focus on Epigenetic Therapies. Journal of Korean Medical Science, 2021, 36, e85.	2.5	6
138	Protein Function Allostery in Proteins: Canonical Models and New Insights. , 2021, , 27-43.		0
139	Molecular Targeted Therapy in Myelodysplastic Syndromes: New Options for Tailored Treatments. Cancers, 2021, 13, 784.	3.7	14
140	Concurrent inhibition of IDH and methyltransferase maximizes therapeutic efficacy in IDH mutant acute myeloid leukemia. Haematologica, 2021, 106, 324-326.	3.5	7
141	Genetic characterization of acute myeloid leukemia patients with mutations in IDH1/2 genes. Leukemia Research, 2021, 101, 106492.	0.8	0
142	Prognostic significance of concurrent gene mutations in intensively treated patients with <i>IDH</i> -mutated AML, an ALFA study. Blood, 2021, 137, 2827-2837.	1.4	36
143	Linking Metabolic Reprogramming, Plasticity and Tumor Progression. Cancers, 2021, 13, 762.	3.7	22
144	The Roles of 2-Hydroxyglutarate. Frontiers in Cell and Developmental Biology, 2021, 9, 651317.	3.7	59

#	Article	IF	Citations
145	Management of patients with higher-risk myelodysplastic syndromes after failure of hypomethylating agents: What is on the horizon?. Best Practice and Research in Clinical Haematology, 2021, 34, 101245.	1.7	8
146	R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m6A/PFKP/LDHB axis. Molecular Cell, 2021, 81, 922-939.e9.	9.7	157
147	Taking aim at IDH in fitter patients with AML. Blood, 2021, 137, 1706-1707.	1.4	0
148	Personalized patient care with aggressive hematological malignancies in non-responders to first-line treatment. Expert Review of Precision Medicine and Drug Development, 2021, 6, 203-215.	0.7	2
149	Epigenetics in a Spectrum of Myeloid Diseases and Its Exploitation for Therapy. Cancers, 2021, 13, 1746.	3.7	7
150	Assessing acquired resistance to IDH1 inhibitor therapy by full-exon <i>IDH1</i> sequencing and structural modeling. Journal of Physical Education and Sports Management, 2021, 7, a006007.	1.2	10
151	R-2-HG in AML… friend or foe?. Blood Science, 2021, 3, 62-63.	0.9	0
152	<i>IDH1</i> and <iidh2< i=""> Mutations in Colorectal Cancers. American Journal of Clinical Pathology, 2021, 156, 777-786.</iidh2<>	0.7	12
153	The Role of Metabolism in the Development of Personalized Therapies in Acute Myeloid Leukemia. Frontiers in Oncology, 2021, 11, 665291.	2.8	5
154	Targeted Therapeutic Approach Based on Understanding of Aberrant Molecular Pathways Leading to Leukemic Proliferation in Patients with Acute Myeloid Leukemia. International Journal of Molecular Sciences, 2021, 22, 5789.	4.1	6
155	Isocitrate Dehydrogenase 2 Inhibitors for the Treatment of Hematologic Malignancies: Advances and Future Opportunities. Mini-Reviews in Medicinal Chemistry, 2021, 21, 1113-1122.	2.4	0
156	Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduction and Targeted Therapy, 2021, 6, 201.	17.1	607
157	Nucleophosmin1 and isocitrate dehydrogenase 1 and 2 as measurable residual disease markers in acute myeloid leukemia. PLoS ONE, 2021, 16, e0253386.	2.5	5
158	Potential Biomarkers for Treatment Response to the BCL-2 Inhibitor Venetoclax: State of the Art and Future Directions. Cancers, 2021, 13, 2974.	3.7	12
159	Incidence and prognosis of clonal hematopoiesis in patients with chronic idiopathic neutropenia. Blood, 2021, 138, 1249-1257.	1.4	15
160	From the (Epi)Genome to Metabolism and Vice Versa; Examples from Hematologic Malignancy. International Journal of Molecular Sciences, 2021, 22, 6321.	4.1	5
161	The Role of Hypoxic Bone Marrow Microenvironment in Acute Myeloid Leukemia and Future Therapeutic Opportunities. International Journal of Molecular Sciences, 2021, 22, 6857.	4.1	11
163	Genetics of Myelodysplastic Syndromes. Cancers, 2021, 13, 3380.	3.7	9

#	Article	IF	CITATIONS
164	The impact of mitochondria on cancer treatment resistance. Cellular Oncology (Dordrecht), 2021, 44, 983-995.	4.4	15
165	Mutant <i>Idh2</i> Cooperates with a <i>NUP98-HOXD13</i> Fusion to Induce Early Immature Thymocyte Precursor ALL. Cancer Research, 2021, 81, 5033-5046.	0.9	7
166	Improving prediction accuracy in acute myeloid leukaemia: micro-environment, immune and metabolic models. Leukemia, 2021, 35, 3073-3077.	7.2	4
167	Management of the Older Patient with Myelodysplastic Syndrome. Drugs and Aging, 2021, 38, 751-767.	2.7	9
168	SOHO State of the Art & Decade. Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, 1-16.	0.4	20
170	Lysine acetylation restricts mutant IDH2 activity to optimize transformation in AML cells. Molecular Cell, 2021, 81, 3833-3847.e11.	9.7	10
171	From Descriptive to Functional Genomics of Leukemias Focusing on Genome Engineering Techniques. International Journal of Molecular Sciences, 2021, 22, 10065.	4.1	5
172	Identification of Isocitrate Dehydrogenase 2 (IDH2) Mutation in Carotid Body Paraganglioma. Frontiers in Endocrinology, 2021, 12, 731096.	3.5	5
173	Gilteritinib Inhibits Glutamine Uptake and Utilization in <i>FLT3</i> ITD–Positive AML. Molecular Cancer Therapeutics, 2021, 20, 2207-2217.	4.1	27
174	SOHO State of the Art Updates and Next Questions: IDH Inhibition. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, 567-572.	0.4	0
175	Targeted Therapies for the Evolving Molecular Landscape of Acute Myeloid Leukemia. Cancers, 2021, 13, 4646.	3.7	8
176	Metabolic enzymes function as epigenetic modulators: A Trojan Horse for chromatin regulation and gene expression. Pharmacological Research, 2021, 173, 105834.	7.1	1
177	SERS-based DNA methylation profiling allows the differential diagnosis of malignant lymphadenopathy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120216.	3.9	11
178	An acylhydroquinone derivative produces OXPHOS uncoupling and sensitization to BH3 mimetic ABT-199 (Venetoclax) in human promyelocytic leukemia cells. Bioorganic Chemistry, 2020, 100, 103935.	4.1	13
179	Genetic biomarkers of drug resistance: A compass of prognosis and targeted therapy in acute myeloid leukemia. Drug Resistance Updates, 2020, 52, 100703.	14.4	25
180	Splicing dysfunction and disease: The case of granulopoiesis. Seminars in Cell and Developmental Biology, 2018, 75, 23-39.	5.0	8
181	Efflux pump inhibitors as a promising adjunct therapy against drug resistant tuberculosis: a new strategy to revisit mycobacterial targets and repurpose old drugs. Expert Review of Anti-Infective Therapy, 2020, 18, 741-757.	4.4	29
183	Epigenetic dysregulation of <i>TET2 < /i>in human glioblastoma. Oncotarget, 2018, 9, 25922-25934.</i>	1.8	29

#	Article	IF	CITATIONS
184	The Evolving AML Genomic Landscape: Therapeutic Implications. Current Cancer Drug Targets, 2020, 20, 532-544.	1.6	8
185	Targeted variant detection using unaligned RNA-Seq reads. Life Science Alliance, 2019, 2, e201900336.	2.8	14
186	Management of AML Beyond "3 + 7―in 2019. Clinical Hematology International, 2019, 1, 10.	1.7	9
187	Advances in New Targets for Differentiation Therapy of Acute Myeloid Leukemia. Journal of Cancer Research Updates, 0, 9, 88-95.	0.3	1
188	Differentiation therapy of myeloid leukemia: four decades of development. Haematologica, 2021, 106, 1-13.	3.5	27
189	Networking for advanced molecular diagnosis in acute myeloid leukemia patients is possible: the PETHEMA NGS-AML project. Haematologica, 2021, 106, 3079-3089.	3.5	15
190	Increased RLIP76 expression in IDH1 wild‑type glioblastoma multiforme is associated with worse prognosis. Oncology Reports, 2020, 43, 188-200.	2.6	9
191	Alterations of mitochondria and related metabolic pathways in leukemia: A narrative review. Saudi Journal of Medicine and Medical Sciences, 2020, 8, 3.	0.8	10
192	The Progress of Next Generation Sequencing in the Assessment of Myeloid Malignancies. Balkan Medical Journal, 2019, 36, 78-87.	0.8	3
193	New agents in acute myeloid leukemia (AML). Blood Research, 2020, 55, S14-S18.	1.3	16
194	Current and Emerging Therapies for Acute Myeloid Leukemia. Cancer Treatment and Research, 2021, 181, 57-73.	0.5	2
195	How do molecular aberrations guide therapy in MDS?. Best Practice and Research in Clinical Haematology, 2021, 34, 101324.	1.7	0
196	Genomic Abnormalities as Biomarkers and Therapeutic Targets in Acute Myeloid Leukemia. Cancers, 2021, 13, 5055.	3.7	4
197	Advances in acute myeloid leukemia. BMJ, The, 2021, 375, n2026.	6.0	177
198	A concise review on the molecular genetics of acute myeloid leukemia. Leukemia Research, 2021, 111, 106727.	0.8	33
200	Therapy-Induced Marrow Changes. , 2020, , 713-738.		0
201	Novel and Investigational Therapies in Acute Myeloid Leukemia. Hematologic Malignancies, 2021, , 133-144.	0.2	0
202	The clinical significance of isocitrate dehydrogenase 2 in esophageal squamous cell carcinoma. American Journal of Cancer Research, 2017, 7, 700-714.	1.4	8

#	Article	IF	CITATIONS
203	<editors' choice=""> How to improve outcomes of elderly patients with acute myeloid leukemia: era of excitement. Nagoya Journal of Medical Science, 2020, 82, 151-160.</editors'>	0.3	1
204	Differential impact of <i>IDH1</i> / <i>2</i> mutational subclasses on outcome in adult AML: results from a large multicenter study. Blood Advances, 2022, 6, 1394-1405.	5.2	17
205	Isocitrate dehydrogenase mutations are associated with altered IL- $1\hat{l}^2$ responses in acute myeloid leukemia. Leukemia, 2022, 36, 923-934.	7.2	3
206	Therapeutic Options in Myelodysplastic Syndromes Following Hypomethylating Agent Failure. European Medical Journal Hematology, 0, , 52-64.	0.0	0
207	Pharmacogenomics of Anti-Cancer Drugs. , 2021, , .		0
208	Mutational landscape of blast phase myeloproliferative neoplasms (MPN-BP) and antecedent MPN. International Review of Cell and Molecular Biology, 2022, 366, 83-124.	3.2	12
209	Pharmacokinetic/Pharmacodynamic Evaluation of Ivosidenib or Enasidenib Combined With Intensive Induction and Consolidation Chemotherapy in Patients With Newly Diagnosed ⟨i⟩IDH1/2⟨/i⟩ â€Mutant Acute Myeloid Leukemia. Clinical Pharmacology in Drug Development, 2022, 11, 429-441.	1.6	3
210	High Frequency of ASXL1 and IDH Mutations in Young Acute Myeloid Leukemia Egyptian Patients. Asian Pacific Journal of Cancer Prevention, 2022, 23, 977-984.	1.2	2
212	A phase 1 study of IDH305 in patients with IDH1R132-mutant acute myeloid leukemia or myelodysplastic syndrome. Journal of Cancer Research and Clinical Oncology, 2023, 149, 1145-1158.	2.5	14
213	Reductive TCA cycle catalyzed by wild-type IDH2 promotes acute myeloid leukemia and is a metabolic vulnerability for potential targeted therapy. Journal of Hematology and Oncology, 2022, 15, 30.	17.0	19
214	Diagnostic and Prognostic Power of Active DNA Demethylation Pathway Intermediates in Acute Myelogenous Leukemia and Myelodysplastic Syndromes. Cells, 2022, 11, 888.	4.1	3
215	Comprehensive analysis of genetic factors predicting overall survival in Myelodysplastic syndromes. Scientific Reports, 2022, 12, 5925.	3.3	6
216	Status of IDH mutations in chondrosarcoma of the jaws. International Journal of Oral and Maxillofacial Surgery, 2022, , .	1.5	0
217	DNA Hydroxymethylation in High-Grade Gliomas. Journal of Neurological Surgery, Part A: Central European Neurosurgery, 2022, 83, 568-572.	0.8	3
218	Single-Tube qPCR Detection and Quantitation of Hotspot Mutations Down to 0.01% Variant Allele Fraction. Analytical Chemistry, 2022, 94, 934-943.	6.5	10
219	Mitochondria and Their Relationship with Common Genetic Abnormalities in Hematologic Malignancies. Life, 2021, 11, 1351.	2.4	1
220	IDH1 inhibitor-induced neutrophilic dermatosis in a patient with acute myeloid leukemia. Cancer Treatment and Research Communications, 2022, 31, 100560.	1.7	2
222	Emerging Immunohistochemical Biomarkers for Myeloid Neoplasms. Archives of Pathology and Laboratory Medicine, 2023, 147, 403-412.	2.5	1

#	Article	IF	CITATIONS
223	Contemporary Approach to Acute Myeloid Leukemia Therapy in 2022. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2022, , 568-583.	3.8	10
224	New Therapeutic Strategies for Adult Acute Myeloid Leukemia. Cancers, 2022, 14, 2806.	3.7	15
225	2-Hydroxyglutarate in Acute Myeloid Leukemia: A Journey from Pathogenesis to Therapies. Biomedicines, 2022, 10, 1359.	3.2	8
226	Development and Validation of an Individualized Metabolism-Related Prognostic Model for Adult Acute Myeloid Leukemia Patients. Frontiers in Oncology, 0, 12, .	2.8	2
227	IDH2: A novel biomarker for environmental exposure in blood circulatory system disorders (Review). Oncology Letters, 2022, 24, .	1.8	1
228	Acute myeloid leukemia and dilated cardiomyopathy in a pediatric patient with <scp>Dâ€2â€hydroxyglutaric</scp> aciduria type I. American Journal of Medical Genetics, Part A, 0, , .	1.2	0
229	Metabolic Labeling-Based Chemoproteomics Establishes Choline Metabolites as Protein Function Modulators. ACS Chemical Biology, 2022, 17, 2272-2283.	3.4	3
230	Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death and Differentiation, 2022, 29, 1304-1317.	11.2	71
231	CHIPing away the progression potential of CHIP: A new reality in the making. Blood Reviews, 2023, 58, 101001.	5.7	6
232	Evaluation of two new highly multiplexed <scp>PCR</scp> assays as an alternative to nextâ€generation sequencing for <i> <scp>IDH1</scp> /2 </i> mutation detection. Molecular Oncology, 0, , .	4.6	0
233	A decade of approved first-in-class small molecule orphan drugs: Achievements, challenges and perspectives. European Journal of Medicinal Chemistry, 2022, 243, 114742.	5.5	1
234	The research progress of targeted therapy in acute myeloid leukemia based on bibliometric analysis. Frontiers in Oncology, 0, 12, .	2.8	0
235	Impact of IDH1 and IDH2 mutational subgroups in AML patients after allogeneic stem cell transplantation. Journal of Hematology and Oncology, 2022, 15, .	17.0	8
236	Understanding the Crosstalk Between Epigenetics and Immunometabolism to Combat Cancer. Sub-Cellular Biochemistry, 2022, , 581-616.	2.4	0
237	Chromatin as a sensor of metabolic changes during early development. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	1
238	MicroRNA 101 Attenuated NSCLC Proliferation through IDH2/HIFî± Axis Suppression in the Warburg Effect. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-12.	4.0	1
239	Therapeutic Options in Myelodysplastic Syndromes: Established and Emerging Therapies. European Medical Journal Hematology, 0, , 71-81.	0.0	0
241	A pyridinesulfonamide derivative FD268 suppresses cell proliferation and induces apoptosis via inhibiting PI3K pathway in acute myeloid leukemia. PLoS ONE, 2022, 17, e0277893.	2.5	2

#	Article	IF	Citations
242	Therapeutic approaches for the management of higher risk myelodysplastic syndromes. Leukemia and Lymphoma, 2023, 64, 511-524.	1.3	2
243	Isocitrate dehydrogenase 1 mutation drives leukemogenesis by PDGFRA activation due to insulator disruption in acute myeloid leukemia (AML). Leukemia, 2023, 37, 134-142.	7.2	3
244	Metabolic determinants of tumour initiation. Nature Reviews Endocrinology, 2023, 19, 134-150.	9.6	16
245	Cost-effectiveness of azacitidine and ivosidenib in newly diagnosed older, intensive chemotherapy-ineligible patients with $\langle i \rangle$ IDH1 $\langle i \rangle$ -mutant acute myeloid leukemia. Leukemia and Lymphoma, 2023, 64, 454-461.	1.3	1
246	Metabolism in acute myeloid leukemia: mechanistic insights and therapeutic targets. Blood, 2023, 141, 1119-1135.	1.4	7
247	Targeted Therapy for MPNs: Going Beyond JAK Inhibitors. Current Hematologic Malignancy Reports, 0, ,	2.3	0
248	Accelerated Phase of MPN: What It Is and What to Do About It. Clinical Lymphoma, Myeloma and Leukemia, 2023, , .	0.4	0
249	Biological therapy in elderly patients with acute myeloid leukemia. Expert Opinion on Biological Therapy, 2023, 23, 175-194.	3.1	2
250	Distinct and opposite effects of leukemogenic $\langle i \rangle Idh \langle i \rangle$ and $\langle i \rangle Tet2 \langle i \rangle$ mutations in hematopoietic stem and progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	7
251	Single-center, observational study of AML/MDS-EB with IDH1/2 mutations: genetic profile, immunophenotypes, mutational kinetics and outcomes. Hematology, 2023, 28, .	1.5	2
252	Clinicopathologic Features of <i>IDH2</i> R172–Mutated Myeloid Neoplasms. American Journal of Clinical Pathology, 0, , .	0.7	0
253	Therapeutic Targets in Myelodysplastic Neoplasms: Beyond Hypomethylating Agents. Current Hematologic Malignancy Reports, 0, , .	2.3	0
254	Targeted therapy. , 2023, , 205-411.		0
255	Novel Therapies in Myelodysplastic Syndrome. Cancer Journal (Sudbury, Mass), 2023, 29, 188-194.	2.0	0
256	Phenotypic screening identifies a trisubstituted imidazo [1,2-a] pyridine series that induces differentiation in multiple AML cell lines. European Journal of Medicinal Chemistry, 2023, 258, 115509.	5.5	1
257	Myelodysplastic syndromes: 2023 update on diagnosis, riskâ€stratification, and management. American Journal of Hematology, 2023, 98, 1307-1325.	4.1	7
258	Therapies for acute myeloid leukemia in patients ineligible for standard induction chemotherapy: a systematic review. Future Oncology, 2023, 19, 789-810.	2.4	0
259	Oral therapy for myelodysplastic syndromes/neoplasms and acute myeloid leukemia: a revolution in progress. Expert Review of Anticancer Therapy, 2023, 23, 903-911.	2.4	0

#	Article	IF	CITATIONS
260	An integrative computational approach for the identification of dual inhibitors \hat{A} of isocitrate dehydrogenase 1 and 2 from phytocompounds of <i>Phyllantus amarus </i> . Journal of Biomolecular Structure and Dynamics, 0, , 1-17.	3.5	1
261	Targeted singleâ€eell RNA sequencing analysis reveals metabolic reprogramming and the ferroptosisâ€eesistant state in hematologic malignancies. Cell Biochemistry and Function, 2023, 41, 1343-1356.	2.9	0
262	Acute myeloid leukemia: from NGS, through scRNA-seq, to CAR-T. dissect cancer heterogeneity and tailor the treatment. Journal of Experimental and Clinical Cancer Research, 2023, 42, .	8.6	6
263	Why pathogen genomics is crucial in Africa's public health. African Journal of Laboratory Medicine, 2023, 12, .	0.6	0
264	In the Pipeline: Emerging Therapy for MDS and MDS/MPN., 2023,, 477-500.		0
265	Next-Generation sequencing transforming clinical practice and precision medicine. Clinica Chimica Acta, 2023, 551, 117568.	1.1	1
266	A study to assess the efficacy of enasidenib and risk-adapted addition of azacitidine in newly diagnosed <i>IDH2</i> -mutant AML. Blood Advances, 2024, 8, 429-440.	5.2	1
267	Hypomethylating agents (HMAs) show benefit in AML rather than in intermediate/high-risk MDS based on genetic mutations in epigenetic modification (EMMs): from a retrospective study. Annals of Hematology, 0, , .	1.8	0
268	The emerging field of opportunities for single-cell DNA methylation studies in hematology and beyond. Frontiers in Molecular Biosciences, $0,10,10$	3.5	0
269	DNA Methylation Alterations in Acute Myeloid Leukemia: Therapeutic Potential. , 2023, , .		0
270	Development of nanoparticles for the Novel anticancer therapeutic agents for Acute Myeloid Leukemia. International Journal of Pharmaceutical Sciences and Nanotechnology, 2023, 16, 6894-6906.	0.2	0
271	Characterization of a novel <i>IDH2</i> â€R159H mutation in acute myeloid leukaemia: Effects on cell metabolism and differentiation. British Journal of Haematology, 2024, 204, 719-723.	2.5	0
272	The ferroptosis landscape in acute myeloid leukemia. Aging, 2023, 15, 13486-13503.	3.1	0
273	Differentiating Acute Myeloid Leukemia Stem Cells/Blasts. , 2024, , .		0
274	Genes and Mechanisms Responsible for Expansion of Acute Myeloid Leukaemia Blasts. Folia Biologica, 2019, 65, 11-23.	0.6	0
275	IDH2/R140Q mutation confers cytokine-independent proliferation of TF-1 cells by activating constitutive STAT3/5 phosphorylation. Cell Communication and Signaling, 2024, 22, .	6.5	0
276	Myelodysplastic Syndrome. , 2024, , .		0
277	Identification of mIDH1 R132C/S280F Inhibitors from Natural Products by Integrated Molecular Docking, Pharmacophore Modeling and Molecular Dynamics Simulations. Pharmaceuticals, 2024, 17, 336.	3.8	0

ARTICLE IF CITATIONS

Mitochondrial dysfunction route as a possible biomarker and therapy target for human cancer.
Biomedical Journal, 2024, , 100714.