Carrier generation and electronic properties of a single-

Nature Materials 16, 109-114 DOI: 10.1038/nmat4768

Citation Report

#	Article	IF	CITATIONS
1	Comparable charge transport property based on S··À·S interactions with that of ï€-ï€ stacking in a bis-fused tetrathiafulvalene compound. Science China Chemistry, 2017, 60, 510-515.	8.2	9
2	Boron-Stabilized Planar Neutral π-Radicals with Well-Balanced Ambipolar Charge-Transport Properties. Journal of the American Chemical Society, 2017, 139, 14336-14339.	13.7	97
4	Transport properties of single-component organic conductors, TED derivatives. Molecular Systems Design and Engineering, 2017, 2, 653-658.	3.4	2
5	Role of the Openâ€Shell Character on the Pressureâ€Induced Conductivity of an Organic Donor–Acceptor Radical Dyad. Chemistry - A European Journal, 2018, 24, 5500-5505.	3.3	14
6	Pure Organic Conductors Based on Protonic-Defect Induction: From Semiconductors to Organic Metals. Bulletin of the Chemical Society of Japan, 2018, 91, 467-485.	3.2	10
7	Conducting nanofibres of solvatofluorochromic cyclohexanetrione–dithiolylidene-based C3 symmetric molecule. Chemical Communications, 2018, 54, 212-215.	4.1	3
8	The thermoelectric power of band-filling controlled organic conductors, β′-(BEDT-TTF) ₃ (CoCl ₄) _{2Ⱂx} (GaCl ₄) _x . Journal of Materials Chemistry A, 2018, 6, 2004-2010.	10.3	10
9	Five-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2018, 30, 263-278.	0.5	1
10	Mixed valence salts based on carbon-centered neutral radical crystals. Communications Chemistry, 2018, 1, .	4.5	43
11	Stable Metallic State of a Neutral-Radical Single-Component Conductor at Ambient Pressure. Journal of the American Chemical Society, 2018, 140, 6998-7004.	13.7	48
12	A highly conductive, transparent molecular charge-transfer salt with reversible lithiation. Chemical Communications, 2019, 55, 7179-7182.	4.1	12
13	Highly Air-Stable Solution-Processed and Low-Temperature Organic/Inorganic Nanostructure Hybrid Solar Cells. ACS Applied Energy Materials, 2019, 2, 2637-2644.	5.1	18
14	Cholesteric Aggregation at the Quinoidal-to-Diradical Border Enabled Stable n-Doped Conductor. CheM, 2019, 5, 964-976.	11.7	79
15	Air‣table nâ€Type Thermoelectric Materials Enabled by Organic Diradicaloids. Angewandte Chemie, 2019, 131, 5012-5016.	2.0	64
16	Airâ€Stable nâ€Type Thermoelectric Materials Enabled by Organic Diradicaloids. Angewandte Chemie - International Edition, 2019, 58, 4958-4962.	13.8	92
17	Surface-Mediated Recrystallization for Highly Conducting Organic Radical Crystal. Crystal Growth and Design, 2019, 19, 551-555.	3.0	11
18	Conducting neutral gold bisdithiolene complex [Au(dspdt) ₂]Ë™. Dalton Transactions, 2020, 49, 13737-13743.	3.3	4
19	Single-component conductors based on closed-shell Ni and Pt bis(dithiolene) complexes: metallization under high pressure. Journal of Materials Chemistry C, 2020, 8, 11581-11592.	5.5	11

ARTICLE IF CITATIONS # Syntheses, Structures, and Physical Properties of Neutral Gold Dithiolate Complex, [Au(etdt)2]Â-THF. 20 2.2 2 Crystals, 2020, 10, 1001. Crystal structure and metallization mechanism of the π-radical metal TED. Chemical Science, 2020, 11, 7.4 11699-11704. 22 Highly Conducting and Flexible Radical Crystals. Angewandte Chemie, 2020, 132, 16578. 2.0 5 Highly Conducting and Flexible Radical Crystals. Angewandte Chemie - International Edition, 2020, 59, 34 16436-16439. Airâ€6table Organic Radicals: Newâ€Generation Materials for Flexible Electronics?. Advanced Materials, 24 21.0 158 2020, 32, e1908015. Design and Applications of Single-Component Radical Conductors. CheM, 2021, 7, 333-357. 11.7 The quest for single component molecular metals within neutral transition metal complexes. Journal 26 5.5 10 of Materials Chemistry C, 2021, 9, 10591-10609. Electrically conductive covalent organic frameworks: bridging the fields of organic metals and 2D 5.5 38 materials. Journal of Materials Chemistry C, 2021, 9, 10668-10676. Solid-solution (alloying) strategies in crystalline molecular conductors. Journal of Materials 28 5.5 12 Chemistry C, 2021, 9, 10557-10572. 1,3-Dithioles., 2021, , . Introducing Selenium in Single-Component Molecular Conductors Based on Nickel Bis(dithiolene) 33 4.0 4 Complexes. Inorganic Chemistry, 2021, 60, 7876-7886. Modern History of Organic Conductors: An Overview. Crystals, 2021, 11, 838. 2.2 34 Cytosine-fused TTF: Conducting property of single-component betainic radical and self-assembling 35 0.9 0 ability of hemi-deprotonated cytosine pair. Molecular Crystals and Liquid Crystals, 0, , 1-12. Single-Component Molecular Conductors $\hat{a} \in$ Multi-Orbital Correlated $\ddot{i} \in$ d Electron Systems. Bulletin of the Chemical Society of Japan, 2021, 94, 2540-2562. 3.2 Multifunctional molecular spintronics device based on neutral π-radicals predicted by first-principles 37 2.1 6 study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 414, 127633. Development of Novel Functional Molecular Crystals by Utilizing Dynamic Hydrogen Bonds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1045-1054. Development of Conducting Charge-Transfer Complexes Based on Cooperation of Hydrogen-Bond and Charge-Transfer Interactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 318-329. 39 0.11 Indeno[2,1â€a]fluoreneâ€11,12â€dione Radical Anions: Synthesis, Characterization, and Properties. Chemistry -3.3 A European Journal, 2022, 28, .

CITATION REPORT

#	Article	IF	CITATIONS
41	A Platform to Evaluate the Effect of Back Charge Transfer on the Electrical Conductivity of TTF Charge Transfer Complexes: TTF ₃ MCl ₆ (M = In, Sb). Inorganic Chemistry, 2022, 61, 791-795.	4.0	1
42	Proton–electron-coupled functionalities of conductivity, magnetism, and optical properties in molecular crystals. Chemical Communications, 2022, 58, 5668-5682.	4.1	7
43	Band-filling effects in single-crystalline oligomer models for doped PEDOT: 3,4-ethylenedioxythiophene (EDOT) dimer salt with hydrogen-bonded infinite sulfate anion chains. Journal of Materials Chemistry C, 2022, 10, 7543-7551.	5.5	3
44	Magnetic coupling and spin ordering in bisdithiazolyl, thiaselenazolyl, and bisdiselenazolyl molecular materials. Dalton Transactions, 2022, 51, 13032-13045.	3.3	1
45	Robust Radical Cations of Hexabenzoperylene Exhibiting High Conductivity and Enabling an Organic Nonvolatile Optoelectronic Memory. Journal of the American Chemical Society, 2022, 144, 16612-16619.	13.7	4
46	Presynthetic Redox Gated Metal-to-Insulator Transition and Photothermoelectric Properties in Nickel Tetrathiafulvalene-Tetrathiolate Coordination Polymers. Journal of the American Chemical Society, 2022, 144, 19026-19037.	13.7	9
47	Intrinsic glassy-metallic transport in an amorphous coordination polymer. Nature, 2022, 611, 479-484.	27.8	22
48	Photoâ€controllable Luminescence from Radicals Leading to Ratiometric Emission Switching via Dynamic Intermolecular Coupling. Angewandte Chemie, 0, , .	2.0	0
49	Photoâ€controllable Luminescence from Radicals Leading to Ratiometric Emission Switching via Dynamic Intermolecular Coupling. Angewandte Chemie - International Edition, 2023, 62, .	13.8	13
50	Neutral Radical Molecular Conductors Based on a Gold Dimethoxybenzenedithiolene Complex with and without Crystal Solvent. Chemistry Letters, 2023, 52, 25-28.	1.3	0
51	Partially Oxidized Purely Organic Zwitterionic Neutral Radical Conductor: Multi-step Phase Transitions and Crossover Caused by Intra- and Intermolecular Electronic Interactions. Journal of the American Chemical Society, 2022, 144, 21980-21991.	13.7	2
52	Air-stable organic radicals in solid state from a triphenylamine derivative by UV irradiation. Tetrahedron Letters, 2023, 115, 154259.	1.4	2
53	Catalytic degradation of Rhodamine B by a novel cobalt complex based on TTF derivative. Inorganica Chimica Acta, 2023, 548, 121394.	2.4	1
54	An organic superconductor, (TEA)(HEDO-TTF-dc) ₂ ·2(H ₂ C ₂ O ₄), coupled with strong hydrogen-bonding interactions. Chemical Communications, 2023, 59, 4162-4165.	4.1	0
55	Recent Advances of Stable Phenoxyl Diradicals. Chemical Research in Chinese Universities, 2023, 39, 170-175.	2.6	2
56	Boundary research between organic conductors and transistors: new trends for functional molecular crystals. CrystEngComm, 0, , .	2.6	0
57	Efficient and air-stable n-type doping in organic semiconductors. Chemical Society Reviews, 2023, 52, 3842-3872.	38.1	15
58	Phosphorus-doped Nanoflower-like Porous Carbon with Well-dispersed RuP Sites Embedded for Enhancing Hydrogenation of 4-Nitrophenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, , 132122.	4.7	0

		CITATION REPORT	
#	Article	IF	CITATIONS
59	One pot oxygen mediated syntheses of stable radicals. Materials Advances, 2024, 5, 1523-1530.	5.4	0
60	Organic radicals in single-molecule junctions. Science China Materials, 2024, 67, 709-728.	6.3	0