Conductive MOF electrodes for stable supercapacitors v

Nature Materials 16, 220-224 DOI: 10.1038/nmat4766

Citation Report

#	Article	IF	Citations
5	Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. Journal of Materials Chemistry A, 2016, 4, 19078-19085.	5.2	411
6	Measuring and Reporting Electrical Conductivity in Metal–Organic Frameworks: Cd ₂ (TTFTB) as a Case Study. Journal of the American Chemical Society, 2016, 138, 14772-14782.	6.6	221
7	Modular and Stepwise Synthesis of a Hybrid Metal–Organic Framework for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society, 2017, 139, 1778-1781.	6.6	341
8	Recent Progress in Metalâ€Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting. Advanced Science, 2017, 4, 1600371.	5.6	594
9	Metal-Organic Frameworks for Energy Applications. CheM, 2017, 2, 52-80.	5.8	941
10	Porous materials get energized. Nature Materials, 2017, 16, 161-162.	13.3	66
11	Metal-organic frameworks for energy-related applications. Current Opinion in Green and Sustainable Chemistry, 2017, 4, 44-49.	3.2	39
12	On hip Microsupercapacitors Based on Coordination Polymer Frameworks for Alternating Current Lineâ€Filtering. Angewandte Chemie - International Edition, 2017, 56, 6381-6383.	7.2	15
13	ls iron unique in promoting electrical conductivity in MOFs?. Chemical Science, 2017, 8, 4450-4457.	3.7	176
14	Two-dimensional CoNi nanoparticles@S,N-doped carbon composites derived from S,N-containing Co/Ni MOFs for high performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 9873-9881.	5.2	75
15	Molecular Design of Mesoporous NiCo ₂ O ₄ and NiCo ₂ S ₄ with Subâ€Micrometerâ€Polyhedron Architectures for Efficient Pseudocapacitive Energy Storage. Advanced Functional Materials, 2017, 27, 1701229.	7.8	230
16	Formation of g-C ₃ N ₄ @Ni(OH) ₂ Honeycomb Nanostructure and Asymmetric Supercapacitor with High Energy and Power Density. ACS Applied Materials & Interfaces, 2017, 9, 17890-17896.	4.0	187
17	A hierarchical NiO/NiMn-layered double hydroxide nanosheet array on Ni foam for high performance supercapacitors. Dalton Transactions, 2017, 46, 7388-7391.	1.6	88
18	Functionalized Bimetallic Hydroxides Derived from Metal–Organic Frameworks for High-Performance Hybrid Supercapacitor with Exceptional Cycling Stability. ACS Energy Letters, 2017, 2, 1263-1269.	8.8	167
19	Pseudocapacitive titanium oxynitride mesoporous nanowires with iso-oriented nanocrystals for ultrahigh-rate sodium ion hybrid capacitors. Journal of Materials Chemistry A, 2017, 5, 10827-10835.	5.2	94
20	Engineering the Pores of Biomassâ€Derived Carbon: Insights for Achieving Ultrahigh Stability at High Power in Highâ€Energy Supercapacitors. ChemSusChem, 2017, 10, 2805-2815.	3.6	96
21	An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chemical Society Reviews, 2017, 46, 3185-3241.	18.7	987
22	Coordination nanosheets (CONASHs): strategies, structures and functions. Chemical Communications, 2017, 53, 5781-5801.	2.2	144

TION RE

#	Article	IF	CITATIONS
23	Designing porous electronic thin-film devices: band offsets and heteroepitaxy. Faraday Discussions, 2017, 201, 207-219.	1.6	36
24	On-Chip-Mikrosuperkondensatoren aus Koordinationspolymeren zur Wechselstromnetzfilterung. Angewandte Chemie, 2017, 129, 6479-6481.	1.6	Ο
25	Grand Challenges and Future Opportunities for Metal–Organic Frameworks. ACS Central Science, 2017, 3, 554-563.	5.3	311
26	Conductive Metal–Organic Framework Nanowire Array Electrodes for Highâ€Performance Solidâ€State Supercapacitors. Advanced Functional Materials, 2017, 27, 1702067.	7.8	490
27	Mn ₃ O ₄ /reduced graphene oxide based supercapacitor with ultra-long cycling performance. Journal of Materials Chemistry A, 2017, 5, 12762-12768.	5.2	70
28	Layered manganese-based metal–organic framework as a high capacity electrode material for supercapacitors. RSC Advances, 2017, 7, 29611-29617.	1.7	71
29	Remarkable improvement in the lithium storage property of Co2(OH)2BDC MOF by covalent stitching to graphene and the redox chemistry boosted by delocalized electron spins. Chemical Engineering Journal, 2017, 326, 1000-1008.	6.6	53
30	Nanoarchitecture of MOF-derived nanoporous functional composites for hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 15065-15072.	5.2	146
31	Solvent-Induced Assembly of Sliver Coordination Polymers (CPs) as Cooperative Catalysts for Synthesizing of Cyclopentenone[b]pyrroles Frameworks. Inorganic Chemistry, 2017, 56, 4874-4884.	1.9	31
32	Fabrication of Hierarchical Porous Metal–Organic Framework Electrode for Aqueous Asymmetric Supercapacitor. ACS Sustainable Chemistry and Engineering, 2017, 5, 4144-4153.	3.2	103
33	Hierarchical flower-like nickel phenylphosphonate microspheres and their calcined derivatives for supercapacitor electrodes. Journal of Materials Chemistry A, 2017, 5, 7474-7481.	5.2	61
34	Layerâ€byâ€Layer Assembled Conductive Metal–Organic Framework Nanofilms for Roomâ€Temperature Chemiresistive Sensing. Angewandte Chemie - International Edition, 2017, 56, 16510-16514.	7.2	424
35	Metal-organic frameworks as stationary phase for application in chromatographic separation. Journal of Chromatography A, 2017, 1530, 1-18.	1.8	125
36	Three-Dimensional Networked Metal–Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 38737-38744.	4.0	364
37	Self-Organized Frameworks on Textiles (SOFT): Conductive Fabrics for Simultaneous Sensing, Capture, and Filtration of Gases. Journal of the American Chemical Society, 2017, 139, 16759-16767.	6.6	231
38	Cobalt(II) dicarboxylate-based metal-organic framework for long-cycling and high-rate potassium-ion battery anode. Electrochimica Acta, 2017, 253, 439-444.	2.6	67
39	High-performance supercapacitors of Cu-based porous coordination polymer nanowires and the derived porous CuO nanotubes. Dalton Transactions, 2017, 46, 16821-16827.	1.6	15
40	Layerâ€byâ€Layer Assembled Conductive Metal–Organic Framework Nanofilms for Roomâ€Temperature Chemiresistive Sensing. Angewandte Chemie, 2017, 129, 16737-16741.	1.6	98

#	Article	IF	CITATIONS
41	Bis(aminothiolato)nickel nanosheet as a redox switch for conductivity and an electrocatalyst for the hydrogen evolution reaction. Chemical Science, 2017, 8, 8078-8085.	3.7	120
42	The Fusion of Imidazoliumâ€Based Ionic Polymer and Carbon Nanotubes: One Type of New Heteroatomâ€Đoped Carbon Precursors for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2017, 27, 1703936.	7.8	98
43	Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chemical Society Reviews, 2017, 46, 6927-6945.	18.7	347
44	Fabrication of an advanced asymmetric supercapacitor based on a microcubical PB@MnO ₂ hybrid and PANI/GNP composite with excellent electrochemical behaviour. Journal of Materials Chemistry A, 2017, 5, 22242-22254.	5.2	75
45	Organelle-Specific Triggered Release of Immunostimulatory Oligonucleotides from Intrinsically Coordinated DNA–Metal–Organic Frameworks with Soluble Exoskeleton. Journal of the American Chemical Society, 2017, 139, 15784-15791.	6.6	180
46	Metal–Organic Frameworks and Their Composites: Synthesis and Electrochemical Applications. Small Methods, 2017, 1, 1700187.	4.6	163
47	Hierarchical mesoporous Co 3 O 4 /C@MoS 2 core–shell structured materials for electrochemical energy storage with high supercapacitive performance. Synthetic Metals, 2017, 233, 101-110.	2.1	37
48	Bio-waste onion skin as an innovative nature-driven piezoelectric material with high energy conversion efficiency. Nano Energy, 2017, 42, 282-293.	8.2	117
49	Spectroelectrochemistry and electrosynthesis of polypyrrole supercapacitor electrodes based on gamma aluminum oxide and gamma iron (III) oxide nanocomposites. Electrochimica Acta, 2017, 251, 212-222.	2.6	34
50	Spiers Memorial Lecture: : Progress and prospects of reticular chemistry. Faraday Discussions, 2017, 201, 9-45.	1.6	85
51	Mechanochemical assembly of 3D mesoporous conducting-polymer aerogels for high performance hybrid electrochemical energy storage. Nano Energy, 2017, 41, 193-200.	8.2	20
52	The development of a promising photosensitive Schottky barrier diode using a novel Cd(<scp>ii</scp>) based coordination polymer. Dalton Transactions, 2017, 46, 13531-13543.	1.6	49
53	Multidimensional performance optimization of conducting polymer-based supercapacitor electrodes. Sustainable Energy and Fuels, 2017, 1, 1857-1874.	2.5	133
54	A Microporous and Naturally Nanostructured Thermoelectric Metal-Organic Framework with Ultralow Thermal Conductivity. Joule, 2017, 1, 168-177.	11.7	159
55	Signature of Metallic Behavior in the Metal–Organic Frameworks M ₃ (hexaiminobenzene) ₂ (M = Ni, Cu). Journal of the American Chemical Society, 2017, 139, 13608-13611.	6.6	324
56	Amorphous Cobalt Coordination Nanolayers Incorporated with Silver Nanowires: A New Electrode Material for Supercapacitors. Particle and Particle Systems Characterization, 2017, 34, 1600412.	1.2	10
57	Metal-Organic-Framework-Based Materials as Platforms for Renewable Energy and Environmental Applications. Joule, 2017, 1, 77-107.	11.7	673
58	New insights and perspectives into biological materials for flexible electronics. Chemical Society Reviews, 2017, 46, 6764-6815.	18.7	322

#	Article	IF	CITATIONS
59	Driving electrochemical oxygen reduction and hydrazine oxidation reaction by enzyme-inspired polymeric Cu(3,3′-diaminobenzidine) catalyst. Journal of Materials Chemistry A, 2017, 5, 17413-17420.	5.2	38
60	Improved energy storage, magnetic and electrical properties of aligned, mesoporous and high aspect ratio nanofibers of spinel-NiMn 2 O 4. Applied Surface Science, 2017, 426, 913-923.	3.1	54
61	Redox Active Metal– and Covalent Organic Frameworks for Energy Storage: Balancing Porosity and Electrical Conductivity. Chemistry - A European Journal, 2017, 23, 16419-16431.	1.7	121
62	Electronic structure design for nanoporous, electrically conductive zeolitic imidazolate frameworks. Journal of Materials Chemistry C, 2017, 5, 7726-7731.	2.7	40
63	Oxygen reduction reaction on Ni 3 (HITP) 2 : A catalytic site that leads to high activity. Electrochemistry Communications, 2017, 82, 89-92.	2.3	50
64	Ultrathin Ni-Al layered double hydroxide nanosheets with enhanced supercapacitor performance. Ceramics International, 2017, 43, 14395-14400.	2.3	52
65	A nickel coordination supramolecular network synergized with nitrogen-doped graphene as an advanced cathode to significantly boost the rate capability and durability of supercapacitors. Journal of Materials Chemistry A, 2017, 5, 19036-19045.	5.2	18
66	Direct growth of nickel terephthalate on Ni foam with large mass-loading for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 19323-19332.	5.2	69
67	Pyrolytic in situ magnetization of metal-organic framework MIL-100 for magnetic solid-phase extraction. Journal of Chromatography A, 2017, 1517, 18-25.	1.8	48
68	Popcorn-Derived Porous Carbon Flakes with an Ultrahigh Specific Surface Area for Superior Performance Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 30626-30634.	4.0	227
69	Coordination Polymers with Grinding-Size-Dependent Mechanoresponsive Luminescence Induced by π··΀ Stacking Interactions. European Journal of Inorganic Chemistry, 2017, 2017, 3811-3814.	1.0	14
70	Constructing semiconductive crystalline microporous materials by Coulomb interactions. Journal of Materials Chemistry A, 2017, 5, 18409-18413.	5.2	23
71	Electrical semiconduction modulated by light in a cobalt and naphthalene diimide metal-organic framework. Nature Communications, 2017, 8, 2139.	5.8	51
72	Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Science Advances, 2017, 3, eaap9252.	4.7	824
73	A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. Chinese Chemical Letters, 2017, 28, 2180-2194.	4.8	176
74	Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nature Communications, 2017, 8, 15341.	5.8	1,042
75	Importance of Electrode Preparation Methodologies in Supercapacitor Applications. ACS Omega, 2017, 2, 8039-8050.	1.6	139
76	Mixed Valency as a Strategy for Achieving Charge Delocalization in Semiconducting and Conducting Framework Materials. Inorganic Chemistry, 2017, 56, 14373-14382.	1.9	78

#	Article	IF	CITATIONS
77	Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews, 2017, 46, 6816-6854.	18.7	1,567
78	Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor. Journal of the American Chemical Society, 2017, 139, 9985-9993.	6.6	115
79	Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. Chemical Society Reviews, 2017, 46, 5730-5770.	18.7	549
80	Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. Nano Energy, 2017, 39, 162-171.	8.2	273
81	Redox active materials for metal compound based hybrid electrochemical energy storage: a perspective view. Applied Surface Science, 2017, 422, 492-497.	3.1	30
82	Drawing Sensors with Ball-Milled Blends of Metal-Organic Frameworks and Graphite. Sensors, 2017, 17, 2192.	2.1	90
83	Metal–Organic Frameworks as Active Materials in Electronic Sensor Devices. Sensors, 2017, 17, 1108.	2.1	212
84	Memristive synapses realized in Ag-based metal-organic frameworks. , 2017, , .		0
85	Electrochemical Exfoliation of Pillared‣ayer Metal–Organic Framework to Boost the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2018, 57, 4632-4636.	7.2	275
86	Recent progress in carbon-based nanoarchitectures for advanced supercapacitors. Advanced Composites and Hybrid Materials, 2018, 1, 32-55.	9.9	92
87	Electronic metal–organic framework sensors. Inorganic Chemistry Frontiers, 2018, 5, 979-998.	3.0	120
88	Ultrathin Hierarchical Porous Carbon Nanosheets for Highâ€Performance Supercapacitors and Redox Electrolyte Energy Storage. Advanced Materials, 2018, 30, e1705789.	11.1	309
89	"Water-in-Salt―for Supercapacitors: A Compromise between Voltage, Power Density, Energy Density and Stability. Journal of the Electrochemical Society, 2018, 165, A657-A663.	1.3	127
90	Increased Electrical Conductivity in a Mesoporous Metal–Organic Framework Featuring Metallacarboranes Guests. Journal of the American Chemical Society, 2018, 140, 3871-3875.	6.6	158
91	Electrochemical Exfoliation of Pillared‣ayer Metal–Organic Framework to Boost the Oxygen Evolution Reaction. Angewandte Chemie, 2018, 130, 4722-4726.	1.6	86
92	π–π Interaction Between Metal–Organic Framework and Reduced Graphene Oxide for Visible-Light Photocatalytic H ₂ Production. ACS Applied Energy Materials, 2018, 1, 1913-1923.	2.5	168
93	Multielectronâ€Transferâ€based Rechargeable Energy Storage of Twoâ€Dimensional Coordination Frameworks with Nonâ€Innocent Ligands. Angewandte Chemie - International Edition, 2018, 57, 8886-8890.	7.2	182
94	A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material. Electrochimica Acta, 2018, 275, 76-86.	2.6	264

#	Article	IF	CITATIONS
95	Two facile routes to an AB&Cu-MOF composite with improved hydrogen evolution reaction. Journal of Alloys and Compounds, 2018, 753, 228-233.	2.8	41
96	Soluble Supercapacitors: Large and Reversible Charge Storage in Colloidal Iron-Doped ZnO Nanocrystals. Nano Letters, 2018, 18, 3297-3302.	4.5	40
97	Intrinsically microporous polymer-based hierarchical nanostructuring of electrodes <i>via</i> nonsolvent-induced phase separation for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 8909-8915.	5.2	23
98	Development of 3D interconnected carbon materials derived from Zn-MOF-74@carbon nanofiber web as an efficient metal-free electrocatalyst for oxygen reduction. Carbon, 2018, 135, 35-43.	5.4	57
99	Novel lignocellulose based gel polymer electrolyte with higher comprehensive performances for rechargeable lithium–sulfur battery. Journal of Membrane Science, 2018, 556, 203-213.	4.1	74
100	Low temperature preparation of pore structure controllable graphene for high volumetric performance supercapacitors. Electrochimica Acta, 2018, 273, 181-190.	2.6	17
101	Materials and Techniques for Implantable Nutrient Sensing Using Flexible Sensors Integrated with Metal–Organic Frameworks. Advanced Materials, 2018, 30, e1800917.	11.1	80
102	Encapsulating ionic liquids into POM-based MOFs to improve their conductivity for superior lithium storage. Journal of Materials Chemistry A, 2018, 6, 8735-8741.	5.2	95
103	A porous, electrically conductive hexa-zirconium(<scp>iv</scp>) metal–organic framework. Chemical Science, 2018, 9, 4477-4482.	3.7	158
104	Interpenetrated and Polythreaded Co ^{II} -Organic Frameworks as a Supercapacitor Electrode Material with Ultrahigh Capacity and Excellent Energy Delivery Efficiency. ACS Applied Materials & Interfaces, 2018, 10, 9104-9115.	4.0	43
105	Carbon coated nickel–cobalt bimetallic sulfides hollow dodecahedrons for a supercapacitor with enhanced electrochemical performance. New Journal of Chemistry, 2018, 42, 5128-5134.	1.4	38
107	Recent Advances in Layered Ti ₃ C ₂ T <i>_x</i> MXene for Electrochemical Energy Storage. Small, 2018, 14, e1703419.	5.2	729
108	Raw-Cotton-Derived N-Doped Carbon Fiber Aerogel as an Efficient Electrode for Electrochemical Capacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 4008-4015.	3.2	108
109	Towards flexible solid-state supercapacitors for smart and wearable electronics. Chemical Society Reviews, 2018, 47, 2065-2129.	18.7	1,338
110	Metal–Organic Frameworks for High Charge–Discharge Rates in Lithium–Sulfur Batteries. Angewandte Chemie, 2018, 130, 3980-3985.	1.6	70
111	Recent advancements in metal organic framework based electrodes for supercapacitors. Science China Materials, 2018, 61, 159-184.	3.5	88
112	Photon Up-Conversion via Epitaxial Surface-Supported Metal–Organic Framework Thin Films with Enhanced Photocurrent. ACS Applied Energy Materials, 2018, 1, 249-253.	2.5	36
114	Achieving Insertion‣ike Capacity at Ultrahigh Rate via Tunable Surface Pseudocapacitance. Advanced Materials, 2018, 30, e1706640.	11.1	202

#	Article	IF	Citations
115	Metal–Organic Frameworks for High Charge–Discharge Rates in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2018, 57, 3916-3921.	7.2	307
116	Substrate-Independent Epitaxial Growth of the Metal–Organic Framework MOF-508a. ACS Applied Materials & Interfaces, 2018, 10, 4057-4065.	4.0	29
117	pH-Controlled Assembly of 3D and 2D Zinc-Based Metal-Organic Frameworks with Tetrazole Ligands. ACS Omega, 2018, 3, 801-807.	1.6	23
118	Defective Metalâ€Organic Frameworks. Advanced Materials, 2018, 30, e1704501.	11.1	427
119	Flexible long-chain-linker constructed Ni-based metal-organic frameworks with 1D helical channel and their pseudo-capacitor behavior studies. Journal of Power Sources, 2018, 377, 44-51.	4.0	48
120	High-yield bottom-up synthesis of 2D metal–organic frameworks and their derived ultrathin carbon nanosheets for energy storage. Journal of Materials Chemistry A, 2018, 6, 2166-2175.	5.2	203
121	Sulfur Immobilization by "Chemical Anchor―to Suppress the Diffusion of Polysulfides in Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2018, 5, 1701274.	1.9	87
122	Incorporating Electron-Deficient Bipyridinium Chromorphores to Make Multiresponsive Metal–organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 2735-2744.	4.0	53
123	Superconductivity in a Copper(II)â€Based Coordination Polymer with Perfect Kagome Structure. Angewandte Chemie, 2018, 130, 152-156.	1.6	43
124	Synthesis and Electric Properties of a Twoâ€Đimensional Metalâ€Organic Framework Based on Phthalocyanine. Chemistry - A European Journal, 2018, 24, 1806-1810.	1.7	105
125	Robust and conductive two-dimensional metalâ^'organic frameworks with exceptionally high volumetric and areal capacitance. Nature Energy, 2018, 3, 30-36.	19.8	786
126	Exploiting a hybrid lithium ion power source with a high energy density over 30ÂWh/kg. Materials Today Energy, 2018, 7, 51-57.	2.5	31
127	Synthesis, Characterization, and Photoelectrochemical Catalytic Studies of a Water table Zincâ€Based Metal–Organic Framework. ChemSusChem, 2018, 11, 542-546.	3.6	20
128	Boronic Acid Moiety as Functional Defect in UiO-66 and Its Effect on Hydrogen Uptake Capacity and Selective CO ₂ Adsorption: A Comparative Study. ACS Applied Materials & amp; Interfaces, 2018, 10, 787-795.	4.0	36
129	Scalable in-situ growth of self-assembled coordination supramolecular network arrays: A novel high-performance energy storage material. Chemical Engineering Journal, 2018, 338, 230-239.	6.6	34
130	Hollow shell-in-shell Ni ₃ S ₄ @Co ₉ S ₈ tubes derived from core–shell Ni-MOF-74@Co-MOF-74 as efficient faradaic electrodes. CrystEngComm, 2018, 20, 889-895.	1.3	61
131	Multivariate MOF-Templated Pomegranate-Like Ni/C as Efficient Bifunctional Electrocatalyst for Hydrogen Evolution and Urea Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 4750-4756.	4.0	123
132	Graphene aerogels for efficient energy storage and conversion. Energy and Environmental Science, 2018, 11, 772-799.	15.6	435

#	Article	IF	CITATIONS
133	Multi-functional graphene/carbon nanotube aerogels for its applications in supercapacitor and direct methanol fuel cell. Electrochimica Acta, 2018, 264, 12-19.	2.6	73
134	Tuning transport performance in two-dimensional metal-organic framework semiconductors: Role of the metal <i>d</i> band. Applied Physics Letters, 2018, 112, .	1.5	53
135	Pseudocapacitive material with 928â€⁻mAhâ€⁻cmâ^'3 particle-level volumetric specific capacity enabled by continuous phase-transition. Chemical Engineering Journal, 2018, 338, 211-217.	6.6	22
136	Ni ₂ P ₂ O ₇ Nanoarrays with Decorated C ₃ N ₄ Nanosheets as Efficient Electrode for Supercapacitors. ACS Applied Energy Materials, 2018, 1, 2016-2023.	2.5	50
137	Template-free synthesis of nitrogen-doped hierarchical porous carbon for supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 2018, 29, 9673-9682.	1.1	4
138	One-step co-electrodeposition of hierarchical radial NixP nanospheres on Ni foam as highly active flexible electrodes for hydrogen evolution reaction and supercapacitor. Chemical Engineering Journal, 2018, 348, 310-318.	6.6	115
139	Chemical bath deposition synthesis of nickel cobalt oxides/sulï¬des for high-performance supercapacitors electrode materials. Journal of Alloys and Compounds, 2018, 755, 15-23.	2.8	26
140	Three-dimensional interconnected porous graphitic carbon derived from rice straw for high performance supercapacitors. Journal of Power Sources, 2018, 384, 270-277.	4.0	62
141	Exponential energy harvesting through repetitive reconfigurations of a system of capacitors. Communications Physics, 2018, 1, .	2.0	14
142	The electrochemical Na intercalation/extraction mechanism of ultrathin cobalt(II) terephthalate-based MOF nanosheets revealed by synchrotron X-ray absorption spectroscopy. Energy Storage Materials, 2018, 14, 82-89.	9.5	35
143	Synthesis of 1,3-dicarbonyl-functionalized reduced graphene oxide/MnO ₂ composites and their electrochemical properties as supercapacitors. RSC Advances, 2018, 8, 11338-11343.	1.7	6
144	Metal-organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage. Chemical Engineering Journal, 2018, 341, 618-627.	6.6	94
145	Tailoring the oxygenated groups of graphene hydrogels for high-performance supercapacitors with large areal mass loadings. Journal of Materials Chemistry A, 2018, 6, 6587-6594.	5.2	54
146	A Flexible and Ultrahigh Energy Density Capacitor via Enhancing Surface/Interface of Carbon Cloth Supported Colloids. Advanced Energy Materials, 2018, 8, 1703329.	10.2	61
147	Layered conductive polymer-inorganic anion network for high-performance ultra-loading capacitive electrodes. Energy Storage Materials, 2018, 14, 90-99.	9.5	20
148	Our Contributions in Nanochemistry for Antibiosis, Electrocatalyst and Energy Storage Materials. Chemical Record, 2018, 18, 91-104.	2.9	14
149	Hierarchical-graphene-coupled polyaniline aerogels for electrochemical energy storage. Carbon, 2018, 127, 77-84.	5.4	70
150	Modifying the electrochemical performance of vertically-oriented few-layered graphene through rotary plasma processing. Journal of Materials Chemistry A, 2018, 6, 908-917.	5.2	46

#	Article	IF	CITATIONS
151	A novel two-dimensional coordination polymer-polypyrrole hybrid material as a high-performance electrode for flexible supercapacitor. Chemical Engineering Journal, 2018, 334, 2547-2557.	6.6	105
152	Titanium Disulfide Coated Carbon Nanotube Hybrid Electrodes Enable High Energy Density Symmetric Pseudocapacitors. Advanced Materials, 2018, 30, 1704754.	11.1	92
153	Metal–Organic Frameworkâ€Đerived Materials for Sodium Energy Storage. Small, 2018, 14, 1702648.	5.2	129
154	Controllable Syntheses of MOFâ€Ðerived Materials. Chemistry - A European Journal, 2018, 24, 6506-6518.	1.7	117
155	Porous carbon with interpenetrating framework from Osmanthus flower as electrode materials for high-performance supercapacitor. Journal of Environmental Chemical Engineering, 2018, 6, 258-265.	3.3	35
156	An -OH group functionalized MOF for ratiometric Fe3+ sensing. Journal of Solid State Chemistry, 2018, 258, 441-446.	1.4	82
157	A Three-Dimensional Copper Coordination Polymer Constructed by 3-Methyl-1 <i>H</i> -pyrazole-4-carboxylic Acid with Higher Capacitance for Supercapacitors. Crystal Growth and Design, 2018, 18, 280-285.	1.4	36
158	Superconductivity in a Copper(II)â€Based Coordination Polymer with Perfect Kagome Structure. Angewandte Chemie - International Edition, 2018, 57, 146-150.	7.2	233
159	Pristine Metal–Organic Frameworks and their Composites for Energy Storage and Conversion. Advanced Materials, 2018, 30, e1702891.	11.1	525
160	In situ growth of ZnO nanodots on carbon hierarchical hollow spheres as high-performance electrodes for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 735, 1079-1087.	2.8	34
161	Mesoporous Metal–Organic Frameworks: Synthetic Strategies and Emerging Applications. Small, 2018, 14, e1801454.	5.2	133
162	Highly conductive PEDOT:PSS threaded HKUST-1 thin films. Chemical Communications, 2018, 54, 13865-13868.	2.2	28
163	Cu(<scp>i</scp>) coordination polymers (CPs) as tandem catalysts for three-component sequential click/alkynylation cycloaddition reaction with regiocontrol. Dalton Transactions, 2018, 47, 16895-16901.	1.6	14
164	Interweaving metal–organic framework-templated Co–Ni layered double hydroxide nanocages with nanocellulose and carbon nanotubes to make flexible and foldable electrodes for energy storage devices. Journal of Materials Chemistry A, 2018, 6, 24050-24057.	5.2	95
165	Characterization of Pure and Pb2+ ion Doped Methylcellulose Based Biopolymer Electrolyte Films: Optical and Electrical Properties. International Journal of Electrochemical Science, 2018, 13, 11931-11952.	0.5	12
166	Understanding geology through crystal engineering: coordination complexes, coordination polymers and metal–organic frameworks as minerals. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 539-559.	0.5	18
167	Synthesis of Two-Dimensional (2-D) Polymer in the Realm of Liquid–Liquid Interfaces. , 2018, , 453-471.		3
168	Crystallinity-Dependent Thermoelectric Properties of a Two-Dimensional Coordination Polymer: Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2. Polymers, 2018, 10, 962.	2.0	16

#	Article	IF	CITATIONS
169	Origin of the Chemiresistive Response of Ultrathin Films of Conductive Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 15306-15310.	1.6	27
170	Synthesis of Hollow Nano-Structured Cobalt Metal-Organic Framework for Supercapacitor Electrodes. , 2018, , .		4
171	Metal-Organic Frameworks-Based Electrocatalysis: Insight and Future Perspectives. Comments on Inorganic Chemistry, 2018, 38, 166-209.	3.0	9
172	Conductive 2D Metalâ€Organic Frameworks Decorated on Layered Double Hydroxides Nanoflower Surface for Highâ€Performance Supercapacitor. ChemistrySelect, 2018, 3, 13596-13602.	0.7	35
173	Highly Conductive 2D Metal–Organic Framework Thin Film Fabricated by Liquid–Liquid Interfacial Reaction Using One-Pot-Synthesized Benzenehexathiol. Langmuir, 2018, 34, 15754-15762.	1.6	53
174	Electrochemical Performance of Iron Oxide Nanoflakes on Carbon Cloth under an External Magnetic Field. Metals, 2018, 8, 939.	1.0	9
175	Rationally Armoring PtCu Alloy with Metalâ€Organic Frameworks as Highly Selective Nonenzyme Electrochemical Sensor. Advanced Materials Interfaces, 2018, 5, 1801168.	1.9	19
176	Metal–Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives. Advanced Materials, 2018, 30, e1800702.	11.1	362
177	Electrochemical performance of FexMn1â~'x-based metal–organic frameworks as electrode materials for supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 19819-19824.	1.1	8
178	Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. Journal of Power Sources, 2018, 402, 281-295.	4.0	160
179	Covalent Organic Frameworks: Promising Materials as Heterogeneous Catalysts for C-C Bond Formations. Catalysts, 2018, 8, 404.	1.6	38
180	Graphene-like metal–organic frameworks: morphology control, optimization of thin film electrical conductivity and fast sensing applications. CrystEngComm, 2018, 20, 6458-6471.	1.3	70
181	Nitrogen-Doped Microporous Carbons Derived from Pyridine Ligand-Based Metal–Organic Complexes as High-Performance SO ₂ Adsorption Sorbents. ACS Applied Materials & Interfaces, 2018, 10, 37407-37416.	4.0	31
182	The loading of polyoxometalates compound on a biomass derived N-doped mesoporous carbon matrix, a composite material for electrical energy storage. Journal of Coordination Chemistry, 2018, 71, 3035-3044.	0.8	8
183	Bulk-to-Surface Proton-Coupled Electron Transfer Reactivity of the Metal–Organic Framework MIL-125. Journal of the American Chemical Society, 2018, 140, 16184-16189.	6.6	41
184	Rapid, Selective Extraction of Trace Amounts of Gold from Complex Water Mixtures with a Metal–Organic Framework (MOF)/Polymer Composite. Journal of the American Chemical Society, 2018, 140, 16697-16703.	6.6	195
185	High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework. Nature Materials, 2018, 17, 1027-1032.	13.3	341
186	Switchable counterion gradients around charged metallic nanoparticles enable reception of radio waves. Science Advances, 2018, 4, eaau3546.	4.7	16

#	Article	IF	CITATIONS
187	A green and template-free synthesis process of superior carbon material with ellipsoidal structure as enhanced material for supercapacitors. Journal of Power Sources, 2018, 405, 80-88.	4.0	45
188	π onjugated Molecule Boosts Metal–Organic Frameworks as Efficient Oxygen Evolution Reaction Catalysts. Small, 2018, 14, e1803576.	5.2	94
189	Lewis basicity generated by localised charge imbalance in noble metal nanoparticle-embedded defective metal–organic frameworks. Nature Communications, 2018, 9, 4326.	5.8	46
190	Electroactive Metalorganic Frameworks. Israel Journal of Chemistry, 2018, 58, 1089-1101.	1.0	25
191	Nickel–Carbon–Zirconium Material Derived from Nickel-Oxide Clusters Installed in a Metal–Organic Framework Scaffold by Atomic Layer Deposition. Langmuir, 2018, 34, 14143-14150.	1.6	16
192	Nanocasting and Direct Synthesis Strategies for Mesoporous Carbons as Supercapacitor Electrodes. Chemistry of Materials, 2018, 30, 7391-7412.	3.2	92
193	Influence of synthesis temperature on cobalt metal-organic framework (Co-MOF) formation and its electrochemical performance towards supercapacitor electrodes. Journal of Solid State Electrochemistry, 2018, 22, 3873-3881.	1.2	68
194	Synchronously boosting gravimetric and volumetric performance: Biomass-derived ternary-doped microporous carbon nanosheet electrodes for supercapacitors. Carbon, 2018, 140, 664-672.	5.4	101
195	Metal–Organic Framework Derived Spindle-like Carbon Incorporated α-Fe ₂ O ₃ Grown on Carbon Nanotube Fiber as Anodes for High-Performance Wearable Asymmetric Supercapacitors. ACS Nano, 2018, 12, 9333-9341.	7.3	263
196	Largeâ€Area Preparation of Crackâ€Free Crystalline Microporous Conductive Membrane to Upgrade High Energy Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1802052.	10.2	159
197	Origin of the Chemiresistive Response of Ultrathin Films of Conductive Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 15086-15090.	7.2	94
198	DNA-Mediated Nanoscale Metal–Organic Frameworks for Ultrasensitive Photoelectrochemical Enzyme-Free Immunoassay. Analytical Chemistry, 2018, 90, 12284-12291.	3.2	78
199	Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 2018, 118, 9233-9280.	23.0	2,379
200	Highly Conducting Neutral Coordination Polymer with Infinite Two-Dimensional Silver–Sulfur Networks. Journal of the American Chemical Society, 2018, 140, 15153-15156.	6.6	97
201	Electrochemical Material Processing via Continuous Chargeâ€Discharge Cycling: Enhanced Performance upon Cycling for Porous LaMnO ₃ Perovskite Supercapacitor Electrodes. ChemElectroChem, 2018, 5, 3723-3730.	1.7	23
202	Enhanced electrochemical performances of polypyrrole/carboxyl graphene/carbon nanotubes ternary composite for supercapacitors. Electrochimica Acta, 2018, 290, 1-11.	2.6	58
203	Bioinspired Highly Crumpled Porous Carbons with Multidirectional Porosity for High Rate Performance Electrochemical Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 12716-12726.	3.2	31
204	High-performance supercapacitor fabricated from 3D free-standing hierarchical carbon foam-supported two dimensional porous thin carbon nanosheets. Electrochimica Acta, 2018, 290, 98-108.	2.6	41

			-
#	ARTICLE	IF	CITATIONS
205	Excellent Supercapacitor Performance of Robust Nickel–Organic Framework Materials Achieved by Tunable Porosity, Inner-Cluster Redox, and in Situ Fabrication with Graphene Oxide. Crystal Growth and Design, 2018, 18, 6035-6045.	1.4	28
206	Ultrathin two-dimensional metal-organic framework nanosheets for functional electronic devices. Coordination Chemistry Reviews, 2018, 377, 44-63.	9.5	182
	Polyoxometalate-Based Metal–Organic Frameworks with Conductive Polypyrrole for		
207	Supercapacitors. ACS Applied Materials & amp; Interfaces, 2018, 10, 32265-32270.	4.0	159
208	Synthetic Routes for a 2D Semiconductive Copper Hexahydroxybenzene Metal–Organic Framework.	6.6	201
208	Journal of the American Chemical Society, 2018, 140, 14533-14537.	0.0	201
209	Liquid-interface-assisted synthesis of covalent-organic and metal-organic two-dimensional crystalline	3.9	47
	polymers. Npj 2D Materials and Applications, 2018, 2, .		
210	A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance. Chemical Communications, 2018, 54, 10499-10502.	2.2	192
211	Multielectronâ€Transferâ€based Rechargeable Energy Storage of Twoâ€Dimensional Coordination Frameworks with Nonâ€Innocent Ligands. Angewandte Chemie, 2018, 130, 9024-9028.	1.6	34
	Highly activated porous carbon with 3D microspherical structure and hierarchical pores as greatly		
212	enhanced cathode material for high-performance supercapacitors. Journal of Power Sources, 2018, 391, 162-169.	4.0	72
213	A 2D Conductive Organic–Inorganic Hybrid with Extraordinary Volumetric Capacitance at Minimal Swelling. Advanced Materials, 2018, 30, e1800400.	11.1	34
	Facile synthesis of a two-dimensional layered Ni-MOF electrode material for high performance		
214	supercapacitors. RSC Advances, 2018, 8, 17747-17753.	1.7	55
015	Synthetic Strategies for Constructing Twoâ€Dimensional Metalâ€Organic Layers (MOLs): A Tutorial	0.6	<i>(</i> 1
215	Réview. Chinese Journal of Chemistry, 2018, 36, 754-764.	2.6	61
216	Conductive Metal–Organic Frameworks as Ion-to-Electron Transducers in Potentiometric Sensors.	4.0	101
210	ACS Applied Materials & amp; Interfaces, 2018, 10, 19248-19257.	4.0	101
217	In-depth study of electrochemical capacitor performance of MnO2 during phase transition from	2.6	17
	Ramsdellite-MnO2 to Birnessite-MnO2. Electrochimica Acta, 2018, 280, 77-85.		
218	A mesoporous metal-organic framework based on T-shape ligand with Ca2+ release behavior under simulated physiological conditions and praisable biocompatibility. Inorganic Chemistry	1.8	2
	Communication, 2018, 94, 1-4.		
219	Pseudocapacitive layered birnessite sodium manganese dioxide for high-rate non-aqueous sodium ion capacitors. Journal of Materials Chemistry A, 2018, 6, 12259-12266.	5.2	26
220	Hierarchical Two-Dimensional Conductive Metal–Organic Framework/Layered Double Hydroxide Nanoarray for a High-Performance Supercapacitor. Inorganic Chemistry, 2018, 57, 6202-6205.	1.9	86
221	Hydrogel ionotronics. Nature Reviews Materials, 2018, 3, 125-142.	23.3	1,119
	The way to improve the energy density of supercapacitors: Progress and perspective. Science China		
222	Materials, 2018, 61, 1517-1526.	3.5	102

ARTICLE IF CITATIONS # Core-shell CoMoO4@Ni(OH)2 on ordered macro-porous electrode plate for high-performance 223 2.6 29 supercapacitor. Electrochimica Acta, 2018, 283, 538-547. Coordination-induced reversible electrical conductivity variation in the MOF-74 analogue 224 1.6 Fe₂(DSBDC). Dalton Transactions, 2018, 47, 11739-11743. High performance symmetric solid state supercapacitor based on electrode of RuxNi1-xCo2O4 grown 225 2.8 7 on nickel foam. Journal of Alloys and Compounds, 2018, 764, 767-775. From synthesis to applications: Metal–organic frameworks for an environmentally sustainable future. Current Opinion in Green and Sustainable Chemistry, 2018, 12, 47-56. Two-dimensional metal–organic framework nanosheets: synthesis and applications. Chemical Society 227 18.7 978 Reviews, 2018, 47, 6267-6295. Hexagonal Co₃O₄ anchored reduced graphene oxide sheets for high-performance supercapacitors and non-enzymatic glucose sensing. Journal of Materials Chemistry 5.2 118 A, 2018, 6, 14367-<u>14379</u> The loading of polyoxometalates based compound on reduced graphene oxide, a composite material 229 1.5 8 for electrical energy storage and tetracycline removal. Solid State Sciences, 2018, 83, 8-16. lonic liquid directed construction of foam-like mesoporous boron-doped graphitic carbon nitride electrode for high-performance supercapacitor. Journal of Colloid and Interface Science, 2018, 532, 230 5.0 26 231 Pressureâ€Induced Amorphization of MOFâ€5: A First Principles Study. ChemistrySelect, 2018, 3, 8056-8063. 0.7 18 Stabilization of Hexaaminobenzene in a 2D Conductive Metal–Organic Framework for High Power 6.6 Sodium Storage. Journal of the American Chemical Society, 2018, 140, 10315-10323. A coronene-based semiconducting two-dimensional metal-organic framework with ferromagnetic 233 210 5.8behavior. Nature Communications, 2018, 9, 2637. Ni@NiO Nanowires on Nickel Foam Prepared via "Acid Hungry―Strategy: High Supercapacitor Performance and Robust Electrocatalysts for Water Splitting Reaction. Small, 2018, 14, e1800294. 5.2 130 Aptamer based voltammetric biosensor for Mycobacterium tuberculosis antigen ESAT-6 using a 235 nanohybrid material composed of reduced graphene oxide and a metal-organic framework. 2.5 43 Mikroćhimica Acta, 2018, 185, 379. Conductive two-dimensional metal–organic frameworks as multifunctional materials. Chemical Communications, 2018, 54, 7873-7891. 2.2 373 Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible 237 10.8 166 light illumination. Applied Catalysis B: Environmental, 2018, 238, 339-345. Tracking the Formation of a Series of Co n (n=2, 6, 8) Clusters from Linear Co 3 Precursor Clusters by Optimizing the Reaction Conditions. ChemistrySelect, 2018, 3, 7830-7835. Facile Synthesis of Vanadium Metalâ€Organic Frameworks for Highâ€Performance Supercapacitors. Small, 239 5.2167 2018, 14, e1801815. Ni, Co and Mn doped SnS2-graphene aerogels for supercapacitors. Journal of Alloys and Compounds, 240 2.8 2018, 767, 583-591.

	CITATION REP	PORT	
#	Article	IF	CITATIONS
241	In Situ Direct Method To Massively Prepare Hydrophilic Porous Carbide-Derived Carbons for High-Performance Supercapacitors. ACS Applied Energy Materials, 2018, 1, 3544-3553.	2.5	45
242	Nitrogen-Enriched Hollow Porous Carbon Nanospheres with Tailored Morphology and Microstructure for All-Solid-State Symmetric Supercapacitors. ACS Applied Energy Materials, 2018, 1, 4293-4303.	2.5	72
243	Recent progress in two-dimensional polymers for energy storage and conversion: design, synthesis, and applications. Journal of Materials Chemistry A, 2018, 6, 21676-21695.	5.2	78
244	Sputtered Titanium Nitride Films on Titanium Foam Substrates as Electrodes for Highâ€Power Electrochemical Capacitors. ChemElectroChem, 2018, 5, 2199-2207.	1.7	25
245	Coldâ€Palladiumâ€Alloyâ€Catalyst Loaded UiOâ€66â€NH ₂ for Reductive Amination with Nitroarene Exhibiting High Selectivity. ChemistrySelect, 2018, 3, 5092-5097.	⁵ 0.7	22
246	Shapeable Fibrous Aerogels of Metal–Organic-Frameworks Templated with Nanocellulose for Rapid and Large-Capacity Adsorption. ACS Nano, 2018, 12, 4462-4468.	7.3	301
247	First-principles prediction of two-dimensional metal bis(dithiolene) complexes as promising gas sensors. Physical Chemistry Chemical Physics, 2018, 20, 16939-16948.	1.3	13
248	Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coordination Chemistry Reviews, 2018, 369, 15-38.	9.5	271
249	Construction of Metal–Organic Framework/Conductive Polymer Hybrid for All-Solid-State Fabric Supercapacitor. ACS Applied Materials & Interfaces, 2018, 10, 18021-18028.	4.0	176
250	Silica-assisted mesoporous Co@Carbon nanoplates derived from ZIF-67 crystals and their enhanced catalytic activity. Journal of Solid State Chemistry, 2018, 267, 134-139.	1.4	12
251	[Ln ₁₆] complexes (Ln = Gd ^{III} , Dy ^{III}): molecular analogues of natural minerals such as hydrotalcite. Dalton Transactions, 2018, 47, 12847-12851.	1.6	10
252	Metal-organic frameworks for direct electrochemical applications. Coordination Chemistry Reviews, 2018, 376, 292-318.	9.5	430
253	Structure of a Cd(<scp>ii</scp>) mixed-ligand coordination polymer: single crystalline conductance switch involving photoinduced electron transfer and photocoloration. CrystEngComm, 2018, 20, 5663-5666.	1.3	12
254	Supercapacitor with high cycling stability through electrochemical deposition of metal–organic frameworks/polypyrrole positive electrode. Dalton Transactions, 2018, 47, 13472-13478.	1.6	64
255	The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of Metal–organic frameworks. Polyhedron, 2018, 155, 232-253.	1.0	34
256	The interlocked <i>in situ</i> fabrication of graphene@prussian blue nanocomposite as high-performance supercapacitor. Dalton Transactions, 2018, 47, 13126-13134.	1.6	28
257	MOF Derived Porous ZnO/C Nanocomposites for Efficient Dye Photodegradation. ACS Applied Energy Materials, 2018, 1, 4695-4707.	2.5	72
258	Recent Development and Application of Conductive MOFs. Israel Journal of Chemistry, 2018, 58, 1010-1018.	1.0	50

#	Article	IF	CITATIONS
259	Fabrication of hybrid nanocomposite derived from chitosan as efficient electrode materials for supercapacitor. International Journal of Biological Macromolecules, 2018, 120, 2271-2278.	3.6	27
260	Metal–Organic Framework Thin Films on High-Curvature Nanostructures Toward Tandem Electrocatalysis. ACS Applied Materials & Interfaces, 2018, 10, 31225-31232.	4.0	57
261	Interlayer Hydrogen-Bonded Covalent Organic Frameworks as High-Performance Supercapacitors. Journal of the American Chemical Society, 2018, 140, 10941-10945.	6.6	339
262	MOF-templated syntheses of porous Co ₃ O ₄ hollow spheres and micro-flowers for enhanced performance in supercapacitors. CrystEngComm, 2018, 20, 3812-3816.	1.3	38
263	Self-template construction of nanoporous carbon nanorods from a metal–organic framework for supercapacitor electrodes. RSC Advances, 2018, 8, 20655-20660.	1.7	13
264	MOF-derived metal/carbon materials as oxygen evolution reaction catalysts. Inorganic Chemistry Communication, 2018, 94, 57-74.	1.8	52
265	Nitrogenâ€Doped Hierarchical Porous Carbon through Oneâ€Step Activation of Bean Curd for Highâ€Performance Supercapacitor Electrode. ChemElectroChem, 2018, 5, 1606-1614.	1.7	30
266	Effect of Graphene Oxide Thin Film on Growth and Electrochemical Performance of Hierarchical Zinc Sulfide Nanoweb for Supercapacitor Applications. ChemElectroChem, 2018, 5, 2636-2644.	1.7	26
267	Facile Synthesis of Mixed Metal–Organic Frameworks: Electrode Materials for Supercapacitors with Excellent Areal Capacitance and Operational Stability. ACS Applied Materials & Interfaces, 2018, 10, 23063-23073.	4.0	199
268	Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews, 2018, 118, 6189-6235.	23.0	505
269	4.22 Electrochemical Energy Conversion. , 2018, , 856-894.		3
270	Spatially confined synthesis of vanadium nitride nanodots intercalated carbon nanosheets with ultrahigh volumetric capacitance and long life for flexible supercapacitors. Nano Energy, 2018, 51, 128-136.	8.2	87
271	A novel functional material of Co3O4/Fe2O3 nanocubes derived from a MOF precursor for high-performance electrochemical energy storage and conversion application. Chemical Engineering Journal, 2019, 355, 336-340.	6.6	150
272	<i>In situ</i> growth of Cu(OH) ₂ @FeOOH nanotube arrays on catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-sized energy storage devices. Energy and Environmental Science, 2019, 12, 194-205.	15.6	128
273	Secondaryâ€Component Incorporated Hollow MOFs and Derivatives for Catalytic and Energyâ€Related Applications. Advanced Materials, 2019, 31, e1800743.	11.1	129
274	Engineering 2D Architectures toward Highâ€Performance Microâ€Supercapacitors. Advanced Materials, 2019, 31, e1802793.	11.1	202
275	Nitrogen-doped hierarchical porous carbons from used cigarette filters for supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 315-323.	2.7	26
276	Free-standing amorphous nanoporous nickel cobalt phosphide prepared by electrochemically delloying process as a high performance energy storage electrode material. Energy Storage Materials, 2019, 17, 300-308.	9.5	60

#	Article	IF	CITATIONS
277	Recent Approaches to Design Electrocatalysts Based on Metal–Organic Frameworks and Their Derivatives. Chemistry - an Asian Journal, 2019, 14, 3474-3501.	1.7	34
278	Construction of Cu-based MOFs with enhanced hydrogenation performance by integrating open electropositive metal sites. CrystEngComm, 2019, 21, 5382-5386.	1.3	16
279	A Strategic High Yield Synthesis of 2,5-Dihydroxy-1,4-benzoquinone Based MOFs. Inorganic Chemistry, 2019, 58, 10756-10760.	1.9	15
280	Black Anatase TiO ₂ Nanotubes with Tunable Orientation for High Performance Supercapacitors. Journal of Physical Chemistry C, 2019, 123, 21931-21940.	1.5	33
281	A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 19939-19949.	5.2	71
282	A two-dimensional semiconducting covalent organic framework with nickel(<scp>ii</scp>) coordination for high capacitive performance. Journal of Materials Chemistry A, 2019, 7, 19676-19681.	5.2	68
283	Revisited insights into charge storage mechanisms in electrochemical capacitors with Li2SO4-based electrolyte. Energy Storage Materials, 2019, 22, 1-14.	9.5	43
284	2D Metal–Organic Frameworks as Multifunctional Materials in Heterogeneous Catalysis and Electro/Photocatalysis. Advanced Materials, 2019, 31, e1900617.	11.1	309
285	Smart in situ construction of NiS/MoS2 composite nanosheets with ultrahigh specific capacity for high-performance asymmetric supercapacitor. Journal of Alloys and Compounds, 2019, 811, 151915.	2.8	39
286	In Situ Synthesis of Nano CuS-Embedded MOF Hierarchical Structures and Application in Dye Adsorption and Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 5698-5706.	2.5	28
287	A highly conductive conjugated coordination polymer for fast-charge sodium-ion batteries: reconsidering its structures. Chemical Communications, 2019, 55, 10856-10859.	2.2	66
288	Theoretical study of oxygen molecules adsorption on M3C12S12 (M = Co, Rh)—Class 2D metal – organic frameworks. Chemical Physics Letters, 2019, 731, 136581.	1.2	0
289	Impregnation of Graphene Quantum Dots into a Metal–Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing. ACS Applied Materials & Interfaces, 2019, 11, 35319-35326.	4.0	87
290	A Oneâ€Dimensional ï€â€"d Conjugated Coordination Polymer for Sodium Storage with Catalytic Activity in Negishi Coupling. Angewandte Chemie, 2019, 131, 14873-14881.	1.6	34
291	A Oneâ€Dimensional π–d Conjugated Coordination Polymer for Sodium Storage with Catalytic Activity in Negishi Coupling. Angewandte Chemie - International Edition, 2019, 58, 14731-14739.	7.2	144
292	Synthesis of Ni/NiO@MIL-101(Cr) Composite as Novel Anode for Lithium-Ion Battery Application. Journal of Nanoscience and Nanotechnology, 2019, 19, 8063-8070.	0.9	11
293	Novel Ni6MnO8/NiMnO3 composite as a highly stable electrode material for supercapacitors. Materials Letters, 2019, 255, 126509.	1.3	7
294	A directly grown pristine Cu-CAT metal–organic framework as an anode material for high-energy sodium-ion capacitors. Chemical Communications, 2019, 55, 11207-11210.	2.2	41

#	Article	IF	CITATIONS
295	2D molecular crystal lattices: advances in their synthesis, characterization, and application. Journal of Materials Chemistry A, 2019, 7, 23537-23562.	5.2	33
296	Cellulose Nanofiber @ Conductive Metal–Organic Frameworks for High-Performance Flexible Supercapacitors. ACS Nano, 2019, 13, 9578-9586.	7.3	227
297	High-performance symmetric supercapacitor based on flower-like zinc-cobalt-molybdenum hybrid metal oxide. Ionics, 2019, 25, 5419-5427.	1.2	23
298	Extraordinary cycling stability of Ni3(HITP)2 supercapacitors fabricated by electrophoretic deposition: Cycling at 100,000 cycles. Chemical Engineering Journal, 2019, 378, 122150.	6.6	66
299	Unveiling the thermolysis natures of ZIF-8 and ZIF-67 by employing <i>in situ</i> structural characterization studies. Physical Chemistry Chemical Physics, 2019, 21, 17571-17577.	1.3	65
300	In situ growth of manganese oxide nanosheets over titanium dioxide nanofibers and their performance as active material for supercapacitor. Journal of Colloid and Interface Science, 2019, 555, 373-382.	5.0	35
301	Self-sacrificed synthesis of conductive vanadium-based Metal–Organic framework nanowire-bundle arrays as binder-free cathodes for high-rate and high-energy-density wearable Zn-Ion batteries. Nano Energy, 2019, 64, 103935.	8.2	107
302	Dual Functionalized CuMOF-Based Composite for High-Performance Supercapacitors. Inorganic Chemistry, 2019, 58, 9844-9854.	1.9	39
303	Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Communications Chemistry, 2019, 2, .	2.0	610
304	An Olefinâ€Linked Covalent Organic Framework as a Flexible Thinâ€Film Electrode for a Highâ€Performance Microâ€Supercapacitor. Angewandte Chemie, 2019, 131, 12193-12197.	1.6	78
305	Polypyrrole coated hollow metal–organic framework composites for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 19465-19470.	5.2	136
306	Molecular interaction balanced one- and two-dimensional hybrid nanoarchitectures for high-performance supercapacitors. Physical Chemistry Chemical Physics, 2019, 21, 22283-22292.	1.3	12
307	Facile Exfoliation of Singleâ€Crystalline Copper Alkylphosphates to Singleâ€Layer Nanosheets and Enhanced Supercapacitance. Angewandte Chemie - International Edition, 2019, 58, 16844-16849.	7.2	18
308	Hierarchical Microâ€Mesoporous Carbonâ€Frameworkâ€Based Hybrid Nanofibres for Highâ€Density Capacitive Energy Storage. Angewandte Chemie - International Edition, 2019, 58, 17465-17473.	7.2	89
309	A Highly Conductive MOF of Graphene Analogue Ni ₃ (HITP) ₂ as a Sulfur Host for Highâ€Performance Lithium–Sulfur Batteries. Small, 2019, 15, e1902605.	5.2	136
310	Nile Blue Functionalized Graphene Aerogel as a Pseudocapacitive Negative Electrode Material across the Full pH Range. ACS Nano, 2019, 13, 12567-12576.	7.3	66
311	Bottomâ€Up Fabrication of 1D Cuâ€based Conductive Metal–Organic Framework Nanowires as a Highâ€Rate Anode towards Efficient Lithium Storage. ChemSusChem, 2019, 12, 5051-5058.	3.6	73
312	Graphene Paper with Sharpâ€edged Nanorods of Feâ^'CuMOF as an Excellent Electrode for the Simultaneous Detection of Catechol and Resorcinol. Electroanalysis, 2019, 31, 2518-2529.	1.5	29

ARTICLE IF CITATIONS Binary nickel–cobalt metal–organic frameworks as electrode for high performance pseudocapacitor. 313 1.1 16 Journal of Materials Science: Materials in Electronics, 2019, 30, 19477-19486. Convergent and Divergent Paired Electrodeposition of Metal-Organic Framework Thin Films. 314 1.6 Scientific Reports, 2019, 9, 14325. Constructing Cu2O@Ni-Al LDH core-shell structure for high performance supercapacitor electrode 315 0.8 7 material. Journal of Nanoparticle Research, 2019, 21, 1. Metallic porous nitride single crystals at two-centimeter scale delivering enhanced 316 5.8 pseudocapacitance. Nature Communications, 2019, 10, 4727. Partial Sulfurization of a 2D MOF Array for Highly Efficient Oxygen Evolution Reaction. ACS Applied 317 4.0 91 Materials & amp; Interfaces, 2019, 11, 41595-41601. On the development of an original mesoscopic model to predict the capacitive properties of carbon-carbon supercapacitors. Electrochimica Acta, 2019, 327, 135022. 2.6 Partial Oxidation-Induced Electrical Conductivity and Paramagnetism in a Ni(II) 319 Tetraaza[14]annulene-Linked Metal Organic Framework. Journal of the American Chemical Society, 6.6 51 2019, 141, 16884-16893. Polyoxometalatesâ€Based Metal–Organic Frameworks Made by Electrodeposition and Carbonization Methods as Cathodes and Anodes for Asymmetric Supercapacitors. Chemistry - A European Journal, 1.7 26 2019, 25, 16617-16624. Nanostructured Metal–Organic Conjugated Coordination Polymers with Ligand Tailoring for 321 5.2 57 Superior Rechargeable Energy Storage. Small, 2019, 15, e1903188. Ca₃La₂Te₂O₁₂:Mn⁴⁺,Nd³⁺,Yb³⁺: an efficient thermally-stable UV/visible–far red/NIR broadband spectral converter for c-Si solar cells 3.2 and plant-growth LEDs. Materials Chemistry Frontiers, 2019, 3, 403-413. Engineering Bimetal Synergistic Electrocatalysts Based on Metal–Organic Frameworks for Efficient 323 5.2 126 Oxygen Evolution. Small, 2019, 15, e1903410. A Potassium Formate Activation Strategy for the Synthesis of Ultrathin Graphene-like Porous Carbon Nanosheets for Advanced Supercapacitor Applications. ACS Sustainable Chemistry and Engineering, 324 3.2 2019, 7, 18901-18911 Ag2S decorated nanocubes with enhanced near-infrared photothermal and photodynamic properties 325 2.0 44 for rapid sterilization. Colloids and Interface Science Communications, 2019, 33, 100201. Redox Tuning in Crystalline and Electronic Structure of Bimetal–Organic Frameworks Derived Cobalt/Nickel Boride/Sulfide for Boosted Faradaic Capacitance. Advanced Materials, 2019, 31, e1905744. 11.1 158 Effect of cerium acetate and L-glutamic acid as hybrid electrolyte additives on the performance of 327 4.0 49 Al–air battery. Journal of Power Sources, 2019, 443, 227251. High-Yield Continuous-Flow Synthesis of Spheroidal C₆₀@Graphene Composites as Supercapacitors. ACS Omega, 2019, 4, 19279-19286. An Asymmetric Supercapacitor Based on a Non-Calcined 3D Pillared Cobalt(II) Metalâ€"Organic 329 1.9 111 Framework with Long Cyclic Stability. Inorganic Chemistry, 2019, 58, 16100-16111. Catalytic Metal Nanoparticles Embedded in Conductive Metal–Organic Frameworks for 5.6 59 Chemiresistors: Highly Active and Conductive Porous Materials. Advanced Science, 2019, 6, 1900250.

#	Article	IF	CITATIONS
331	Atomic―and Molecular‣evel Design of Functional Metal–Organic Frameworks (MOFs) and Derivatives for Energy and Environmental Applications. Advanced Science, 2019, 6, 1901129.	5.6	121
332	Facile Exfoliation of Singleâ€Crystalline Copper Alkylphosphates to Singleâ€Layer Nanosheets and Enhanced Supercapacitance. Angewandte Chemie, 2019, 131, 17000-17005.	1.6	6
333	Hierarchical Microâ€Mesoporous Carbonâ€Frameworkâ€Based Hybrid Nanofibres for Highâ€Density Capacitive Energy Storage. Angewandte Chemie, 2019, 131, 17626-17634.	1.6	13
334	Synthesis and characterization of activated 3D graphene via catalytic growth and chemical activation for electrochemical energy storage in supercapacitors. Electrochimica Acta, 2019, 324, 134878.	2.6	32
335	Meniscus-Guided Control of Supersaturation for the Crystallization of High Quality Metal Organic Framework Thin Films. Chemistry of Materials, 2019, 31, 7377-7385.	3.2	28
336	Metal-organic framework nanosheets: a class of glamorous low-dimensional materials with distinct structural and chemical natures. Science China Chemistry, 2019, 62, 1561-1575.	4.2	31
337	Large energy storage properties of lead-free (1-x)(0.72Bi0.5Na0.5TiO3-0.28SrTiO3)-xBiAlO3 ceramics at broad temperature range. Journal of Alloys and Compounds, 2019, 784, 788-793.	2.8	75
338	Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nature Communications, 2019, 10, 4948.	5.8	398
339	A coin like porous carbon derived from Al-MOF with enhanced hierarchical structure for fast charging and super long cycle energy storage. Carbon, 2019, 154, 428-438.	5.4	53
340	Boosting the performance of broccoli-like Ni-triazole frameworks through a CNTs conductive-matrix. RSC Advances, 2019, 9, 25697-25702.	1.7	2
341	Mn-doped Ni-coordination supramolecular networks for binder-free high-performance supercapacitor electrode material. Electrochimica Acta, 2019, 321, 134682.	2.6	14
342	Ligand geometry controlling Zn-MOF partial structures for their catalytic performance in Knoevenagel condensation. RSC Advances, 2019, 9, 25170-25176.	1.7	14
343	Influence of the Metal Ion on the Topology and Interpenetration of Pyridylvinyl(benzoate) Based Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 5592-5603.	1.4	10
344	The synthesis of Co3O4/C composite with aloe juice as the carbon aerogel substrate for asymmetric supercapacitors. Carbon, 2019, 155, 147-154.	5.4	50
345	Hollow TiN nanotrees derived from a surface-induced Kirkendall effect and their application in high-power supercapacitors. Journal of Materials Chemistry A, 2019, 7, 21378-21385.	5.2	14
346	Enhanced electrochemical properties of manganese-based metal organic framework materials for supercapacitors. Journal of Applied Electrochemistry, 2019, 49, 1091-1102.	1.5	18
347	Two-dimensional copper(i) thiophenolates: a well-constructed conductive Cu–S network for excellent electromagnetic wave absorption. Journal of Materials Chemistry C, 2019, 7, 11621-11631.	2.7	10
348	Novel semiconducting iron–quinizarin metal–organic framework for application in supercapacitors. Molecular Physics, 2019, 117, 3424-3433.	0.8	4

#	Article	IF	CITATIONS
349	Field-Effect Transistor Based on an in Situ Grown Metal–Organic Framework Film as a Liquid-Gated Sensing Device. ACS Applied Materials & Interfaces, 2019, 11, 35935-35940.	4.0	55
350	Breakthroughs in Designing Commercial-Level Mass-Loading Graphene Electrodes for Electrochemical Double-Layer Capacitors. Matter, 2019, 1, 596-620.	5.0	79
351	Metal organic frameworks-derived porous NiCo2S4 nanorods and N-doped carbon for high-performance battery-supercapacitor hybrid device. Journal of Power Sources, 2019, 440, 227146.	4.0	35
352	Efficient nitrogen-doped porous carbon/carbon nanotube-supported Co3O4/Co catalysts for oxygen reduction reactions in alkaline media. Journal of Electroanalytical Chemistry, 2019, 851, 113478.	1.9	11
353	Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework. Beilstein Journal of Nanotechnology, 2019, 10, 1883-1893.	1.5	24
354	Cobalt MOFs base on benzimidazol and varied carboxylate ligands with higher capacitance for supercapacitors and magnetic properties. Journal of Solid State Chemistry, 2019, 279, 120917.	1.4	11
355	Three-dimensional honeycomb-like porous carbon strutted nickel phosphide grown by analogous gel blowing for aqueous asymmetric supercapacitor. Journal of Energy Storage, 2019, 25, 100872.	3.9	10
356	Ultrafine Ni(OH)2 nanoplatelets grown on 3D graphene hydrogel fabricated by electrochemical exfoliation for high-performance battery-type asymmetric supercapacitor applications. Journal of Power Sources, 2019, 439, 227046.	4.0	34
357	Interfacial nanoarchitectonics for molecular manipulation and molecular machine operation. Current Opinion in Colloid and Interface Science, 2019, 44, 1-13.	3.4	15
358	Soluble Covalent Organic Polymer for the Flexible Electrode of Supercapacitors. Frontiers in Materials, 2019, 6, .	1.2	5
359	Synergistic design of aÂN, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solid-state supercapacitors with an ultrahigh energy density. Journal of Materials Chemistry A, 2019, 7, 816-826.	5.2	134
360	A honeycomb-layered 2D coordination polymer of [Pb(TMA)]n (H2TMA = 3â€ʿthiophenemalonic acid) for impedimetric humidity sensing with high performance. Inorganic Chemistry Communication, 2019, 100, 38-43.	1.8	10
361	Metal–organic frameworks based on tetraphenylpyrazine-derived tetracarboxylic acid for electrocatalytic hydrogen evolution reaction and NAC sensing. CrystEngComm, 2019, 21, 494-501.	1.3	25
362	3D printed graphene/nickel electrodes for high areal capacitance electrochemical storage. Journal of Materials Chemistry A, 2019, 7, 4055-4062.	5.2	63
363	Coordination derived stable Ni–Co MOFs for foldable all-solid-state supercapacitors with high specific energy. Journal of Materials Chemistry A, 2019, 7, 4998-5008.	5.2	133
364	Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn–air batteries. Energy and Environmental Science, 2019, 12, 727-738.	15.6	300
365	Study of fractal electrode designs for buckypaper-based micro-supercapacitors. Journal of Applied Physics, 2019, 125, .	1.1	18
366	Water Contaminant Elimination Based on Metal–Organic Frameworks and Perspective on Their Industrial Applications, ACS Sustainable Chemistry and Engineering, 2019, 7, 4548-4563.	3.2	165

#	Article	IF	CITATIONS
367	Recent progress in metal–organic polymers as promising electrodes for lithium/sodium rechargeable batteries. Journal of Materials Chemistry A, 2019, 7, 4259-4290.	5.2	249
368	High-Performance Quasi-Solid-State Supercapacitor Based on CuO Nanoparticles with Commercial-Level Mass Loading on Ceramic Material La _{1-<i>x</i>} Sr _{<i>x</i>} CoO _{3-δ} as Cathode. ACS Applied Energy Materials. 2019. 2. 1480-1488.	2.5	22
369	Redox-Active 1D Coordination Polymers of Iron–Sulfur Clusters. Journal of the American Chemical Society, 2019, 141, 3940-3951.	6.6	43
370	Porous ZnO/Carbon nanocomposites derived from metal organic frameworks for highly efficient photocatalytic applications: A correlational study. Carbon, 2019, 146, 348-363.	5.4	89
371	Synergistic interface phenomena between MOFs, NiPx for efficient hydrogen production. Molecular Catalysis, 2019, 467, 78-86.	1.0	34
372	A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte. Nano Energy, 2019, 58, 732-742.	8.2	187
373	4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls. Energy and Environmental Science, 2019, 12, 1542-1549.	15.6	154
374	Synthesis of porous carbon nano-onions derived from rice husk for high-performance supercapacitors. Applied Surface Science, 2019, 488, 593-599.	3.1	57
375	Functionalized Cuâ€MOF@CNT Hybrid: Synthesis, Crystal Structure and Applicability in Supercapacitors. Chemistry - an Asian Journal, 2019, 14, 3566-3571.	1.7	32
376	An air-stable electrochromic conjugated microporous polymer as an emerging electrode material for hybrid energy storage systems. Journal of Materials Chemistry A, 2019, 7, 16397-16405.	5.2	96
377	Nitrogen-doped hierarchically ellipsoidal porous carbon derived from Al-based metal-organic framework with enhanced specific capacitance and rate capability for high performance supercapacitors. Journal of Power Sources, 2019, 432, 102-111.	4.0	45
378	A switchable iron-based coordination polymer toward reversible acetonitrile electro-optical readout. Chemical Science, 2019, 10, 6612-6616.	3.7	26
379	Nanocomposites of Pt nanoparticles anchored on UiO66-NH2 as carriers to construct acetylcholinesterase biosensors for organophosphorus pesticide detection. Electrochimica Acta, 2019, 318, 525-533.	2.6	63
380	Metal–Organic Frameworks Toward Electrocatalytic Applications. Applied Sciences (Switzerland), 2019, 9, 2427.	1.3	55
381	Epitaxial Growth and Integration of Insulating Metal–Organic Frameworks in Electrochemistry. Journal of the American Chemical Society, 2019, 141, 11322-11327.	6.6	98
382	Carbon Nanodots for Capacitor Electrodes. Trends in Chemistry, 2019, 1, 858-868.	4.4	30
383	Tailoring porous carbon aerogels from bamboo cellulose fibers for high-performance supercapacitors. Journal of Porous Materials, 2019, 26, 1851-1860.	1.3	9
384	Two-Dimensional Chemiresistive Covalent Organic Framework with High Intrinsic Conductivity. Journal of the American Chemical Society, 2019, 141, 11929-11937.	6.6	313

#	Article	IF	CITATIONS
385	An Olefinâ€Linked Covalent Organic Framework as a Flexible Thinâ€Film Electrode for a Highâ€Performance Microâ€Supercapacitor. Angewandte Chemie - International Edition, 2019, 58, 12065-12069.	7.2	226
386	Pillaring-Effect Induced Ultrahigh-Rate Pseudocapacitive Energy Storage Based on Layered Double Hydroxide Nanoplate Arrays. Industrial & Engineering Chemistry Research, 2019, 58, 11954-11963.	1.8	5
387	Triphenylene-Bridged Trinuclear Complexes of Cu: Models for Spin Interactions in Two-Dimensional Electrically Conductive Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 10475-10480.	6.6	72
388	Flexible polyester yarn/Au/conductive metal-organic framework composites for yarn-shaped supercapacitors. Journal of Electroanalytical Chemistry, 2019, 847, 113218.	1.9	28
389	Prospects for electroactive andÂconducting framework materials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180226.	1.6	13
390	Toward Metal–Organicâ€Frameworkâ€Based Supercapacitors: Roomâ€Temperature Synthesis of Electrically Conducting MOFâ€Based Nanocomposites Decorated with Redoxâ€Active Manganese. European Journal of Inorganic Chemistry, 2019, 2019, 3036-3044.	1.0	35
391	A Samariumâ€Đoped Carbon Aerogel Cathode with Anchored Polysulfides for Lithiumâ^'Sulfur Batteries with High Electrochemical Performance: A Metalâ^'Organic Framework Template Method. ChemPlusChem, 2019, 84, 838-844.	1.3	9
392	Surface Pseudocapacitive Mechanism of Molybdenum Phosphide for Highâ€Energy and Highâ€Power Sodiumâ€Ion Capacitors. Advanced Energy Materials, 2019, 9, 1900967.	10.2	62
393	Synergistic effect of Ni-based metal organic framework with graphene for enhanced electrochemical performance of supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 12351-12363.	1.1	33
394	High performance nanoporous carbon microsupercapacitors generated by a solvent-free MOF-CVD method. Carbon, 2019, 152, 688-696.	5.4	24
395	Ni-MOF derived NiO/C nanospheres grown in situ on reduced graphene oxide towards high performance hybrid supercapacitor. Journal of Alloys and Compounds, 2019, 801, 158-165.	2.8	64
396	Two-dimensional hierarchically porous carbon nanosheets for flexible aqueous supercapacitors with high volumetric capacitance. Nanoscale, 2019, 11, 11086-11092.	2.8	46
397	Core–shell assembly of carbon nanofibers and a 2D conductive metal–organic framework as a flexible free-standing membrane for high-performance supercapacitors. Inorganic Chemistry Frontiers, 2019, 6, 1824-1830.	3.0	70
398	Conductive metal–organic framework with redox metal center as cathode for high rate performance lithium ion battery. Journal of Power Sources, 2019, 429, 22-29.	4.0	133
399	Metal-Organic Frameworks for Chemiresistive Sensors. CheM, 2019, 5, 1938-1963.	5.8	419
400	FeNi-based bimetallic MIL-101 directly applicable as an efficient electrocatalyst for oxygen evolution reaction. Microporous and Mesoporous Materials, 2019, 286, 92-97.	2.2	31
401	Direct Radiation Detection by a Semiconductive Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 8030-8034.	6.6	85
402	Natural nanofibers stacked porous nitrogen-doped carbon nanosheets with promising capacitive performance. Cellulose, 2019, 26, 5395-5407.	2.4	2

#	Article	IF	CITATIONS
403	Insight into faradaic mechanism of polyaniline@NiSe2 core-shell nanotubes in high-performance supercapacitors. Energy Storage Materials, 2019, 23, 225-232.	9.5	65
404	In situ growth of CuCo2S4 nanocrystals on N, S-codoped reduced graphene oxide nanosheets for supercapacitors. Materials Research Express, 2019, 6, 085523.	0.8	5
405	Solid-state electrochemistry of metal cyanides. Comptes Rendus Chimie, 2019, 22, 483-489.	0.2	5
406	Twoâ€Dimensional Metalâ€Organic Layers for Electrochemical Acceptorless Dehydrogenation of Nâ€Heterocycles. Chemistry - an Asian Journal, 2019, 14, 3557-3560.	1.7	19
407	Synthesis of nitrogen-doped carbon spheres using the modified Stöber method for supercapacitors. Frontiers of Materials Science, 2019, 13, 156-164.	1.1	6
408	Boosting the capacitive storage performance of MOF-derived carbon frameworks via structural modulation for supercapacitors. Energy Storage Materials, 2019, 23, 491-498.	9.5	93
409	Quantifying the Volumetric Performance Metrics of Supercapacitors. Advanced Energy Materials, 2019, 9, 1900079.	10.2	88
410	Structure-controlled Co-Al layered double hydroxides/reduced graphene oxide nanomaterials based on solid-phase exfoliation technique for supercapacitors. Journal of Colloid and Interface Science, 2019, 549, 236-245.	5.0	61
411	Charge storage characteristics of mesoporous strontium titanate perovskite aqueous as well as flexible solid-state supercapacitor cell. Journal of Power Sources, 2019, 426, 223-232.	4.0	67
412	Direct growth of flake-like metal-organic framework on textile carbon cloth as high-performance supercapacitor electrode. Journal of Power Sources, 2019, 428, 124-130.	4.0	70
413	Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. Journal of Materials Chemistry A, 2019, 7, 13810-13832.	5.2	312
414	Porous Molecular Conductor: Electrochemical Fabrication of Through-Space Conduction Pathways among Linear Coordination Polymers. Journal of the American Chemical Society, 2019, 141, 6802-6806.	6.6	94
415	High-Performance Symmetric Supercapacitor Constructed Using Carbon Cloth Boosted by Engineering Oxygen-Containing Functional Groups. ACS Applied Materials & Interfaces, 2019, 11, 18044-18050.	4.0	110
416	Photoleitfäigkeit in Dünnfilmen Metallâ€organischer Gerüste. Angewandte Chemie, 2019, 131, 9691-9696.	1.6	16
417	Photoconductivity in Metal–Organic Framework (MOF) Thin Films. Angewandte Chemie - International Edition, 2019, 58, 9590-9595.	7.2	118
418	Mesoporous carbon cubes derived from fullerene crystals as a high rate performance electrode material for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 12654-12660.	5.2	86
419	Unprecedented High Oxygen Evolution Activity of Electrocatalysts Derived from Surface-Mounted Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 5926-5933.	6.6	125
420	AÂN, S dual doping strategy <i>via</i> electrospinning to prepare hierarchically porous carbon polyhedra embedded carbon nanofibers for flexible supercapacitors. Journal of Materials Chemistry A, 2019, 7, 9040-9050.	5.2	112

#	Article	IF	CITATIONS
421	TIMPZ: An Exquisite Building Block for Metal/Hydrogen Coordination Polymers. European Journal of Inorganic Chemistry, 2019, 2019, 2291-2294.	1.0	1
422	Two-dimensional magnetic materials of cobalt(ii) triangular lattices constructed by a mixed benzimidazole–dicarboxylate strategy. CrystEngComm, 2019, 21, 2596-2604.	1.3	12
423	Bunching and Immobilization of Ionic Liquids in Nanoporous Metal–Organic Framework. Nano Letters, 2019, 19, 2114-2120.	4.5	53
424	Copper based metal-organic coordination polymer for high-performance supercapacitors. Materials Letters, 2019, 247, 48-51.	1.3	6
425	[Cu ₃ (C ₆ Se ₆)] <i>_n</i> : The First Highly Conductive 2D l€â€"d Conjugated Coordination Polymer Based on Benzenehexaselenolate. Advanced Science, 2019, 6, 1802235.	5.6	68
426	Redox Additive Electrolyte Study of Mn–MOF Electrode for Supercapacitor Applications. ChemistrySelect, 2019, 4, 2585-2592.	0.7	50
427	Porous carbon anchored titanium carbonitride for high-performance supercapacitor. Electrochimica Acta, 2019, 304, 138-145.	2.6	16
428	Compressed and Crumpled Porous Carbon Electrode for High Volumetric Performance Electrical Double‣ayer Capacitors. Energy Technology, 2019, 7, 1900209.	1.8	9
429	A high over-potential binder-free electrode constructed of Prussian blue and MnO2 for high performance aqueous supercapacitors. Nano Research, 2019, 12, 1061-1069.	5.8	62
430	Bi-metal organic framework nanosheets assembled on nickel wire films for volumetric-energy-dense supercapacitors. Journal of Power Sources, 2019, 423, 80-89.	4.0	50
431	Metalâ^'Organic Frameworks for Highâ€Energy Lithium Batteries with Enhanced Safety: Recent Progress and Future Perspectives. Batteries and Supercaps, 2019, 2, 591-626.	2.4	45
432	Recent advance in new-generation integrated devices for energy harvesting and storage. Nano Energy, 2019, 60, 600-619.	8.2	190
433	Co ₉ S ₈ embedded into N/S doped carbon composites: <i>in situ</i> derivation from a sulfonate-based metal–organic framework and its electrochemical properties. Journal of Materials Chemistry A, 2019, 7, 10331-10337.	5.2	75
434	<i>De novo</i> synthesis of mesoporous photoactive titanium(<scp>iv</scp>)–organic frameworks with MIL-100 topology. Chemical Science, 2019, 10, 4313-4321.	3.7	72
435	Hybridization design of materials and devices for flexible electrochemical energy storage. Energy Storage Materials, 2019, 19, 212-241.	9.5	163
436	Reversible redox switching of magnetic order and electrical conductivity in a 2D manganese benzoquinoid framework. Chemical Science, 2019, 10, 4652-4661.	3.7	61
437	Synthesis of mesoporous defective graphene-nanosheets in a space-confined self-assembled nanoreactor: Highly efficient capacitive energy storage. Electrochimica Acta, 2019, 305, 517-527.	2.6	45
438	Vacancy modification of Prussian-blue nano-thin films for high energy-density micro-supercapacitors with ultralow RC time constant. Nano Energy, 2019, 60, 8-16.	8.2	26

#	Article	IF	CITATIONS
439	Interlayer Hydrogenâ€Bonded Metal Porphyrin Frameworks/MXene Hybrid Film with High Capacitance for Flexible Allâ€Solidâ€State Supercapacitors. Small, 2019, 15, e1901351.	5.2	139
440	Tailoring Energy and Power Density through Controlling the Concentration of Oxygen Vacancies in V ₂ O ₅ /PEDOT Nanocable-Based Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 16647-16655.	4.0	57
441	Integration of a (–Cu–S–)n plane in a metal–organic framework affords high electrical conductivity. Nature Communications, 2019, 10, 1721.	5.8	134
442	Layer-by-layer integration of conducting polymers and metal organic frameworks onto electrode surfaces: enhancement of the oxygen reduction reaction through electrocatalytic nanoarchitectonics. Molecular Systems Design and Engineering, 2019, 4, 893-900.	1.7	38
443	Hierarchically Porous Carbons Derived from Metal–Organic Framework/Chitosan Composites for Highâ€₽erformance Supercapacitors. Chemistry - an Asian Journal, 2019, 14, 3583-3589.	1.7	19
444	Conductive Metal–Organic Frameworks Selectively Grown on Laser cribed Graphene for Electrochemical Microsupercapacitors. Advanced Energy Materials, 2019, 9, 1900482.	10.2	142
445	MOF derived Ni-Co-S nanosheets on electrochemically activated carbon cloth via an etching/ion exchange method for wearable hybrid supercapacitors. Chemical Engineering Journal, 2019, 371, 461-469.	6.6	239
446	Dual-Purpose 3D Pillared Metal–Organic Framework with Excellent Properties for Catalysis of Oxidative Desulfurization and Energy Storage in Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2019, 11, 14759-14773.	4.0	97
448	Template-directed growth of hierarchically structured MOF-derived LDH cage hybrid arrays for supercapacitor electrode. Journal of Electroanalytical Chemistry, 2019, 840, 174-181.	1.9	39
449	Waste bones derived nitrogen–doped carbon with high micropore ratio towards supercapacitor applications. Journal of Colloid and Interface Science, 2019, 547, 92-101.	5.0	100
450	Micromesoporous Nitrogen-Doped Carbon Materials Derived from Direct Carbonization of Metal–Organic Complexes for Efficient CO ₂ Adsorption and Separation. Inorganic Chemistry, 2019, 58, 5345-5355.	1.9	6
451	Porous carbon derived from metal–organic framework@graphene quantum dots as electrode materials for supercapacitors and lithium-ion batteries. RSC Advances, 2019, 9, 9577-9583.	1.7	45
452	A strong coupled 2D metal-organic framework and ternary layered double hydroxide hierarchical nanocomposite as an excellent electrocatalyst for the oxygen evolution reaction. Electrochimica Acta, 2019, 307, 275-284.	2.6	49
453	Facile preparation of low-cost HKUST-1 with lattice vacancies and high-efficiency adsorption for uranium. RSC Advances, 2019, 9, 10320-10325.	1.7	32
454	Delamination of 2D coordination polymers: The role of solvent and ultrasound. Ultrasonics Sonochemistry, 2019, 55, 186-195.	3.8	19
455	Phytic Acid-Doped Cross-linked Polyaniline Nanofibers for Electrochemical Supercapacitor Electrode Applications. Journal of the Korean Physical Society, 2019, 74, 145-153.	0.3	9
456	Conductive MOF-Modified Separator for Mitigating the Shuttle Effect of Lithium–Sulfur Battery through a Filtration Method. ACS Applied Materials & Interfaces, 2019, 11, 11459-11465.	4.0	141
457	Negative dielectric constant of water confined in nanosheets. Nature Communications, 2019, 10, 850.	5.8	116

#	Article	IF	CITATIONS
458	Harnessing solvent effects to integrate alkylamine into metal–organic frameworks for exceptionally high CO ₂ uptake. Journal of Materials Chemistry A, 2019, 7, 7867-7874.	5.2	39
459	Metal–organic framework derived small sized metal sulfide nanoparticles anchored on N-doped carbon plates for high-capacity energy storage. Dalton Transactions, 2019, 48, 4712-4718.	1.6	50
460	Nonlithium Metal–Sulfur Batteries: Steps Toward a Leap. Advanced Materials, 2019, 31, e1802822.	11.1	168
461	Layered Cul-MOFs containing [Mo8O26]4â^ clusters as supercapacitor electrode materials. Chemical Engineering Journal, 2019, 367, 239-248.	6.6	57
462	Carbonâ€Free Cathode Materials for Liâ^'O ₂ Batteries. Batteries and Supercaps, 2019, 2, 428-439.	2.4	21
463	N-Doped Porous Carbon Derived by Direct Carbonization of Metal–Organic Complexes Crystal Materials for SO ₂ Adsorption. Crystal Growth and Design, 2019, 19, 1973-1984.	1.4	27
464	Boost-up electrochemical performance of MOFs <i>via</i> confined synthesis within nanoporous carbon matrices for supercapacitor and oxygen reduction reaction applications. Journal of Materials Chemistry A, 2019, 7, 5561-5574.	5.2	38
465	Stable Hierarchical Bimetal–Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 4227-4231.	7.2	430
466	Polypyrrole@metal-organic framework (UIO-66)@cotton fabric electrodes for flexible supercapacitors. Cellulose, 2019, 26, 3387-3399.	2.4	65
467	Synthesis of coordination polymer thin films with conductance-response to mechanical stimulation. Chemical Communications, 2019, 55, 2545-2548.	2.2	9
468	Cadmiumâ€Based Coordination Polymers from 1D to 3D: Synthesis, Structures, and Photoluminescent and Electrochemiluminescent Properties. ChemPlusChem, 2019, 84, 190-202.	1.3	28
469	MnO2 based sandwich structure electrode for supercapacitor with large voltage window and high mass loading. Chemical Engineering Journal, 2019, 368, 525-532.	6.6	72
470	Stable Hierarchical Bimetal–Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction. Angewandte Chemie, 2019, 131, 4271-4275.	1.6	36
471	Inâ€Flow MOF Lithography. Advanced Materials Technologies, 2019, 4, 1800666.	3.0	10
472	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	23.0	1,591
473	A novel metal-organic layered material with superior supercapacitive performance through ultrafast and reversible tetraethylammonium intercalation. Nano Energy, 2019, 59, 102-109.	8.2	26
474	Macromolecular Polyethynylbenzonitrile Precursor-Based Porous Covalent Triazine Frameworks for Superior High-Rate High-Energy Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 45805-45817.	4.0	25
475	Defective glycerolatocobalt(<scp>ii</scp>) for enhancing the oxygen evolution reaction. Chemical Communications, 2019, 55, 12861-12864.	2.2	8

#	Article	IF	CITATIONS
476	Conductive Co-based metal–organic framework nanowires: a competitive high-rate anode towards advanced Li-ion capacitors. Journal of Materials Chemistry A, 2019, 7, 24788-24791.	5.2	53
477	Pressure-induced metallicity and piezoreductive transition of metal-centres in conductive 2-dimensional metal–organic frameworks. Physical Chemistry Chemical Physics, 2019, 21, 25773-25778.	1.3	13
478	An amino-functionalized metal–organic framework nanosheet array as a battery-type electrode for an advanced supercapattery. Dalton Transactions, 2019, 48, 17163-17168.	1.6	40
479	A one-dimensional channel self-standing MOF cathode for ultrahigh-energy-density flexible Ni–Zn batteries. Journal of Materials Chemistry A, 2019, 7, 27217-27224.	5.2	73
480	2020 roadmap on pore materials for energy and environmental applications. Chinese Chemical Letters, 2019, 30, 2110-2122.	4.8	75
481	Cobalt Metal–Organic Framework Based on Two Dinuclear Secondary Building Units for Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2019, 11, 46658-46665.	4.0	40
482	Energy storage: The future enabled by nanomaterials. Science, 2019, 366, .	6.0	1,119
483	Single Crystals of Electrically Conductive Two-Dimensional Metal–Organic Frameworks: Structural and Electrical Transport Properties. ACS Central Science, 2019, 5, 1959-1964.	5.3	211
484	MXene Derived Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 20037-20042.	6.6	110
485	Recent progress in supercapacitors based on the advanced carbon electrodes. Nanotechnology Reviews, 2019, 8, 299-314.	2.6	52
486	Composite MOFs as adsorbents for solid phase extraction combined with high performance liquid chromatography for the determination of polycyclic aromatic hydrocarbons in water. E3S Web of Conferences, 2019, 136, 06011.	0.2	0
487	Nickel-based materials for supercapacitors. Materials Today, 2019, 25, 35-65.	8.3	247
488	DFT study of the two dimensional metal–organic frameworks X3(HITP)2 as the cathode electrocatalysts for fuel cell. Applied Surface Science, 2019, 471, 256-262.	3.1	43
489	Non-covalent pre-organization of molecular precursors: A facile approach for engineering structures and activities of pyrolyzed Co-N-CÂelectrocatalysts. Carbon, 2019, 144, 312-320.	5.4	28
490	Morphology-controllable synthesis of nanocarbons and their application in advanced symmetric supercapacitor in ionic liquid electrolyte. Applied Surface Science, 2019, 473, 1014-1023.	3.1	20
491	NiCo-layered double-hydroxide and carbon nanosheets microarray derived from MOFs for high performance hybrid supercapacitors. Journal of Colloid and Interface Science, 2019, 539, 545-552.	5.0	145
492	Dual-Phase Molecular-like Charge Transport in Nanoporous Transition Metal Oxides. Journal of Physical Chemistry C, 2019, 123, 1966-1973.	1.5	20
493	Welding Metallophthalocyanines into Bimetallic Molecular Meshes for Ultrasensitive, Low-Power Chemiresistive Detection of Gases. Journal of the American Chemical Society, 2019, 141, 2046-2053.	6.6	225

#	Article	IF	CITATIONS
494	Redox active multi-layered Zn-pPDA MOFs as high-performance supercapacitor electrode material. Electrochimica Acta, 2019, 297, 145-154.	2.6	38
495	Twoâ€dimensional Ï€â€conjugated metalâ€organic framework with high electrical conductivity for electrochemical sensing. Journal of the Chinese Chemical Society, 2019, 66, 522-528.	0.8	27
496	Zero-, one- and two-dimensional bis(dithiolato)metal complexes with unique physical and chemical properties. Coordination Chemistry Reviews, 2019, 380, 419-439.	9.5	49
497	ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes. Journal of Energy Chemistry, 2019, 35, 124-131.	7.1	122
498	Avoiding the use of corrosive activator to produce nitrogen-doped hierarchical porous carbon materials for high-performance supercapacitor electrode. Journal of Electroanalytical Chemistry, 2019, 832, 284-292.	1.9	31
499	Metal–Organic Frameworks (MOFs) and MOF-Derived Materials for Energy Storage and Conversion. Electrochemical Energy Reviews, 2019, 2, 29-104.	13.1	274
500	Oxygenâ€Assisted Cathodic Deposition of Zeolitic Imidazolate Frameworks with Controlled Thickness. Angewandte Chemie - International Edition, 2019, 58, 1123-1128.	7.2	40
501	Oxygenâ€Assisted Cathodic Deposition of Zeolitic Imidazolate Frameworks with Controlled Thickness. Angewandte Chemie, 2019, 131, 1135-1140.	1.6	4
502	Competitive Metal Coordination of Hexaaminotriphenylene on Cu(111) by Intrinsic Copper Versus Extrinsic Nickel Adatoms. Chemistry - A European Journal, 2019, 25, 1975-1983.	1.7	18
503	Efficient and stable nanoporous functional composited electrocatalyst derived from Zn/Co-bimetallic zeolitic imidazolate frameworks for oxygen reduction reaction in alkaline media. Electrochimica Acta, 2019, 299, 610-617.	2.6	20
504	Thin-Film Electrode-Based Supercapacitors. Joule, 2019, 3, 338-360.	11.7	171
505	Metal-organic frameworks for energy storage devices: Batteries and supercapacitors. Journal of Energy Storage, 2019, 21, 632-646.	3.9	271
506	Self-supported multicomponent CPO-27 MOF nanoarrays as high-performance anode for lithium storage. Nano Energy, 2019, 57, 711-717.	8.2	78
507	Cobalt Phosphate-Based Supercapattery as Alternative Power Source for Implantable Medical Devices. ACS Applied Energy Materials, 2019, 2, 569-578.	2.5	66
508	Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nature Energy, 2019, 4, 115-122.	19.8	680
509	Electrochemical reduction of carbon dioxide on the two–dimensional M3(Hexaiminotriphenylene)2 sheet: A computational study. Applied Surface Science, 2019, 467-468, 98-103.	3.1	45
510	Scalable Synthesis of Tetrapodal Octaamine. European Journal of Organic Chemistry, 2019, 2019, 2335-2338.	1.2	4
511	Flexible all-solid-state supercapacitors of polyaniline nanowire arrays deposited on electrospun carbon nanofibers decorated with MOFs. Nanotechnology, 2019, 30, 085404.	1.3	35

#	Article	IF	CITATIONS
512	Hierarchical supercapacitor electrodes based on metallized glass fiber for ultrahigh areal capacitance. Energy Storage Materials, 2019, 20, 315-323.	9.5	18
513	How to efficiently utilize electrode materials in supercapattery?. Functional Materials Letters, 2019, 12, 1830005.	0.7	15
514	Nitrogen-doped double-layer graphite supported CuCo2S4 electrode for high-performance asymmetric supercapacitors. Materials Letters, 2019, 235, 6-10.	1.3	33
515	Bipyridinium derivative-based coordination polymers: From synthesis to materials applications. Coordination Chemistry Reviews, 2019, 378, 533-560.	9.5	205
516	Co(II)-based 2D framework with sql topology: Adsorption of permanganate ions in water and energy storage performances. Journal of Molecular Structure, 2020, 1200, 127072.	1.8	7
517	A highly alkaline-stable metal oxide@metal–organic framework composite for high-performance electrochemical energy storage. National Science Review, 2020, 7, 305-314.	4.6	487
518	Synthesis, characterization and supercapacitor application of ionic liquid incorporated nanocomposites based on SPSU/Silicon dioxide. Journal of Physics and Chemistry of Solids, 2020, 137, 109209.	1.9	18
519	Mechanochromic studies of new cyanopyridone based fluorescent conjugated molecules. Journal of Luminescence, 2020, 217, 116818.	1.5	15
520	A Dualâ€Ligand Porous Coordination Polymer Chemiresistor with Modulated Conductivity and Porosity. Angewandte Chemie - International Edition, 2020, 59, 172-176.	7.2	124
521	A Dualâ€Ligand Porous Coordination Polymer Chemiresistor with Modulated Conductivity and Porosity. Angewandte Chemie, 2020, 132, 178-182.	1.6	8
522	Unpaired 3d Electrons on Atomically Dispersed Cobalt Centres in Coordination Polymers Regulate both Oxygen Reduction Reaction (ORR) Activity and Selectivity for Use in Zinc–Air Batteries. Angewandte Chemie - International Edition, 2020, 59, 286-294.	7.2	200
523	Green Synthesis and Engineering Applications of Metal–Organic Frameworks. , 2020, , 139-162.		3
524	Rational Design of Nanostructured Electrode Materials toward Multifunctional Supercapacitors. Advanced Functional Materials, 2020, 30, 1902564.	7.8	252
525	Achieving ultrahigh-energy-density in flexible and lightweight all-solid-state internal asymmetric tandem 6.6â€V all-in-one supercapacitors. Energy Storage Materials, 2020, 25, 893-902.	9.5	27
526	Sonochemical self-growth of functionalized titanium carbide nanorods on Ti3C2 nanosheets for high capacity anode for lithium-ion batteries. Composites Part B: Engineering, 2020, 181, 107583.	5.9	41
527	Ultrasmall 2 D Co _{<i>x</i>} Zn _{2â^'<i>x</i>} (Benzimidazole) ₄ Metal–Organic Framework Nanosheets and their Derived Co Nanodots@Co,N odoped Graphene for Efficient Oxygen Reduction Reaction. ChemSusChem, 2020, 13, 1556-1567.	3.6	36
528	One-step hydrothermal synthesis of GQDs-MoS2 nanocomposite with enhanced supercapacitive performance. Journal of Applied Electrochemistry, 2020, 50, 71-79.	1.5	14
529	Conjugated Copper–Catecholate Framework Electrodes for Efficient Energy Storage. Angewandte Chemie - International Edition, 2020, 59, 1081-1086.	7.2	131

#	Article	IF	CITATIONS
530	2D Materials as Ionic Sieves for Inhibiting the Shuttle Effect in Batteries. Chemistry - an Asian Journal, 2020, 15, 2294-2302.	1.7	20
531	MOFs and COFs for Batteries and Supercapacitors. Electrochemical Energy Reviews, 2020, 3, 81-126.	13.1	98
532	Conjugated Copper–Catecholate Framework Electrodes for Efficient Energy Storage. Angewandte Chemie, 2020, 132, 1097-1102.	1.6	15
533	Integrated Conductive Hybrid Architecture of Metal–Organic Framework Nanowire Array on Polypyrrole Membrane for Allâ€Solidâ€State Flexible Supercapacitors. Advanced Energy Materials, 2020, 10, 1901892.	10.2	154
534	Unpaired 3d Electrons on Atomically Dispersed Cobalt Centres in Coordination Polymers Regulate both Oxygen Reduction Reaction (ORR) Activity and Selectivity for Use in Zinc–Air Batteries. Angewandte Chemie, 2020, 132, 292-300.	1.6	21
535	Hierarchical porous bimetal-sulfide bi-functional nanocatalysts for hydrogen production by overall water electrolysis. Journal of Colloid and Interface Science, 2020, 560, 426-435.	5.0	38
536	Structure, microwave dielectric performance, and infrared reflectivity spectrum of olivineâ€ŧype Mg 2 Ge 0.98 O 4 ceramic. Journal of the American Ceramic Society, 2020, 103, 1789-1797.	1.9	18
537	Tuning the Electronic Properties of Atomically Precise Graphene Nanoribbons by Bottomâ€Up Fabrication. ChemNanoMat, 2020, 6, 493-515.	1.5	10
538	High-Energy-Density Sodium-Ion Hybrid Capacitors Enabled by Interface-Engineered Hierarchical TiO ₂ Nanosheet Anodes. ACS Applied Materials & Interfaces, 2020, 12, 4443-4453.	4.0	51
539	A facile Zn involved self-sacrificing template-assisted strategy towards porous carbon frameworks for aqueous supercapacitors with high ions diffusion coefficient. Diamond and Related Materials, 2020, 103, 107696.	1.8	10
540	A General Approach to Direct Growth of Oriented Metal–Organic Framework Nanosheets on Reduced Graphene Oxides. Advanced Science, 2020, 7, 1901480.	5.6	25
541	Phosphorus Regulated Cobalt Oxide@Nitrogenâ€Doped Carbon Nanowires for Flexible Quasiâ€Solidâ€State Supercapacitors. Small, 2020, 16, e1906458.	5.2	90
542	Solid–solid interface growth of conductive metal–organic framework nanowire arrays and their supercapacitor application. Materials Chemistry Frontiers, 2020, 4, 243-251.	3.2	48
543	Redox, transmetalation, and stacking properties of tetrathiafulvalene-2,3,6,7-tetrathiolate bridged tin, nickel, and palladium compounds. Chemical Science, 2020, 11, 1066-1078.	3.7	22
544	A long cycle life asymmetric supercapacitor based on advanced nickel-sulfide/titanium carbide (MXene) nanohybrid and MXene electrodes. Journal of Power Sources, 2020, 450, 227694.	4.0	111
545	Metal–Organic Framework-Based Materials for Energy Conversion and Storage. ACS Energy Letters, 2020, 5, 520-532.	8.8	312
546	Rational modifications of PCN-700 to induce electrical conductivity: a computational study. Dalton Transactions, 2020, 49, 102-113.	1.6	8
547	N-Doped porous tremella-like Fe ₃ C/C electrocatalysts derived from metal–organic frameworks for oxygen reduction reaction. Dalton Transactions, 2020, 49, 797-807.	1.6	29

		EPORT	
#	Article	IF	CITATIONS
548	Engineering of electrodeposited binder-free organic-nickel hydroxide based nanohybrids for energy storage and electrocatalytic alkaline water splitting. Sustainable Energy and Fuels, 2020, 4, 1320-1331.	2.5	12
549	In situ assembly of metal-organic framework-derived N-doped carbon/Co/CoP catalysts on carbon paper for water splitting in alkaline electrolytes. Chinese Journal of Catalysis, 2020, 41, 242-248.	6.9	50
550	Interfacial Approach toward Benzeneâ€Bridged Polypyrrole Film–Based Microâ€Supercapacitors with Ultrahigh Volumetric Power Density. Advanced Functional Materials, 2020, 30, 1908243.	7.8	60
551	Boosting Photoelectric Conductivity in Porphyrin-Based MOFs Incorporating C ₆₀ . Journal of Physical Chemistry C, 2020, 124, 1878-1887.	1.5	27
552	Rational Design of 2D Manganese Phosphate Hydrate Nanosheets as Pseudocapacitive Electrodes. ACS Energy Letters, 2020, 5, 23-30.	8.8	37
553	Synaptic Plasticity and Filtering Emulated in Metal–Organic Frameworks Nanosheets Based Transistors. Advanced Electronic Materials, 2020, 6, 1900978.	2.6	49
554	Transition metal chalcogenides for energy storage and conversion. , 2020, , 355-391.		7
555	Self-assembled bimetallic cobalt–manganese metal–organic framework as a highly efficient, robust electrode for asymmetric supercapacitors. Electrochimica Acta, 2020, 335, 135327.	2.6	46
556	Two-dimensional metal–organic frameworks and their derivatives for electrochemical energy storage and electrocatalysis. Nanoscale Advances, 2020, 2, 536-562.	2.2	109
557	Dense organic molecules/graphene network anodes with superior volumetric and areal performance for asymmetric supercapacitors. Journal of Materials Chemistry A, 2020, 8, 461-469.	5.2	30
558	Made-to-order porous electrodes for supercapacitors: MOFs embedded with redox-active centers as a case study. Chemical Communications, 2020, 56, 1883-1886.	2.2	31
559	Nickel metal–organic framework nanosheets as novel binder-free cathode for advanced fibrous aqueous rechargeable Ni–Zn battery. Journal of Materials Chemistry A, 2020, 8, 3262-3269.	5.2	68
560	Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chemical Society Reviews, 2020, 49, 301-331.	18.7	685
561	Surface Engineering for Advanced Aqueous Supercapacitors: A Review. ChemElectroChem, 2020, 7, 586-593.	1.7	20
562	Fully Conjugated Phthalocyanine Copper Metal–Organic Frameworks for Sodium–Iodine Batteries with Longâ€Time ycling Durability. Advanced Materials, 2020, 32, e1905361.	11.1	143
563	Onâ€surface Synthesis of a Semiconducting 2D Metal–Organic Framework Cu ₃ (C ₆ O ₆) Exhibiting Dispersive Electronic Bands. Angewandte Chemie - International Edition, 2020, 59, 2669-2673.	7.2	42
564	Designing Highly Conductive Functional Groups Improving Guest–Host Interactions in Li/S Batteries. Small, 2020, 16, e1905585.	5.2	28
565	Supercapacitor and oxygen evolution reaction performances based on morphology-dependent Co-MOFs. Journal of Solid State Chemistry, 2020, 283, 121128.	1.4	27

#	Article	IF	CITATIONS
566	Onâ€surface Synthesis of a Semiconducting 2D Metal–Organic Framework Cu ₃ (C ₆ O ₆) Exhibiting Dispersive Electronic Bands. Angewandte Chemie, 2020, 132, 2691-2695.	1.6	15
567	Stretchable Supercapacitors as Emergent Energy Storage Units for Health Monitoring Bioelectronics. Advanced Energy Materials, 2020, 10, 1902769.	10.2	93
568	Superior Electrochemical Performance of Pristine Nickel Hexaaminobenzene MOF Supercapacitors Fabricated by Electrophoretic Deposition. ChemSusChem, 2020, 13, 1491-1495.	3.6	40
569	Metal-organic framework-based materials for hybrid supercapacitor application. Coordination Chemistry Reviews, 2020, 404, 213093.	9.5	318
570	Microfluidicâ€Architected Nanoarrays/Porous Core–Shell Fibers toward Robust Microâ€Energyâ€Storage. Advanced Science, 2020, 7, 1901931.	5.6	47
571	Efficient and tunable one-dimensional charge transport in layered lanthanide metal–organic frameworks. Nature Chemistry, 2020, 12, 131-136.	6.6	214
572	Robust super-hydrophobic/super-oleophilic sandwich-like UIO-66-F4@rGO composites for efficient and multitasking oil/water separation applications. Journal of Hazardous Materials, 2020, 388, 121752.	6.5	115
573	Recent progress in metal-organic frameworks as active materials for supercapacitors. EnergyChem, 2020, 2, 100025.	10.1	326
574	MOF-derived manganese oxide/carbon nanocomposites with raised capacitance for stable asymmetric supercapacitor. RSC Advances, 2020, 10, 34403-34412.	1.7	24
575	Porous Ladder Polymer Networks. CheM, 2020, 6, 2558-2590.	5.8	36
576	Highly Conducting Organic–Inorganic Hybrid Copper Sulfides Cu x C 6 S 6 (x=4 or 5.5): Ligandâ€Based Oxidationâ€Induced Chemical and Electronic Structure Modulation. Angewandte Chemie, 2020, 132, 22791-22798.	1.6	2
577	Ultra-high rate capability of the synergistically built dual nanostructure of NiCo ₂ S ₄ /nickel foam as an electrode in supercapacitors. Nanoscale, 2020, 12, 22330-22339.	2.8	12
578	Investigation of electrochemical performance of a new nanocomposite: CuCo2S4/Polyaniline on carbon cloth. Journal of Energy Storage, 2020, 32, 101694.	3.9	17
579	Engineering functional group decorated ZIFs to high-performance Pd@ZIF-92 nanocatalysts for C(sp2)-C(sp2) couplings in aqueous medium. Journal of Catalysis, 2020, 392, 80-87.	3.1	9
580	Enhanced electrochemical performance and high voltage window for supercapacitors based on fabric electrodes derived from tannin-Fe3+ complexes. Synthetic Metals, 2020, 269, 116566.	2.1	2
581	Synthesis of a Copper 1,3,5-Triamino-2,4,6-benzenetriol Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 18346-18354.	6.6	51
582	Preliminary chemical reduction for synthesizing a stable porous molecular conductor with neutral metal nodes. Chemical Communications, 2020, 56, 13109-13112.	2.2	12
583	Conductive MOFs as bifunctional oxygen electrocatalysts for all-solid-state Zn–air batteries. Chemical Communications, 2020, 56, 13615-13618.	2.2	33

ARTICLE IF CITATIONS From starch to porous carbon nanosheets: Promising cathodes for high-performance aqueous Zn-ion 584 2.2 53 hybrid supercapacitors. Microporous and Mesoporous Materials, 2020, 306, 110445. Electronic Devices Using Open Framework Materials. Chemical Reviews, 2020, 120, 8581-8640. 23.0 A Robust Conductive Polymer Network as a Multiâ€Functional Binder and Conductive Additive for 586 1.7 12 Supercapacitors. ChemElectroChem, 2020, 7, 3056-3064. Heavy chalcogenide-transition metal clusters as coordination polymer nodes. Chemical Science, 2020, 587 <u>11, 8350-8372.</u> Engineering coordination polymer-derived one-dimensional porous S-doped Co₃O₄ nanorods with rich oxygen vacancies as high-performance electrode 588 1.6 42 materials for hybrid supercapacitors. Dalton Transactions, 2020, 49, 10421-10430. Recent progress in metal-organic framework-based supercapacitor electrode materials. Coordination Chemistry Reviews, 2020, 420, 213438. 589 280 Carbon hydrangeas with typical ionic liquid matched pores for advanced supercapacitors. Carbon, 590 5.4 110 2020, 168, 499-507. Transport properties in porous coordination polymers. Coordination Chemistry Reviews, 2020, 421, 213447. Laser-induced nanofibrous titania film electrode: A new approach for energy storage materials. 592 3.9 10 Journal of Energy Storage, 2020, 31, 101654. Highâ€efficiency utilization of carbon materials for supercapacitors. Nano Select, 2020, 1, 244-262. 1.9 Conductive Metal–Organic Frameworks: Design, Synthesis, and Applications. Small Methods, 2020, 4, 594 4.6 92 2000396. Electronic Structure Modeling of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8641-8715. 149 Dynamic single-site polysulfide immobilization in long-range disorder Cu-MOFs. Chemical 596 2.2 1 Communications, 2020, 56, 10074-10077. Reduced Graphene Oxide/Polyester Yarns Supported Conductive Metal–Organic Framework Nanorods 2.5 as Novel Electrodes for All-Solid-State Supercapacitors. Energy & amp; Fuels, 2020, 34, 16879-16884. High Thermopower in a Zn-Based 3D Semiconductive Metal–Organic Framework. Journal of the 598 40 6.6 American Chemical Society, 2020, 142, 20531-20535. Hybrid Architecture of a Porous Polypyrrole Scaffold Loaded with Metal–Organic Frameworks for 599 Flexible Solid-State Supercapacitors. ACS Applied Energy Materials, 2020, 3, 11920-11928. Hierarchical Metalâ€Organic Framework Films with Controllable Meso/Macroporosity. Advanced 600 5.6 32 Science, 2020, 7, 2002368. Metalâ[€] Organic Framework/Polyaniline Nanocomposites for Lightweight Energy Storage. ACS Applied 29 Energy Materials, 2020, 3, 12368-12377.

#	Article	IF	Citations
602	Polyacrylamide hydrogel-derived three-dimensional hierarchical porous N,S co-doped carbon frameworks for electrochemical capacitors. New Journal of Chemistry, 2020, 44, 21279-21287.	1.4	2
603	Rational Design of MOFâ€Based Hybrid Nanomaterials for Directly Harvesting Electric Energy from Water Evaporation. Advanced Materials, 2020, 32, e2003720.	11.1	129
604	Serendipity for Topological Insulator as Multifunctional Electrocatalyst. ACS Applied Energy Materials, 2020, 3, 8929-8936.	2.5	5
605	Paramagnetic Conducting Metal–Organic Frameworks with Threeâ€Dimensional Structure. Angewandte Chemie, 2020, 132, 21059-21064.	1.6	4
606	Ultrathin Mn Doped Niâ€MOF Nanosheet Array for Highly Capacitive and Stable Asymmetric Supercapacitor. Chemistry - A European Journal, 2020, 26, 17149-17155.	1.7	60
607	Applications of machine learning in metal-organic frameworks. Coordination Chemistry Reviews, 2020, 423, 213487.	9.5	100
608	Dendritic fibrous nano metal organic framework: A magnetic core-shell structure as high performance material for electrochemical capacitors. Journal of Energy Storage, 2020, 32, 101734.	3.9	7
609	Rational Design of Metal–Organic Frameworks towards Efficient Electrocatalysis. , 2020, 2, 1251-1267.		65
610	A Porphyrinic Zirconium Metal–Organic Framework for Oxygen Reduction Reaction: Tailoring the Spacing between Active-Sites through Chain-Based Inorganic Building Units. Journal of the American Chemical Society, 2020, 142, 15386-15395.	6.6	139
611	A Mn(<scp>ii</scp>)–MOF with inherent missing metal-ion defects based on an imidazole-tetrazole tripodal ligand and its application in supercapacitors. Dalton Transactions, 2020, 49, 12150-12155.	1.6	11
612	Flexible supercapacitor electrodes using metal–organic frameworks. Nanoscale, 2020, 12, 17649-17662.	2.8	95
613	Hierarchically structured carbon electrodes derived from intrinsically microporous Tröger's base polymers for high-performance supercapacitors. Applied Surface Science, 2020, 530, 147146.	3.1	12
614	Templateâ€Directed Growth of Hierarchical MOF Hybrid Arrays for Tactile Sensor. Advanced Functional Materials, 2020, 30, 2001296.	7.8	80
615	A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coordination Chemistry Reviews, 2020, 422, 213441.	9.5	121
616	Tellurium-impregnated P-doped porous carbon nanosheets as both cathode and anode for an ultrastable hybrid aqueous energy storage. Journal of Materials Chemistry A, 2020, 8, 17185-17192.	5.2	40
617	Microscopic Pressure Tensor in Cylindrical Geometry: Pressure of Water in a Carbon Nanotube. Journal of Chemical Theory and Computation, 2020, 16, 5548-5561.	2.3	14
618	Paramagnetic Conducting Metal–Organic Frameworks with Threeâ€Dimensional Structure. Angewandte Chemie - International Edition, 2020, 59, 20873-20878.	7.2	30
619	Modified Co ₄ N by B-doping for high-performance hybrid supercapacitors. Nanoscale, 2020, 12, 18400-18408.	2.8	28

#	Article	IF	CITATIONS
620	1-Substituted-[1,2,3]-triazole-4-carboxylic acid ligand constructed Cull, Nill and ZnII complexes: The role of crystal structure and electrochemiluminescence. Inorganic Chemistry Communication, 2020, 119, 108124.	1.8	5
621	Anisotropic reticular chemistry. Nature Reviews Materials, 2020, 5, 764-779.	23.3	149
622	Review on reliability of supercapacitors in energy storage applications. Applied Energy, 2020, 278, 115436.	5.1	156
623	Electrically Conductive 3D Metal–Organic Framework Featuring π-Acidic Hexaazatriphenylene Hexacarbonitrile Ligands with Anionâ~l€ Interaction and Efficient Charge-Transport Capabilities. ACS Applied Materials & Interfaces, 2020, 12, 40613-40619.	4.0	18
624	ZIF-67 with precursor concentration-dependence morphology for aerobic oxidation of toluene. Journal of Organometallic Chemistry, 2020, 930, 121597.	0.8	10
625	Synthesis of Ni-MOF/Ti3C2Tx hybrid nanosheets via ultrasonific method for supercapacitor electrodes. Materials Letters, 2020, 280, 128526.	1.3	42
626	Self-templated synthesis of uniform hollow spheres based on highly conjugated three-dimensional covalent organic frameworks. Nature Communications, 2020, 11, 5561.	5.8	103
627	In-situ pyrolysis of MnO2/PVDF composites on carbon cloths and their enhanced electrochemical performances. Solid State Sciences, 2020, 109, 106403.	1.5	0
628	Water-Induced Structural Transformations in Flexible Two-Dimensional Layered Conductive Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 9664-9674.	3.2	15
629	Metal Halide Perovskite@Metalâ€Organic Framework Hybrids: Synthesis, Design, Properties, and Applications. Small, 2020, 16, e2004891.	5.2	46
630	Assemble from 0D to 3D: anchored 0D molybdenum carbide on 3D octahedral amorphous carbon with excellent capacitive properties. Journal of Materials Science, 2020, 55, 15562-15573.	1.7	11
631	Covalent Organic Frameworks as Negative Electrodes for Highâ€Performance Asymmetric Supercapacitors. Advanced Energy Materials, 2020, 10, 2001673.	10.2	107
632	Advances and challenges for experiment and theory for multi-electron multi-proton transfer at electrified solid–liquid interfaces. Physical Chemistry Chemical Physics, 2020, 22, 19401-19442.	1.3	38
633	Strong Electronic Interaction Enhanced Electrocatalysis of Metal Sulfide Clusters Embedded Metal–Organic Framework Ultrathin Nanosheets toward Highly Efficient Overall Water Splitting. Advanced Science, 2020, 7, 2001965.	5.6	129
634	Designing High Performance Organic Batteries. Accounts of Chemical Research, 2020, 53, 2636-2647.	7.6	156
635	In Situ Fabrication of a Uniform Co-MOF Shell Coordinated with CoNiO ₂ to Enhance the Energy Storage Capability of NiCo-LDH via Vapor-Phase Growth. ACS Applied Materials & Interfaces, 2020, 12, 47526-47538.	4.0	88
636	Oneâ€Dimensional <i>ï€</i> –d Conjugated Coordination Polymer for Electrochromic Energy Storage Device with Exceptionally High Performance. Advanced Science, 2020, 7, 1903109.	5.6	72
637	Transparent Electrodes for Energy Storage Devices. Batteries and Supercaps, 2020, 3, 1275-1286.	2.4	14

#	Article	IF	CITATIONS
638	Metal-Induced Self-Assembly Template for Controlled Growth of ZIF-8 Nanorods. Chemistry of Materials, 2020, 32, 7941-7950.	3.2	31
639	Computational Insights into Charge Storage Mechanisms of Supercapacitors. Energy and Environmental Materials, 2020, 3, 235-246.	7.3	49
640	An in situ growth strategy of NiCo-MOF nanosheets with more activity sites for asymmetric supercapacitors. Ionics, 2020, 26, 6309-6318.	1.2	21
641	Redox-Hopping and Electrochemical Behaviors of Metal–Organic Framework Thin Films Fabricated by Various Approaches. Journal of Physical Chemistry C, 2020, 124, 20854-20863.	1.5	18
642	Pore-Confined Silver Nanoparticles in a Porphyrinic Metal–Organic Framework for Electrochemical Nitrite Detection. ACS Applied Nano Materials, 2020, 3, 9440-9448.	2.4	50
643	Metal–organic framework based antibiotic release and antimicrobial response: an overview. CrystEngComm, 2020, 22, 7513-7527.	1.3	49
644	Highly Conducting Organic–Inorganic Hybrid Copper Sulfides Cu _{<i>x</i>} C ₆ S ₆ (x=4 or 5.5): Ligandâ€Based Oxidationâ€Induced Chemical and Electronic Structure Modulation. Angewandte Chemie - International Edition, 2020, 59, 22602-22609.	7.2	26
645	Three-Dimensional Architectures in Electrochemical Capacitor Applications – Insights, Opinions, and Perspectives. Frontiers in Energy Research, 2020, 8, .	1.2	10
646	Interface Chemistry on MXeneâ€Based Materials for Enhanced Energy Storage and Conversion Performance. Advanced Functional Materials, 2020, 30, 2005190.	7.8	136
647	Metal-organic framework composites for energy conversion and storage. Journal of Semiconductors, 2020, 41, 091707.	2.0	17
648	Highly Conductive Two-Dimensional Metal–Organic Frameworks for Resilient Lithium Storage with Superb Rate Capability. ACS Nano, 2020, 14, 12016-12026.	7.3	207
649	Bimetallic tungstate nanoparticle-decorated-lignin electrodes for flexible supercapacitors. Materials Advances, 2020, 1, 2124-2135.	2.6	25
650	Ultrafast <i>In Situ</i> Synthesis of Large-Area Conductive Metal–Organic Frameworks on Substrates for Flexible Chemiresistive Sensing. ACS Applied Materials & Interfaces, 2020, 12, 57235-57244.	4.0	34
651	Two-Dimensional Metal Organic Framework Nanosheets as Bifunctional Catalyst for Electrochemical and Photoelectrochemical Water Oxidation. Frontiers in Chemistry, 2020, 8, 604239.	1.8	12
652	Valence-Dependent Electrical Conductivity in a 3D Tetrahydroxyquinone-Based Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 21243-21248.	6.6	39
653	Strategies for Controlling Through-Space Charge Transport in Metal-Organic Frameworks via Structural Modifications. Nanomaterials, 2020, 10, 2372.	1.9	4
654	Facile Fabrication of Double-Layered Electrodes for a Self-Powered Energy Conversion and Storage System. Nanomaterials, 2020, 10, 2380.	1.9	6
655	Hierarchical Tuning of the Performance of Electrochemical Carbon Dioxide Reduction Using Conductive Two-Dimensional Metallophthalocyanine Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 21656-21669.	6.6	129

#	Article	IF	CITATIONS
656	Application of MOF-based materials in electrochemical sensing. Dalton Transactions, 2020, 49, 17121-17129.	1.6	66
657	Understanding the Mechanism of High Capacitance in Nickel Hexaaminobenzene-Based Conductive Metal–Organic Frameworks in Aqueous Electrolytes. ACS Nano, 2020, 14, 15919-15925.	7.3	46
658	Pillared nickel-based metal-organic frameworks as electrode material with high electrochemical performance. Journal of Electroanalytical Chemistry, 2020, 879, 114802.	1.9	12
659	Interface metallization enabled an ultra-stable Fe ₂ O ₃ hierarchical anode for pseudocapacitors. RSC Advances, 2020, 10, 8636-8644.	1.7	4
660	Characterization of Catalysts by Advanced Scanning Probe Microscopy and Spectroscopy. ChemCatChem, 2020, 12, 3601-3620.	1.8	4
661	Cobalt Metal–Organic Framework Ultrathin Cocatalyst Overlayer for Improved Photoelectrochemical Activity of Ti-Doped Hematite. ACS Applied Energy Materials, 2020, 3, 4867-4876.	2.5	25
662	Nickel Salicylaldoxime-Based Coordination Polymer as a Cathode for Lithium-Ion Batteries. Energies, 2020, 13, 2480.	1.6	3
663	Phosphonate Metal–Organic Frameworks: A Novel Family of Semiconductors. Advanced Materials, 2020, 32, e2000474.	11.1	29
664	Multimetal Incorporation into 2D Conductive Metal–Organic Framework Nanowires Enabling Excellent Electrocatalytic Oxidation of Benzylamine to Benzonitrile. ACS Applied Materials & Interfaces, 2020, 12, 24786-24795.	4.0	36
665	Isoreticular Linker Substitution in Conductive Metal–Organic Frameworks with Through‣pace Transport Pathways. Angewandte Chemie, 2020, 132, 19791-19794.	1.6	5
666	Comparative Study of the Supercapacitive Performance of Three Ferroceneâ€Based Structures: Targeted Design of a Conductive Ferroceneâ€Functionalized Coordination Polymer as a Supercapacitor Electrode. Chemistry - A European Journal, 2020, 26, 9518-9526.	1.7	23
667	Controlled Transdermal Release of Antioxidant Ferulate by a Porous Sc(III) MOF. IScience, 2020, 23, 101156.	1.9	16
668	Optimizing Electrochemically Active Surfaces of Carbonaceous Electrodes for Ionogel Based Supercapacitors. Advanced Functional Materials, 2020, 30, 2002053.	7.8	35
669	Conductive copper-based metal-organic framework nanowire arrays grown on graphene fibers for flexible all-solid-state supercapacitors. Journal of Alloys and Compounds, 2020, 835, 155238.	2.8	45
670	Electrochemical Evolution of Pore-Confined Metallic Molybdenum in a Metal–Organic Framework (MOF) for All-MOF-Based Pseudocapacitors. ACS Applied Energy Materials, 2020, 3, 6258-6267.	2.5	33
671	Proton Transport in Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8416-8467.	23.0	382
672	Cu-MOF/Au–Pd composite catalyst: preparation and catalytic performance evaluation. Journal of Materials Science, 2020, 55, 10388-10398.	1.7	26
673	<i>In situ</i> Growth of a Cobaltâ€based Metalâ€organic Framework on Multiâ€walled Carbon Nanotubes for Simultaneously Detection of Hydroquinone and Catechol Electroanalysis, 2020, 32, 2010-2017.	1.5	8

#ARTICLEIFCITATIONS674Core-double shell templated Fe/Co anchored carbon nanospheres for oxygen reduction. Chemical6.619675Afacile method for synthesizing NiS nanoflower grown on MXSene (Ti3C2Tx) as positive electrodes for
sécena template felectrochimical Acta, 2020, 353, 136526.2.655

CITATION REPORT

Air-Stability and Carrier Type in Conductive M₃(Hexaaminobenzene)_{2,} (M = Co,) Tj ETQq000 rgBT/Overlock $\frac{1}{48}$

677	Recent Progress in Stimulus-Responsive Two-Dimensional Metal–Organic Frameworks. , 2020, 2, 779-797.		187
678	Design and fabrication of free-standing Ni3S2/NiV-LDH nanosheets arrays on reduced graphene oxide/Ni foam as a novel electrode for asymmetric supercapacitor. Applied Surface Science, 2020, 526, 146641.	3.1	35
679	Continuous Electrical Conductivity Variation in M ₃ (Hexaiminotriphenylene) ₂ (M = Co, Ni, Cu) MOF Alloys. Journal of the American Chemical Society, 2020, 142, 12367-12373.	6.6	169
680	CoS2 nanosheets on carbon cloth for flexible all-solid-state supercapacitors. Chemical Engineering Journal, 2020, 400, 125856.	6.6	65
681	Ammonium metal phosphates: Emerging materials for energy storage. Current Opinion in Electrochemistry, 2020, 21, 351-357.	2.5	13
682	Conductive Ni3(HITP)2 MOFs thin films for flexible transparent supercapacitors with high rate capability. Science Bulletin, 2020, 65, 1803-1811.	4.3	38
683	FeOOH Composite Electrode Based on TiN Nanopetals for High-Performance Supercapacitors. Journal of Physical Chemistry C, 2020, 124, 15028-15035.	1.5	7
684	Transition Bimetal Based MOF Nanosheets for Robust Aqueous Zn Battery. Frontiers in Materials, 2020, 7, .	1.2	18
685	A review on the superb contribution of carbon and graphene quantum dots to electrochemical capacitors' performance: Synthesis and application. FlatChem, 2020, 22, 100171.	2.8	44
686	A Highly Elastic and Fatigueâ€Resistant Natural Proteinâ€Reinforced Hydrogel Electrolyte for Reversibleâ€Compressible Quasiâ€Solidâ€State Supercapacitors. Advanced Science, 2020, 7, 2000587.	5.6	64
687	A Nanotubular Metal–Organic Framework with a Narrow Bandgap from Extended Conjugation**. Chemistry - A European Journal, 2020, 26, 14813-14816.	1.7	18
688	In-situ construction of hierarchical structure with 1D MnCo2S4 interpenetrate 3D Co9S8 hollow polyhedrons towards high performance hybrid supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111, 198-204.	2.7	12
689	Electrochemically Triggered Dynamics within a Hybrid Metal–Organic Electrocatalyst. Journal of the American Chemical Society, 2020, 142, 12382-12393.	6.6	40
690	Hexaaminobenzene Derived Two-Dimensional Polymer Supercapacitor with High Specific Capacitance and Energy Density. ACS Applied Energy Materials, 2020, 3, 6352-6359.	2.5	7
691	Ligand engineering in Cu(<scp>ii</scp>) paddle wheel metal–organic frameworks for enhanced semiconductivity. Journal of Materials Chemistry A, 2020, 8, 13160-13165.	5.2	10

#	Article	IF	CITATIONS
692	Metalâ^'Organic Frameworks toward Electrochemical Sensors: Challenges and Opportunities. Electroanalysis, 2020, 32, 1885-1895.	1.5	103
693	High electrochemical performance of metal azolate frameworkâ€derived <scp>ZnO</scp> / <scp> Co ₃ O ₄ </scp> for supercapacitors. International Journal of Energy Research, 2020, 44, 8654-8665.	2.2	13
694	Confined Synthesis of Oriented Two-Dimensional Ni ₃ (hexaiminotriphenylene) ₂ Films for Electrocatalytic Oxygen Evolution Reaction. Langmuir, 2020, 36, 7528-7532.	1.6	21
695	Two-dimensional conjugated polymer films <i>via</i> liquid-interface-assisted synthesis toward organic electronic devices. Journal of Materials Chemistry C, 2020, 8, 10696-10718.	2.7	32
696	Phthalocyanineâ€Based 2D Conjugated Metalâ€Organic Framework Nanosheets for Highâ€Performance Microâ€5upercapacitors. Advanced Functional Materials, 2020, 30, 2002664.	7.8	104
697	Gas Sensors Based on Chemi-Resistive Hybrid Functional Nanomaterials. Nano-Micro Letters, 2020, 12, 71.	14.4	252
698	Conductive Metal–Organic Frameworks with Extra Metallic Sites as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Advanced Science, 2020, 7, 2000012.	5.6	197
699	Coupled Electrical Conduction in Coordination Polymers: From Electrons/Ions to Mixed Charge Carriers. Chemistry - an Asian Journal, 2020, 15, 1202-1213.	1.7	7
700	Stable Dispersed Zeolitic Imidazolate Framework/Graphene Oxide Nanocomposites in Ionic Liquids Resulting in High Lubricating Performance. Advanced Materials Interfaces, 2020, 7, 1902194.	1.9	18
701	CO ₂ â€Induced Spinâ€State Switching at Room Temperature in a Monomeric Cobalt(II) Complex with the Porous Nature. Angewandte Chemie - International Edition, 2020, 59, 10658-10665.	7.2	25
702	Two-dimensional metal–organic framework nanosheets: synthetic methodologies and electrocatalytic applications. Journal of Materials Chemistry A, 2020, 8, 15271-15301.	5.2	79
703	Observation of Ion Electrosorption in Metal–Organic Framework Micropores with In Operando Smallâ€Angle Neutron Scattering. Angewandte Chemie - International Edition, 2020, 59, 9773-9779.	7.2	15
704	Microstructure design of porous nanocarbons for ultrahigh-energy and power density supercapacitors in ionic liquid electrolyte. Journal of Materials Science, 2020, 55, 7477-7491.	1.7	11
705	Employing Conductive Metal–Organic Frameworks for Voltammetric Detection of Neurochemicals. Journal of the American Chemical Society, 2020, 142, 11717-11733.	6.6	159
706	Integrated and Three-Dimensional Network Structure of a SiNWs/CNTs@MOFs Composite to Enhance the Silicon Anode's Electrochemical Performance in Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 3815-3825.	2.5	19
707	Energy density-enhancement mechanism and design principles for heteroatom-doped carbon supercapacitors. Nano Energy, 2020, 72, 104666.	8.2	65
708	Conductive MOFs. EnergyChem, 2020, 2, 100029.	10.1	264
709	Bifunctional electrocatalysts for Zn–air batteries: recent developments and future perspectives. Journal of Materials Chemistry A, 2020, 8, 6144-6182.	5.2	207

#	Article	IF	CITATIONS
710	A Microwave Platform for Reliable and Instant Interconnecting Combined with Microwave-Microfluidic Interdigital Capacitor Chips for Sensing Applications. Sensors, 2020, 20, 1687.	2.1	9
711	PANI@UiO-66 and PANI@UiO-66-NH ₂ Polymer-MOF Hybrid Composites as Tunable Semiconducting Materials. ACS Omega, 2020, 5, 6395-6404.	1.6	43
712	Investigation on the Component Evolution of a Tetranuclear Nickel-Cluster-Based Metal–Organic Framework in an Electrochemical Oxidation Reaction. Inorganic Chemistry, 2020, 59, 4764-4771.	1.9	42
713	Electrical Conductivity in a Porous, Cubic Rare-Earth Catecholate. Journal of the American Chemical Society, 2020, 142, 6920-6924.	6.6	53
714	Observation of Ion Electrosorption in Metal–Organic Framework Micropores with In Operando Smallâ€Angle Neutron Scattering. Angewandte Chemie, 2020, 132, 9860-9866.	1.6	4
715	Charge percolation in metal-organic framework (HKUST-1)‒graphene nanocomposites. Applied Materials Today, 2020, 19, 100604.	2.3	12
716	Construction of a polyMOF using a polymer ligand bearing the benzenedicarboxylic acid moiety in the side chain. New Journal of Chemistry, 2020, 44, 5182-5185.	1.4	10
717	Hydrothermal Synthesis of Humate‣ayerâ€Based Bimetal Organic Framework Composites as High Rateâ€Capability and Eneryâ€Density Electrode Materials for Supercapacitors. ChemistrySelect, 2020, 5, 2794-2804.	0.7	13
718	In-plane Assembly of Distinctive 2D MOFs with Optimum Supercapacitive Performance. IScience, 2020, 23, 101220.	1.9	24
719	Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews, 2020, 120, 6738-6782.	23.0	1,020
719 720		23.0 4.7	1,020 57
	Chemical Reviews, 2020, 120, 6738-6782. Multiscale modeling of electrolytes in porous electrode: From equilibrium structure to		
720	Chemical Reviews, 2020, 120, 6738-6782. Multiscale modeling of electrolytes in porous electrode: From equilibrium structure to non-equilibrium transport. Green Energy and Environment, 2020, 5, 303-321. Engineering Electrical Conductivity in Stable Zirconium-Based PCN-222 MOFs with Permanent	4.7	57
720 721	Chemical Reviews, 2020, 120, 6738-6782. Multiscale modeling of electrolytes in porous electrode: From equilibrium structure to non-equilibrium transport. Green Energy and Environment, 2020, 5, 303-321. Engineering Electrical Conductivity in Stable Zirconium-Based PCN-222 MOFs with Permanent Mesoporosity. Chemistry of Materials, 2020, 32, 6137-6149. Constructing Asymmetrical Ni-Centered {NiN ₂ O ₄ } Octahedra in Layered Metal–Organic Structures for Near-Room-Temperature Single-Phase Magnetoelectricity. Journal of	4.7 3.2	57 34
720 721 722	 Chemical Reviews, 2020, 120, 6738-6782. Multiscale modeling of electrolytes in porous electrode: From equilibrium structure to non-equilibrium transport. Green Energy and Environment, 2020, 5, 303-321. Engineering Electrical Conductivity in Stable Zirconium-Based PCN-222 MOFs with Permanent Mesoporosity. Chemistry of Materials, 2020, 32, 6137-6149. Constructing Asymmetrical Ni-Centered {NiN₂O₄} Octahedra in Layered Metal–Organic Structures for Near-Room-Temperature Single-Phase Magnetoelectricity. Journal of the American Chemical Society, 2020, 142, 12841-12849. A three-dimensional Co5-cluster-based MOF as a high-performance electrode material for 	4.7 3.2 6.6	57 34 7
720721722723	 Chemical Reviews, 2020, 120, 6738-6782. Multiscale modeling of electrolytes in porous electrode: From equilibrium structure to non-equilibrium transport. Green Energy and Environment, 2020, 5, 303-321. Engineering Electrical Conductivity in Stable Zirconium-Based PCN-222 MOFs with Permanent Mesoporosity. Chemistry of Materials, 2020, 32, 6137-6149. Constructing Asymmetrical Ni-Centered {NiN₂O₄} Octahedra in Layered Metal–Organic Structures for Near-Room-Temperature Single-Phase Magnetoelectricity. Journal of the American Chemical Society, 2020, 142, 12841-12849. A three-dimensional Co5-cluster-based MOF as a high-performance electrode material for supercapacitor. Ionics, 2020, 26, 5189-5197. FeNi Nanoparticles Embedded in Porous Nitrogen-Doped Graphene for Electrocatalytic Evolution of 	4.7 3.2 6.6 1.2	57 34 7 19
 720 721 722 723 724 	Chemical Reviews, 2020, 120, 6738-6782. Multiscale modeling of electrolytes in porous electrode: From equilibrium structure to non-equilibrium transport. Green Energy and Environment, 2020, 5, 303-321. Engineering Electrical Conductivity in Stable Zirconium-Based PCN-222 MOFs with Permanent Mesoporosity. Chemistry of Materials, 2020, 32, 6137-6149. Constructing Asymmetrical Ni-Centered {NiN ₂ 0 ₄ } Octahedra in Layered Metal–Organic Structures for Near-Room-Temperature Single-Phase Magnetoelectricity. Journal of the American Chemical Society, 2020, 142, 12841-12849. A three-dimensional Co5-cluster-based MOF as a high-performance electrode material for supercapacitor. Ionics, 2020, 26, 5189-5197. FeNi Nanoparticles Embedded in Porous Nitrogen-Doped Graphene for Electrocatalytic Evolution of Hydrogen and Oxygen. ACS Applied Nano Materials, 2020, 3, 6336-6343. NiMnâ€Based Bimetal–Organic Framework Nanosheets Supported on Multiâ€Channel Carbon Fibers for	4.7 3.2 6.6 1.2 2.4	57 34 7 19 15

#	Article	IF	CITATIONS
728	Synthesis of Robust MOFs@COFs Porous Hybrid Materials via an Azaâ€Điels–Alder Reaction: Towards Highâ€Performance Supercapacitor Materials. Angewandte Chemie, 2020, 132, 19770-19777.	1.6	13
729	Electrical conductivity and magnetic bistability in metal–organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale. Chemical Society Reviews, 2020, 49, 5601-5638.	18.7	122
730	Co3(hexaiminotriphenylene)2: A conductive two-dimensional π–d conjugated metal–organic framework for highly efficient oxygen evolution reaction. Applied Catalysis B: Environmental, 2020, 278, 119295.	10.8	80
731	2D Metal–Organic Frameworks (MOFs) for Highâ€Performance BatCap Hybrid Devices. Small, 2020, 16, e2001987.	5.2	166
732	Emergence of electrical conductivity in a flexible coordination polymer by using chemical reduction. Chemical Communications, 2020, 56, 8619-8622.	2.2	19
733	NiMnâ€Based Bimetal–Organic Framework Nanosheets Supported on Multiâ€Channel Carbon Fibers for Efficient Oxygen Electrocatalysis. Angewandte Chemie - International Edition, 2020, 59, 18234-18239.	7.2	232
734	Highly microporous Parinari Curatellifolia carbon nanomaterials for supercapacitors. Nano Structures Nano Objects, 2020, 22, 100445.	1.9	5
735	Quantum Spin Liquid State in a Two-Dimensional Semiconductive Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 16513-16517.	6.6	70
736	Boosting charge storage in 1D manganese oxide-carbon composite by phosphorus-assisted structural modification for supercapacitor applications. Energy Storage Materials, 2020, 31, 172-180.	9.5	30
737	Nitrogen and Oxygen Coâ€doped Hierarchical Porous Carbon: Electrode Materials for Highâ€Energy Density and Flexible Solidâ€State Supercapacitors. ChemElectroChem, 2020, 7, 3065-3073.	1.7	3
738	Electrochemical behavior of reduced graphene oxide/cyclodextrins sensors for ultrasensitive detection of imidacloprid in brown rice. Food Chemistry, 2020, 333, 127495.	4.2	70
739	Two-Dimensional Carbon-Rich Conjugated Frameworks for Electrochemical Energy Applications. Journal of the American Chemical Society, 2020, 142, 12903-12915.	6.6	154
740	Synthesis of Robust MOFs@COFs Porous Hybrid Materials via an Azaâ€Diels–Alder Reaction: Towards Highâ€Performance Supercapacitor Materials. Angewandte Chemie - International Edition, 2020, 59, 19602-19609.	7.2	133
741	Mechanistic insight into bimetallic CoNi-MOF arrays with enhanced performance for supercapacitors. Nanoscale, 2020, 12, 5669-5677.	2.8	72
742	Ultrathin 2D Metal–Organic Framework Nanosheets In situ Interpenetrated by Functional CNTs for Hybrid Energy Storage Device. Nano-Micro Letters, 2020, 12, 46.	14.4	105
743	Conductive Metal–Organic Frameworks: Mechanisms, Design Strategies and Recent Advances. Topics in Current Chemistry, 2020, 378, 27.	3.0	57
744	A review on MXene for energy storage application: effect of interlayer distance. Materials Research Express, 2020, 7, 022001.	0.8	119
745	Metal-organic framework-templated synthesis of t-ZrO2 /Ĵ³-Fe2O3 supported AgPt nanoparticles with enhanced catalytic and photocatalytic properties. Materials Research Bulletin, 2020, 126, 110838.	2.7	10

#	Article	IF	CITATIONS
746	Amide-Functionalized Metal–Organic Framework for High Efficiency and Fast Removal of Pb(II) from Aqueous Solution. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3170-3178.	1.9	41
747	A flexible and capsular polypyrrole nanotubular film-based pseudo-capacitive electrode with enhanced capacitive properties enabled by Au nanoparticle doping. Journal of Materials Chemistry C, 2020, 8, 3807-3813.	2.7	7
748	Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nature Energy, 2020, 5, 160-168.	19.8	381
749	A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures. Nature Communications, 2020, 11, 927.	5.8	93
750	Magnetothermal Microfluidicâ€Assisted Hierarchical Microfibers for Ultrahighâ€Energyâ€Density Supercapacitors. Angewandte Chemie - International Edition, 2020, 59, 7934-7943.	7.2	57
751	Theoretical Exploration and Electronic Applications of Conductive Two-Dimensional Metal–Organic Frameworks. Topics in Current Chemistry, 2020, 378, 25.	3.0	10
752	Short rod-like Ni-MOF anchored on graphene oxide nanosheets: A promising voltammetric platform for highly sensitive determination of p-chloronitrobenzene. Journal of Electroanalytical Chemistry, 2020, 861, 113954.	1.9	29
753	The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 2020, 30, 1909062.	7.8	174
754	Magnetothermal Microfluidicâ€Assisted Hierarchical Microfibers for Ultrahighâ€Energyâ€Density Supercapacitors. Angewandte Chemie, 2020, 132, 8008-8017.	1.6	22
755	Selective Photocatalytic Oxidation of Thioanisole on DUT-67(Zr) Mediated by Surface Coordination. Langmuir, 2020, 36, 2199-2208.	1.6	30
757	Tetra-carboxylic acid based metal-organic framework as a high-performance bifunctional electrocatalyst for HER and OER. International Journal of Hydrogen Energy, 2020, 45, 11077-11088.	3.8	46
758	Binary composites of strontium oxide/polyaniline for high performance supercapattery devices. Solid State Ionics, 2020, 347, 115276.	1.3	48
759	Effects of Mixed Valency in an Fe-Based Framework: Coexistence of Slow Magnetic Relaxation, Semiconductivity, and Redox Activity. Inorganic Chemistry, 2020, 59, 3619-3630.	1.9	15
760	A Redox-Innocent Uranium(IV)-Quinoid Metal-Organic Framework. ACS Omega, 2020, 5, 3462-3466.	1.6	5
761	Designing ionic channels in novel carbons for electrochemical energy storage. National Science Review, 2020, 7, 191-201.	4.6	42
762	A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications. Applied Surface Science, 2020, 510, 145384.	3.1	127
763	Synthetic Route to a Triphenylenehexaselenol-Based Metal Organic Framework with Semi-conductive and Glassy Magnetic Properties. IScience, 2020, 23, 100812.	1.9	39
764	Metal–organic frameworks as a platform for clean energy applications. EnergyChem, 2020, 2, 100027.	10.1	530

#	Article	IF	CITATIONS
765	A bio-derived sheet-like porous carbon with thin-layer pore walls for ultrahigh-power supercapacitors. Nano Energy, 2020, 70, 104531.	8.2	168
766	Oneâ€&tep Synthesis of Nanostructured CoS ₂ Grown on Titanium Carbide MXene for Highâ€Performance Asymmetrical Supercapacitors. Advanced Materials Interfaces, 2020, 7, 1901659.	1.9	77
767	Rational Design of Antifreezing Organohydrogel Electrolytes for Flexible Supercapacitors. ACS Applied Energy Materials, 2020, 3, 1944-1951.	2.5	85
768	Metal–organic framework-derived ZnMoO4 nanosheet arrays for advanced asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 3631-3641.	1.1	10
769	Metal–organic frameworks with different spatial dimensions for supercapacitors. New Journal of Chemistry, 2020, 44, 3147-3167.	1.4	46
770	Three-dimensional cage-like Si@ZIF-67 core-shell composites for high-performance lithium storage. Applied Surface Science, 2020, 510, 145477.	3.1	25
771	Intelligent Nanoarchitectonics for Selfâ€Assembling Systems. Advanced Intelligent Systems, 2020, 2, 1900157.	3.3	14
772	Rational Microstructure Design on Metal–Organic Framework Composites for Better Electrochemical Performances: Design Principle, Synthetic Strategy, and Promotion Mechanism. Small Methods, 2020, 4, 1900756.	4.6	45
773	Recent advances in pristine tri-metallic metal–organic frameworks toward the oxygen evolution reaction. Nanoscale, 2020, 12, 4816-4825.	2.8	83
774	Necklaceâ€like Nitrogenâ€Doped Tubular Carbon 3D Frameworks for Electrochemical Energy Storage. Advanced Functional Materials, 2020, 30, 1909725.	7.8	89
775	Atomic Modulation Triggering Improved Performance of MoO ₃ Nanobelts for Fiberâ€Shaped Supercapacitors. Small, 2020, 16, e1905778.	5.2	38
776	Two-Dimensional Conductive Metal–Organic Frameworks Based on Truxene. ACS Applied Materials & Interfaces, 2020, 12, 7504-7509.	4.0	50
777	Ni–Co coordination hollow spheres for high performance flexible all-solid-state supercapacitor. Electrochimica Acta, 2020, 337, 135828.	2.6	27
778	Metal–Diamidobenzoquinone Frameworks via Post-Synthetic Linker Exchange. Journal of the American Chemical Society, 2020, 142, 4705-4713.	6.6	17
779	Ionic liquids under nanoscale confinement. Advances in Physics: X, 2020, 5, 1736949.	1.5	25
780	Recent advances in crystalline carbon dots for superior application potential. Materials Advances, 2020, 1, 525-553.	2.6	92
781	Titanium-Anthraquinone Material as a New Design Approach for Electrodes in Aqueous Rechargeable Batteries. Energies, 2020, 13, 1722.	1.6	2
782	A conductive anionic Co-MOF cage with zeolite framework for supercapacitors. Chinese Chemical Letters, 2020, 31, 2309-2313.	4.8	22

ARTICLE IF CITATIONS Electrodeposition of pore-confined cobalt in metal–organic framework thin films toward 783 2.6 31 electrochemical H2O2 detection. Electrochimica Acta, 2020, 347, 136276. Coral-like {SiW10Mn2}-based Mn-MOFs: Facile fabrication with high electrochemical capacitor 784 1.4 performance. Journal of Solid State Chemistry, 2020, 288, 121409. CO 2 â€Induced Spinâ€State Switching at Room Temperature in a Monomeric Cobalt(II) Complex with the 785 1.6 4 Porous Nature. Angewandte Chemie, 2020, 132, 10745-10752. Thermoplastic Membranes Incorporating Semiconductive Metal–Organic Frameworks: An Advance on 786 Flexible Xâ€ray Detectors. Angewandte Chemie, 2020, 132, 11954-11958. Thermoplastic Membranes Incorporating Semiconductive Metal–Organic Frameworks: An Advance on 787 7.2 60 Flexible Xâ€ray Detectors. Angewandte Chemie - International Edition, 2020, 59, 11856-11860. Co3(hexahydroxytriphenylene)2: A conductive metalâ€"organic framework for ambient electrocatalytic N2 reduction to NH3. Nano Research, 2020, 13, 1008-1012. 788 5.8 56 Metal-organic frameworks-derived porous α-Fe2O3 spindles decorated with Au nanoparticles for 789 2.8 18 enhanced triethylamine gas-sensing performance. Journal of Alloys and Compounds, 2020, 831, 154788. High-performance asymmetric supercapacitors realized by copper cobalt sulfide crumpled nanoflower and N, F co-doped hiérarchical nanoporous carbon polyhédron. Journal of Power Sources, 2020, 456, 790 58 228023. One-dimensional mesoporous inorganic nanostructures and their applications in energy, sensor, 791 16.0 64 catalysis and adsorption. Progress in Materials Science, 2020, 113, 100671. 792 Electrically Conductive Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8536-8580. 989 Effects of Kinetic Dielectric Decrement on Ion Diffusion and Capacitance in Electrochemical Systems. 793 1.6 25 Langmuir, 2020, 36, 4055-4064. In Situ Aniline-Polymerized Interfaces on GOâ€"PVA Nanoplatforms as Bifunctional Supercapacitors and 794 pH-Universal ORR Electrodes. ACS Applied Energy Materials, 2020, 3, 4727-4737. Controlling the morphology of metalâ€"organic frameworks and porous carbon materials: metal 795 18.7 190 oxides as primary architecture-directing agents. Chemical Society Reviews, 2020, 49, 3348-3422. Advances in metal–organic framework coatings: versatile synthesis and broad applications. Chemical Society Reviews, 2020, 49, 3142-3186. 796 18.7 Crystallinity dependence for high-selectivity electrochemical oxygen reduction to hydrogen peroxide. 797 2.2 10 Chemical Communications, 2020, 56, 5299-5302. Ionic Liquid-Based Electrolytes for Energy Storage Devices: A Brief Review on Their Limits and 798 124 Applications. Polymers, 2020, 12, 918. Porous Cobalt Metal–Organic Frameworks as Active Elements in Battery–Supercapacitor Hybrid 799 1.9 171 Devices. Inorganic Chemistry, 2020, 59, 6808-6814. A review of electrochemical energy storage behaviors based on pristine metal–organic frameworks 159 and their composites. Coordination Chemistry Reviews, 2020, 416, 213341.

#	Article	IF	CITATIONS
801	Isoreticular Linker Substitution in Conductive Metal–Organic Frameworks with Throughâ€Space Transport Pathways. Angewandte Chemie - International Edition, 2020, 59, 19623-19626.	7.2	22
802	Electroactive Organic Building Blocks for the Chemical Design of Functional Porous Frameworks (MOFs and COFs) in Electronics. Chemistry - A European Journal, 2020, 26, 10912-10935.	1.7	53
803	Coordination-Driven Self-Assembly in Polymer–Inorganic Hybrid Materials. Chemistry of Materials, 2020, 32, 3680-3700.	3.2	62
804	Tunable Thiolate Coordination Networks on Metal Surfaces. ChemNanoMat, 2020, 6, 1479-1484.	1.5	14
805	Electrochemical strategy with zeolitic imidazolate frameworkâ€8 and ordered mesoporous carbon for detection of xanthine. IET Nanobiotechnology, 2020, 14, 120-125.	1.9	3
806	Cu powder decorated 3D Mn-MOF with excellent electrochemical properties for supercapacitors. Inorganica Chimica Acta, 2020, 508, 119629.	1.2	37
807	"Ship in a Bottle―design of ZIF-9@CoAl LDH hybrid compound as a high performance asymmetric supercapacitor. New Journal of Chemistry, 2020, 44, 7528-7540.	1.4	21
808	Conductive metalâ€organic frameworks: Recent advances in electrochemical energyâ€related applications and perspectives. , 2020, 2, 203-222.		75
809	Extended Metal–Organic Frameworks on Diverse Supports as Electrode Nanomaterials for Electrochemical Energy Storage. ACS Applied Nano Materials, 2020, 3, 3964-3990.	2.4	80
810	A highly oriented conductive MOF thin film-based Schottky diode for self-powered light and gas detection. Journal of Materials Chemistry A, 2020, 8, 9085-9090.	5.2	42
811	Two-step pyrolytic engineering of carbon-doped Co ₃ O ₄ with rich defects for efficient low-temperature CO oxidation. Journal of Materials Chemistry A, 2020, 8, 6619-6630.	5.2	30
812	Layer-by-layer assembled dual-ligand conductive MOF nano-films with modulated chemiresistive sensitivity and selectivity. Nano Research, 2021, 14, 438-443.	5.8	54
813	2D Conductive Metal–Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage. Angewandte Chemie, 2021, 133, 5672-5684.	1.6	45
814	Two-dimensional d-ï€ conjugated metal-organic framework based on hexahydroxytrinaphthylene. Nano Research, 2021, 14, 369-375.	5.8	49
815	Spatial-controlled etching of coordination polymers. Chinese Chemical Letters, 2021, 32, 635-641.	4.8	9
816	Surface pseudocapacitance of mesoporous Mo3N2 nanowire anode toward reversible high-rate sodium-ion storage. Journal of Energy Chemistry, 2021, 55, 295-303.	7.1	31
817	Cobalt induced growth of hollow MOF spheres for high performance supercapacitors. Materials Chemistry Frontiers, 2021, 5, 482-491.	3.2	60
818	Toward commercial-level mass-loading electrodes for supercapacitors: opportunities, challenges and perspectives. Energy and Environmental Science, 2021, 14, 576-601.	15.6	166

ARTICLE IF CITATIONS Selective Formation of Polyaniline Confined in the Nanopores of a Metal–Organic Framework for 819 1.7 21 Supercapacitors. Chemistry - A European Journal, 2021, 27, 3560-3567. Ultrasound-assisted exfoliation of a layered 2D coordination polymer with HER electrocatalytic 3.8 activity. Ultrasonics Sonochemistry, 2021, 70, 105292. Facile and low-temperature strategy to prepare hollow ZIF-8/CNT polyhedrons as high-performance 821 63 6.6 lithium-sulfur cathodes. Chemical Engineering Journal, 2021, 404, 126579. VOx/VSx@Graphene nanocomposites for electrochemical energy storage. Chemical Engineering Journal, 2021, 404, 126310. A 3D Cuâ€Naphthaleneâ€Phosphonate Metalâ€"Organic Framework with Ultraâ€High Electrical Conductivity. 823 7.8 29 Advanced Functional Materials, 2021, 31, 2007294. Enhancing MOF performance through the introduction of polymer guests. Coordination Chemistry Reviews, 2021, 427, 213525. 824 109 3D electron diffraction as an important technique for structure elucidation of metal-organic 825 9.5 86 frameworks and covalent organic frameworks. Coordination Chemistry Reviews, 2021, 427, 213583. An integrated strategy towards the facile synthesis of core-shell SiC-derived carbon@N-doped carbon 7.1 20 for high-performance supercapacitors. Journal of Energy Chemistry, 2021, 56, 512-521. Semiconducting to Metallic Electronic Landscapes in Defectsâ€Controlled 2D Ï€â€d Conjugated 827 7.8 19 Coordination Polymer Thin Films. Advanced Functional Materials, 2021, 31, 2006920. An Imineâ€Linked Metal–Organic Framework as a Reactive Oxygen Species Generator. Angewandte Chemie - International Edition, 2021, 60, 2534-2540. Fabrication of ultra-thin 2D covalent organic framework nanosheets and their application in 829 9.5 67 functional electronic devices. Coordination Chemistry Reviews, 2021, 429, 213616. Direct growth of highly organized, 2D ultra-thin nano-accordion Ni-MOF@NiS2@C core-shell for 6.6 high performance energy storage device. Chemical Engineering Journal, 2021, 406, 126810. Ultrathin holey reduced graphene oxide/Ni(picolinic acid)2 papers for flexible battery-supercapacitor 831 6.6 17 hybrid devices. Chemical Engineering Journal, 2021, 408, 127302. Highly flexible and conductive nanoporous Ag as good substrate for flexible hybrid supercapacitors. Journal of Alloys and Compounds, 2021, 854, 157095. 2.8 Simple reductive synthesis of a novel mixed-lanthanide metal–organic framework with excellent 833 9 1.3 cycling ability as a binder-free supercapacitor electrode. Materials Letters, 2021, 282, 128715. Metal–Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage. 834 Angewandte Chemie, 2021, 133, 11148-11167. Toward high-performance and flexible all-solid-state micro-supercapacitors: MOF bulk vs. MOF 835 6.6 44 nanosheets. Chemical Engineering Journal, 2021, 413, 127520. Cubic nanocrystal constructed 3D porous LiMn2O4: Low-temperature pyrolysis formation and high-performánce as a cathode material for aqueous hybrid capacitor. Journal of Materiomics, 2021, 7, 2.8 488-497.

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
837	Recent development and applications of electrical conductive MOFs. Nanoscale, 2021,	, 13, 485-509.	2.8	95
838	Recent progress in energy storage and conversion of flexible symmetric transducers. Jo Materials Chemistry A, 2021, 9, 753-781.	burnal of	5.2	17
839	Highâ€Performance Lithiumâ€lon Capacitors Based on Porosityâ€Regulated Zirconium Frameworks. Small, 2021, 17, e2005209.	ı Metalâ~'Organic	5.2	46
840	Recent advances in bimetallic metal-organic framework as a potential candidate for su electrode material. Coordination Chemistry Reviews, 2021, 430, 213660.	percapacitor	9.5	106
841	Progress in layered cathode and anode nanoarchitectures for charge storage devices: (future perspective. Energy Storage Materials, 2021, 35, 443-469.	Challenges and	9.5	42
842	Recent advances of electrically conductive metal-organic frameworks in electrochemic applications. Materials Today Nano, 2021, 13, 100105.	al	2.3	32
843	Structural evolution of Ce[Fe(CN)6] and derived porous Fe-CeO2 with high performan supercapacitor. Chemical Engineering Journal, 2021, 421, 127826.	ce for	6.6	41
844	Atomically precise single-crystal structures of electrically conducting 2D metal–orga frameworks. Nature Materials, 2021, 20, 222-228.	nic	13.3	239
845	Electronic Doping of Metalâ€Organic Frameworks for Highâ€Performance Flexible Mic Small Structures, 2021, 2, 2000095.	roâ€ S upercapacitors.	6.9	25
846	NiS/Ni3S2@NiWO4 nanoarrays towards all-solid-state hybrid supercapacitor with reco density. Science China Materials, 2021, 64, 852-860.	rd-high energy	3.5	23
847	Significantly improved electrochemical characteristics of nickel sulfide nanoplates usin oxide thin film for supercapacitor applications. Journal of Energy Storage, 2021, 33, 10		3.9	24
848	<i>Operando</i> spectroscopy of nanoscopic metal/covalent organic framework elect Nanoscale, 2021, 13, 1507-1514.	rocatalysts.	2.8	20
849	Expeditious and controllable synthesis of micron flower-like architecture Cu7S4@LSC morphology confinement for asymmetric button supercapacitor. Electrochimica Acta, 137362.		2.6	6
850	Applications of reticular diversity in metal–organic frameworks: An ever-evolving sta Coordination Chemistry Reviews, 2021, 430, 213655.	te of the art.	9.5	56
851	Facile synthesis of MnMoO4@MWCNT and their electrochemical performance in aque supercapacitor. Journal of Alloys and Compounds, 2021, 856, 157874.	ous asymmetric	2.8	33
852	Electrochemical capacitors: Materials, technologies and performance. Energy Storage 1 36, 31-55.	Materials, 2021,	9.5	87
853	Large Single Crystals of Two-Dimensional π-Conjugated Metal–Organic Frameworks Solution-Solid Growth. ACS Central Science, 2021, 7, 104-109.	via Biphasic	5.3	40
854	Pd Ionâ€Exchange and Ammonia Etching of a Prussian Blue Analogue to Produce a Hig Waterâ€Splitting Catalyst. Advanced Functional Materials, 2021, 31, 2008989.	hâ€Performance	7.8	65

щ	Article	IF	Citations
#	Metal-organic frameworks containing solid-state electrolytes for lithium metal batteries and beyond.		
855	Materials Chemistry Frontiers, 2021, 5, 1771-1794.	3.2	34
856	Ultra-small Sn-RuO2 nanoparticles supported on N‑doped carbon polyhedra for highly active and durable oxygen evolution reaction in acidic media. Chemical Engineering Journal, 2021, 409, 128155.	6.6	37
857	2D framework materials for energy applications. Chemical Science, 2021, 12, 1600-1619.	3.7	73
858	An Imineâ€Linked Metal–Organic Framework as a Reactive Oxygen Species Generator. Angewandte Chemie, 2021, 133, 2564-2570.	1.6	8
859	Sâ€doped <scp>3D</scp> porous carbons derived from potassium thioacetate activation strategy for zincâ€ion hybrid supercapacitor applications. International Journal of Energy Research, 2021, 45, 2498-2510.	2.2	41
860	Reticular materials for electrochemical reduction of CO2. Coordination Chemistry Reviews, 2021, 427, 213564.	9.5	29
861	Metal–Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 11048-11067.	7.2	179
862	Conductive Porous Coordination Polymers: Electron, Ion, and Proton Conduction. , 2021, , 393-409.		1
863	Review on synthesis and application of MIL-53. Materials Today: Proceedings, 2021, 43, 3291-3296.	0.9	15
864	Amalgamation of MnWO ₄ nanorods with amorphous carbon nanotubes for highly stabilized energy efficient supercapacitor electrodes. Dalton Transactions, 2021, 50, 5327-5341.	1.6	23
865	Collaborative compromise of two-dimensional materials in sodium ion capacitors: mechanisms and designing strategies. Journal of Materials Chemistry A, 2021, 9, 8129-8159.	5.2	13
866	Solution-processed two-dimensional materials for next-generation photovoltaics. Chemical Society Reviews, 2021, 50, 11870-11965.	18.7	96
867	Visualizing the Conversion of Metal–Organic Framework Nanoparticles into Hollow Layered Double Hydroxide Nanocages. Journal of the American Chemical Society, 2021, 143, 1854-1862.	6.6	111
868	Rigid two-dimensional indium metal–organic frameworks boosting nitrogen electroreduction at all pH values. Journal of Materials Chemistry A, 2021, 9, 20040-20047.	5.2	23
869	Design and Synthesis of Conductive Metalâ€Organic Frameworks and Their Composites for Supercapacitors. ChemElectroChem, 2021, 8, 1021-1034.	1.7	37
870	Effects of intervalence charge transfer interaction between π-stacked mixed valent tetrathiafulvalene ligands on the electrical conductivity of 3D metal–organic frameworks. Chemical Science, 2021, 12, 13379-13391.	3.7	21
871	Nanostructured anode materials in rechargeable batteries. , 2021, , 187-219.		5
872	<i>In situ</i> synthesis of hierarchical NiCo-MOF@Ni _{lâ^'x} Co _x (OH) ₂ heterostructures for enhanced pseudocapacitor and oxygen evolution reaction performances. Dalton Transactions, 2021, 50, 3060-3066.	1.6	23

#	Article	IF	CITATIONS
873	Recent advances in metal–organic framework-based electrode materials for supercapacitors. Dalton Transactions, 2021, 50, 11701-11710.	1.6	93
874	Three-Dimensional MOFs@MXene Aerogel Composite Derived MXene Threaded Hollow Carbon Confined CoS Nanoparticles toward Advanced Alkali-Ion Batteries. ACS Nano, 2021, 15, 3228-3240.	7.3	189
875	An oriented Ni–Co-MOF anchored on solution-free 1D CuO: a p–n heterojunction for supercapacitive energy storage. Journal of Materials Chemistry A, 2021, 9, 17790-17800.	5.2	86
876	Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond. Chemical Society Reviews, 2021, 50, 6734-6789.	18.7	93
877	lon regulation of ionic liquid electrolytes for supercapacitors. Energy and Environmental Science, 2021, 14, 2859-2882.	15.6	71
878	Delicate control of crystallographic Cu ₂ O derived Ni–Co amorphous double hydroxide nanocages for high-performance hybrid supercapacitors: an experimental and computational investigation. Nanoscale, 2021, 13, 8562-8574.	2.8	41
879	Insights into the electric double-layer capacitance of two-dimensional electrically conductive metal–organic frameworks. Journal of Materials Chemistry A, 2021, 9, 16006-16015.	5.2	31
880	Stimuli-responsive metal–organic framework nanoparticles for controlled drug delivery and medical applications. Chemical Society Reviews, 2021, 50, 4541-4563.	18.7	156
881	MOFâ€Based Hybrids for Solar Fuel Production. Advanced Energy Materials, 2021, 11, 2003052.	10.2	58
882	2D conductive MOFs with sufficient redox sites: reduced graphene oxide/Cu-benzenehexathiolate composites as high capacity anode materials for lithium-ion batteries. Nanoscale, 2021, 13, 7751-7760.	2.8	37
883	Graphene-Based Nanocomposites for Renewable Energy Application. , 2021, , 929-963.		0
884	Cathodic synthesis of a Cu-catecholate metal–organic framework. CrystEngComm, 2021, 23, 1828-1835.	1.3	10
885	Emergent electrochemical functions and future opportunities of hierarchically constructed metal–organic frameworks and covalent organic frameworks. Nanoscale, 2021, 13, 6341-6356.	2.8	28
886	Metal–organic framework transistors for dopamine sensing. Materials Chemistry Frontiers, 2021, 5, 3422-3427.	3.2	30
887	Electrochemical aspects of metal-organic frameworks. , 2021, , 65-109.		4
888	Recent progress on pristine two-dimensional metal–organic frameworks as active components in supercapacitors. Dalton Transactions, 2021, 50, 11331-11346.	1.6	118
889	Bioinspired polydopamine supported on oxygen-functionalized carbon cloth as a high-performance 1.2 V aqueous symmetric metal-free supercapacitor. Journal of Materials Chemistry A, 2021, 9, 7712-7725.	5.2	20
890	Inverse design of nanoporous crystalline reticular materials with deep generative models. Nature Machine Intelligence, 2021, 3, 76-86.	8.3	172

#	Article	IF	CITATIONS
891	A novel and efficient method of MOF-derived electrocatalyst for HER performance through doping organic ligands. Materials Chemistry Frontiers, 2021, 5, 7833-7842.	3.2	8
892	Rational strategies for proton-conductive metal–organic frameworks. Chemical Society Reviews, 2021, 50, 6349-6368.	18.7	174
893	Conductive Metal–Organic Framework for High Energy Sodium-Ion Hybrid Capacitors. ACS Applied Energy Materials, 2021, 4, 1568-1574.	2.5	25
894	A robust magnesiothermic reduction combined self-activation strategy towards highly-curved carbon nanosheets for advanced zinc-ion hybrid supercapacitors applications. Nanotechnology, 2021, 32, 185403.	1.3	4
895	Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chemical Reviews, 2021, 121, 3751-3891.	23.0	442
896	Electrically Conductive Coordination Polymers for Electronic and Optoelectronic Device Applications. Journal of Physical Chemistry Letters, 2021, 12, 1612-1630.	2.1	55
897	Envisaging Future Energy Storage Materials for Supercapacitors: An Ensemble of Preliminary Attempts. ChemistrySelect, 2021, 6, 1127-1161.	0.7	17
898	2D Copper Tetrahydroxyquinone Conductive Metal–Organic Framework for Selective CO ₂ Electrocatalysis at Low Overpotentials. Advanced Materials, 2021, 33, e2004393.	11.1	120
899	A Cu4 cluster-based MOF as a supercapacitor electrode material with ultrahigh capacitance. Ionics, 2021, 27, 1699-1707.	1.2	14
900	High-Capacitance Pseudocapacitors from Li ⁺ Ion Intercalation in Nonporous, Electrically Conductive 2D Coordination Polymers. Journal of the American Chemical Society, 2021, 143, 2285-2292.	6.6	99
901	Tuning the Conductivity of Hexa-Zirconium(IV) Metal–Organic Frameworks by Encapsulating Heterofullerenes. Chemistry of Materials, 2021, 33, 1182-1189.	3.2	17
902	Effects of water content on electrochemical capacitive behavior of nanostructured Cu3(BTC)2 MOF prepared in aqueous solution. Electrochimica Acta, 2021, 368, 137616.	2.6	17
903	Efficient pore engineering in carbonized zeolitic imidazolate Framework-8 via chemical and physical methods as active materials for supercapacitors. Journal of Power Sources, 2021, 486, 229370.	4.0	38
904	Ni(OH)2 derived Ni-MOF supported on carbon nanowalls for supercapacitors. Nanotechnology, 2021, 32, 195404.	1.3	19
905	The Different Roles of Cobalt and Manganese in Metalâ€Organic Frameworks for Supercapacitors. Advanced Materials Technologies, 2021, 6, 2000941.	3.0	33
906	Three-Dimensional Electron Diffraction for Structural Analysis of Beam-Sensitive Metal-Organic Frameworks. Crystals, 2021, 11, 263.	1.0	8
907	Design of Metals Sulfides with Carbon Materials for Supercapacitor Applications: A Review. Energy Technology, 2021, 9, 2000987.	1.8	40
908	Vertically Oriented Cu ₂₊₁ O@Cuâ€MOFs Hybrid Clusters for Highâ€Performance Electrochemical Capacitors. Advanced Materials Interfaces, 2021, 8, 2002145.	1.9	16

#	Article	IF	CITATIONS
909	A Fully Conjugated 3D Covalent Organic Framework Exhibiting Bandâ€like Transport with Ultrahigh Electron Mobility. Angewandte Chemie - International Edition, 2021, 60, 9321-9325.	7.2	59
910	A Fully Conjugated 3D Covalent Organic Framework Exhibiting Bandâ€like Transport with Ultrahigh Electron Mobility. Angewandte Chemie, 2021, 133, 9407-9411.	1.6	16
911	Crystal structure of poly[diaqua-bis(μ2-3-(pyrimidin-5-yl)benzoato-κ2 N:O)cobalt(II)] dihydrate, [Co(C11H11O2N2)2(H2O)2]. Zeitschrift Fur Kristallographie - New Crystal Structures, 2021, 236, 717-718.	0.1	0
912	Fe-Based Coordination Polymers as Battery-Type Electrodes in Semi-Solid-State Battery–Supercapacitor Hybrid Devices. ACS Applied Materials & Interfaces, 2021, 13, 15315-15323.	4.0	139
913	Recent Progress on Conductive Metalâ€Organic Framework Films. Advanced Materials Interfaces, 2021, 8, 2002151.	1.9	37
914	Exploring Guest-Dependent Photoconductivity in a Donor-Containing Metal–Organic Framework. Journal of Physical Chemistry C, 2021, 125, 10198-10206.	1.5	6
915	In Situ Anchoring Polymetallic Phosphide Nanoparticles within Porous Prussian Blue Analogue Nanocages for Boosting Oxygen Evolution Catalysis. Nano Letters, 2021, 21, 3016-3025.	4.5	250
916	Metal–organic framework-derived Ni doped Co3S4 hierarchical nanosheets as a monolithic electrocatalyst for highly efficient hydrogen evolution reaction in alkaline solution. Chinese Journal of Chemical Engineering, 2022, 42, 380-388.	1.7	5
917	Preparation of porous nitrogen-doped activated carbon derived from rice straw for high-performance supercapacitor application. Journal of the Taiwan Institute of Chemical Engineers, 2021, 120, 246-256.	2.7	67
918	Soft Electrochemical Actuators with a Two-Dimensional Conductive Metal–Organic Framework Nanowire Array. Journal of the American Chemical Society, 2021, 143, 4017-4023.	6.6	68
920	Metal–Organic Framework-Based Flexible Devices with Simultaneous Electrochromic and Electrofluorochromic Functions. ACS Applied Electronic Materials, 2021, 3, 1489-1495.	2.0	20
921	Highâ€Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 11391-11397.	7.2	29
922	Tunable Interaction between Metalâ€Organic Frameworks and Electroactive Components in Lithium–Sulfur Batteries: Status and Perspectives. Advanced Energy Materials, 2021, 11, 2100387.	10.2	84
923	Porosity Engineering of MOFâ€Based Materials for Electrochemical Energy Storage. Advanced Energy Materials, 2021, 11, 2100154.	10.2	75
924	Micro/Nanoâ€Scaled Metalâ€Organic Frameworks and Their Derivatives for Energy Applications. Advanced Energy Materials, 2022, 12, 2003970.	10.2	64
925	Metalâ€Organic Frameworks Nanocomposites with Different Dimensionalities for Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2100346.	10.2	86
926	Co ₉ S ₈ @CN Composites Obtained from Thiacalix[4]areneâ€Based Coordination Polymers for Supercapacitor Applications. Chemistry - an Asian Journal, 2021, 16, 1486-1492.	1.7	7
927	Preparation and electrochemical properties of MOF-derived nitrogen self-doped porous carbon. Journal of the Iranian Chemical Society, 2021, 18, 3097-3107.	1.2	6

#	Article	IF	CITATIONS
928	Electronic Challenges of Retrofitting 2D Electrically Conductive MOFs to Form 3D Conductive Lattices. ACS Applied Electronic Materials, 2021, 3, 2017-2023.	2.0	11
929	Recent advances in the synthesis of non-carbon two-dimensional electrode materials for the aqueous electrolyte-based supercapacitors. Chinese Chemical Letters, 2021, 32, 3733-3752.	4.8	14
930	Research progress on nanoporous carbons produced by the carbonization of metal organic frameworks. New Carbon Materials, 2021, 36, 322-335.	2.9	13
931	Cerium-Based Metal–Organic Framework Nanocrystals Interconnected by Carbon Nanotubes for Boosting Electrochemical Capacitor Performance. ACS Applied Materials & Interfaces, 2021, 13, 16418-16426.	4.0	50
932	Highâ€Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angewandte Chemie, 2021, 133, 11492-11498.	1.6	6
933	Progress in energy recovery and graphene usage in capacitive deionization. Critical Reviews in Environmental Science and Technology, 2022, 52, 3080-3136.	6.6	15
934	Design of <mml:math <br="" display="inline" id="d1e208" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si77.svg"><mml:mi>ï€</mml:mi></mml:math> -conjugated flexible semiconductive 2D MOF and MOF derived CuO nano-spheres for solvent free C-X (S, O) hetero-coupling catalysis with enhanced conductivity. Nano Structures Nano Objects, 2021, 26, 100756.	1.9	7
935	Highly ordered nano-tunnel structure of hydrated tungsten oxide nanorods for superior flexible quasi-solid-state hybrid supercapacitor. Applied Surface Science, 2021, 545, 149044.	3.1	21
936	Hybridization of Emerging Crystalline Porous Materials: Synthesis Dimensionality and Electrochemical Energy Storage Application. Advanced Energy Materials, 2022, 12, 2100321.	10.2	41
937	Oriented Growth of Inâ€Oxo Chain Based Metalâ€Porphyrin Framework Thin Film for Highâ€Sensitive Photodetector. Advanced Science, 2021, 8, 2100548.	5.6	23
938	Metal-to-Semiconductor Transition in Two-Dimensional Metal–Organic Frameworks: An <i>Ab Initio</i> Dynamics Perspective. ACS Applied Materials & Interfaces, 2021, 13, 25270-25279.	4.0	8
939	Antidegradation Property of Alginate Materials by Riveting Functionalized Carbon Nanotubes on the Sugar Chain. ACS Omega, 2021, 6, 12813-12819.	1.6	0
940	"Waterâ€inâ€Salt―Electrolytes for Supercapacitors: A Review. ChemSusChem, 2021, 14, 2501-2515.	3.6	67
941	A Brief Review of Catalytic Cathode Materials for Na-CO2 Batteries. Catalysts, 2021, 11, 603.	1.6	34
942	Two-Dimensional π-Conjugated Frameworks as a Model System to Unveil a Multielectron-Transfer-Based Energy Storage Mechanism. Accounts of Chemical Research, 2021, 54, 3003-3015.	7.6	13
943	Conjugated Coordination Polymers as Electrodes for Rechargeable Batteries. ACS Applied Electronic Materials, 2021, 3, 1947-1958.	2.0	25
944	Electrocatalytic hydrogen evolution reaction on graphene supported transition metal-organic frameworks. Inorganic Chemistry Communication, 2021, 127, 108525.	1.8	38
945	Surface modified by green synthetic of Cu-MOF-74 to improve the anti-biofouling properties of PVDF membranes. Chemical Engineering Journal, 2021, 411, 128524.	6.6	57

#	Article	IF	CITATIONS
946	Highly Stable Single Crystals of Threeâ€Dimensional Porous Oligomer Frameworks Synthesized under Kinetic Conditions. Angewandte Chemie - International Edition, 2021, 60, 14664-14670.	7.2	30
947	Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review. Reviews in Inorganic Chemistry, 2022, 42, 197-227.	1.8	14
948	Enhanced Electrochemical Performance of Bimetallic Doped Ni-Based Metal–Organic Frameworks by Redox Additives in an Alkaline Electrolyte. ACS Applied Energy Materials, 2021, 4, 4610-4619.	2.5	16
949	Two-dimensional Conducting Metal-Organic Frameworks Enabled Energy Storage Devices. Energy Storage Materials, 2021, 37, 396-416.	9.5	44
950	Metal–Organic Frameworks and Their Derived Functional Materials for Supercapacitor Electrode Application. Advanced Energy and Sustainability Research, 2021, 2, 2100024.	2.8	37
951	Kinetics control over the Schiff base formation reaction for fabrication of hierarchical porous carbon materials with tunable morphology for high-performance supercapacitors. Nanotechnology, 2021, 32, 305602.	1.3	2
952	On-pot fabrication of binder-free composite of iron oxide grown onto porous N-doped graphene layers with outstanding charge storage performance for supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 13156-13176.	1.1	12
953	A novel metal–organic frameworkâ€derived NiSe ₂ /ZnSeâ€NC as advanced anode materials for highâ€performance asymmetric supercapacitors. Electrochemical Science Advances, 2022, 2, e2100047.	1.2	8
954	Highly Stable Single Crystals of Threeâ€Dimensional Porous Oligomer Frameworks Synthesized under Kinetic Conditions. Angewandte Chemie, 2021, 133, 14785-14791.	1.6	7
955	Metallic two-dimensional metal-organic framework arrays for ultrafast water splitting. Journal of Power Sources, 2021, 494, 229733.	4.0	58
956	Layerâ€byâ€Layer 2D Ultrathin Conductive Cu ₃ (HHTP) ₂ Film for Highâ€Performance Flexible Transparent Supercapacitors. Advanced Materials Interfaces, 2021, 8, 2100308.	1.9	30
957	The chemical states of conjugated coordination polymers. CheM, 2021, 7, 1224-1243.	5.8	71
958	Fluorinated pillared-layer metal-organic framework microrods for improved electrochemical cycling stability. Chinese Chemical Letters, 2021, 32, 3817-3820.	4.8	30
959	Cost-Effective MIL-53(Cr) Metal–Organic Framework-Based Supercapacitors Encompassing Fast-Ion (Li ⁺ /H ⁺ /Na ⁺) Conductors. ACS Applied Energy Materials, 2021, 4, 4729-4743.	2.5	14
960	Metal-organic frameworks as highly efficient electrodes for long cycling stability supercapacitors. International Journal of Hydrogen Energy, 2021, 46, 18179-18206.	3.8	55
961	Counterion Gradients around Charged Metal Nanoparticles Enabling Basic Electronics without Semiconductors. Journal of Physical Chemistry Letters, 2021, 12, 6102-6110.	2.1	2
962	Integrating Conductive Metal–Organic Framework with Graphene Oxide to Highly Sensitive Platform for Electrochemical Sensing. Advanced Materials Interfaces, 2021, 8, 2100586.	1.9	11
963	Nitrogen-doped carbon-enriched MOF and derived hierarchical carbons as electrode for excellent asymmetric aqueous supercapacitor. Journal of Alloys and Compounds, 2021, 867, 158764.	2.8	25

ARTICLE IF CITATIONS Highly dispersed Cu nanoparticles decorated on MOF-5: development of highly efficient noble 1.0 4 964 metal-free electrocatalyst. Nano Futures, 2021, 5, 025006. From n- to p-Type Material: Effect of Metal Ion on Charge Transport in Metal–Organic Materials. ACS Applied Materials & amp; Interfaces, 2021, 13, 52055-52062. Synergistic Effect of Oxygen and Nitrogen Co-doping in Metal–Organic Framework-Derived Ultramicroporous Carbon for an Exceptionally Stable Solid-State Supercapacitor via a "Proton Trap― 966 2.5 19 Mechanism. Energy & amp; Fuels, 2021, 35, 10262-10273. The Synthesis of Hexaazatrinaphthyleneâ€Based 2D Conjugated Copper Metalâ€Organic Framework for Highly Selective and Stable Electroreduction of CO₂ to Methane. Angewandte Chemie, 2021, 133, 16545-16551 Dual-Redox-Sites Enable Two-Dimensional Conjugated Metal–Organic Frameworks with Large Pseudocapacitance and Wide Potential Window. Journal of the American Chemical Society, 2021, 143, 968 6.6 75 10168-10176. The Synthesis of Hexaazatrinaphthyleneâ€Based 2D Conjugated Copper Metalâ€Organic Framework for Highly Selective and Stable Electroreduction of CO₂ to Methane. Angewandte Chemie -87 International Edition, 2021, 60, 16409-16415. Biomass-derived porous carbons as supercapacitor electrodes – A review. New Carbon Materials, 2021, 970 2.9 87 36, 546-572. Directly transfer-printing tailored micro-supercapacitors. Materials Today Communications, 2021, 27, 971 102342. Supercapacitor electrodes based on metalâ€organic compounds from the first transition metal series. 972 6.8 38 EcoMat, 2021, 3, e12106. Tuning the Mechanical and Electrical Properties of Porous Electrodes for Architecting 3D 5.6 Microsupercapacitors with Batteriesâ€Level Energy. Advanced Science, 2021, 8, e2004957. Diverse metal ions-doped titanium-based metal-organic frameworks as novel bioplatforms for 974 2.6 11 sensitively detecting bisphenol A. Electrochimica Acta, 2021, 384, 138403. Successive Storage of Cations and Anions by Ligands of π–dâ€Conjugated Coordination Polymers 7.2 86 Enabling Robust Šodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 18769-18776. Industrializing metal–organic frameworks: Scalable synthetic means and their transformation into 976 8.3 69 functional materials. Materials Today, 2021, 47, 170-186. A symmetric ZnO-ZIF8//Mo-ZIF8 supercapacitor and comparing with electrochemical of Pt, Au, and Cu 2.3 decorated ZIF-8 electrodes. Journal of Molecular Liquids, 2021, 333, 116007. 978 Der derzeitige Stand von MOF―und COFâ€Anwendungen. Angewandte Chemie, 2021, 133, 24174-24202. 1.6 18 An Electrically Conducting Li-Ion Metal–Organic Framework. Journal of the American Chemical 979 50 Society, 2021, 143, 11641-11650. Maximizing the Carrier Mobilities of Metal–Organic Frameworks Comprising Stacked Pentacene Units. 980 2.1 6 Journal of Physical Chemistry Letters, 2021, 12, 7002-7009. Vertically oriented Ni-MOF@Co(OH)2 flakes towards enhanced hybrid supercapacitior performance. 24 Journal of Colloid and Interface Science, 2021, 593, 214-221.

#	Article	IF	CITATIONS
982	Reversible Structural Transformation of Cu ^I –Tb ^{III} Heterometallic MOFs with Highly Efficient Detection Capability toward Penicillin. Inorganic Chemistry, 2021, 60, 11081-11089.	1.9	10
983	One-pot construction of highly oriented Co-MOF nanoneedle arrays on Co foam for high-performance supercapacitor. Nanotechnology, 2021, 32, 395606.	1.3	12
984	Exploring the synergetic electrochemical performance of cobalt sulfide/cobalt phosphate composites for supercapatteryAdevices with high-energy and rate capability. Electrochimica Acta, 2021, 384, 138358.	2.6	27
985	When Conductive MOFs Meet MnO ₂ : High Electrochemical Energy Storage Performance in an Aqueous Asymmetric Supercapacitor. ACS Applied Materials & amp; Interfaces, 2021, 13, 33083-33090.	4.0	109
986	An Overview of Metal–Organic Frameworks for Green Chemical Engineering. Engineering, 2021, 7, 1115-1139.	3.2	94
987	Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material. Renewable and Sustainable Energy Reviews, 2021, 145, 110854.	8.2	53
988	Conductive Metalâ€Organic Frameworks: Electronic Structure and Electrochemical Applications. Chemistry - A European Journal, 2021, 27, 11482-11538.	1.7	25
989	Successive Storage of Cations and Anions by Ligands of π–dâ€Conjugated Coordination Polymers Enabling Robust Sodiumâ€ion Batteries. Angewandte Chemie, 2021, 133, 18917-18924.	1.6	43
990	Avoiding the Center‧ymmetry Trap: Programmed Assembly of Dipolar Precursors into Porous, Crystalline Molecular Thin Films. Advanced Materials, 2021, 33, e2103287.	11.1	14
991	Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage. Coordination Chemistry Reviews, 2021, 438, 213872.	9.5	51
992	Suppressing the metal-metal interaction by CoZn0.5V1.5O4 derived from two-dimensional metal-organic frameworks for supercapacitors. Science China Materials, 2022, 65, 105-114.	3.5	14
993	Opportunities from Doping of Nonâ€Critical Metal Oxides in Last Generation Lightâ€Conversion Devices. Advanced Energy Materials, 2021, 11, 2101041.	10.2	29
994	Large-area synthesis of nanoscopic catalyst-decorated conductive MOF film using microfluidic-based solution shearing. Nature Communications, 2021, 12, 4294.	5.8	36
995	Metal–Organic Framework-Derived Trimetallic Nanocomposites as Efficient Bifunctional Oxygen Catalysts for Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 33209-33217.	4.0	17
996	Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coordination Chemistry Reviews, 2021, 439, 213915.	9.5	125
997	The Current Status of MOF and COF Applications. Angewandte Chemie - International Edition, 2021, 60, 23975-24001.	7.2	450
998	Interfacial Synthesis of Layer-Oriented 2D Conjugated Metal–Organic Framework Films toward Directional Charge Transport. Journal of the American Chemical Society, 2021, 143, 13624-13632.	6.6	36
999	Design of hierarchical double-layer NiCo/NiMn-layered double hydroxide nanosheet arrays on Ni foam as electrodes for supercapacitors. Materials Today Chemistry, 2021, 21, 100507.	1.7	13

#	Article	IF	CITATIONS
1000	Two-dimensional π–d conjugated metal–organic framework Fe3(hexaiminotriphenylene)2 as a photo-Fenton like catalyst for highly efficient degradation of antibiotics. Applied Catalysis B: Environmental, 2021, 290, 120029.	10.8	55
1001	Non-graphitizable resin coating on polyacrylonitrile-based polyHIPE to prepare high surface area graphitic carbon foam and the investigation of its electrochemical performance as an anode of lithium-ion batteries. Journal of Alloys and Compounds, 2021, 873, 159771.	2.8	2
1002	Nanoparticle encapsulation into 2D layered metal-organic frameworks with capping agent free interface. Microporous and Mesoporous Materials, 2021, 323, 111137.	2.2	5
1003	Metal/ <scp>covalentâ€organic</scp> frameworks for electrochemical energy storage applications. EcoMat, 2021, 3, e12133.	6.8	36
1004	Synergistically optimizing electronic structure and reducing ions transport resistance by oxygen functional groups and defects in carbon for superior sodium capture and potassium storage capability. Carbon, 2021, 181, 323-334.	5.4	30
1005	A green and template-free electropolymerization of imipramine. The decoration of sponge-like polymer film with gold nanoparticles. Journal of Electroanalytical Chemistry, 2021, 894, 115340.	1.9	8
1006	Metal-organic framework derived Co9S8/Ni3S2 composites on Ni foam with enhanced electrochemical performance by one-step sulfuration strategy for supercapacitors electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126695.	2.3	10
1007	Confinement of Ultrasmall Bimetallic Nanoparticles in Conductive Metal–Organic Frameworks via Site‧pecific Nucleation. Advanced Materials, 2021, 33, e2101216.	11.1	23
1008	Fabrication of FeCo2S4/Ag NWs/G Ternary Nanocomposites with Honeycomb-Like Nanostructure for High-Performance Supercapacitors. Journal of Electronic Materials, 2021, 50, 6353-6362.	1.0	1
1009	Metal–Organic Frameworks for Electrocatalysis: Beyond Their Derivatives. Small Science, 2021, 1, 2100015.	5.8	94
1010	Four Novel d10 Metal-Organic Frameworks Incorporating Amino-Functionalized Carboxylate Ligands: Synthesis, Structures, and Fluorescence Properties. Frontiers in Chemistry, 2021, 9, 708314.	1.8	3
1011	Ultrathin nanosheet metal–organic framework@NiO/Ni nanorod composites. Chemical Engineering Journal, 2021, 417, 129201.	6.6	37
1012	Review of Pristine Metal–Organic Frameworks for Supercapacitors: Recent Progress and Perspectives. Energy & Fuels, 2021, 35, 12884-12901.	2.5	49
1013	Recent advances in materials and device technologies for aqueous hybrid supercapacitors. Science China Materials, 2022, 65, 10-31.	3.5	25
1014	From Co-MOF to CoNi-MOF to Ni-MOF: A Facile Synthesis of 1D Micro-/Nanomaterials. Inorganic Chemistry, 2021, 60, 13168-13176.	1.9	53
1015	Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coordination Chemistry Reviews, 2021, 440, 213969.	9.5	27
1016	Enhanced Capacitance Performance by Coupling 2D Conductive Metal–Organic Frameworks and Conducting Polymers for Hybrid Supercapacitors. ACS Applied Energy Materials, 2021, 4, 9534-9541.	2.5	24
1017	Metal–Organic Frameworks: Molecules or Semiconductors in Photocatalysis?. Angewandte Chemie - International Edition, 2021, 60, 26038-26052.	7.2	91

#	Article	IF	CITATIONS
1018	Electron-Conductive Metal–Organic Framework, Fe(dhbq)(dhbq = 2,5-Dihydroxy-1,4-benzoquinone): Coexistence of Microporosity and Solid-State Redox Activity. ACS Applied Materials & Interfaces, 2021, 13, 38188-38193.	4.0	21
1019	NH ₂ -UiO-66 Metal–Organic Framework Nanoparticles for Hydroxide Ion Conductive Photoswitches. ACS Applied Nano Materials, 2021, 4, 8352-8359.	2.4	12
1020	A Review on Experimental Identification of Active Sites in Model Bifunctional Electrocatalytic Systems for Oxygen Reduction and Evolution Reactions. ChemElectroChem, 2021, 8, 3433-3456.	1.7	13
1021	Metal–Organic Frameworks: Molecules or Semiconductors in Photocatalysis?. Angewandte Chemie, 2021, 133, 26242-26256.	1.6	13
1022	Trimetallic Metalâ€Organic Framework Nanoframe Superstructures: A Stressâ€Buffering Architecture Engineering of Anode Material toward Boosted Lithium Storage Performance. Energy and Environmental Materials, 2023, 6, .	7.3	7
1023	Fabrication of Vertical-Standing Co-MOF Nanoarrays with 2D Parallelogram-like Morphology for Aqueous Asymmetric Electrochemical Capacitors. Molecules, 2021, 26, 5394.	1.7	9
1024	Self-Nanocavity-Confined Halogen Anions Boosting the High Selectivity of the Two-Electron Oxygen Reduction Pathway over Ni-Based MOFs. Journal of Physical Chemistry Letters, 2021, 12, 8706-8712.	2.1	19
1025	Covalent organic frameworks: Advances in synthesis and applications. Materials Today Communications, 2021, 28, 102612.	0.9	18
1026	Simultaneous enhancement of specific capacitance and potential window of graphene-based electric double-layer capacitors using ferroelectric polymers. Journal of Power Sources, 2021, 507, 230268.	4.0	5
1027	An effective strategy to realize superior high-temperature energy storage properties in Na0.5Bi0.5TiO3 based lead-free ceramics. Ceramics International, 2021, 47, 25794-25799.	2.3	6
1028	Charge Manipulation in Metal–Organic Frameworks: Toward Designer Functional Molecular Materials. Bulletin of the Chemical Society of Japan, 2021, 94, 2929-2955.	2.0	28
1029	Metal-organic framework based membranes for selective separation of target ions. Journal of Membrane Science, 2021, 634, 119407.	4.1	60
1030	Enhancing Electrical Conductivity of Semiconducting MOFs via Defect Healing. ACS Applied Electronic Materials, 2021, 3, 4197-4202.	2.0	9
1031	Porous metal-organic framework (MOF)-based and MOF-derived electrocatalytic materials for energy conversion. Materials Today Energy, 2021, 21, 100816.	2.5	45
1032	Strategies to improve electrochemical performances of pristine metalâ€organic frameworksâ€based electrodes for lithium/sodiumâ€ion batteries. SmartMat, 2021, 2, 488-518.	6.4	52
1033	Single-atom Zn for boosting supercapacitor performance. Nano Research, 2022, 15, 1715-1724.	5.8	26
1034	Hierarchical structured nano-polyhedrons of CeO2@ZIF-8 composite for high performance supercapacitor applications. Journal of Alloys and Compounds, 2021, 875, 160074.	2.8	42
1035	Fabrication of transition-metal (Zn, Mn, Cu)-based MOFs as efficient sensor materials for detection of H2 gas by clad modified fiber optic gas sensor technique. Optical Fiber Technology, 2021, 65, 102614.	1.4	9

#	Article	IF	CITATIONS
1036	A review of technologies and applications on versatile energy storage systems. Renewable and Sustainable Energy Reviews, 2021, 148, 111263.	8.2	192
1037	Anodic Transformation of a Coreâ€shell Prussian Blue Analogue to a Bifunctional Electrocatalyst for Water Splitting. Advanced Functional Materials, 2021, 31, 2106835.	7.8	47
1038	Anodic electrosynthesis of MIL-53(Al)-N(CH2PO3H2)2 as a mesoporous catalyst for synthesis of novel (N-methyl-pyrrol)-pyrazolo[3,4-b]pyridines via a cooperative vinylogous anomeric based oxidation. Scientific Reports, 2021, 11, 19370.	1.6	33
1039	<scp>Ru_xBi_{1â€x}</scp> â€oxide as an electrode material for pseudocapacitors. Canadian Journal of Chemical Engineering, 2022, 100, 2872-2880.	0.9	4
1040	Highly stable Li+ selective electrode with metal-organic framework as ion-to-electron transducer. Sensors and Actuators B: Chemical, 2022, 350, 130799.	4.0	9
1041	MOF/PCP-based Electrocatalysts for the Oxygen Reduction Reaction. Electrochemical Energy Reviews, 2022, 5, 32-81.	13.1	47
1042	Metal–organic frameworks-derived metal phosphides for electrochemistry application. Green Energy and Environment, 2022, 7, 636-661.	4.7	32
1043	Design principles of high-voltage aqueous supercapacitors. Materials Today Energy, 2021, 21, 100739.	2.5	17
1044	Metal organic framework decorated with molybdenum disulfide for visible-light-driven reduction of hexavalent chromium: Performance and mechanism. Journal of Cleaner Production, 2021, 318, 128513.	4.6	14
1045	Improved electrochemical performances by Ni-catecholate-based metal organic framework grown on NiCoAl-layered double hydroxide/multi-wall carbon nanotubes as cathode catalyst in microbial fuel cells. Bioresource Technology, 2021, 337, 125430.	4.8	35
1046	Hydrothermal synthesis, characterization and electrochemical behavior of NiMoO4 nanoflower and NiMoO4/rGO nanocomposite for high-performance supercapacitors. Electrochimica Acta, 2021, 392, 138973.	2.6	29
1047	An iron based organic framework coated with nickel hydroxide for energy storage, conversion and detection. Journal of Colloid and Interface Science, 2021, 600, 150-160.	5.0	27
1048	MOF-derived hierarchical carbon network as an extremely-high-performance supercapacitor electrode. Electrochimica Acta, 2021, 394, 139058.	2.6	67
1049	P- N heterojunction NiO/ZnO electrode with high electrochemical performance for supercapacitor applications. Electrochimica Acta, 2021, 392, 138976.	2.6	23
1050	Dualâ€Ion Intercalation and High Volumetric Capacitance in a Twoâ€Dimensional Nonâ€Porous Coordination Polymer. Angewandte Chemie - International Edition, 2021, 60, 27119-27125.	7.2	17
1051	PEC water splitting using mats of calcined TiO2 rutile nanorods photosensitized by a thin layer of Ni-benzene dicarboxylic acid MOF. Electrochimica Acta, 2021, 393, 139014.	2.6	14
1052	Dualâ€Ion Intercalation and High Volumetric Capacitance in a Twoâ€Dimensional Nonâ€Porous Coordination Polymer. Angewandte Chemie, 2021, 133, 27325-27331.	1.6	2
1053	Enhanced energy storage properties of 0.7Bi0·5Na0·5TiO3-0.3SrTiO3 ceramic through the addition of NaNbO3. Ceramics International, 2021, 47, 30922-30928.	2.3	31

#	Article	IF	CITATIONS
1054	Fishbone-like Ni3S2/Co3S4 integrated with nickel MOF nanosheets for hybrid supercapacitors. Applied Surface Science, 2021, 566, 150744.	3.1	38
1055	Conductive flower-like Ni-PTA-Mn as cathode for aqueous zinc-ion batteries. Journal of Alloys and Compounds, 2021, 882, 160587.	2.8	7
1056	Conductive metal-organic frameworks for electrochemical energy conversion and storage. Coordination Chemistry Reviews, 2021, 446, 214119.	9.5	70
1057	Fe, N co-doped amorphous carbon as efficient electrode materials for fast and stable Na/K-storage. Electrochimica Acta, 2021, 396, 139265.	2.6	11
1058	Heterostructured NiSe2/CoSe2 hollow microspheres as battery-type cathode for hybrid supercapacitors: Electrochemical kinetics and energy storage mechanism. Chemical Engineering Journal, 2021, 426, 131328.	6.6	109
1059	General fabrication of metal-organic frameworks on electrospun modified carbon nanofibers for high-performance asymmetric supercapacitors. Journal of Colloid and Interface Science, 2021, 603, 199-209.	5.0	44
1060	Electronic structure modulation with ultrafine Fe3O4 nanoparticles on 2D Ni-based metal-organic framework layers for enhanced oxygen evolution reaction. Journal of Energy Chemistry, 2022, 65, 78-88.	7.1	41
1061	Developing zeolitic imidazolate frameworks 67-derived fluorides using 2-methylimidazole and ammonia fluoride for energy storage and electrocatalysis. Energy, 2022, 239, 122129.	4.5	38
1062	Stabilization of lithium metal anodes by conductive metal–organic framework architectures. Journal of Materials Chemistry A, 2021, 9, 12099-12108.	5.2	10
1063	A comparative study of honeycomb-like 2D π-conjugated metal–organic framework chemiresistors: conductivity and channels. Dalton Transactions, 2021, 50, 13236-13245.	1.6	17
1064	Gauging van der Waals interactions in aqueous solutions of 2D MOFs: when water likes organic linkers more than open-metal sites. Physical Chemistry Chemical Physics, 2021, 23, 3135-3143.	1.3	6
1065	Molecular Electron Transfer. , 2021, , 376-392.		0
1066	Supercapacitors. , 2021, , 143-164.		0
1067	Calcination activation of three-dimensional cobalt organic phosphate nanoflake assemblies for supercapacitors. Inorganic Chemistry Frontiers, 2021, 8, 4222-4229.	3.0	33
1068	Recent progress in metal–organic framework/graphene-derived materials for energy storage and conversion: design, preparation, and application. Chemical Science, 2021, 12, 5737-5766.	3.7	79
1069	Diblock copolymers directing construction of hierarchically porous metal-organic frameworks for enhanced-performance supercapacitors. Nanotechnology, 2021, 32, 165601.	1.3	7
1070	Fabrication and design of new redox active azure A/3D graphene aerogel and conductive trypan blue–nickel MOF nanosheet array electrodes for an asymmetric supercapattery. Journal of Materials Chemistry A, 2021, 9, 12853-12869.	5.2	19
1071	Why conductivity is not always king – physical properties governing the capacitance of 2D metal–organic framework-based EDLC supercapacitor electrodes: a Ni ₃ (HITP) ₂ case study. Faraday Discussions, 2021, 231, 298-304.	1.6	12

#	Article	IF	CITATIONS
1072	A label-free electrochemical platform based on a thionine functionalized magnetic Fe–N–C electrocatalyst for the detection of microRNA-21. Analyst, The, 2021, 146, 4557-4565.	1.7	4
1073	Two-dimensional conjugated metal–organic frameworks (2D <i>c</i> -MOFs): chemistry and function for MOFtronics. Chemical Society Reviews, 2021, 50, 2764-2793.	18.7	242
1074	Supercapacitors: History, Theory, Emerging Technologies, and Applications. , 2021, , 417-449.		2
1075	Recent progress in emerging metal and covalent organic frameworks for electrochemical and functional capacitors. Journal of Materials Chemistry A, 2021, 9, 8832-8869.	5.2	37
1076	Deterministic role of structural flexibility on catalytic activity of conductive 2D layered metal–organic frameworks. Chemical Communications, 2021, 57, 315-318.	2.2	6
1077	A top-down approach making cellulose carbonaceous aerogel/MnO ₂ ultrathick bulk electrodes with high mass loading for supercapacitors. Materials Chemistry Frontiers, 2021, 5, 7892-7902.	3.2	10
1079	Inverted Design for Highâ€Performance Supercapacitor Via Co(OH) ₂ â€Đerived Highly Oriented MOF Electrodes. Advanced Energy Materials, 2018, 8, 1702294.	10.2	205
1080	Mehr als nur ein Netzwerk: Strukturierung retikulär Materialien im Nano― Meso―und Volumenbereich. Angewandte Chemie, 2020, 132, 22534-22556.	1.6	8
1081	Beyond Frameworks: Structuring Reticular Materials across Nanoâ€; Mesoâ€; and Bulk Regimes. Angewandte Chemie - International Edition, 2020, 59, 22350-22370.	7.2	60
1082	2D Conductive Metal–Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 5612-5624.	7.2	198
1083	Hierarchically Structured Twoâ€Dimensional Bimetallic CoNiâ€Hexaaminobenzene Coordination Polymers Derived from Co(OH) ₂ for Enhanced Oxygen Evolution Catalysis. Small, 2020, 16, e1907043.	5.2	32
1084	Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 29-70.	0.4	16
1085	Ultra-thick wood biochar monoliths with hierarchically porous structure from cotton rose for electrochemical capacitor electrodes. Electrochimica Acta, 2020, 352, 136452.	2.6	39
1086	Nickel and cobalt metal-organic-frameworks-derived hollow microspheres porous carbon assembled from nanorods and nanospheres for outstanding supercapacitors. Journal of Colloid and Interface Science, 2020, 575, 96-107.	5.0	50
1087	Programmable Triboelectric Nanogenerators Dependent on the Secondary Building Units in Cadmium Coordination Polymers. Inorganic Chemistry, 2021, 60, 550-554.	1.9	21
1088	Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nature Materials, 2020, 19, 552-558.	13.3	405
1089	The surfactant-free bottom-up synthesis of ultrathin MOF nanosheets for the oxidation of isoeugenol to vanillin. Materials Advances, 2020, 1, 326-328.	2.6	6
1090	Surface-coordinated metal–organic framework thin films (SURMOFs) for electrocatalytic applications. Nanoscale, 2020, 12, 12712-12730.	2.8	35

#	Article	IF	CITATIONS
1091	Heterochelation boosts sodium storage in π-d conjugated coordination polymers. Energy and Environmental Science, 2021, 14, 6514-6525.	15.6	24
1092	Atomic/molecular layer deposition of Ni-terephthalate thin films. Dalton Transactions, 2021, 50, 16133-16138.	1.6	5
1093	Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Advanced Functional Materials, 2022, 32, 2108107.	7.8	90
1094	Synthesis, crystal structure and battery-like studies on a new acylpyrazolone-based mixed-ligand Cu(II) complex. Research on Chemical Intermediates, 2022, 48, 575-591.	1.3	4
1095	Effect of Proton Conduction on the Charge Storage Mechanism of a MOF as a Supercapacitor Electrode. Journal of Physical Chemistry C, 2021, 125, 22951-22959.	1.5	13
1096	Metal–Organic Frameworks Constructed from Ironâ€5eries Elements for Supercapacitors. Small Structures, 2022, 3, 2100115.	6.9	73
1097	The preparations of nanoporous carbon with multi-heteroatoms co-doping from black liquor powders for supercapacitors. Nordic Pulp and Paper Research Journal, 2022, 37, 149-158.	0.3	1
1098	Bucket Effect: A Metal–Organic Framework Derived High-Performance FeS ₂ /Fe ₂ O ₃ @S-rGO Negative Material for Enhanced Overall Supercapacitor Capacitance. ACS Applied Energy Materials, 2021, 4, 11004-11013.	2.5	28
1099	Asymmetric, Flexible Supercapacitor Based on Fe–Co Alloy@Sulfide with High Energy and Power Density. ACS Applied Materials & Interfaces, 2021, 13, 49952-49963.	4.0	29
1100	Postsynthetic Modification of the Magnetic Zirconium–Organic Framework for Efficient and Rapid Solid-Phase Extraction of DNA. ACS Applied Materials & Interfaces, 2021, 13, 50309-50318.	4.0	15
1101	Constructing 3D hierarchical MOFs nanospheres for oxygen evolution from high-throughput calculations. Journal of Colloid and Interface Science, 2022, 607, 1944-1952.	5.0	13
1102	Tunable Proton Conductivity and Color in a Nonporous Coordination Polymer via Lattice Accommodation to Small Molecules. Advanced Science, 2021, 8, e2102619.	5.6	7
1103	One-step co-precipitated β-Ni(OH)2 at different ratios of Ni/2-methylimidazole and its energy storage behaviour. Journal of Applied Electrochemistry, 2022, 52, 159-172.	1.5	11
1104	Metal organic frameworks and their derived materials for capacity enhancement of supercapacitors: Progress and perspective. Synthetic Metals, 2021, 282, 116945.	2.1	14
1105	One-pot synthesis of Zr-MOFs on MWCNTs for high-performance electrochemical supercapacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127665.	2.3	9
1106	Synergic effect of physically-mixed metal organic framework based electrodes as a high efficient material for supercapacitors. Journal of Energy Storage, 2021, 44, 103248.	3.9	12
1107	Electrical Storage. Issues in Environmental Science and Technology, 2018, , 150-183.	0.4	0
1108	Graphene-Based Nanocomposites for Renewable Energy Application. , 2019, , 1-36.		0

	CITATION RI	EPORT	
#	Article	IF	CITATIONS
1109	Group 4 Metal-Based Metal—Organic Frameworks for Chemical Sensors. Chemosensors, 2021, 9, 306.	1.8	29
1110	In Situ Growth of Ni–Zn–Fe Layered Double Hydroxide on Graphene Aerogel: An Advanced Twoâ€inâ€One Material for Both the Anode and Cathode of Supercapacitors. Energy Technology, 2021, 9, 2100645.	1.8	5
1111	Uniaxially Oriented Electrically Conductive Metal–Organic Framework Nanosheets Assembled at Air/Liquid Interfaces. ACS Applied Materials & Interfaces, 2021, 13, 54570-54578.	4.0	24
1113	Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance. National Science Review, 2022, 9, .	4.6	171
1114	Boosting photo-Fenton process enabled by ligand-to-cluster charge transfer excitations in iron-based metal organic framework. Applied Catalysis B: Environmental, 2022, 302, 120882.	10.8	58
1115	Rational Design of Metal–Organic <scp>Frameworkâ€Based</scp> Materials for Advanced LiS Batteries. Bulletin of the Korean Chemical Society, 2021, 42, 148-158.	1.0	25
1116	Nickel-based bimetallic battery-type materials for asymmetric supercapacitors. Coordination Chemistry Reviews, 2022, 451, 214242.	9.5	86
1117	Sacrificial templating synthesis of metal-organic framework hybrid nanosheets as efficient pre-electrocatalyst for oxygen evolution reaction in alkaline. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127745.	2.3	7
1118	Metal–Organic Frameworks for Electrocatalysis. , 2020, , 29-66.		1
1120	Ultralight and shapeable nanocellulose/metal-organic framework aerogel with hierarchical cellular architecture for highly efficient adsorption of Cu(II) ions. International Journal of Biological Macromolecules, 2021, 193, 1488-1498.	3.6	20
1121	Preparation and capacitive property of graphene oxide composite supercapacitor electrodes functionalized by Fe-based metal–organic frameworks. Carbon Letters, 2022, 32, 273-283.	3.3	13
1122	Nanoporous carbon nanowires derived from one-dimensional metal-organic framework core-shell hybrids for enhanced electrochemical energy storage. Applied Surface Science, 2022, 576, 151800.	3.1	9
1123	One–dimensional metal–organic frameworks for electrochemical applications. Advances in Colloid and Interface Science, 2021, 298, 102562.	7.0	45
1124	<i>In situ</i> encapsulation of metal sulfide into hierarchical nanostructured electrospun nanofibers as self-supported electrodes for flexible quasi-solid-state supercapacitors. Journal of Materials Chemistry C, 2022, 10, 542-548.	2.7	16
1125	Heterointerface engineering and piezoelectric effect enhanced performance of self-charging supercapacitors power cell. Nano Energy, 2022, 91, 106701.	8.2	28
1126	Metal-organic framework-based materials for flexible supercapacitor application. Coordination Chemistry Reviews, 2022, 452, 214300.	9.5	112
1127	Metal-organic framework-derived nickel-based catalyst for hydrogen oxidation reaction. Journal of Physics: Conference Series, 2021, 2021, 012103.	0.3	2
1128	Unraveling the Electrical and Magnetic Properties of Layered Conductive Metalâ€Organic Framework With Atomic Precision. Angewandte Chemie, 2022, 134, e202113569.	1.6	14

#	Article	IF	CITATIONS
1129	Proton-Conductive Cerium-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 55358-55366.	4.0	23
1130	Conductive bimetal organic framework nanorods decorated with highly dispersed Co ₃ O ₄ nanoparticles as bi-functional electrocatalyst. Nanotechnology, 2022, 33, 145601.	1.3	4
1131	Metal-Organic Frameworks. , 2022, , 637-666.		1
1132	Electrochemical Sensitization of Activated Carbon by Microporous MOF for Supercapacitor Applications. ChemElectroChem, 2022, 9, e202101425.	1.7	0
1133	An overview of supercapacitors electrode materials based on metal organic frameworks and future perspectives. International Journal of Energy Research, 2022, 46, 3939-3982.	2.2	8
1134	Discovery of spontaneous de-interpenetration through charged point-point repulsions. CheM, 2022, 8, 225-242.	5.8	11
1135	High-performance electrochromic supercapacitor based on quinacridone dye with good specific capacitance, fast switching time and robust stability. Chemical Engineering Journal, 2022, 431, 133733.	6.6	29
1136	Electrochromic-Hybrid energy storage material consisting of triphenylamine and dithienothiophene. Chemical Engineering Journal, 2022, 434, 133868.	6.6	20
1137	Unraveling the Electrical and Magnetic Properties of Layered Conductive Metalâ€Organic Framework With Atomic Precision. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
1138	Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. Nature Nanotechnology, 2022, 17, 153-158.	15.6	55
1139	Coordinationâ€ i nduced Band Gap Reduction in a Metal–Organic Framework. Chemistry - A European Journal, 2022, 28, e202104041.	1.7	4
1140	Preparation of Flower-like Nickel-Based Bimetallic Organic Framework Electrodes for High-Efficiency Hybrid Supercapacitors. Crystals, 2021, 11, 1425.	1.0	17
1141	Applications of 1D Mesoporous Inorganic Nanomaterials in Supercapacitors. Springer Series in Materials Science, 2022, , 129-141.	0.4	0
1142	Ultrathin Metal–Organic Framework Nanosheets as Nanoâ€Floatingâ€Gate for High Performance Transistor Memory Device. Advanced Functional Materials, 2022, 32, 2110784.	7.8	10
1143	Conductive Hybrid Cuâ€HHTPâ€TCNQ Metal–Organic Frameworks for Chemiresistive Sensing. Advanced Electronic Materials, 2022, 8, 2100871.	2.6	5
1144	Synthesis and Mechanical Properties of sub 5â€Âµm PolyUiOâ€66 Thin Films on Gold Surfaces. ChemPhysChem, 2021, , .	1.0	1
1145	MOFs in the time domain. Nature Reviews Chemistry, 2022, 6, 9-30.	13.8	34
1146	Facile Synthesis of Schlumbergera Bridgesii-Like Nanostructured Co ₃ O ₄ @MnO ₂ as High Performance Electrode Materials for Supercapacitors.	0.4	0

SSRN Electronic	Journa	, 0, , .
-----------------	--------	----------

#	Article	IF	CITATIONS
1147	3D Hierarchical Ti ₃ C ₂ T _X @NiO-Reduced Graphene Oxide Heterostructure Hydrogel as Free-Standing Electrodes for High Performance Supercapacitor. SSRN Electronic Journal, 0, , .	0.4	0
1148	Review—Metal-Organic Framework-Based Supercapacitors. Journal of the Electrochemical Society, 2022, 169, 010516.	1.3	8
1149	In Situ Growth of Threeâ€Ðimensional MXene/Metal–Organic Framework Composites for Highâ€Performance Supercapacitors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	211
1150	Hierarchical ultrathin NiFe-borate layered double hydroxide nanosheets encapsulated into biomass-derived nitrogen-doped carbon for efficient electrocatalytic oxygen evolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128092.	2.3	6
1151	Design and construction of hierarchical Ni3S2 @V-doped NiMn-LDH heterostructure on rGO/Ni foam as an advanced electrode for battery-supercapacitor hybrid devices. Journal of Alloys and Compounds, 2022, 896, 163125.	2.8	11
1152	Water-mediated proton conductive properties of three water-stable metal-organic frameworks constructed by pyromellitic acid. Journal of Solid State Chemistry, 2022, 307, 122874.	1.4	8
1153	Two isostructural Ni/Co(II) MOFs based on nitrogen heterocyclic ligands and their derived carbon materials for HER performance. Journal of Molecular Structure, 2022, 1252, 132184.	1.8	18
1154	3D hierarchical Ti3C2TX @NiO-reduced graphene oxide heterostructure hydrogel as free-standing electrodes for high performance supercapacitor. Journal of Alloys and Compounds, 2022, 901, 163614.	2.8	20
1155	High-capacity CoP-Mn3P nanoclusters heterostructures derived by Co2MnO4 as advanced electrodes for supercapacitors. Journal of Colloid and Interface Science, 2022, 611, 654-661.	5.0	14
1156	Application of a new UIO-66/Bi2S3 photoanode in photoelectrochemical cathodic protection for 304 stainless steel. Journal of Alloys and Compounds, 2022, 900, 163389.	2.8	4
1157	Coupling Bimetallic NiMn-MOF Nanosheets on NiCo2O4 Nanowire Arrays with Boosted Electrochemical Performance for Hybrid Supercapacitor. Materials Research Bulletin, 2022, 149, 111707.	2.7	19
1158	Metal-organic frameworks derived transition metal phosphides for electrocatalytic water splitting. Journal of Energy Chemistry, 2022, 68, 494-520.	7.1	70
1159	Green Synthesis of Silver-Zirconia Composite Using Chitosan Biopolymer Binder for Fabrication of Electrode Materials in Supercapattery Application for Sustainable Energy Storage. SSRN Electronic Journal, 0, , .	0.4	0
1160	High Hydrothermal Stability of Mesoporous Ni-Phyllosilicate Spherical Particle. SSRN Electronic Journal, 0, , .	0.4	0
1161	Nanosheet-Assembled MnO2-Integrated Electrode Based on the Low-Temperature and Green Chemical Route. Crystals, 2022, 12, 115.	1.0	4
1162	Boosting the Optoelectronic Performance by Regulating Exciton Behaviors in a Porous Semiconductive Metal–Organic Framework. Journal of the American Chemical Society, 2022, 144, 2189-2196.	6.6	37
1163	Competitive Coordinationâ€Oriented Monodispersed Ruthenium Sites in Conductive MOF/LDH Heteroâ€Nanotree Catalysts for Efficient Overall Water Splitting in Alkaline Media. Advanced Materials, 2022, 34, e2107488.	11.1	103
1164	<scp>Twoâ€Dimensional Metalâ€Organic</scp> Frameworks and Covalent Organic Frameworks. Chinese Journal of Chemistry, 2022, 40, 1359-1385.	2.6	31

#	Article	IF	CITATIONS
1165	Solvent Recyclable Synthesis of Nitrogenâ€Rich Nanotubes with Embedded CoFe Nanoparticles for Electrochemical Oxygenâ€Involving Reactions. Energy Technology, 0, , 2100957.	1.8	1
1166	A Cu(II) Metal Organic Framework with a Tetranuclear Core: Structure, Magnetism, and Supercapacitor Activity. Crystal Growth and Design, 2022, 22, 1172-1181.	1.4	5
1167	Self-supported metal–organic framework-based nanostructures as binder-free electrodes for supercapacitors. Nanoscale, 2022, 14, 2155-2166.	2.8	73
1168	Chemical structure modulation in conductive MOFs by adjusting the oxidation state of the ligand and introducing alkali metal ions. Chemical Communications, 2022, 58, 2702-2705.	2.2	6
1169	Electrochemical performance of composite electrodes based on rGO, Mn/Cu metal–organic frameworks, and PANI. Scientific Reports, 2022, 12, 664.	1.6	26
1170	Preparation of self-assembled porous flower-like nanostructured magnetite (Fe3O4) electrode material for supercapacitor application. Journal of Solid State Electrochemistry, 2022, 26, 887-895.	1.2	5
1171	Vacancies in Metalâ^'Organic Frameworks: Formation, Arrangement, and Functions. Small Structures, 2022, 3, .	6.9	9
1172	Copper-nickel rubeanate metal-organic framework, a new highly stable and long active life nanocomposite for high-performance supercapacitors. Journal of Materiomics, 2022, 8, 843-851.	2.8	2
1173	State of the art developments and prospects of metal–organic frameworks for energy applications. Dalton Transactions, 2022, 51, 1675-1723.	1.6	11
1174	In Situ Growth of Threeâ€Dimensional MXene/Metal–Organic Framework Composites for Highâ€Performance Supercapacitors. Angewandte Chemie, 2022, 134, e202116282.	1.6	47
1175	Heterometallic Benzenehexathiolato Coordination Nanosheets: Periodic Structure Improves Crystallinity and Electrical Conductivity. Advanced Materials, 2022, 34, e2106204.	11.1	24
1176	Largeâ€Area Synthesis of Ultrathin, Flexible, and Transparent Conductive Metal–Organic Framework Thin Films via a Microfluidicâ€Based Solution Shearing Process. Advanced Materials, 2022, 34, e2107696.	11.1	27
1177	Preparation and dielectric properties of multilayer Ag@FeNi-MOF/PVDF composites. Journal of Materials Science: Materials in Electronics, 2022, 33, 5311-5324.	1.1	3
1178	A review of recent progress in modified metal–organic frameworks as photocatalysts. Journal of Materials Science: Materials in Electronics, 2022, 33, 4737-4754.	1.1	5
1179	Evidence of One-Dimensional Channels in Hydrogen-Bonded Organic Porous Thin Films Fabricated at the Air/Liquid Interface. Langmuir, 2022, 38, 1910-1914.	1.6	1
1180	Recent advances in oriented metal–organic frameworks for supercapacitive energy storage. Journal of Materials Chemistry A, 2022, 10, 4475-4488.	5.2	46
1181	PANI-MnO2 and Ti3C2Tx (MXene) as electrodes for high-performance flexible asymmetric supercapacitors. Electrochimica Acta, 2022, 406, 139874.	2.6	77
1182	Conductivity in Open-Framework Chalcogenides Tuned via Band Engineering and Redox Chemistry. Chemistry of Materials, 2022, 34, 1905-1920.	3.2	7

#	Article	IF	CITATIONS
1183	Metal-organic framework/conductive polymer hybrid materials for supercapacitors. Applied Materials Today, 2022, 26, 101387.	2.3	26
1184	Regulating the electrolyte ion types and exposed crystal facets for pseudocapacitive energy storage of transition metal nitrides. Energy Storage Materials, 2022, 46, 278-288.	9.5	15
1185	Pillared-layer Ni-MOF nanosheets anchored on Ti3C2 MXene for enhanced electrochemical energy storage. Journal of Colloid and Interface Science, 2022, 614, 130-137.	5.0	86
1186	The insight of self-doped phosphorus on the biocarbon substrate: Co3O4 nanocrystals anchored on porous carbon derived from Manila grass for supercapacitor electrode with long life. Journal of Alloys and Compounds, 2022, 904, 163557.	2.8	4
1187	MOFs assisted construction of Ni@NiOx/C nanosheets with tunable porous structure for high performance supercapacitors. Journal of Alloys and Compounds, 2022, 903, 163993.	2.8	18
1188	Selective Center Charge Density Enables Conductive 2D Metalâ`'Organic Frameworks with Exceptionally High Pseudocapacitance and Energy Density for Energy Storage Devices. Advanced Materials, 2022, 34, e2109870.	11.1	18
1189	Effect of MWCNTs additive on preservation stability of rGO powder. Journal of Materials Science: Materials in Electronics, 2022, 33, 6766-6779.	1.1	5
1190	Advances in electrochemical detection methods for measuring contaminants of emerging concerns. Electrochemical Science Advances, 2022, 2, .	1.2	19
1191	A Rationally Designed Iron–Dihydroxybenzoquinone Metal–Organic Framework as Practical Cathode Material for Rechargeable Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1192	Microspherical Assembly of a Metal Organic Framework Wrapped in Graphene: an Efficient Approach to Prevent Collapse and Aggregation During Carbonization. SSRN Electronic Journal, 0, , .	0.4	0
1193	Nickel phosphide-polyaniline binary composite as electrode material using chitosan biopolymer electrode binder for supercapattery applications. Materials Today: Proceedings, 2022, 54, 912-922.	0.9	12
1194	Electronically-coupled redox centers in trimetallic cobalt complexes. Dalton Transactions, 2022, 51, 5660-5672.	1.6	4
1195	Green synthesis of Silver-Zirconia composite using chitosan biopolymer binder for fabrication of electrode materials in supercapattery application for sustainable energy storage. Current Research in Green and Sustainable Chemistry, 2022, 5, 100292.	2.9	10
1196	Framework materials for supercapacitors. Nanotechnology Reviews, 2022, 11, 1005-1046.	2.6	32
1197	Probing the electronic and ionic transport in topologically distinct redox-active metal–organic frameworks in aqueous electrolytes. Physical Chemistry Chemical Physics, 2022, 24, 9855-9865.	1.3	5
1198	Research progress on metal and covalent organic framework-based materials for high-performance supercapacitors. New Carbon Materials, 2022, 37, 109-135.	2.9	21
1199	2D Materials for All‧olid‧tate Lithium Batteries. Advanced Materials, 2022, 34, e2108079.	11.1	45
1200	Controllable In Situ Transformation of Layered Double Hydroxides into Ultrathin Metal–Organic Framework Nanosheet Arrays for Energy Storage. Inorganic Chemistry, 2022, 61, 3832-3842.	1.9	32

ARTICLE IF CITATIONS Reviewâ€"Recent Advances in Metal Organic Framework Derived Carbon Materials for Electrocatalytic 1201 1.3 10 Applications. Journal of the Electrochemical Society, 2022, 169, 036503. Metal–organic frameworkâ€derived phosphide nanomaterials for electrochemical applications. , 2022, 48 4, 246-281. Impact of Bubbles on Electrochemically Active Surface Area of Microtextured Gas-Evolving 1203 1.6 16 Electrodes. Langmuir, 2022, 38, 3276-3283. Conductive Metal–Organic Frameworks for Supercapacitors. Advanced Materials, 2022, 34, e2200999. 1204 11.1 101 Bromine Vapor Induced Continuous p- to n-Type Conversion of a Semiconductive Metal–Organic 1205 1.9 4 Framework Cu[Cu(pdt)₂]. Inorganic Chemistry, 2022, 61, 4414-4420. Dimensionality Modulates Electrical Conductivity in Compositionally Constant One-, Two-, and Three-Dimensional Frameworks. Journal of the American Chemical Society, 2022, 144, 5583-5593. 24 6.6 Highly Conductive Organic–Inorganic Hybrid Silver Sulfide with 3D Silver–Sulfur Networks 1207 Constructed from Benzenehexathiol: Structural Topology Regulation via Ligand Oxidation. Inorganic 1.9 3 Chemistry, 2022, 61, 5060-5066. Advances in microâ€supercapacitors (MSCs) with high energy density and fast chargeâ€discharge 1208 1.2 capabilities for flexible bioelectronic devicesâ€"A review. Electrochemical Science Advances, 2023, 3, . Bimetallic ZIF-derived cobalt nanoparticles anchored on N- and S-codoped porous carbon nanofibers 1209 2.6 12 as cathode catalyst for Li-O2 batteries. Electrochimica Acta, 2022, 418, 140279. Electrochemical Actuators with Multicolor Changes and Multidirectional Actuation. Small, 2022, 18, 5.2 e2107778. Advances and Applications of Metal-Organic Framework Nanomaterials as Oral Delivery Carriers: A 1211 3 1.1 Review. Mini-Reviews in Medicinal Chemistry, 2022, 22, 2564-2580. Cobalt-based oxygen electrocatalysts for zinc-air batteries: Recent progress, challenges, and 5.8 perspectives. Nano Research, 2022, 15, 5038-5063. A new strategy for porous carbon synthesis: Starch hydrogel as a carbon source for Co3O4@C 1213 2.3 14 supercapacitor electrodes. Ceramics International, 2022, 48, 8104-8111. Nickel tetrathiooxalate as a cathode material for potassium batteries. Mendeleev Communications, 1214 0.6 2022, 32, 226-227 Boosting the electrochemical energy storage and conversion performance by structural distortion 1215 6.6 12 in metal–organic frameworks. Chemical Engineering Journal, 2022, 443, 136269. Semiconducting Paddle-Wheel Metal–Organic Complex with a Compact Cu–S Cage. Journal of Physical 1.5 Chemistry C, 2022, 126, 6300-6307. Microscopic Simulations of Electrochemical Double-Layer Capacitors. Chemical Reviews, 2022, 122, 1217 23.0 81 10860-10898. Teaching Metal-Organic Frameworks to Conduct: Ion and Electron Transport in Metal-Organic 4.3 Frameworks. Annual Review of Materials Research, 2022, 52, 103-128.

#	Article	IF	Citations
1219	In situ anodic electrodeposition of two-dimensional conductive metal-organic framework@nickel foam for high-performance flexible supercapacitor. Journal of Power Sources, 2022, 526, 231163.	4.0	49
1220	Electrochemically reduced graphene oxide/nano-WO\$\$_{3}\$\$ composite-based supercapacitor electrodes for better energy storage. European Physical Journal: Special Topics, 2022, 231, 2927-2932.	1.2	7
1221	A Combined Theoretical and Experimental Characterization of a Zirconium MOF with Potential Application to Supercapacitors. Applied Magnetic Resonance, 0, , 1.	0.6	2
1222	In situ growth CNT@MOFs core—shell structures enabling high specific supercapacitances in neutral aqueous electrolyte. Nano Research, 2022, 15, 6112-6120.	5.8	12
1223	Highly stable supercapacitive performance of a (3, 4, 6― <i>c</i>) onnected 2D Coâ€MOF. Applied Organometallic Chemistry, 0, , .	1.7	3
1224	Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities. EScience, 2022, 2, 295-303.	25.0	81
1225	Reticular Nanoscience: Bottom-Up Assembly Nanotechnology. Journal of the American Chemical Society, 2022, 144, 7531-7550.	6.6	38
1226	MOF-on-MOF nanoarchitectures for selectively functionalized nitrogen-doped carbon-graphitic carbon/carbon nanotubes heterostructure with high capacitive deionization performance. Nano Energy, 2022, 97, 107146.	8.2	106
1227	A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF). Journal of Colloid and Interface Science, 2022, 616, 326-337.	5.0	24
1228	Addition of dissimilar metal nodes to improve the electrochemical performance of MOF as a supercapacitor. Inorganica Chimica Acta, 2022, 536, 120916.	1.2	16
1229	Conductive properties of triphenylene MOFs and COFs. Coordination Chemistry Reviews, 2022, 460, 214459.	9.5	32
1230	3D bismuth/tin dual-doped palladium modified prism-folding layered graphene/MOF-74 composites as highly active electrocatalyst for ethylene glycol electrooxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128725.	2.3	3
1231	High hydrothermal stability of mesoporous Ni-phyllosilicate spherical particles. Applied Surface Science, 2022, 590, 153114.	3.1	9
1232	Construction of BODIPY functional ZIF-8 with improved visible light-induced antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128835.	2.3	4
1233	Indium based metal-organic framework/carbon nanotubes composite as a template for In2O3 porous hexagonal prisms/carbon nanotubes hybrid structure and their application as promising super-capacitive electrodes. Journal of Energy Storage, 2022, 51, 104238.	3.9	6
1234	Metal-organic framework interface engineering for highly efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 619, 148-157.	5.0	16
1235	Nanostructured Conductive Metal Organic Frameworks for Sustainable Low Charge Overpotentials in Li–Air Batteries. Small, 2022, 18, e2102902.	5.2	22
1236	Microfluidic Fabrication of Hierarchicalâ€Ordered ZIF‣(Zn)@Ti ₃ C ₂ T _{<i>x</i>} Core–Sheath Fibers for Highâ€Performance Asymmetric Supercapacitors. Angewandte Chemie, 2022, 134, .	1.6	6

#	Article	IF	CITATIONS
1237	Prediction of O ₂ /N ₂ Selectivity in Metal–Organic Frameworks via High-Throughput Computational Screening and Machine Learning. ACS Applied Materials & Interfaces, 2022, 14, 736-749.	4.0	30
1238	Bifunctional Microwave-Assisted Molybdenum-Complex Carbon Sponge Production for Supercapacitor and Water-Splitting Applications. ACS Applied Materials & Interfaces, 2021, 13, 60966-60977.	4.0	10
1239	Copper(II)-MOF Containing Glutarate and 4,4′-Azopyridine and Its Antifungal Activity. Applied Sciences (Switzerland), 2022, 12, 260.	1.3	7
1240	Microfluidic Fabrication of Hierarchicalâ€Ordered ZIFâ€L(Zn)@Ti ₃ C ₂ T _{<i>x</i>} Core–Sheath Fibers for Highâ€Performance Asymmetric Supercapacitors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	76
1241	Rutenyum Katkılı Nanotüp Kullanılarak Süperkapasitör Elektrot Üretimi. European Journal of Science and Technology, 0, , .	0.5	0
1242	Synthesis of Tostadasâ€Shaped Metalâ€Organic Frameworks for Remitting Capacity Fading of Liâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	23
1243	Chemically Integrating a 2D Metal–Organic Framework with 2D Functionalized Graphene. Inorganic Chemistry, 2021, 60, 19079-19085.	1.9	15
1244	Hierarchical <scp>3D</scp> microâ€nanostructures based on in situ deposited bimetallic metalâ€organic structures on carbon fabric for supercapacitor applications. International Journal of Energy Research, 2022, 46, 6031-6044.	2.2	11
1245	Understanding Integrated Graphene–MOF Nanostructures as Binder- and Additive-Free High-Performance Supercapacitors at Commercial Scale Mass Loading. ACS Applied Energy Materials, 2021, 4, 14249-14259.	2.5	23
1246	Tunable Electrical Conductivity of Flexible Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 254-265.	3.2	7
1247	Controlled synthesis of a cobalt-organic framework: hierarchical micro/nanospheres for high-performance supercapacitors. Inorganic Chemistry Frontiers, 2022, 9, 2845-2851.	3.0	17
1248	Unveiling the benefits of dimethyl sulfoxide as a binder solvent on the electrochemical performance of layered double hydroxides. Electrochimica Acta, 2022, 419, 140386.	2.6	3
1249	Recent progress in the allâ€solidâ€state flexible supercapacitors. SmartMat, 2022, 3, 349-383.	6.4	21
1250	Ultralow-Voltage-Drivable Artificial Muscles Based on a 3D Structure MXene-PEDOT:PSS/AgNWs Electrode. ACS Applied Materials & Interfaces, 2022, 14, 18150-18158.	4.0	24
1251	Recent advances in solidâ€ s tate supercapacitors: From emerging materials to advanced applications. International Journal of Energy Research, 2022, 46, 10389-10452.	2.2	16
1252	The instability of a stable metal-organic framework in amino acid solutions. Nano Research, 2022, 15, 6607-6612.	5.8	4
1253	A variational method guided confining tip discharge for MOF-derived supercapacitors. Chemical Engineering Journal, 2022, 443, 136452.	6.6	10
1254	Multiresponsive luminescent probe for Fe ³⁺ , CrO ₄ ²⁻ and Cr ₂ O ₇ ²⁻ in aqueous solution based on N,N〙-bis-pyridin-2-ylmethylene-hydrazine and phthalate ligands. Journal of Coordination Chemistry, 0, ,	0.8	4

# 1255	ARTICLE Hydrogen-bonded quasi-layered polypyrrole-tungstate complex with exceptional electrochemical capacitance over 25000 cycles. Composites Part B: Engineering, 2022, 238, 109910.	IF 5.9	CITATIONS 3
1256	Two-dimensional MoS2/Mn-MOF/multi-walled carbon nanotubes composite material for high-performance supercapacitors. Microchemical Journal, 2022, 179, 107506.	2.3	25
1260	Freestanding Metal–Organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion. Chemical Reviews, 2022, 122, 10087-10125.	23.0	126
1261	Metal-Organic Frameworks (Mofs) and Their Derivative as Electrode Materials for Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1262	Lignin-Inspired Hydrogel Matrixes with Adhesion and Toughness for All-Hydrogel Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
1263	Simple Fabrication of Homogeneous Co/Co9s8/Nitrogen Doped Carbon Nanospheres Derived from Prussian Blue Analogues for High Performance Supercapacitors. SSRN Electronic Journal, O, , .	0.4	0
1264	Unveiling the Benefits of Dimethyl Sulfoxide as a Binder Solvent on the Electrochemical Performance of Layered Double Hydroxides. SSRN Electronic Journal, 0, , .	0.4	0
1265	Construction of Molecularly Imprinted Voltammetric Sensor Based on Cu-N-C Polyhedron Porous Carbon from Cu Doped Zif-8 for the Selective Determination of Norfloxacin. SSRN Electronic Journal, 0, , .	0.4	0
1266	Significantly Enhanced Electrochemical Performance of 2d Ni-Mof by Carbon Quantum DotÂFor High-Performance Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
1267	MOFs-carbon nanocomposites for supercapacitors. , 2022, , 413-437.		0
1268	The Progress and Roadmap of Metal-Organic Frameworks for High-Performance Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	1
1269	Electrocatalytic water oxidation performance in an extended porous organic framework with a covalent alliance of distinct Ru sites. Nanoscale, 2022, 14, 7621-7633.	2.8	16
1270	Preparation of porous carbon from dichloromethane and pâ€phenylenediamine with short KOH activation depth. ChemElectroChem, 0, , .	1.7	0
1271	Enhanced Ion Diffusion in Flexible Ti ₃ C ₂ T _{<i>X</i>} MXene Film for Highâ€Performance Supercapacitors. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	5
1272	Electrically Conductive Photoluminescent Porphyrin Phosphonate Metal–Organic Frameworks. Advanced Optical Materials, 2022, 10, .	3.6	8
1273	Metal-organic framework modified carbon cloth for electric field enhanced thin film microextraction of sulfonamides in animal-derived food. Journal of Chromatography A, 2022, 1674, 463120.	1.8	5
1274	Rational designed isostructural MOF for the charge—discharge behavior study of super capacitors. Nano Research, 2022, 15, 6208-6212.	5.8	11
1275	Fabrication of NiCo2S4 accumulated on metal organic framework nanostructured with multiwalled carbon nanotubes composite material for supercapacitor application. Ceramics International, 2022, 48, 29102-29110.	2.3	28

#	Article	IF	CITATIONS
1276	Efficient Metalâ€Oriented Electrodeposition of a Coâ€Based Metalâ€Organic Framework with Superior Capacitive Performance. ChemSusChem, 2022, 15, .	3.6	15
1277	Bulk doping nickel–cobalt metal organic framework nanosheet arrays for performance-boosted hybrid supercapacitors. Journal of Materials Research, 2022, 37, 1714-1726.	1.2	11
1278	Polyoxometalateâ€Based Metal Organic Frameworks: Recent Advances and Challenges. ChemistrySelect, 2022, 7, .	0.7	15
1279	A facile method synthesizing marshmallow ZnS grown on Ti3C2 MXene for high-performance asymmetric supercapacitors. Journal of Energy Storage, 2022, 50, 104652.	3.9	14
1280	New Strategy for Improved Conductivity and Redox-Enhanced Supercapacitor Performance of Nickel Metal-Organic Framework. Chemical Engineering Journal Advances, 2022, 11, 100311.	2.4	1
1281	In situ form core-shell carbon nanotube-imide COF composite for high performance negative electrode of pseudocapacitor. Electrochimica Acta, 2022, 421, 140470.	2.6	6
1282	Stress-assisted design of stiffened graphene electrode structure toward compact energy storage. Journal of Energy Chemistry, 2022, 71, 478-487.	7.1	6
1283	Fine-tuning the electromagnetic parameters of 2D conjugated metal-organic framework semiconductors for anti-electromagnetic interference in the Ku band. Chemical Engineering Journal, 2022, 444, 136574.	6.6	19
1284	Self-assembled Zn-functionalized Ni-MOF as an efficient electrode for electrochemical energy storage. Journal of Physics and Chemistry of Solids, 2022, 167, 110779.	1.9	15
1285	Other nanocomposites of MOFs for supercapacitors. , 2022, , 461-484.		Ο
1286	Layer-by-layer growth of ferrocene decorated metal–organic framework thin films and studies of their electrochemical properties. Applied Surface Science, 2022, 596, 153525.	3.1	1
1287	Significantly enhanced electrochemical performance of 2D Ni-MOF by carbon quantum dot for high-performance supercapacitors. Electrochimica Acta, 2022, 422, 140560.	2.6	25
1288	In-Plane Oriented Two-Dimensional Conjugated Metal–Organic Framework Films for High-Performance Humidity Sensing. , 2022, 4, 1146-1153.		7
1289	Heterojunction between bimetallic metal-organic framework and TiO2: Band-structure engineering for effective photoelectrochemical water splitting. Nano Research, 2022, 15, 8502-8509.	5.8	15
1290	Mo ₂ C Nanoparticles Embedded in Carbon Nanowires with Surface Pseudocapacitance Enables Highâ€Energy and Highâ€Power Sodium Ion Capacitors. Small, 2022, 18, e2200805.	5.2	20
1292	Intermolecular/intramolecular interactions for high-performance organic batteries. Scientia Sinica Chimica, 2022, 52, 1883-1895.	0.2	1
1293	A Rationally Designed Iron–Dihydroxybenzoquinone Metal–Organic Framework as Practical Cathode Material for Rechargeable Batteries. Energy Storage Materials, 2022, 50, 426-434.	9.5	15
1294	Hierarchically Porous Carbon from <i>Phoenix dactylifera</i> Seed for High-Performance Supercapacitor Applications. Bulletin of the Chemical Society of Japan, 2022, 95, 1060-1067.	2.0	12

#	Article	IF	CITATIONS
1295	Synthesis of High-Quality Two-Dimensional V2C MXene for Supercapacitor Application. Energies, 2022, 15, 3696.	1.6	17
1296	Metalâ€Organicâ€Frameworkâ€Based Electrochemical Nanosensor for Hydrogen Peroxide. ChemElectroChem, 2022, 9, .	1.7	4
1297	Installing a molecular truss beam stabilizes MOF structures. Npj Computational Materials, 2022, 8, .	3.5	3
1298	NiAl layered double hydroxides with enhanced interlayer spacing via ion-exchange as ultra-high performance supercapacitors electrode materials. Journal of Energy Storage, 2022, 52, 104940.	3.9	19
1299	Synergistic Construction of Bifunctional Interface Film on Anode Via a Novel Hybrid Additive for Enhanced Alkaline Al-Air Battery Performance. SSRN Electronic Journal, 0, , .	0.4	0
1300	A Novel Znco-Mof/Ppy/Ag2o Ternary Composites for High-Performance Flexible Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
1301	Effects of Ultrafiltration on Co-Metal Organic Framework/Pre-Hydrolysis Solution Carbon Materials for Supercapacitor Energy Storage. SSRN Electronic Journal, 0, , .	0.4	0
1302	Efficient Ch4 Separation and Vapor Uptakes in a Porous Mof Featuring 2d Interlaced Channels: Experiment and Simulation Exploration. SSRN Electronic Journal, 0, , .	0.4	0
1303	In Situ Constructed Multilayer Graphene Structure Enabling Improved Supercapacitive Charge Storage. SSRN Electronic Journal, 0, , .	0.4	0
1304	Bimetallic Heterojunction Effectively Constructs Porous Surface Engineering for High Performance Flexible Asymmetric Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
1305	<scp>Nitrogenâ€doped</scp> porous <scp>nanocarbons onducting</scp> polymer composite film electrodes for flexible supercapacitors. International Journal of Energy Research, 0, , .	2.2	0
1306	Electrochemical Sensor Based on Glassy-Carbon Electrode Modified with Dual-Ligand EC-MOFs Supported on rGO for BPA. Biosensors, 2022, 12, 367.	2.3	5
1307	Metalâ€Organic Frameworkâ€Based Materials for Aqueous Zincâ€Ion Batteries: Energy Storage Mechanism and Function. Chemical Record, 2022, 22, .	2.9	29
1308	Directional Growth of Conductive Metal–Organic Framework Nanoarrays along [001] on Metal Hydroxides for Aqueous Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2022, 14, 25878-25885.	4.0	20
1309	Sweet Potato-Derived Carbon Nanosheets Incorporate Co3O4 Nanocomposite Films as Electrode Materials for Asymmetric Supercapacitors and Its Electro Chemical Performance. Journal of Cluster Science, 0, , .	1.7	1
1310	Sulfurization-functionalized 2D metal-organic frameworks for high-performance urea fuel cell. Applied Catalysis B: Environmental, 2022, 315, 121586.	10.8	39
1311	Three dimensional FeCo2O4 nanosheets for integrated all-solid-state supercapacitors and electrochemical energy-saving H2 production. Materials Chemistry and Physics, 2022, 287, 126332.	2.0	9
1312	Advances in Environmental Applications of Metal–Organic Frameworks. ACS Symposium Series, 0, , 25-52.	0.5	0

#	Article	IF	CITATIONS
1313	Construction of Molecularly Imprinted Voltammetric Sensor Based on Cu-N-C Polyhedron Porous Carbon from Cu Doping Zif-8 for the Selective Determination of Norfloxacin. SSRN Electronic Journal, 0, , .	0.4	0
1314	Efficacious and sustained release of an anticancer drug mitoxantrone from new covalent organic frameworks using protein corona. Chemical Science, 2022, 13, 7920-7932.	3.7	15
1315	Potential Applications of Nickelâ€Based Metalâ€Organic Frameworks and their Derivatives. Chemical Record, 2022, 22, .	2.9	38
1316	Wood Biochar Monolith-Based Approach to Increasing the Volumetric Energy Density of Supercapacitor. Industrial & Engineering Chemistry Research, 2022, 61, 7891-7901.	1.8	10
1317	Microsupercapacitive Stone Module for Natural Energy Storage. ACS Nano, 2022, 16, 11708-11719.	7.3	4
1318	Understanding Metal–Organic Framework Nucleation from a Solution with Evolving Graphs. Journal of the American Chemical Society, 2022, 144, 11099-11109.	6.6	19
1319	Redox-Active Ni(II) Nodes Induced Electrochromism in a Two-Dimensional Conductive Metal–Organic Framework. ACS Applied Electronic Materials, 2022, 4, 2915-2922.	2.0	3
1320	Molybdenum-functionalized metal–organic framework crystals interconnected by carbon nanotubes as negative electrodes for supercapacitors. MRS Energy & Sustainability, 2022, 9, 332-341.	1.3	1
1321	Construction of hierarchical porous derived from the cellulose nanofiber / graphene / Zn/Co ZIF 3D conductive carbon aerogels for high-performance supercapacitors. Journal of Alloys and Compounds, 2022, 920, 165868.	2.8	17
1322	Metal-organic frameworks-derived NiSe@RGO composites for high-performance asymmetric supercapacitors. Journal of Electroanalytical Chemistry, 2022, 919, 116548.	1.9	15
1323	Enhanced Reaction Kinetics of N–MnO ₂ Nanosheets with Oxygen Vacancies via Mild NH ₃ ·H ₂ O Bath Treatment for Advanced Aqueous Supercapacitors. ACS Applied Energy Materials, 2022, 5, 7490-7502.	2.5	12
1324	2D metal–organic frameworks and their derivatives for the oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 919, 165823.	2.8	18
1325	Coordination networks constructed from a flexible ligand: single-crystal-to-single-crystal transformations and thermoresponsive and electrochemical performances. CrystEngComm, 2022, 24, 5364-5371.	1.3	1
1326	Challenges for large scale applications of rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 16369-16389.	5.2	42
1327	Iodine-induced electrical conductivity of novel columnar lanthanide metal–organic frameworks based on a butterfly-shaped π-extended tetrathiafulvalene ligand. Materials Advances, 2022, 3, 6157-6160.	2.6	1
1328	Enhancing the energy storage performances of metal–organic frameworks by controlling microstructure. Chemical Science, 2022, 13, 9210-9219.	3.7	20
1329	Materials nanoarchitectonics in a two-dimensional world within a nanoscale distance from the liquid phase. Nanoscale, 2022, 14, 10610-10629.	2.8	27
1330	Transforming an insulating metal–organic framework into electrically conducting metal–organic frameworkâS∫conducting polymer composites. Materials Today Chemistry, 2022, 24, 100981.	1.7	4

#	Article	IF	CITATIONS
1331	Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem, 2022, 4, 100078.	10.1	232
1332	In Situ Generation of NiCoP Nanoparticles on a Bimetal–Organic Framework for High-Performance Supercapacitors. Inorganic Chemistry, 2022, 61, 10435-10441.	1.9	16
1333	Unraveling the molecular mechanism of MIL-53(Al) crystallization. Nature Communications, 2022, 13, .	5.8	22
1334	The Increasing Number of Electron Reservoirs in Nonporous, Highâ€Conducting Coordination Polymers Cu _x BHT (<i>x</i> Â = Â3, 4, and 5, BHTÂ = ÂBenzenehexathiol) for Improved Faradaic Capacitance. Small, 2022, 18, .	5.2	3
1335	Thousand-fold increase in O ₂ electroreduction rates with conductive MOFs. ACS Central Science, 2022, 8, 975-982.	5.3	32
1336	Metal-organic framework (MOF) composites as promising materials for energy storage applications. Advances in Colloid and Interface Science, 2022, 307, 102732.	7.0	126
1337	2D Metal–Organic Framework Cu ₃ (HHTT) ₂ Films for Broadband Photodetectors from Ultraviolet to Midâ€Infrared. Advanced Materials, 2022, 34, .	11.1	16
1338	From Volatile Ethanolamine to Highly N, B Dual Doped Carbon Superstructures for Advanced Zn-Ion Hybrid Capacitors: Unveiling the Respective Effects Heteroatom Functionalities. Journal of the Electrochemical Society, 2022, 169, 070511.	1.3	2
1339	Ordered Interface Engineering Enabled High-Performance Ti ₃ C ₂ T _{<i>x</i>/sub> MXene Fiber-Based Supercapacitors. Energy & Fuels, 2022, 36, 7898-7907.}	2.5	11
1340	Metalâ€Organic Frameworks Functionalized Separators for Lithiumâ€Sulfur Batteries. Chemical Record, 2022, 22, .	2.9	6
1341	Approaches to Enhancing Electrical Conductivity of Pristine Metal–Organic Frameworks for Supercapacitor Applications. Small, 2022, 18, .	5.2	22
1342	MOF-derived metal sulfides for electrochemical energy applications. Energy Storage Materials, 2022, 51, 840-872.	9.5	45
1343	Dualâ€Atomic Catalysts Deduced from dâ^'Ï€ Conjugated Metalâ^'Organic Frameworks for Efficient Oxygen Evolution Reaction. Advanced Materials Interfaces, 2022, 9, .	1.9	4
1344	Unraveling the capacitive effect in the vacancy-heterostructure WTe2/MoTe2 for hydrogen evolution reaction by the grand canonical potential kinetics. International Journal of Hydrogen Energy, 2022, , .	3.8	0
1345	Multi-Redox Responsive Behavior in a Mixed-Valence Semiconducting Framework Based on Bis-[1,2,5]-thiadiazolo-tetracyanoquinodimethane. Journal of the American Chemical Society, 0, , .	6.6	5
1346	In situ constructed multilayer graphene structure enabling improved supercapacitive charge storage. Electrochimica Acta, 2022, 426, 140827.	2.6	4
1347	Co1-xS/Co3S4@N,S-co-doped agaric-derived porous carbon composites for high-performance supercapacitors. Electrochimica Acta, 2022, 426, 140825.	2.6	15
1348	A high-performance pseudocapacitive negatrode for lithium-ion capacitor based on a tetrathiafulvalene-cobalt metal–organic framework. Electrochimica Acta, 2022, 426, 140828.	2.6	3

#	Article	IF	CITATIONS
1349	Recent Progress of Novel Non-Carbon Anode Materials for Potassium-Ion Battery. Energy Storage Materials, 2022, 51, 327-360.	9.5	19
1350	Metal–Organic Framework: An Emergent Catalyst in C–N Cross-Coupling Reactions. Coordination Chemistry Reviews, 2022, 469, 214667.	9.5	23
1351	Efficient CH4 separation and vapor uptakes in a porous MOF featuring 2D interlaced channels: experiment and simulation exploration. Separation and Purification Technology, 2022, 298, 121645.	3.9	4
1352	Preparation of 3D CeO2@NiFe-LDH composites derived from prussian blue analogues for high performance supercapacitors. Materials Science in Semiconductor Processing, 2022, 150, 106913.	1.9	15
1353	Conductive coordination nanosheets: Sailing to electronics, energy storage, and catalysis. Coordination Chemistry Reviews, 2022, 470, 214693.	9.5	18
1354	Interface-Sensitized Chemiresistor: Integrated Conductive and Porous Metal-Organic Frameworks. Chemical Engineering Journal, 2022, 449, 137780.	6.6	14
1355	One-dimensional π-d conjugated coordination polymer with double redox-active centers for all-organic symmetric lithium-ion batteries. Chemical Engineering Journal, 2022, 450, 138052.	6.6	11
1356	Lignin-containing hydrogel matrices with enhanced adhesion and toughness for all-hydrogel supercapacitors. Chemical Engineering Journal, 2022, 450, 138025.	6.6	22
1357	Single-crystal structure determination of nanosized metal–organic frameworks by three-dimensional electron diffraction. Nature Protocols, 2022, 17, 2389-2413.	5.5	28
1358	Synergistic effect of Co/Ni bimetallic metal–organic nanostructures for enhanced electrochemical energy storage. Journal of Colloid and Interface Science, 2022, 628, 389-396.	5.0	17
1359	Challenges and advances of organic electrode materials for sustainable secondary batteries. Exploration, 2022, 2, .	5.4	20
1360	Metal-organic framework nanocrystal-derived hollow porous materials: Synthetic strategies and emerging applications. Innovation(China), 2022, 3, 100281.	5.2	96
1361	Metal-organic frameworks (MOFs) and their derivative as electrode materials for lithium-ion batteries. Coordination Chemistry Reviews, 2022, 470, 214715.	9.5	50
1362	Synergistic construction of bifunctional interface film on anode via a novel hybrid additive for enhanced alkaline Al-air battery performance. Chemical Engineering Journal, 2022, 450, 138175.	6.6	20
1363	Twoâ^'dimensional nanomaterials confined single atoms: New opportunities for environmental remediation. Nano Materials Science, 2023, 5, 15-38.	3.9	10
1364	Current perspectives on the environmental applications using conductive metal–organic frameworks (CMOFs). Journal of Porous Materials, 2022, 29, 1689-1706.	1.3	3
1365	Effects of ultrafiltration on Co-Metal Organic Framework/pre-hydrolysis solution carbon materials for supercapacitor energy storage. Frontiers in Chemistry, 0, 10, .	1.8	3
1366	Intrinsic properties of metal–organic frameworks (MOFs) in supercapacitor applications. Current Opinion in Electrochemistry, 2022, 36, 101112.	2.5	6

#	Article	IF	CITATIONS
1367	Facile Synthesis of Conductive Metalâ^'Organic Frameworks Nanotubes for Ultrahighâ€Performance Flexible NO Sensors. Small Methods, 2022, 6, .	4.6	11
1368	Infusion of variable chemical structure to tune stacking among metalâ€organic layers in 2D Nano MOF. Chemistry - A European Journal, 0, , .	1.7	3
1369	Preparation of metalâ€organic frameworks and their derivatives for supercapacitors. Biosurface and Biotribology, 2022, 8, 151-164.	0.6	2
1370	Holey graphene oxide-templated construction of nano nickel-based metal—organic framework for highly efficient asymmetric supercapacitor. Nano Research, 2022, 15, 9047-9056.	5.8	9
1371	Selective CO ₂ -to-Formate Conversion Driven by Visible Light over a Precious-Metal-Free Nonporous Coordination Polymer. ACS Catalysis, 2022, 12, 10172-10178.	5.5	13
1372	In-Built Fabrication of MOF Assimilated Porous Hollow Carbon from Pre-Hydrolysate for Supercapacitor. Polymers, 2022, 14, 3377.	2.0	4
1373	Making a wearable supercapacitor based on highly porous 3D nitrogen-doped graphene. Journal of Materials Science: Materials in Electronics, 0, , .	1.1	2
1374	Water Induced Structural Transformations in Flexible Two-Dimensional Layered Conductive Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 7730-7740.	3.2	4
1375	Singleâ€layer 2D Niâ€BDC MOF Obtained in Supercritical CO2â€assisted Aqueous Solution. Chemistry - A European Journal, 0, , .	1.7	4
1376	Nanocomposite Polymeric Membranes for Organic Micropollutant Removal: A Critical Review. ACS ES&T Engineering, 2022, 2, 1574-1598.	3.7	21
1377	Porous lanthanide metal–organic frameworks with metallic conductivity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	24
1378	Highly scalable and pH stable 2D Ni-MOF-based composites for high performance supercapacitor. Composites Part B: Engineering, 2022, 245, 110174.	5.9	30
1379	Template-free electrodeposition of sponge-like porous polymer interwoven with the bi-metallic metal-organic framework and reduced graphene oxide and application in energy storage device. Journal of Energy Storage, 2022, 55, 105381.	3.9	11
1380	A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coordination Chemistry Reviews, 2022, 471, 214741.	9.5	24
1381	Controllable surface engineered three-dimensional porous graphene based electrode for ultrasensitive flexible electrochemical sensing. Applied Surface Science, 2022, 604, 154530.	3.1	2
1382	A novel efficient dual-functional electrocatalyst for overall water splitting based on Ni0.85Se/RGO/CNTs nanocomposite synthesized via different nickel precursors. International Journal of Hydrogen Energy, 2022, 47, 35227-35240.	3.8	8
1383	Construction of molecularly imprinted voltammetric sensor based on Cu N C polyhedron porous carbon from Cu doping ZIF-8 for the selective determination of norfloxacin. Microchemical Journal, 2022, 183, 107963.	2.3	7
1384	Advanced MOF-based electrode materials for supercapacitors and electrocatalytic oxygen reduction. Nano Research, 2023, 16, 1338-1361.	5.8	29

#	Article	IF	CITATIONS
1385	The progress and roadmap of metal–organic frameworks for high-performance supercapacitors. Coordination Chemistry Reviews, 2022, 473, 214771.	9.5	52
1386	Layered metal-organic frameworks and metal-organic nanosheets as functional materials. Coordination Chemistry Reviews, 2022, 472, 214787.	9.5	29
1387	Application of morphology and phase design of dealloying method in supercapacitor. Journal of Alloys and Compounds, 2022, 927, 166974.	2.8	9
1388	Toward emerging two-dimensional nickel-based materials for electrochemical energy storage: Progress and perspectives. Energy Storage Materials, 2022, 53, 79-135.	9.5	49
1389	Nitrogen-rich three-dimensional metal-organic framework microrods as an efficient electrocatalyst for oxygen evolution reaction and supercapacitor applications. Fuel, 2023, 331, 125746.	3.4	5
1390	Recent Progress of Electric Conductive Metal-Organic Frameworks Thin Film. Acta Chimica Sinica, 2022, 80, 1042.	0.5	0
1391	Oxidative control over the morphology of Cu ₃ (HHTP) ₂ , a 2D conductive metal–organic framework. Chemical Science, 2022, 13, 10472-10478.	3.7	10
1392	Nanostructured materials for electrochemical capacitors. , 2022, , .		0
1393	High performance Li-, Na-, and K-ion storage in electrically conducting coordination polymers. Energy and Environmental Science, 2022, 15, 3923-3932.	15.6	23
1394	Carbon Nanocages Bridged with Graphene EnableÂFast Kinetics for Dual-Carbon Lithium-Ion Capacitors. SSRN Electronic Journal, 0, , .	0.4	0
1395	Three-dimensional hierarchical conductive metal–organic frameworks/NiFe layered double hydroxide/carbon nanofibers: an efficient oxygen evolution reaction catalyst for Zn–air batteries. Inorganic Chemistry Frontiers, 2022, 9, 5335-5346.	3.0	12
1396	Photocatalytic reduction of low-concentration CO ₂ by metal–organic frameworks. Chemical Communications, 2022, 58, 10114-10126.	2.2	11
1397	Ultrathin MOF nanosheet-based resistive sensors for highly sensitive detection of methanol. Chemical Communications, 2022, 58, 11543-11546.	2.2	7
1398	Efficient Dual Conductive Network Based on Layered Double Hydroxide Nanospheres and Nanosheets Anchored in N-Carbon Nanofibers for Asymmetric Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
1399	Direct synthesis of a stable radical doped electrically conductive coordination polymer. Inorganic Chemistry Frontiers, 2022, 9, 5016-5023.	3.0	3
1400	The diffusion mechanism of water in conductive metal–organic frameworks. Physical Chemistry Chemical Physics, 2022, 24, 24852-24859.	1.3	3
1401	Metal–organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors. Chemical Science, 2022, 13, 11981-12015.	3.7	31
1402	Efficient dual conductive network based on layered double hydroxide nanospheres and nanosheets anchored in N-carbon nanofibers for asymmetric supercapacitors. Journal of Alloys and Compounds, 2023, 930, 167332.	2.8	9

#	Article	IF	CITATIONS
1403	The introduction of cobalt element into nickel-organic framework for enhanced supercapacitive performance. Chinese Chemical Letters, 2023, 34, 107787.	4.8	1
1404	Recent Progress of Advanced Conductive Metal–Organic Frameworks: Precise Synthesis, Electrochemical Energy Storage Applications, and Future Challenges. Small, 2022, 18, .	5.2	30
1405	Dual-conductive metal-organic framework@MXene heterogeneity stabilizes lithium-ion storage. Journal of Energy Chemistry, 2023, 76, 368-376.	7.1	23
1406	Novel stylophora coral-like furan-based Ni/Co bimetallic metal organic framework for high-performance capacitive storage and non-enzymatic glucose electrochemical sensing. Journal of Alloys and Compounds, 2023, 931, 167413.	2.8	14
1407	Metal–Organic Framework Materials for Electrochemical Supercapacitors. Nano-Micro Letters, 2022, 14, .	14.4	61
1408	Curated Collection of More than 20,000 Experimentally Reported One-Dimensional Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 42258-42266.	4.0	7
1409	Tunable Fabrication of Hollow Nano Sword-Like CuCo ₂ O ₄ Derived from Bimetal–Organic Frameworks as Binder-Free Electrodes. ACS Sustainable Chemistry and Engineering, 2022, 10, 13310-13318.	3.2	10
1410	Surface Structure Construction of Fibers in a Conductive Metal–Organic Framework/Metal/Cotton Electrode for Flexible Textile Supercapacitors. ACS Applied Electronic Materials, 2022, 4, 4595-4604.	2.0	5
1411	Chemical Vapor Deposition of Edge-on Oriented 2D Conductive Metal–Organic Framework Thin Films. Journal of the American Chemical Society, 2022, 144, 16726-16731.	6.6	26
1412	Applications of Transition Metal (Fe, Co, Ni)-Based Metal–Organic Frameworks and their Derivatives in Batteries and Supercapacitors. Transactions of Tianjin University, 2022, 28, 446-468.	3.3	4
1413	Gate-Modulated High-Response Field-Effect Transistor-Type Gas Sensor Based on the MoS ₂ /Metal–Organic Framework Heterostructure. ACS Applied Materials & Interfaces, 2022, 14, 42356-42364.	4.0	15
1414	Linker Redox Mediated Control of Morphology and Properties in Semiconducting Ironâ€Semiquinoid Coordination Polymers**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
1415	2D Metal–Organic Frameworks for Electrochemical Energy Storage. Energy and Environmental Materials, 2023, 6, .	7.3	8
1416	Linker Redox Mediated Control of Morphology and Properties in Semiconducting Ironâ€ S emiquinoid Coordination Polymers. Angewandte Chemie, 0, , .	1.6	0
1417	Vertically Aligned Conductive Polymeric Nanotubes Grown on Percolated Multiwalled Carbon Nanotube Films for Supercapacitor Electrodes. ACS Applied Nano Materials, 2022, 5, 15700-15710.	2.4	1
1418	Ultrastrong, highly conductive and capacitive hydrogel electrode for electron-ion transduction. Matter, 2022, 5, 4407-4424.	5.0	23
1419	Rechargeable Batteries for Grid Scale Energy Storage. Chemical Reviews, 2022, 122, 16610-16751.	23.0	340
1420	From an antiferromagnetic insulator to a strongly correlated metal in square-lattice MCl2(pyrazine)2 coordination solids. Nature Communications, 2022, 13, .	5.8	7

#	Article	IF	CITATIONS
1421	Vertical Growth of 2D Covalent Organic Framework Nanoplatelets on a Macroporous Scaffold for Highâ€Performance Electrodes. Advanced Materials, 2022, 34, .	11.1	15
1422	Strategies to enhance the electrochemical performance of strontium-based electrode materials for battery-supercapacitor applications. Journal of Electroanalytical Chemistry, 2022, 924, 116868.	1.9	21
1423	Electrochemical Double‣ayer Capacitor based on Carbon@ Covalent Organic Framework Aerogels. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
1424	Electrochemical Double‣ayer Capacitor based on Carbon@ Covalent Organic Framework Aerogels. Angewandte Chemie, 2022, 134, .	1.6	5
1425	Electrical conductivity through π–π stacking in a twoâ€dimensional porous gallium catecholate metal–organic framework. Annals of the New York Academy of Sciences, 2022, 1518, 226-230.	1.8	8
1426	Simple fabrication of homogeneous Co/Co9S8/nitrogen doped carbon nanospheres derived from Prussian blue analogues for high performance supercapacitors. Journal of Energy Storage, 2022, 55, 105789.	3.9	5
1427	Synergistic effect of metal node engineering and mixed-linker-architected on the energy storage activities of pillar-layered Cu2(L)2(DABCO) metal-organic frameworks. Materials Chemistry and Physics, 2022, 292, 126761.	2.0	2
1428	Defined metal atom aggregates precisely incorporated into metal–organic frameworks. Chemical Society Reviews, 2022, 51, 9933-9959.	18.7	28
1429	Synthesis of Different Manganese Tungstate Nanostructures for Enhanced Charge Storage Application: Theoretical support of the Experimental Findings. Physical Chemistry Chemical Physics, 0, ,	1.3	1
1430	Solvent-controlled ion-coupled charge transport in microporous metal chalcogenides. Chemical Science, 2022, 13, 12747-12759.	3.7	1
1431	Machine Learning in the Development of Adsorbents for Clean Energy Application and Greenhouse Gas Capture. Advanced Science, 2022, 9, .	5.6	8
1432	Nickel(II) Cluster-Based Pillar-Layered Metal–Organic Frameworks for High-Performance Supercapacitors. Inorganic Chemistry, 2022, 61, 17278-17288.	1.9	2
1433	Decoupled Solar Energy Storage and Dark Photocatalysis in a 3D Metal–Organic Framework. Advanced Materials, 2023, 35, .	11.1	14
1434	Emerging Synthetic Methods and Applications of MOFâ€Based Gels in Supercapacitors, Water Treatment, Catalysis, Adsorption, and Energy Storage. Macromolecular Materials and Engineering, 2023, 308, .	1.7	13
1435	Transforming an Insulating Metal–Organic Framework (MOF) into Semiconducting MOF/Gold Nanoparticle (AuNP) and MOF/Polymer/AuNP Composites to Gain Electrical Conductivity. ACS Applied Nano Materials, 2022, 5, 13912-13920.	2.4	16
1436	Water electrolysis. Nature Reviews Methods Primers, 2022, 2, .	11.8	70
1437	Carbon nanocages bridged with graphene enable fast kinetics for dual-carbon lithium-ion capacitors. Green Energy and Environment, 2024, 9, 573-583.	4.7	4
1438	Tailoring Nanostructured Supports to Achieve High Performance in Enzymatic Biofuel Cells. ACS Applied Energy Materials, 2022, 5, 13113-13127.	2.5	4

#	Article	IF	CITATIONS
1440	Organic Supercapacitors as the Next Generation Energy Storage Device: Emergence, Opportunity, and Challenges. ChemPhysChem, 2023, 24, .	1.0	16
1441	Metal-organic frameworks for advanced aqueous ion batteries and supercapacitors. EnergyChem, 2022, 4, 100090.	10.1	22
1442	Sustainable Fe-MOF@carbon nanocomposite electrode for supercapacitor. Surfaces and Interfaces, 2022, 34, 102397.	1.5	18
1443	Current advances of nickel based metal organic framework and their nanocomposites for high performance supercapacitor applications: A critical review. Journal of Energy Storage, 2022, 56, 105897.	3.9	18
1444	Metal organic frameworks and their composites for supercapacitor application. Journal of Energy Storage, 2022, 56, 105819.	3.9	19
1445	The progress of electrochromic materials based on metal–organic frameworks. Coordination Chemistry Reviews, 2023, 475, 214891.	9.5	27
1446	MnO2 decorated Prussian blue analogues as high-performance supercapacitor electrodes. Materials Letters, 2023, 330, 133341.	1.3	4
1447	Flexible metal complex crystals in response to external mechanical stimuli. Coordination Chemistry Reviews, 2023, 475, 214890.	9.5	16
1448	The influence of solvent controlled morphology on capacitive properties of metal-organic frameworks based on polyaminocarboxybenzene ligands. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130350.	2.3	5
1449	Cationic Metal–Organic Frameworks Synthesized from Cyclotetraphosphazene Linkers with Flexible Tentacles. Crystal Growth and Design, 2022, 22, 7123-7132.	1.4	4
1450	Structure and function tailored metal-organic frameworks for heterogeneous catalysis. Chem Catalysis, 2022, 2, 3304-3319.	2.9	10
1452	Highly Stable Two-Dimensional Cluster-Based Ni/Co–Organic Layers for High-Performance Supercapacitors. Inorganic Chemistry, 2022, 61, 18743-18751.	1.9	5
1453	The review of different dimensionalities based pristine metal organic frameworks for supercapacitor application. Journal of Energy Storage, 2022, 56, 105700.	3.9	13
1454	Room-Temperature Semiconductor Gas Sensors: Challenges and Opportunities. ACS Sensors, 2022, 7, 3582-3597.	4.0	50
1455	High Power―and Energyâ€density Supercapacitors through the Chlorine Respiration Mechanism. Angewandte Chemie, 0, , .	1.6	0
1456	High Power―and Energyâ€Đensity Supercapacitors through the Chlorine Respiration Mechanism. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
1457	An in-depth study of the electrical characterization of supercapacitors for recent trends in energy storage system. Journal of Energy Storage, 2023, 57, 106198.	3.9	43
1458	Self-templating synthesis of porous carbon with phytate salts for supercapacitor application. Journal of Energy Storage, 2023, 57, 106221.	3.9	5

		CITATION REP	ORT	
#	Article		IF	CITATIONS
1459	Synthesis, structure, and lithium storage performance of non-conductive metal–organic framew for high-performance lithium-ion batteries. Journal of Electroanalytical Chemistry, 2023, 929, 1170	orks 96.	1.9	0
1460	Design of high-mass loading metal–organic framework-based electrode materials with excellent redox activity for long-lasting electrochemical energy storage applications. Chemical Engineering Journal, 2023, 455, 140905.		6.6	10
1461	The synthesis of zeolitic imidazolate framework/prussian blue analogue heterostructure composite and their application in supercapacitors. Inorganic Chemistry Frontiers, 2022, 10, 78-84.	'S	3.0	14
1462	Lignin-derived electrode materials for supercapacitor applications: progress and perspectives. Journ of Materials Chemistry A, 2023, 11, 1061-1082.	nal	5.2	53
1463	On the contribution of phonons to electrochemical potential of Li-ion metal-organic frameworks. Electrochimica Acta, 2023, 439, 141734.		2.6	1
1464	One-dimensional conductive Ni3(HHTP)2 @ woven fabrics with controlled engineering design towards high-efficiency EDL electrodes. Vacuum, 2023, 208, 111731.		1.6	1
1465	MOF derived metal oxide composites and their applications in energy storage. Coordination Chem Reviews, 2023, 477, 214949.	istry	9.5	60
1466	Materials design and preparation for high energy density and high power density electrochemical supercapacitors. Materials Science and Engineering Reports, 2023, 152, 100713.		14.8	54
1467	Rational designing carbon nanotubes incorporated oxygen vacancy-enriched bimetallic (Ni, Co) oxi nanocages for high-performance hybrid supercapacitor. Applied Surface Science, 2023, 613, 1559	de 59.	3.1	14
1468	Nitrogenous MOFs and their composites as high-performance electrode material for supercapacito Recent advances and perspectives. Coordination Chemistry Reviews, 2023, 478, 214967.	rs:	9.5	17
1469	Pseudocapacitive performance of phenothiazine functionalized graphene aerogel. Applied Surface Science, 2023, 613, 156069.		3.1	4
1470	A facile morphology tunable strategy of Zn-MOF derived hierarchically carbon materials with enhanced supercapacitive performance through the solvent effect. Dalton Transactions, 2022, 51, 18213-18223.		1.6	6
1471	Precise tuning of interlayer electronic coupling in layered conductive metal-organic frameworks. Nature Communications, 2022, 13, .		5.8	19
1472	Atomic Layer Deposition for Electrochemical Energy: from Design to Industrialization. Electrochemical Energy Reviews, 2022, 5, .		13.1	21
1473	Effect of Solvothermal Temperature on Morphology and Supercapacitor Performance of Ni-MOF. Molecules, 2022, 27, 8226.		1.7	8
1474	Kinetic and Thermodynamic Insights into Advanced Energy Storage Mechanisms of Battery-Type Bimetallic Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 10338-10346.		3.2	4
1475	A one-dimensional conductive metal-organic framework with extended π-d conjugated nanoribbon layers. Nature Communications, 2022, 13, .	1	5.8	20
1476	Double-Carbon Matrix-Supported MnO ₂ for High-Voltage Supercapacitors in a Neutra Aqueous System. ACS Applied Energy Materials, 2022, 5, 15874-15880.	I	2.5	5

#	Article	IF	CITATIONS
1477	Comparison between PEDOT:PSS and Carbon Pastes for Preparing Flexible Electrodes of Supercapacitors. ECS Journal of Solid State Science and Technology, 2022, 11, 121001.	0.9	0
1478	A chiral SrSi2 (srs) superstructure constructed by a dual interaction system showing isotropic electrical conductivity. Chinese Chemical Letters, 2023, 34, 108100.	4.8	1
1479	Recent Progress of Conductive Metal–Organic Frameworks for Electrochemical Energy Storage. Transactions of Tianjin University, 2023, 29, 136-150.	3.3	3
1480	Green Synthesis of Nickel Cobaltite Using Moringa oleifera Plant Extract for Electrode Materials in Sustainable Supercapacitor Energy Storage. Journal of Electronic Materials, 2023, 52, 1437-1447.	1.0	5
1481	Trinitroaromatic Salts as High-Energy-Density Organic Cathode Materials for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2023, 15, 1129-1137.	4.0	3
1482	Multiple Dimensional Engineering of MOF-Related Materials in Separators for Lithium-Sulfur Batteries: A Review. Journal of the Electrochemical Society, 2022, 169, 120519.	1.3	0
1483	Fabrication of Multifunctional Electronic Textiles Using Oxidative Restructuring of Copper into a Cu-Based Metal–Organic Framework. Journal of the American Chemical Society, 2022, 144, 23297-23312.	6.6	16
1484	Dense Conductive Metal–Organic Frameworks as Robust Electrocatalysts for Biosensing. Analytical Chemistry, 2022, 94, 17177-17185.	3.2	14
1485	Colloidal Approaches to Zinc Oxide Nanocrystals. Chemical Reviews, 2023, 123, 271-326.	23.0	26
1486	Construction of Bimetallic Heterojunction Based on Porous Engineering for High Performance Flexible Asymmetric Supercapacitors. Small, 2023, 19, .	5.2	14
1487	Heterostructured Core–Shell Ni–Co@Fe–Co Nanoboxes of Prussian Blue Analogues for Efficient Electrocatalytic Hydrogen Evolution from Alkaline Seawater. ACS Catalysis, 2023, 13, 1349-1358.	5.5	25
1488	Nanoscale molecular rectifiers. Nature Reviews Chemistry, 2023, 7, 106-122.	13.8	33
1489	Reduced graphene oxide/cobalt sulphides nanoparticle derived from metal–organic framework for supercapacitor application. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	2
1490	Modulating crystal and electronic structure of NiFe-MOFs by inorganic acid for highly efficient electrochemical water oxidation. Dalton Transactions, 2023, 52, 2027-2035.	1.6	4
1491	Exploring the role of redox mediator within mesoporous carbon using Thionine and LiTFSIwater-in-salt electrolytes. Energy Storage Materials, 2023, 55, 808-815.	9.5	7
1492	2D metal-organic frameworks for ultraflexible electrochemical transistors with high transconductance and fast response speeds. Science Advances, 2023, 9, .	4.7	21
1493	Recent advances in and perspectives on pseudocapacitive materials for Supercapacitors–A review. Journal of Power Sources, 2023, 557, 232558.	4.0	32
1494	Dextran-assisted ultrasonic exfoliation of two-dimensional metal-organic frameworks to evaluate acetylcholinesterase activity and inhibitor screening. Analytica Chimica Acta, 2023, 1243, 340815.	2.6	5

#	Article	IF	Citations
" 1495	Electrochemical behavior of in-situ electrosynthetized 3D metal-organic framework (MOF) as	2.6	4
1490	ultra-stable thin film on nickel foam. Electrochimica Acta, 2023, 441, 141792.	2.0	т
1496	Nonconductive two-dimensional metalâ~'organic frameworks for high-performance electrochemical energy storage. Electrochimica Acta, 2023, 441, 141808.	2.6	3
1497	Hollow cotton carbon based NiCo2S4/NiMoO4 hybrid arrays for high performance supercapacitor. Journal of Energy Storage, 2023, 59, 106553.	3.9	8
1498	Novel MoS2-sputtered NiCoMg MOFs for high-performance hybrid supercapacitor applications. Separation and Purification Technology, 2023, 310, 123101.	3.9	26
1499	Intercalative pseudocapacitive anhydrous NiC2O4 quantum dot electrode for the fabrication of supercapacitor using aqueous KOH and neutral Na2SO4 electrolyte. Journal of Energy Storage, 2023, 60, 106549.	3.9	3
1500	Nanostructural Organization in a Biredox Ionic Liquid. Journal of Physical Chemistry Letters, 2023, 14, 101-106.	2.1	2
1501	Salicylaldehydate coordinated two-dimensional-conjugated metal–organic frameworks. Chemical Communications, 2023, 59, 2608-2611.	2.2	3
1502	Transition metal hydroxides@conducting MOFs on carbon nanotube yarns for ultra-stable quasi-solid-state supercapacitors with a ship-in-a-bottle architecture. Journal of Materials Chemistry A, 2023, 11, 5309-5319.	5.2	8
1503	A three-dimensional Mn-based MOF as a high-performance supercapacitor electrode. Dalton Transactions, 2023, 52, 1962-1969.	1.6	21
1504	Charge Manipulation in a Series of ï€-Stacked Pillared-Layer Frameworks by Tuning Electron Donation Ability of Building Blocks. Crystal Growth and Design, 2023, 23, 1238-1246.	1.4	0
1505	Plasmaâ€Assisted Defect Engineering on <i>pâ€n</i> Heterojunction for Highâ€Efficiency Electrochemical Ammonia Synthesis. Advanced Science, 2023, 10, .	5.6	6
1506	Room-temperature magnetism in two-dimensional metal–organic frameworks enabled by electrostatic gating. Journal of Materials Chemistry A, 2023, 11, 5548-5558.	5.2	10
1507	Semiconducting Conjugated Coordination Polymer with High Charge Mobility Enabled by "4 + 2― Phenyl Ligands. Journal of the American Chemical Society, 2023, 145, 2430-2438.	6.6	1
1508	Synthesis of Metal Organic Frameworks (MOFs) and Their Derived Materials for Energy Storage Applications. Clean Technologies, 2023, 5, 140-166.	1.9	10
1509	Recent progress in polyaniline-based composites as electrode materials for pliable supercapacitors. Physical Chemistry Chemical Physics, 2023, 25, 7611-7628.	1.3	5
1510	Boosting electrocatalytic CO ₂ reduction reaction over viologen-functionalized metal–organic frameworks by enhancement of electron-transfer capacity. Journal of Materials Chemistry A, 2023, 11, 8739-8746.	5.2	7
1511	Engineering semicoherent interface with O–Fe–Se coordination for boosting the capacity and rate capability of a battery-type supercapacitor anode. Science China Materials, 2023, 66, 1767-1778.	3.5	7
1512	Design and Synthesis of Bisulfone-Linked Two-Dimensional Conjugated Microporous Polymers for CO2 Adsorption and Energy Storage. Molecules, 2023, 28, 3234.	1.7	27

#	Article	IF	CITATIONS
1513	Production of polypropylene-derived novel porous carbon nanosheets through aromatization stabilization toward supercapacitor applications. Chemical Engineering Science, 2023, 270, 118559.	1.9	5
1514	Promoting photoelectrochemical water oxidation of BiVO4 photoanode via Co-MOF-derived heterostructural cocatalyst. Applied Surface Science, 2023, 619, 156710.	3.1	13
1515	Controlled synthesis of Cu-/Ni-based 1D c-MOFs and their application in near-linear temperature sensing. Vacuum, 2023, 211, 111937.	1.6	0
1516	In situ hydrolysis strategy to synthesis ultrathin CoNi-LDH nanoflowers for High-performance supercapacitors. Journal of Electroanalytical Chemistry, 2023, 936, 117379.	1.9	5
1517	Recent advances in metal-organic framework-based electrode materials for supercapacitors: A review. Journal of Energy Storage, 2023, 62, 106934.	3.9	54
1518	Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coordination Chemistry Reviews, 2023, 484, 215112.	9.5	22
1519	Recent advances in two-dimensional metal-organic frameworks as an exotic candidate for the evaluation of redox-active sites in energy storage devices. Journal of Energy Storage, 2023, 64, 107142.	3.9	25
1520	Enhancing photocatalytic CO2 reduction reaction on amorphous Ni@NiO aerogel via oxygen incorporated tuning. Applied Catalysis B: Environmental, 2023, 330, 122603.	10.8	5
1521	Recent electrochemical-energy-storage applications of metal–organic frameworks featuring iron-series elements (Fe, Co, and Ni). Journal of Energy Storage, 2023, 65, 107217.	3.9	5
1522	Ultrasonic-assisted synthesis of nickel metal-organic framework for efficient urea removal and water splitting applications. Synthetic Metals, 2023, 294, 117309.	2.1	15
1523	New electropolymerized triphenylamine polymer films and excellent multifunctional electrochromic energy storage system materials with real-time monitoring of energy storage status. Chemical Engineering Journal, 2023, 461, 141974.	6.6	22
1524	Latest advances of metal-organic frameworks-based materials for supercapacitors. Sustainable Materials and Technologies, 2023, 36, e00588.	1.7	3
1525	Metal-organic framework derived functional MnO2 via an in-situ oxidation strategy for advanced quasi-solid-state supercapacitors. Journal of Power Sources, 2023, 560, 232705.	4.0	9
1526	Synthesis of NiFe-MOF@NiFeTe nanoparticle-rod heterostructure on nickel foam for high-performance hybrid supercapacitors. Applied Surface Science, 2023, 616, 156533.	3.1	11
1527	A Triptyceneâ€Based 2D MOF with Vertically Extended Structure for Improving the Electrocatalytic Performance of CO ₂ to Methane. Angewandte Chemie, 2023, 135, .	1.6	6
1528	A Triptyceneâ€Based 2D MOF with Vertically Extended Structure for Improving the Electrocatalytic Performance of CO ₂ to Methane. Angewandte Chemie - International Edition, 2023, 62, .	7.2	22
1529	MOFormer: Self-Supervised Transformer Model for Metal–Organic Framework Property Prediction. Journal of the American Chemical Society, 2023, 145, 2958-2967.	6.6	27
1530	Novel covalent-organometallic polymer for highly stable nano-resistive switching memories. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	1

#	Article	IF	CITATIONS
1531	In Situ Growth of Ni-MOF Nanorods Array on Ti3C2Tx Nanosheets for Supercapacitive Electrodes. Nanomaterials, 2023, 13, 610.	1.9	7
1532	Large-scale synthesis of low-cost 2D metal-organic frameworks for highly selective photocatalytic CO2 reduction. Nano Research, 2023, 16, 7756-7760.	5.8	9
1533	On electrochemistry of metal–organic framework Zn ₂ (EDTA)(H ₂ O). RSC Advances, 2023, 13, 4880-4889.	1.7	3
1534	A tribenzocoronene-based 2D conductive metal–organic framework for efficient energy storage. Chemical Communications, 2023, 59, 2978-2981.	2.2	5
1535	A Novel Electrocatalyst Pd(II)@Ni ₃ (HITP) ₂ for Ultrasensitive Detection of Chloramphenicol: Experimental and Computational Investigation. Chemistry - A European Journal, 0, , .	1.7	1
1536	Conjugated Microporous Polymers Based on Ferrocene Units as Highly Efficient Electrodes for Energy Storage. Polymers, 2023, 15, 1095.	2.0	20
1537	Oneâ€Dimensional <i>ï€</i> â€d Conjugated Coordination Polymer Intercalated MXene Compound for Highâ€Performance Supercapacitor Electrode. Small Methods, 2023, 7, .	4.6	7
1538	Synthesizing Crâ€Based Twoâ€Dimensional Conjugated Metalâ€Organic Framework Through Onâ€Surface Substitution Reaction. Small, 2023, 19, .	5.2	6
1539	In situ transformation boosts the pseudocapacitance of CuNi-MOF via cooperative orientational and electronic governing. Materials Research Letters, 2023, 11, 446-453.	4.1	7
1540	Electrochemical Characteristics of Polyaniline Nanofibers and Active Chromium Sulfide Nanoparticles for Asymmetric Supercapacitor Applications. ChemistrySelect, 2023, 8, .	0.7	1
1541	Negative electrodes for supercapacitors with good performance using conductive bismuth-catecholate metal–organic frameworks. Dalton Transactions, 2023, 52, 4826-4834.	1.6	2
1542	Swellingâ€Induced Structural Transformation Strategy: Controllable Synthesis of 2D Porous Polypyrrole/MXene Heterostructures with Tunable Pore Structures. Advanced Materials Interfaces, 2023, 10, .	1.9	2
1543	Insight into Electrochemical Performance of Nitrogenâ€Đoped Carbon/NiCoâ€Alloy Active Nanocomposites. Small, 2023, 19, .	5.2	15
1544	Redox-Active Two-Dimensional Tetrathiafulvalene-Copper Metal–Organic Framework with Boosted Electrochemical Performances for Supercapatteries. Inorganic Chemistry, 2023, 62, 4672-4679.	1.9	2
1545	Recent advances in wood-based electrode materials for supercapacitors. Green Chemistry, 2023, 25, 3322-3353.	4.6	14
1546	Largely Pseudocapacitive Two-Dimensional Conjugated Metal–Organic Framework Anodes with Lowest Unoccupied Molecular Orbital Localized in Nickel-bis(dithiolene) Linkages. Journal of the American Chemical Society, 2023, 145, 6247-6256.	6.6	14
1547	Giant Redox Entropy in the Intercalation vs Surface Chemistry of Nanocrystal Frameworks with Confined Pores. Journal of the American Chemical Society, 2023, 145, 6257-6269.	6.6	3
1548	Influence of the Solvent on the Assembly of Ni3(hexaiminotriphenylene)2 Metal–Organic Framework Nanosheets at the Air/Liquid Interface. Bulletin of the Chemical Society of Japan, 2023, 96, 274-282.	2.0	10

#	Article	IF	Citations
1549	Metalâ€Organic Frameworks Nanocarriers for Functional Nucleic Acid Delivery in Biomedical Applications. Chemical Record, 2023, 23, .	2.9	7
1550	In Situ Synthesis of Ni-BTC Metal–Organic Framework@Graphene Oxide Composites for High-Performance Supercapacitor Electrodes. ACS Omega, 2023, 8, 10888-10898.	1.6	13
1551	Influences of Partial Destruction of Tiâ€MOFs on Photo(electro)catalytic H ₂ Evolution by Dominating Role of Charge Carrier Trapping over Surface Area. Small, 2023, 19, .	5.2	7
1552	Highlyâ€Efficient Ion Gating through Selfâ€Assembled Twoâ€Dimensional Photothermal Metalâ€Organic Framework Membrane. Angewandte Chemie, 0, , .	1.6	3
1553	Highlyâ€Efficient Ion Gating through Selfâ€Assembled Twoâ€Dimensional Photothermal Metalâ€Organic Framework Membrane. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
1554	High Mass Loading Supercapacitors. Springer Series in Materials Science, 2023, , 225-245.	0.4	0
1555	<i>In Situ</i> Grown Heterostructure Based on MOF-Derived Carbon Containing <i>n</i> -Type Zn–In–S and Dry-Oxidative <i>p</i> -Type CuO as Pseudocapacitive Electrode Materials. ACS Energy Letters, 2023, 8, 1887-1895.	8.8	31
1556	Advances in flexible sensors for intelligent perception system enhanced by artificial intelligence. InformaÄnÄ-MateriÄ¡ly, 2023, 5, .	8.5	20
1557	Facile Synthesis of Metallosalphenâ€Based 2D Conductive Metalâ€Organic Frameworks for NO2 Sensing: Metal Coordination Induced Planarization. Angewandte Chemie, 0, , .	1.6	1
1558	Facile Synthesis of Metallosalphenâ€Based 2D Conductive Metalâ€Organic Frameworks for NO ₂ Sensing: Metal Coordination Induced Planarization. Angewandte Chemie - International Edition, 2023, 62, .	7.2	14
1559	Studying the variable energy band structure for energy storage materials in charge/discharge process. Chinese Chemical Letters, 2023, , 108380.	4.8	0
1560	Nanomaterial with Core–Shell Structure Composed of {P2W18O62} and Cobalt Homobenzotrizoate for Supercapacitors and H2O2-Sensing Applications. Nanomaterials, 2023, 13, 1176.	1.9	3
1561	Quinone-based imide conjugated microporous polymer-reductive graphene oxide composite as an efficient electrode for hybrid supercapacitors. New Journal of Chemistry, 0, , .	1.4	0
1562	High-Performance Supercapacitors: A Comprehensive Review on Paradigm Shift of Conventional Energy Storage Devices. Batteries, 2023, 9, 202.	2.1	34
1563	Post-Synthetic Cyano-ferrate(II) Functionalization of a Metal–Organic Framework, NU-1000. Langmuir, 2023, 39, 4936-4942.	1.6	1
1564	A Microporous Bifunctional Electrochromic Energyâ€Storage Polymer of Thiophene, Triphenylamine, and Thienothiophene. Energy Technology, 2023, 11, .	1.8	0
1566	Computational Screening of Twoâ€Dimensional Metalâ€Organic Frameworks as Efficient Singleâ€Atom Catalysts for Oxygen Reduction Reaction. Chemistry - A European Journal, 2023, 29, .	1.7	2
1567	Electrically Conductive Ï€â€Intercalated Graphitic Metalâ€Organic Framework Containing Alternate Ï€â€Donor/Acceptor Stacks. Angewandte Chemie, 2023, 135, .	1.6	0

#	Article	IF	Citations
1568	Electrically Conductive ï€â€Intercalated Graphitic Metalâ€Organic Framework Containing Alternate ï€â€Donor/Acceptor Stacks. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
1569	Bridging the Gap between Charge Storage Site and Transportation Pathway in Molecular-Cage-Based Flexible Electrodes. ACS Central Science, 2023, 9, 805-815.	5.3	3
1570	Recent research progress of conductive polymer-based supercapacitor electrode materials. Textile Reseach Journal, 2023, 93, 3884-3925.	1.1	3
1571	Metal–organic framework clustering through the lens of transfer learning. Molecular Systems Design and Engineering, 2023, 8, 1049-1059.	1.7	1
1572	Linker Aromaticity Reduces Band Dispersion in 2D Conductive Metal–Organic Frameworks. , 2023, 5, 1476-1480.		3
1573	Conjugated Nonplanar Copper-Catecholate Conductive Metal–Organic Frameworks via Contorted Hexabenzocoronene Ligands for Electrical Conduction. Journal of the American Chemical Society, 2023, 145, 8979-8987.	6.6	15
1574	Progress in photocapacitors: A review. Functional Materials Letters, 2023, 16, .	0.7	1
1582	Organic materials as charge hosts for pseudocapacitive energy storage. Sustainable Energy and Fuels, 2023, 7, 2802-2818.	2.5	1
1590	Fundamental Perspectives on the Electrochemical Water Applications of Metal–Organic Frameworks. Nano-Micro Letters, 2023, 15, .	14.4	8
1593	Recent advances of two-dimensional metal-organic frameworks in alkaline electrolysis water for hydrogen production. Science China Chemistry, 2023, 66, 1924-1939.	4.2	4
1608	Theory and Simulations of Ionic Liquids in Nanoconfinement. Chemical Reviews, 2023, 123, 6668-6715.	23.0	24
1618	Nonporous, conducting bimetallic coordination polymers with an advantageous electronic structure for boosted faradaic capacitance. Materials Horizons, 2023, 10, 3821-3829.	6.4	1
1626	A new class of pseudocapacitive electrode materials for electrochemical energy storage in rechargeable batteries. , 2023, , 181-224.		0
1645	Multi-component carbon-based composites containing high crystallinity NiBDC as high-performance electrodes for supercapacitors. Chemical Communications, 2023, 59, 12310-12313.	2.2	0
1654	Use of Metal–Organic Frameworks in the Separation/Identification Stage of Analysis. , 2023, , 201-227.		0
1659	Sensors Based on Conductive Metal–Organic Frameworks. , 2023, , 301-328.		0
1665	An overview on MOF-derived electrocatalysts material towards energy production for environmental sustainability. , 2023, , .		0
1687	Metal–organic frameworks (MOFs) for energy production and gaseous fuel and electrochemical energy storage applications. Physical Chemistry Chemical Physics, 2023, 25, 30116-30144.	1.3	2

#	Article	IF	CITATIONS
1689	Modular design of solar-powered photocathodic metal protection device. , 2023, 2, .		0
1706	A simple route to functionalized porous carbon foams from carbon nanodots for metal-free pseudocapacitors. Materials Horizons, 2024, 11, 688-699.	6.4	0
1707	Exploring redox properties of a 3D Co-based framework with bis(triarylamine) terphenyl as a redox-active linker. Chemical Communications, 2023, 59, 14157-14160.	2.2	0
1708	Preparation of vanadium-based electrode materials and their research progress in solid-state flexible supercapacitors. Rare Metals, 2024, 43, 431-454.	3.6	2
1720	Conductive Metal-Organic Frameworks for Zinc-Air Battery Application: Design Principles, Recent Trends and Prospects. Journal of Materials Chemistry A, 0, , .	5.2	0
1726	MOF (UiO-66-NH ₂)@COF (TFP–TABQ) hybrids <i>via</i> on-surface condensation reactions for sustainable energy storage. Chemical Communications, 0, , .	2.2	0
1732	Introduction to Low-carbon Supercapacitors: New Prospects. , 2023, , 34-62.		0
1733	A Cu ₂ (C ₆ O ₆) metal–organic framework monolayer assembled on silicon carbide grown graphene exhibiting a metallic band structure. Nanoscale, 0, , .	2.8	0
1748	Nanoarchitectonics: a land of opportunities. , 2024, , 1-12.		0
1749	Conductive properties of triphenylene porous coordination polymers. , 2024, , 273-316.		0
1761	Hollow metal-organic frameworks and derivatives. , 2024, , 135-162.		0
1762	Recent development in metal-organic frameworks and their derivatives for supercapacitors. , 2024, , 303-329.		0
1763	Unleashing the Potential. Advances in Chemical and Materials Engineering Book Series, 2024, , 138-169.	0.2	0
1765	Metal-organic framework-derived metal compound materials. , 2024, , 85-107.		0
1766	Mesopore and macropore engineering in metal–organic frameworks for energy environment-related applications. Journal of Materials Chemistry A, 2024, 12, 4931-4970.	5.2	0
1768	Porous materials as effective chemiresistive gas sensors. Chemical Society Reviews, 2024, 53, 2530-2577.	18.7	0
1770	Future prospects and grand challenges for porous coordination polymers. , 2024, , 393-408.		0
1771	Porous coordination polymers in energy storage and conversion. , 2024, , 207-235.		Ο

#	Article	IF	CITATIONS
1783	Metal organic framework (MOF)-anchored polymeric nanocomposite foams for electromagnetic interference shielding. , 2024, , 337-362.		0
1795	Supercapacitors: basics and progress. , 2024, , 61-82.		0