Synthesis and Functionalization of Porphyrins through

Chemical Reviews 117, 2910-3043 DOI: 10.1021/acs.chemrev.6b00427

Citation Report

#	Article	IF	CITATIONS
2	Review: recent advances in the chemistry of metal chelate monomers. Journal of Coordination Chemistry, 2017, 70, 1468-1527.	0.8	27
3	Photocatalytic Activity of the Molecular Complexes of <i>meso</i> â€Tetraarylporphyrins with Lewis Acids for the Oxidation of Olefins: Significant Effects of Lewis Acids and <i>meso</i> Substituents. European Journal of Inorganic Chemistry, 2017, 2017, 2854-2862.	1.0	14
4	Cellulose Sponge Supported Palladium Nanoparticles as Recyclable Cross-Coupling Catalysts. ACS Applied Materials & Interfaces, 2017, 9, 17155-17162.	4.0	124
5	βâ€Trisubstituted "Push–Pull―Porphyrins – Synthesis and Structural, Photophysical, and Electrochemical Redox Properties. European Journal of Inorganic Chemistry, 2017, 2017, 3269-3274.	1.0	10
6	NCN-Type Pincer Complexes of Subporphyrinatoboron(III). Organometallics, 2017, 36, 2559-2564.	1.1	18
7	Synthesis of a Phlorin from a Mesoâ€Fused Anthriporphyrin by a Diels–Alder Strategy. Angewandte Chemie - International Edition, 2017, 56, 16247-16251.	7.2	38
8	Structures of the Heme Acquisition Protein HasA with Iron(III)â€5,15â€Ðiphenylporphyrin and Derivatives Thereof as an Artificial Prosthetic Group. Angewandte Chemie - International Edition, 2017, 56, 15279-15283.	7.2	15
9	Acid-Mediated Migration of Bromide in an Antiaromatic Porphyrinoid: Preparation of Two Regioisomeric Ni(II) Bromonorcorroles. Journal of Organic Chemistry, 2017, 82, 10425-10432.	1.7	14
10	Synthesis, structure and catalysis of organometallic porphyrin–pincer hybrids: a review. Dalton Transactions, 2017, 46, 14062-14082.	1.6	19
11	Structures of the Heme Acquisition Protein HasA with Iron(III)â€5,15â€Diphenylporphyrin and Derivatives Thereof as an Artificial Prosthetic Group. Angewandte Chemie, 2017, 129, 15481-15485.	1.6	6
12	Enhanced electron transfer ability via coordination in block copolymer/porphyrin/fullerene micelle. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1328-1341.	2.0	2
13	Intermacrocyclic Interaction Triggers Facile Oneâ€Pot Synthesis of a Chlorin–Porphyrin Heterodimer. Chemistry - A European Journal, 2017, 23, 13415-13422.	1.7	20
14	Synthesis of a Phlorin from a Mesoâ€Fused Anthriporphyrin by a Diels–Alder Strategy. Angewandte Chemie, 2017, 129, 16465-16469.	1.6	9
15	Direct Synthesis of Dipyrrolyldipyrrins from S _N Ar Reaction on 1,9-Dihalodipyrrins with Pyrroles and Their NIR Fluorescence "Turn-On―Response to Zn ²⁺ . Organic Letters, 2017, 19, 6244-6247.	2.4	17
16	Synthesis of Partially <i>meso</i> -Free 2,3-Di(arylethynyl)porphyrins. Chemistry Letters, 2017, 46, 976-978.	0.7	1
17	Unexpected Synthesis of a Bulky Bis-Pocket A3B-Type Meso-Cyano Porphyrin. Molecules, 2017, 22, 1941.	1.7	5
18	Modifications of Porphyrins and Hydroporphyrins for Their Solubilization in Aqueous Media. Molecules, 2017, 22, 980.	1.7	58
19	Barrierless On-Surface Metal Incorporation in Phthalocyanine-Based Molecules. Journal of Physical Chemistry C, 2018, 122, 6678-6683.	1.5	11

#	Article	IF	CITATIONS
20	<i>o</i> , <i>p</i> â€Dimethoxybiphenyl Arylamine Substituted Porphyrins as Holeâ€Transport Materials: Electrochemical, Photophysical, and Carrier Mobility Characterization. European Journal of Organic Chemistry, 2018, 2018, 2064-2070.	1.2	7
21	Machine-Learning Energy Gaps of Porphyrins with Molecular Graph Representations. Journal of Physical Chemistry A, 2018, 122, 4571-4578.	1.1	40
22	Revisiting 2,3-diaminoporphyrins: key synthons for heterocycle-appended porphyrins. Dyes and Pigments, 2018, 156, 243-249.	2.0	19
23	Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts. Chemical Reviews, 2018, 118, 2340-2391.	23.0	483
24	Substituent Effects at the β-Positions of the Nonfused Pyrroles in a Quadruply Fused Porphyrin on the Structure and Optical and Electrochemical Properties. Inorganic Chemistry, 2018, 57, 1106-1115.	1.9	11
25	Structures and properties of porphyrin-based film materials part I. The films obtained via vapor-assisted methods. Advances in Colloid and Interface Science, 2018, 253, 23-34.	7.0	21
26	Porphyrins in troubled times: a spotlight on porphyrins and their metal complexes for explosives testing and CBRN defense. New Journal of Chemistry, 2018, 42, 7529-7550.	1.4	44
27	Katalytische, positions―und enantioselektive Câ€Hâ€Oxygenierung durch einen chiralen Manganâ€Porphyrinâ€Komplex mit einer entfernten Bindungsstelle. Angewandte Chemie, 2018, 130, 3003-3007.	1.6	26
28	Site―and Enantioselective Câ^'H Oxygenation Catalyzed by a Chiral Manganese Porphyrin Complex with a Remote Binding Site. Angewandte Chemie - International Edition, 2018, 57, 2953-2957.	7.2	94
29	Post-synthetic methods for functionalization of imidazole-fused porphyrins. Journal of Porphyrins and Phthalocyanines, 2018, 22, 619-631.	0.4	12
30	Singly and Doubly Sulfone-Inserted Porphyrin Arch-Tape Dimers. Bulletin of the Chemical Society of Japan, 2018, 91, 1131-1137.	2.0	10
31	Synthesis, crystal structure, catalytic dimerization and S H insertion of new porphyrin diazoketones. Journal of Molecular Structure, 2018, 1165, 101-105.	1.8	6
32	Sustainable metal complexes for organic light-emitting diodes (OLEDs). Coordination Chemistry Reviews, 2018, 373, 49-82.	9.5	273
33	Synthesis, characterization and application of graphene palladium porphyrin as a nanocatalyst for the coupling reactions such as: Suzukiâ€Miyaura and Mizorokiâ€Heck. Applied Organometallic Chemistry, 2018, 32, e4102.	1.7	38
34	One-flask synthesis of dibenzotetraaza[14]annulene cyclic congeners bearing buta-1,3-diyne bridges. Organic Chemistry Frontiers, 2018, 5, 171-178.	2.3	5
35	Subporpholactone, Subporpholactam, Imidazolosubporphyrin, and Iridium Complexes of Imidazolosubporphyrin: Formation of Iridium Carbene Complexes. Angewandte Chemie - International Edition, 2018, 57, 338-342.	7.2	23
36	Subporpholactone, Subporpholactam, Imidazolosubporphyrin, and Iridium Complexes of Imidazolosubporphyrin: Formation of Iridium Carbene Complexes. Angewandte Chemie, 2018, 130, 344-348.	1.6	5
37	Exploring the Role of Porphyrin Films in Graphite Electrode Protection. , 2018, , 107-118.		1

#	Article	IF	Citations
38	Synthesis and Suzuki–Miyaura cross coupling reactions for post-synthetic modification of a tetrabromo-anthracenyl porphyrin. Organic and Biomolecular Chemistry, 2018, 16, 8106-8114.	1.5	8
39	Click synthesis of glycosylated porphyrin-cored PAMAM dendrimers with specific recognition and thermosensitivity. Journal of Polymer Research, 2018, 25, 1.	1.2	6
40	An Insight Into the Potentiation Effect of Potassium lodide on aPDT Efficacy. Frontiers in Microbiology, 2018, 9, 2665.	1.5	73
41	Synthesis, spectral and electrochemical redox properties of N-methyl fused nickel(II) porphyrin. Journal of Porphyrins and Phthalocyanines, 2018, 22, 1106-1110.	0.4	2
42	Synthesis, Electrochemical and Photochemical Studies on Ï€â€Extended Monoâ€∢i>βâ€Functionalized Porphyrin Dyads. ChemPhotoChem, 2019, 3, 151-165.	1.5	5
43	The Diradicalâ€Dication Strategy for BODIPY―and Porphyrinâ€Based Dyes with Nearâ€Infrared Absorption Maxima from 1070 to 2040 nm. Chemistry - A European Journal, 2018, 24, 19341-19347.	1.7	9
44	Eight-Membered and Larger Rings. Progress in Heterocyclic Chemistry, 2018, 30, 551-572.	0.5	0
45	An Indirect Synthetic Approach toward Conformationally Constrained 20-Membered Unclosed Cryptands via Late-Stage Installation of Intraannular Substituents. Journal of Organic Chemistry, 2018, 83, 13560-13567.	1.7	11
46	Synthesis and Studies of New Fluoresceinâ€Porphyrin Dyads: A Theoretical and Experimental Approach. ChemistrySelect, 2018, 3, 10959-10970.	0.7	1
47	Synthesis and Electrochemical Characterization of Acetylacetone (acac) and Ethyl Acetate (EA) Appended β-Trisubstituted Push–Pull Porphyrins: Formation of Electronically Communicating Porphyrin Dimers. Inorganic Chemistry, 2018, 57, 13213-13224.	1.9	8
48	Synthesis of zinc 20-ethenylated bacteriochlorophyll-d analogs and their self-aggregation in an aqueous micelle solution. Tetrahedron, 2018, 74, 7030-7039.	1.0	10
49	Synthesis and Characterization of Novel β-Bis(<i>N</i> , <i>N</i> -diarylamino)-Substituted Porphyrin for Dye-Sensitized Solar Cells under 1 sun and Dim Light Conditions. ACS Applied Materials & Interfaces, 2018, 10, 39970-39982.	4.0	36
50	Aromatization of hydrocarbons by oxidative dehydrogenation catalyzed by nickel porphyrin with molecular oxygen. Catalysis Communications, 2018, 117, 85-89.	1.6	7
51	Performance Improvement in Low-Temperature-Processed Perovskite Solar Cells by Molecular Engineering of Porphyrin-Based Hole Transport Materials. ACS Applied Materials & Interfaces, 2018, 10, 35404-35410.	4.0	32
52	Versatile and Catalystâ€Free Methods for the Introduction of Groupâ€16 Elements at themesoâ€Positions of Diarylporphyrins. Asian Journal of Organic Chemistry, 2018, 7, 2468-2478.	1.3	6
53	Coral-like hierarchical carbon nanoarchitectures loaded with Rh- and Co-porphyrins as high-efficiency electrodes: effect of pore morphology on CO oxidation and oxygen reduction performance. Journal of Materials Chemistry A, 2018, 6, 20044-20055.	5.2	11
54	Bicycloaromaticity and Baird-type bicycloaromaticity of dithienothiophene-bridged [34]octaphyrins. Physical Chemistry Chemical Physics, 2018, 20, 17705-17713.	1.3	21
55	Functionalization of Azapentabenzocorannulenes by Fivefold Câ^H Borylation and Cross oupling Arylation: Application to Columnar Liquidâ€Crystalline Materials. Chemistry - A European Journal, 2018, 24, 14075-14078.	1.7	31

#	Article	IF	CITATIONS
56	Synthesis of Triply Fused Porphyrinâ€Nanographene Conjugates. Angewandte Chemie - International Edition, 2018, 57, 11233-11237.	7.2	50
57	Synthesis of Triply Fused Porphyrinâ€Nanographene Conjugates. Angewandte Chemie, 2018, 130, 11403-11407.	1.6	18
58	Porphyrin-Functionalized Zinc Oxide Nanostructures for Sensor Applications. Sensors, 2018, 18, 2279.	2.1	25
59	Theoretical Study on Openâ€Shell Singlet Character and Second Hyperpolarizabilities in Cofacial Ï€â€Stacked Dimers Composed of Weak Openâ€Shell Antiaromatic Porphyrins. ChemPhysChem, 2018, 19, 2863-2871.	1.0	8
60	A Stable Antiaromatic 5,20â€Ðibenzoyl [28]Hexaphyrin(1.1.1.1.1): Core Au ^{III} Metalation and Subsequent Peripheral B ^{III} Metalation. Angewandte Chemie, 2018, 130, 13828-13831.	1.6	5
61	A Stable Antiaromatic 5,20â€Ðibenzoyl [28]Hexaphyrin(1.1.1.1.1): Core Au ^{III} Metalation and Subsequent Peripheral B ^{III} Metalation. Angewandte Chemie - International Edition, 2018, 57, 13640-13643.	7.2	12
62	Molecular Engineering of Freeâ€Base Porphyrins as Ligands—The Nâ^'Hâ‹â‹â (X Binding Motif in Tetrapyrrol Angewandte Chemie - International Edition, 2019, 58, 418-441.	e <u>s</u> . 7.2	77
63	Molekulares Engineering freier Porphyrinbasen als Liganden – das Nâ€Hâ‹â‹â‹Xâ€Bindungsmotiv in Tetrapyrrolen. Angewandte Chemie, 2019, 131, 424-448.	1.6	11
64	Novel β-functionalized mono-charged porphyrinic derivatives: Synthesis and photoinactivation of Escherichia coli. Dyes and Pigments, 2019, 160, 361-371.	2.0	23
65	5,20-Diheterohexaphyrins: metal-template-free synthesis and aromaticity switching. Chemical Communications, 2019, 55, 10547-10550.	2.2	22
67	Piezo-promoted the generation of reactive oxygen species and the photodegradation of organic pollutants. Applied Catalysis B: Environmental, 2019, 258, 118024.	10.8	84
68	Ferroelectricity of a Tetraphenylporphyrin Derivative Bearing â´'CONHC ₁₄ H ₂₉ Chains at 500 K. Journal of Physical Chemistry C, 2019, 123, 22439-22446.	1.5	16
69	Control of Aromaticity and cis â€l trans â€lsomeric Structure of Nonâ€Planar Hexaphyrin(2.1.2.1.2.1) and Metal Complexes. Angewandte Chemie - International Edition, 2019, 58, 12524-12528.	7.2	12
70	Metal and Organic Templates Together Control the Size of Covalent Macrocycles and Cages. Journal of the American Chemical Society, 2019, 141, 12147-12158.	6.6	54
71	Control of Aromaticity and cis â€I trans â€Isomeric Structure of Nonâ€Planar Hexaphyrin(2.1.2.1.2.1) and Metal Complexes. Angewandte Chemie, 2019, 131, 12654-12658.	1.6	0
72	Porphyrin as Diagnostic and Therapeutic Agent. Molecules, 2019, 24, 2669.	1.7	112
73	Introduction of an isoxazoline unit to the β-position of porphyrin via regioselective 1,3-dipolar cycloaddition reaction. Beilstein Journal of Organic Chemistry, 2019, 15, 1434-1440.	1.3	5
74	Preparation of star-shaped functionalized polylactides by metal porphyrin complexes as both catalysts and cocatalysts. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1020-1027.	0.4	6

#	ARTICLE	IF	CITATIONS
75	Existence and Multiplicity of Solutions for Sublinear SchrA¶dinger Equations with Coercive Potentials. Mathematical Problems in Engineering, 2019, 2019, 1-8.	0.6	1
76	Fabrication and nonlinear optical characterization of fluorinated zinc phthalocyanine covalently modified black phosphorus/PMMA films using the nanosecond Z-scan technique. Journal of Materials Chemistry C, 2019, 7, 10789-10794.	2.7	30
77	Porphyrins as efficient ratiometric and lifetime-based contactless optical thermometers. Materials and Design, 2019, 184, 108188.	3.3	30
78	Porphyrinoid–Fullerene Hybrids as Candidates in Artificial Photosynthetic Schemes. Journal of Carbon Research, 2019, 5, 57.	1.4	17
79	β-Functionalized Dibenzoporphyrins with Mixed Substituents Pattern: Facile Synthesis, Structural, Spectral, and Electrochemical Redox Properties. Inorganic Chemistry, 2019, 58, 2514-2522.	1.9	7
80	A squaraine-linked metalloporphyrin two-dimensional polymer photocatalyst for hydrogen and oxygen evolution reactions. Chemical Communications, 2019, 55, 1627-1630.	2.2	22
81	Synthetic aspects of carbazole containing porphyrins and porphyrinoids. Journal of Porphyrins and Phthalocyanines, 2019, 23, 367-409.	0.4	11
82	Encapsulation of Gold Nanorods with Porphyrins for the Potential Treatment of Cancer and Bacterial Diseases: A Critical Review. Bioinorganic Chemistry and Applications, 2019, 2019, 1-27.	1.8	24
83	Synthesis, self-assembly and applications of functional polymers based on porphyrins. Progress in Polymer Science, 2019, 95, 65-117.	11.8	117
84	Dual activity of amphiphilic Zn(II) nitroporphyrin derivatives as HIV-1 entry inhibitors and in cancer photodynamic therapy. European Journal of Medicinal Chemistry, 2019, 174, 66-75.	2.6	29
85	UO ₂ ²⁺ -mediated ring contraction of pyrihexaphyrin: synthesis of a contracted expanded porphyrin-uranyl complex. Chemical Science, 2019, 10, 5596-5602.	3.7	17
86	Manganese(III) Porphyrin atalyzed Dehydrogenation of Alcohols to form Imines, Tertiary Amines and Quinolines. Chemistry - A European Journal, 2019, 25, 6439-6446.	1.7	42
87	Dioxygen/Hydrogen Peroxide Interconversion Using Redox Couples of Saddle-Distorted Porphyrins and Isophlorins. Journal of the American Chemical Society, 2019, 141, 5987-5994.	6.6	17
88	Regioselectively Halogenated Expanded Porphyrinoids as Building Blocks for Constructing Porphyrin–Porphyrinoid Heterodyads with Tunable Energy Transfer. Journal of the American Chemical Society, 2019, 141, 5294-5302.	6.6	38
89	Homocoupling defects in porphyrinoid small molecules and their effect on organic solar cell performance. Organic Electronics, 2019, 69, 48-55.	1.4	4
90	Binary ionic porphyrin self-assembly: Structures, and electronic and light-harvesting properties. MRS Bulletin, 2019, 44, 183-188.	1.7	22
91	Syntheses of biodegradable and biorenewable polylactides initiated by aluminum complexes bearing porphyrin derivatives by the ring-opening polymerization of lactides. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 846-860.	1.9	7
92	Synthesis of (<i>trans</i> â€A ₂)BCâ€Type Porphyrins with Acceptor Diethoxyphosphoryl and Various Donor Groups and their Assembling in the Solid State and at Interfaces. European Journal of Organic Chemistry, 2019, 2019, 3146-3162.	1.2	7

#	Article	IF	CITATIONS
93	A tris-(manganese(<scp>iii</scp>))corrole–porphyrin–corrole triad: synthesis, characterization and catalytic epoxidation. Dalton Transactions, 2019, 48, 7394-7402.	1.6	12
94	Vanadyl β-tetrabromoporphyrin: synthesis, crystal structure and its use as an efficient and selective catalyst for olefin epoxidation in aqueous medium. RSC Advances, 2019, 9, 10405-10413.	1.7	16
95	Telluraporphyrinoids: an interesting class of core-modified porphyrinoids. Dalton Transactions, 2019, 48, 4444-4459.	1.6	20
96	Metallated Macrocyclic Derivatives as a Hole – Transporting Materials for Perovskite Solar Cells. Chemical Record, 2019, 19, 2157-2177.	2.9	23
97	Homocarbaporphyrinoids: The <i>mâ€oâ€m</i> and <i>pâ€oâ€p</i> Terphenyl Embedded Expanded Porphyrin Analogues and Their Rh ^I Complexes. Chemistry - A European Journal, 2019, 25, 4683-4687.	1.7	20
98	Aerobic Epoxidation of Low-Molecular-Weight and Polymeric Olefins by a Supramolecular Manganese Porphyrin Catalyst. Catalysts, 2019, 9, 195.	1.6	25
99	The literature of heterocyclic chemistry, part XVII, 2017. Advances in Heterocyclic Chemistry, 2019, 129, 337-418.	0.9	5
100	Combined Experimental and Theoretical Study of Cobalt Corroles as Catalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2019, 123, 30129-30136.	1.5	26
101	Synthesis and characterization of rigid [2.2]paracyclophane–porphyrin conjugates as scaffolds for fixed-distance bimetallic complexes. RSC Advances, 2019, 9, 30541-30544.	1.7	5
102	Design and synthesis of novel porphyrinated polyimide nanofibers as dissolved oxygen sensor: The role of electro-activity and orientation. Dyes and Pigments, 2019, 161, 79-88.	2.0	9
103	β-substituted donor-acceptor porphyrins: Synthesis, energy transfer and electrochemical redox properties. Dyes and Pigments, 2019, 161, 104-112.	2.0	14
104	Doubly Nâ€Confused Calix[6]phyrin Bisâ€Organopalladium Complexes: Photostable Triplet Sensitizers for Singlet Oxygen Generation. Chemistry - an Asian Journal, 2019, 14, 1729-1736.	1.7	14
105	ABC–ABCâ€Type Directly <i>meso</i> – <i>meso</i> Linked Porphyrin Dimers. Chemistry - A European Journal, 2019, 25, 538-547.	1.7	11
106	Incremental Introduction of Organocatalytic Activity into Conformationally Engineered Porphyrins. European Journal of Organic Chemistry, 2019, 2019, 2448-2452.	1.2	19
107	Templating Porphyrin Anisotropy via Magnetically Aligned Carbon Nanotubes. ChemPlusChem, 2019, 84, 1270-1278.	1.3	9
108	Quantum chemical studies of porphyrin―and expanded porphyrinâ€based systems and their potential applications in nanoscience.Latin America research review. International Journal of Quantum Chemistry, 2019, 119, e25821.	1.0	7
109	Why are the anionic porphyrins so efficient to induce plant cell death? A structure-activity relationship study to solve the puzzle. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 368, 276-289.	2.0	8
110	Porphyrinoid f-Element Complexes. Inorganic Chemistry, 2020, 59, 32-47.	1.9	24

#	Article	IF	CITATIONS
111	Efficient preparation of 5,10,15,20-tetrakis(4-bromophenyl)porphyrin. Microwave assisted v/s conventional synthetic method, X-ray and hirshfeld surface structural analysis. Journal of Molecular Structure, 2020, 1201, 127139.	1.8	9
112	Pyridyl/hydroxyphenyl versus carboxyphenyl anchoring moieties in Zn – Thienyl porphyrins for dye sensitized solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 224, 117408.	2.0	13
113	Highly conductive polyporphyrin films obtained by superoxide-assisted electropolymerization of para – aminophenyl porphyrin. Materials Chemistry and Physics, 2020, 241, 122394.	2.0	11
114	Bridging and Conformational Control of Porphyrin Units through Nonâ€Traditional Rigid Scaffolds. Chemistry - A European Journal, 2020, 26, 2405-2416.	1.7	7
115	Mechanical Fixation by Porphyrin Connection: Synthesis and Transport Studies of a Bicyclic Dimer. Journal of Organic Chemistry, 2020, 85, 118-128.	1.7	6
116	Assembly of Molecular Building Blocks into Integrated Complex Functional Molecular Systems: Structuring Matter Made to Order. Advanced Functional Materials, 2020, 30, 1907625.	7.8	34
117	Applications of porphyrins in emerging energy conversion technologies. Coordination Chemistry Reviews, 2020, 407, 213157.	9.5	127
118	2,3-Dicyano-5,6-dichlorobenzoquinone-Mediated and Selective C–O and C–C Cross-Couplings of Phenols and Porphyrins. Organic Letters, 2020, 22, 300-304.	2.4	7
119	Customised porphyrin coating films for graphite electrode protection: An investigation on the role of peripheral groups by coupled AFM and cyclic voltammetry techniques. Applied Surface Science, 2020, 507, 145055.	3.1	1
120	Cyclic metalloporphyrin dimers: Conformational flexibility, applications and future prospects. Coordination Chemistry Reviews, 2020, 405, 213117.	9.5	27
121	The application of transition metal complexes in hole-transporting layers for perovskite solar cells: Recent progress and future perspectives. Coordination Chemistry Reviews, 2020, 406, 213143.	9.5	50
122	Molecular self-assembly of porphyrin and BODIPY chromophores connected with diphenylalanine moieties. Journal of Porphyrins and Phthalocyanines, 2020, 24, 775-785.	0.4	1
123	Self-assembly of porphyrin molecules on a Cu(111) electrode: Influence of different anions and electrode potential. Surface Science, 2020, 694, 121554.	0.8	3
124	Twisted-Planar-Twisted expanded porphyrinoid dimer as a rudimentary reaction-based methanol indicator. Nature Communications, 2020, 11, 5289.	5.8	20
125	Simultaneous Implementation of <i>N</i> -Heterocycle-Fused Bridge and Modified Pyrrole Unit on Ni(II) Porphyrin Dimers. Organic Letters, 2020, 22, 6001-6005.	2.4	14
126	Kinetics of Induced Deposition of Films Based on Tetrakis(4-Aminophenyl)Porphyrin. Russian Journal of Electrochemistry, 2020, 56, 321-328.	0.3	3
127	Mimochrome, a metalloporphyrinâ€based catalytic Swiss knifeâ€. Biotechnology and Applied Biochemistry, 2020, 67, 495-515.	1.4	26
128	Phthalocyanine-Grafted Titania Nanoparticles for Photodegradation of Ibuprofen. Catalysts, 2020, 10,	1.6	12

#	Article	IF	CITATIONS
129	Central zinc metal-controlled regioselective meso-bromination of zincated β-silylporphyrins—rapid access to meso,β-dual-functionalized porphyrins. Organic and Biomolecular Chemistry, 2020, 18, 9791-9795.	1.5	1
130	Porphyrinoids with Vinylene Bridges. Synlett, 2021, 32, 1072-1084.	1.0	8
131	Bisâ€Anthracene Fused Porphyrin as an Efficient Photocatalyst: Facile Synthesis and Visibleâ€Lightâ€Driven Oxidative Coupling of Amines. Chemistry - A European Journal, 2020, 26, 16497-16503.	1.7	7
132	Ultrathin porphyrin and tetra-indole covalent organic frameworks for organic electronics applications. Journal of Chemical Physics, 2020, 153, 044702.	1.2	21
133	Synthesis and Redox Properties of Superbenzene Porphyrin Conjugates. Inorganic Chemistry, 2020, 59, 16168-16177.	1.9	5
134	Control of Porphyrin Planarity and Aggregation by Covalent Capping: Bissilyloxy Porphyrin Silanes. Inorganic Chemistry, 2020, 59, 13533-13541.	1.9	4
135	Significantly Increased Stability of Donor–Acceptor Molecular Complexes under Heterogeneous Conditions: Synthesis, Characterization, and Photosensitizing Activity of a Nanostructured Porphyrin–Lewis Acid Adduct. ACS Applied Materials & Interfaces, 2020, 12, 46190-46204.	4.0	10
136	Porphyrin–Ryleneimide Hybrids: Tuning of Visible and Near-Infrared Absorption by Chromophore Desymmetrization. Organic Letters, 2020, 22, 7202-7207.	2.4	16
137	Excited-state photophysical processes in a molecular system containing perylene bisimide and zinc porphyrin chromophores. Physical Chemistry Chemical Physics, 2020, 22, 20891-20900.	1.3	5
138	Applications of Photoinduced Phenomena in Supramolecularly Arranged Phthalocyanine Derivatives: A Perspective. Molecules, 2020, 25, 3742.	1.7	8
139	Enhanced Electrocatalytic Activity of Thiophene-Substituted Asymmetric Porphyrin Film for Electrochemical Determination of Dopamine. Russian Journal of Physical Chemistry A, 2020, 94, 2836-2843.	0.1	1
140	Synthesis, photoinduced amination and topological indices of novel porphyrin dyads. Journal of Porphyrins and Phthalocyanines, 2020, 24, 1054-1065.	0.4	1
141	Porphyrin–Amino Acid Conjugates. Journal of Organic Chemistry, 2020, 85, 8196-8202.	1.7	7
142	Targeted Synthesis of Regioisomerically Pure Dodecasubstituted Type I Porphyrins through the Exploitation of Peri-interactions. Journal of Organic Chemistry, 2020, 85, 7603-7610.	1.7	2
143	The synthesis and applications of porphyrin-containing pillararenes. Organic and Biomolecular Chemistry, 2020, 18, 4894-4905.	1.5	14
144	Enhanced optical limiting properties of composite films consisting of hyperbranched phthalocyanine and polyphenylsulfone with high linear transmittance. Synthetic Metals, 2020, 265, 116405.	2.1	10
145	Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coordination Chemistry Reviews, 2020, 420, 213410.	9.5	191
146	Porphyrin Derivative Nanoformulations for Therapy and Antiparasitic Agents. Molecules, 2020, 25, 2080.	1.7	28

#	Article	IF	CITATIONS
147	Porphyrins as Colorimetric and Photometric Biosensors in Modern Bioanalytical Systems. ChemBioChem, 2020, 21, 1793-1807.	1.3	45
148	The Red Color of Life Transformed – Synthetic Advances and Emerging Applications of Protoporphyrin IX in Chemical Biology. European Journal of Organic Chemistry, 2020, 2020, 3171-3191.	1.2	34
149	Electrical vapour sensing with macrocyclic molecular receptors. Supramolecular Chemistry, 2020, 32, 165-177.	1.5	7
150	Catalytic Porphyrin Framework Compounds. Trends in Chemistry, 2020, 2, 555-568.	4.4	94
151	Atropisomers of meso Tetra(N â€Mesyl Pyrrolâ€2â€yl) Porphyrins: Synthesis, Isolation and Characterization of Allâ€Pyrrolic Porphyrins. Chemistry - A European Journal, 2020, 26, 4232-4235.	1.7	3
152	Rational Synthesis of 5,10-Diazaporphyrins via Nucleophilic Substitution Reactions of α,α′-Dibromotripyrrin and Dihydrogenation to Give 5,10-Diazachlorins. Journal of Organic Chemistry, 2020, 85, 3849-3857.	1.7	13
153	A Mechanistic Dichotomy in Twoâ€Electron Reduction of Dioxygen Catalyzed by N , N 'â€Dimethylated Porphyrin Isomers. Chemistry - A European Journal, 2020, 26, 10480-10486.	1.7	4
154	Dipyrrin based metal complexes: reactivity and catalysis. Dalton Transactions, 2020, 49, 6161-6175.	1.6	31
155	Molecular Cobalt Catalysts Grafted onto Polymers for Efficient Hydrogen Generation Cathodes. Solar Rrl, 2021, 5, 2000281.	3.1	3
156	Rectangular Holes in Porphyrin Isomers Act As Mono- and Binucleating Ligands: Stereochemistry of Mono- and Diboron Porphycenes and Their Protonation Behaviors. Inorganic Chemistry, 2021, 60, 574-583.	1.9	6
157	Carbenaporphyrins: No Longer Missing Ligands in Nâ€Heterocyclic Carbene Chemistry. Angewandte Chemie - International Edition, 2021, 60, 2007-2012.	7.2	17
158	Recent Advances in the Design and Sensing Applications of Hemin/Coordination Polymerâ€Based Nanocomposites. Advanced Materials, 2021, 33, e2003883.	11.1	64
159	On-surface synthesis of singly and doubly porphyrin-capped graphene nanoribbon segments. Chemical Science, 2021, 12, 247-252.	3.7	27
160	Straightforward synthesis of a porous chromium-based porphyrinic metal-organic framework for visible-light triggered selective aerobic oxidation of benzyl alcohol to benzaldehyde. Applied Catalysis A: General, 2021, 611, 117965.	2.2	27
161	Carbenaporphyrine: eine Lücke in der Chemie Nâ€heterocyclischer Carbene schließt sich. Angewandte Chemie, 2021, 133, 2035-2040.	1.6	3
162	Porphyrins as building blocks for single-molecule devices. Nanoscale, 2021, 13, 15500-15525.	2.8	22
163	Lanthanide–tetrapyrrole complexes: synthesis, redox chemistry, photophysical properties, and photonic applications. Chemical Society Reviews, 2021, 50, 12189-12257.	18.7	56
164	Cucurbit[10]uril-Encapsulated Cationic Porphyrins with Enhanced Fluorescence Emission and Photostability for Cell Imaging. ACS Applied Materials & Interfaces, 2021, 13, 2269-2276.	4.0	27

#	Article	IF	CITATIONS
165	<i>meso</i> -borneol- and <i>meso</i> -carbazole-substituted porphyrins: multifunctional chromophores with tunable electronic structures and antitumor activities. New Journal of Chemistry, 2021, 45, 2141-2146.	1.4	9
166	Porous silsesquioxane cage and porphyrin nanocomposites: sensing and adsorption for heavy metals and anions. Polymer Chemistry, 2021, 12, 3391-3412.	1.9	22
167	Homo- and copolymerization of norbornene using tridentate IzQO palladium catalysts with dimethylaminoethyl as a side arm. Polymer Chemistry, 2021, 12, 4736-4747.	1.9	4
168	Exciton coupling chirality in helicene-porphyrin conjugates. Chemical Communications, 2021, 57, 10743-10746.	2.2	11
169	Synthesis, characterization and third order nonlinear optical properties of <i>trans</i> -A ₂ B-type cobalt corroles. New Journal of Chemistry, 2021, 45, 2103-2109.	1.4	7
170	Self-Assembly of Discrete Porphyrin/Calix[4]tube Complexes Promoted by Potassium Ion Encapsulation. Molecules, 2021, 26, 704.	1.7	9
171	Synthesis and Characterization of a Covalent Porphyrin obalt Diimineâ€Dioxime Dyad for Photoelectrochemical H 2 Evolution. European Journal of Inorganic Chemistry, 2021, 2021, 1122-1129.	1.0	10
172	Understanding the Activation of Air-Stable Ir(COD)(Phen)Cl Precatalyst for C–H Borylation of Aromatics and Heteroaromatics. Organic Letters, 2021, 23, 1561-1565.	2.4	7
173	A Durable Metalloporphyrin 2Dâ€Polymer for Photocatalytic Hydrogen and Oxygen Evolution from River and Sea Waters. ChemCatChem, 2021, 13, 1717-1721.	1.8	9
174	New triazine bridged triads based on BODIPY-porphyrin systems: Extended absorption, efficient energy transfer and upconverted emission. Dyes and Pigments, 2021, 187, 109137.	2.0	4
175	The shape of porphyrins. Coordination Chemistry Reviews, 2021, 431, 213760.	9.5	116
176	Macrocycles in Bioinspired Catalysis: From Molecules to Materials. Frontiers in Chemistry, 2021, 9, 635315.	1.8	8
177	Light-induced energy transfer followed by electron transfer in axially co-ordinated benzothiazole tethered zinc porphyrin-fullero[C ₆₀ /C ₇₀]pyrrolidine triads. Journal of Porphyrins and Phthalocyanines, 2021, 25, 469-483.	0.4	5
178	Assessment of New Expanded Porpholactones as UV/Vis/NIR Chromophores for Dye-Sensitized Solar Cell Applications. Journal of Physical Chemistry A, 2021, 125, 2267-2275.	1.1	4
179	Reductive Dimerization of Macrocycles Activated by BBr ₃ . Organic Letters, 2021, 23, 3652-3656.	2.4	5
180	A chromatography-free synthesis of <i>meso</i> -tetrakis(4-formylphenyl)porphyrin and <i>meso</i> -tetrakis(3-formylphenyl)porphyrin: Versatile synthons in supramolecular and macromolecular chemistry. Journal of Porphyrins and Phthalocyanines, 2022, 26, 427-433.	0.4	1
181	Porphyrin-based compounds and their applications in materials and medicine. Dyes and Pigments, 2021, 188, 109136.	2.0	68
182	Models to study photoinduced multiple proton coupled electron transfer processes. Journal of	0.4	4

#	Article	IF	CITATIONS
183	Porphyrin MOF-Derived Porous Carbons: Preparation and Applications. Journal of Carbon Research, 2021, 7, 47.	1.4	7
184	A platform for on-the-complex annulation reactions with transient aryne intermediates. Nature Communications, 2021, 12, 3706.	5.8	5
185	Rhenium chemistry – Then and Now. Coordination Chemistry Reviews, 2021, 436, 213822.	9.5	30
186	Polypyrrole-Coated Magnetite Vortex Nanoring for Hyperthermia-Boosted Photothermal/Magnetothermal Tumor Ablation Under Photoacoustic/Magnetic Resonance Guidance. Frontiers in Bioengineering and Biotechnology, 2021, 9, 721617.	2.0	7
187	Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coordination Chemistry Reviews, 2021, 439, 213945.	9.5	82
188	Recent Progress in (Photo-)-Electrochemical Conversion of CO2 With Metal Porphyrinoid-Systems. Frontiers in Chemistry, 2021, 9, 685619.	1.8	12
189	Use of Vitamin B ₁₂ as a Nontoxic and Natural Catalyst for the Synthesis of Benzoxazoles via Catechols and Primary Amines in Water under Aerobic Oxidation. ACS Sustainable Chemistry and Engineering, 2021, 9, 11163-11170.	3.2	6
190	Synthesis and Characterization of N-Fused Porphyrin Rhodium Complex with an Isomerized Cyclooctadiene Ligand. Chemistry Letters, 2021, 50, 1707-1709.	0.7	4
191	Aluminum complexes bearing Schiff base ligands derived from porphyrin derivatives and their application in lactide polymerization. Journal of Coordination Chemistry, 2021, 74, 2463-2472.	0.8	0
192	Mitochondria are specifically vulnerable to 420nm light in drosophila which undermines their function and is associated with reduced fly mobility. PLoS ONE, 2021, 16, e0257149.	1.1	11
193	Recent advances of organometallic complexes in emerging photovoltaics. Journal of Polymer Science, 2022, 60, 865-916.	2.0	23
194	Development of the Peripheral Functionalization Chemistry of <i>meso</i> â€Free Corroles. Chemistry - A European Journal, 2021, 27, 15605-15615.	1.7	10
195	Self-assembled manganese phthalocyanine nanoparticles with enhanced peroxidase-like activity for anti-tumor therapy. Nano Research, 2022, 15, 2347-2354.	5.8	21
196	Synthesis of amine functionalization carbon nanotube-low symmetry porphyrin derivatives conjugates toward dye and metal ions removal. Journal of Molecular Liquids, 2021, 340, 117024.	2.3	60
197	Facile Synthesis of Antipodal β-Arylaminodibromoporphyrins through Buchwald-Hartwig C-N coupling reaction and Exploring Their Spectral and Intriguing Electrochemical Redox Properties. Journal of Organometallic Chemistry, 2021, 956, 122114.	0.8	0
198	Enhanced degradation of bisphenol F in a porphyrin-MOF based visible-light system under high salinity conditions. Chemical Engineering Journal, 2022, 428, 132106.	6.6	21
199	Copper-Mediated Trifluoromethylation of Borylporphyrins Using an in situ-Generated CF3 Radical from NaSO2CF3 and tert-Butyl Hydroperoxide. Heterocycles, 2021, 103, 348.	0.4	1
200	Classic highlights in porphyrin and porphyrinoid total synthesis and biosynthesis. Chemical Society Reviews, 2021, 50, 4730-4789.	18.7	101

#	Article	IF	Citations
201	Porphyrin and single atom featured reticular materials: recent advances and future perspective of solar-driven CO ₂ reduction. Green Chemistry, 2021, 23, 8332-8360.	4.6	37
202	Two- and three-dimensional l²,l²â€²-N-heterocycle fused porphyrins: concise construction, singlet oxygen production and electro-catalytic hydrogen evolution reaction. Organic Chemistry Frontiers, 0, , .	2.3	5
203	Nucleophilic Aromatic Substitution (S _N Ar) and Related Reactions of Porphyrinoids: Mechanistic and Regiochemical Aspects. European Journal of Organic Chemistry, 2021, 2021, 7-42.	1.2	24
204	Selective Convergence to Atropisomers of a Porphyrin Derivative Having Bulky Substituents at the Periphery. Journal of Organic Chemistry, 2020, 85, 12856-12869.	1.7	4
205	Norfloxacin and gentamicin degradation catalyzed by manganese porphyrins under mild conditions: the importance of toxicity assessment. Environmental Science and Pollution Research, 2021, , 1.	2.7	3
206	Fabrication and Application of Cyclodextrin-Porphyrin Supramolecular System. , 2019, , 1-32.		0
207	Fabrication and Application of Cyclodextrin-Porphyrin Supramolecular System. , 2020, , 1073-1104.		0
208	Zn–Porphyrinâ€Functionalized Hollow Microporous Organic Nanospheres and Their Application for the Oxidative Coupling of Thiols. Macromolecular Chemistry and Physics, 2021, 222, 2000375.	1.1	5
209	Regioselective βâ€ T rifluoromethylation of βâ€ S ilylporphyrins by Using a Trifluoromethyl Copper Complex. European Journal of Organic Chemistry, 2021, 2021, 5623-5626.	1.2	0
210	Template Synthesis of Novel Norcorrole Complexes with a Phenylâ€substituted Phosphorus Center. European Journal of Organic Chemistry, 0, , .	1.2	2
211	Silk Fibroin/Poly(vinyl Alcohol) Microneedles as Carriers for the Delivery of Singlet Oxygen Photosensitizers. ACS Biomaterials Science and Engineering, 2022, 8, 128-139.	2.6	17
212	Selective epoxidation of olefins by vanadylporphyrin [VIVO(TPP)] and electron deficient nonplanar β-octabromovanadylporphyrin [VIVO(TPPBr ₈)]. Journal of Porphyrins and Phthalocyanines, 2022, 26, 187-194.	0.4	5
213	Thioether-Functionalized Porphyrin-Based Polymers for Hg ²⁺ Efficient Removal in Aqueous Solution. SSRN Electronic Journal, 0, , .	0.4	0
214	Nickel(<scp>ii</scp>) monobenzoporphyrins and chlorins: synthesis, electrochemistry and anion sensing properties. Dalton Transactions, 2021, 50, 17086-17100.	1.6	2
215	β-Pyrrole functionalized porphyrins: Synthesis, electronic properties, and applications in sensing and DSSC. Coordination Chemistry Reviews, 2022, 453, 214312.	9.5	24
216	Structural modification of RhIIItriarylcorroles for enhanced electrocatalyzed hydrogen evolution reactions. Dyes and Pigments, 2022, 199, 110046.	2.0	3
217	A polyoxometalate cluster-based single-atom catalyst for NH ₃ synthesis <i>via</i> an enzymatic mechanism. Journal of Materials Chemistry A, 2022, 10, 6165-6177.	5.2	23
218	A look at photodynamic inactivation as a tool for pests and vector-borne diseases control. Laser Physics Letters, 2022, 19, 025601.	0.6	6

#	Article	IF	CITATIONS
219	<i>ChemSpaX</i> : exploration of chemical space by automated functionalization of molecular scaffold. , 2022, 1, 8-25.		5
220	Photomedicine based on heme-derived compounds. Advanced Drug Delivery Reviews, 2022, 182, 114134.	6.6	20
221	Novel biocompatible amide phthalocyanine for simultaneous electrochemical detection of adenine and guanine. Microchemical Journal, 2022, 175, 107223.	2.3	8
222	Thioether-functionalized porphyrin-based polymers for Hg2+ efficient removal in aqueous solution. Journal of Hazardous Materials, 2022, 429, 128303.	6.5	11
223	Direct C–H borylation of vinylporphyrins <i>via</i> copper catalysis. Organic and Biomolecular Chemistry, 2022, 20, 1926-1932.	1.5	5
224	Photodynamic evaluation of triazine appended porphyrins as anti-leishmanial and anti-tumor agents. Polyhedron, 2022, 217, 115711.	1.0	4
225	Porous polymeric metalloporphyrin obtained through Sonogashira coupling: Catalytic performance at CO2 cycloaddition to epoxides. Journal of Solid State Chemistry, 2022, 309, 122965.	1.4	6
226	Graphene quantum dot-porphyrin/phthalocyanine multifunctional hybrid systems: from interfacial dialogue to application. Biomaterials Science, 2022, 10, 1647-1679.	2.6	10
227	Sonogashira cross-coupling as a key step in the synthesis of new glycoporphyrins. Organic Chemistry Frontiers, 2022, 9, 2396-2404.	2.3	8
228	Hydrogen bond controlled self-assembly of nanostructured triazine-functionalized new porphyrin molecule. Chemical Papers, 0, , 1.	1.0	0
229	Oxygen-Varying Correlated Fluorescence for Determining the Stern–Volmer Constant of Porphyrin. Journal of Physical Chemistry Letters, 2022, 13, 2007-2011.	2.1	10
230	Synthesis, Characterization, and Hydrogen Evolution Activity of Metallo- <i>meso</i> -(4-fluoro-2,6-dimethylphenyl)porphyrin Derivatives. ACS Omega, 2022, 7, 8988-8994.	1.6	8
231	Two novel pyrazine Zn(II)-porphyrins complexes: Synthesis, photophysical properties, structure study, DFT-Calculation and assessment of an azo dye removal from aqueous solution. Journal of Solid State Chemistry, 2022, 310, 123048.	1.4	4
232	Zr6O8-porphyrinic MOFs as promising catalysts for the boosting photocatalytic degradation of contaminants in high salinity wastewater. Chemical Engineering Journal, 2022, 440, 135883.	6.6	33
233	Synthesis, Characterization, and Encapsulation Properties of Rigid and Flexible Porphyrin Cages Assembled from <i>N</i> -Heterocyclic Carbene–Metal Bonds. Inorganic Chemistry, 2021, 60, 19009-19021.	1.9	4
234	Synthesis of Conjugated Donor–Acceptor Antiaromatic Porphyrins and Their Application to Perovskite Solar Cells. Journal of Organic Chemistry, 2021, , .	1.7	6
235	Direct [4 + 2] Cycloaddition to Isoquinoline-Fused Porphyrins for Near-Infrared Photodynamic Anticancer Agents. Organic Letters, 2022, 24, 175-180.	2.4	7
237	基于æ¨jæį导4å'çš"åŸå•‰çº³ç±³ç¬¼å'Œçº³ç±³çŽçš"å•̂æˆü,Žåº"ç". Scientia Sinica Chimica, 2022, , .	0.2	0

#	Article	IF	CITATIONS
238	Recent advances on visible light pyrrole-derived photoinitiators of polymerization. European Polymer Journal, 2022, 173, 111254.	2.6	19
239	Coverage-dependent study of nickel tetraphenyl-porphyrin on Au(332) and Au(788). Surface Science, 2022, 723, 122105.	0.8	1
240	Functionalization of Porphyrins Using Metal-Catalyzed C–H Activation. Inorganics, 2022, 10, 63.	1.2	4
241	Atomically dispersed metal catalysts confined by covalent organic frameworks and their derivatives for electrochemical energy conversion and storage. Coordination Chemistry Reviews, 2022, 466, 214592.	9.5	16
242	Fe ₂ Dimers for Nonâ€Polar Diatomic O ₂ Electroreduction. ChemSusChem, 2022, 15, .	3.6	2
243	Recent Advances in Porphyrin-Based Systems for Electrochemical Oxygen Evolution Reaction. International Journal of Molecular Sciences, 2022, 23, 6036.	1.8	19
244	Porphyrin-Based Multicomponent Metallacage: Host–Guest Complexation toward Photooxidation-Triggered Reversible Encapsulation and Release. Jacs Au, 2022, 2, 1479-1487.	3.6	34
248	Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chemical Society Reviews, 2022, 51, 6307-6416.	18.7	109
249	Covalent functionalization of few-layer TiS ₂ with tetraphenylporphyrin: toward a donor–acceptor nanohybrid featuring enhanced nonlinear saturation absorption. Journal of Materials Chemistry C, 2022, 10, 10876-10887.	2.7	2
250	Novel <scp>Porphyrinâ€Containing</scp> Polymer Based Memristor for Synaptic Plasticity Simulation. Chinese Journal of Chemistry, 2022, 40, 2451-2456.	2.6	5
251	Nanostructured self-assemblies of photosensitive dyes: green and efficient theranostic approaches. Green Chemical Engineering, 2023, 4, 399-416.	3.3	5
252	Porphyrins as Promising Photocatalysts for Red-Light-Induced Functionalizations of Biomolecules. ACS Organic & Inorganic Au, 2022, 2, 422-426.	1.9	15
253	Chain Length Modulated Dimerization and Cyclization of Terminal Thienyl-Blocked Oligopyrranes. Organic Letters, 2022, 24, 5428-5432.	2.4	2
254	Charge-Transfer Mechanism in Oxygen Reduction over Co Porphyrins: Single-Site Molecular Electrocatalysts to Macromolecular Frameworks. ACS Catalysis, 2022, 12, 8610-8622.	5.5	14
255	Control over Ligand-Exchange Positions of Thiolate-Protected Gold Nanoclusters Using Steric Repulsion of Protecting Ligands. Journal of the American Chemical Society, 2022, 144, 12310-12320.	6.6	30
256	Interplay between π-Conjugation and Exchange Magnetism in One-Dimensional Porphyrinoid Polymers. Journal of the American Chemical Society, 2022, 144, 12725-12731.	6.6	15
257	Nonplanar porphyrins: synthesis, properties, and unique functionalities. Chemical Society Reviews, 2022, 51, 7560-7630.	18.7	31
258	Synthesis and Properties of Stable 20ï€ Porphyrinoids. Chemical Record, 2022, 22, .	2.9	5

#	Article	IF	CITATIONS
259	Recent Advances in the Photoreactions Triggered by Porphyrin-Based Triplet–Triplet Annihilation Upconversion Systems: Molecular Innovations and Nanoarchitectonics. International Journal of Molecular Sciences, 2022, 23, 8041.	1.8	7
260	Efficient Synthesis of Multiply Sevenâ€Memberedâ€Ring Fused Porphyrins by Rhodiumâ€Catalyzed [5+2] Annulation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
261	Efficient Synthesis of Multiply Sevenâ€Memberedâ€Ring Fused Porphyrins by Rhodium atalyzed [5+2] Annulation. Angewandte Chemie, 0, , .	1.6	0
262	Porphycenes as broad-spectrum antimicrobial photosensitizers. Potentiation with potassium iodide. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 435, 114288.	2.0	2
263	A combination therapy strategy for treating antibiotic resistant biofilm infection using a guanidinium derivative and nanoparticulate Ag(0) derived hybrid gel conjugate. Chemical Science, 2022, 13, 10103-10118.	3.7	11
264	Synthesis, aromaticity, charge transport in OFET devices and nonlinear optical properties of tetrathia/oxa[22]porphyrin(2.1.2.1)s: a decade of progress. Materials Advances, 2022, 3, 8108-8131.	2.6	2
265	A Metal/Solvent/Additive Free Compliant Route to Ullmannâ€Type Câ^'N Coupling using Ionic Liquid Entangled Porphyrin Heterogeneous Photocatalyst. ChemistrySelect, 2022, 7, .	0.7	1
266	Rational Synthesis of Benzoheterole-fused Porphyrins and π-System Switching by Central Metal Ion. Chemistry Letters, 2022, 51, 932-935.	0.7	Ο
267	Bioinspired porphyrin–peptide supramolecular assemblies and their applications. Journal of Materials Chemistry B. 2022, 10, 9334-9348	2.9	2
268	Porphyryne. ACS Omega, 2022, 7, 40275-40278.	1.6	5
268 269	Porphyryne. ACS Omega, 2022, 7, 40275-40278. V-Porphyrins Encapsulated or Supported on Siliceous Materials: Synthesis, Characterization, and Photoelectrochemical Properties. Materials, 2022, 15, 7473.	1.6 1.3	5
268 269 270	Porphyryne. ACS Omega, 2022, 7, 40275-40278. V-Porphyrins Encapsulated or Supported on Siliceous Materials: Synthesis, Characterization, and Photoelectrochemical Properties. Materials, 2022, 15, 7473. Enantiomeric Resolution and Enantiomer Isolation of H ₂ TPPS4â€Jâ€Aggregate from Aqueous Solution Is Enabled by Vortexes. Chemistry - A European Journal, 2023, 29, .	1.6 1.3 1.7	5 1 2
268 269 270 271	Contention (1) (1) (2022), 10, 955 (151 (1)) Porphyryne. ACS Omega, 2022, 7, 40275-40278. V-Porphyrins Encapsulated or Supported on Siliceous Materials: Synthesis, Characterization, and Photoelectrochemical Properties. Materials, 2022, 15, 7473. Enantiomeric Resolution and Enantiomer Isolation of H ₂ TPPS4â€Jâ€Aggregate from Aqueous Solution Is Enabled by Vortexes. Chemistry - A European Journal, 2023, 29,. High-dimensional zinc porphyrin nanoframeworks as efficient radiosensitizers for cervical cancer. Chinese Chemical Letters, 2023, 34, 107945.	1.6 1.3 1.7 4.8	5 1 2 3
268 269 270 271 272	Porphyryne. ACS Omega, 2022, 7, 40275-40278. V-Porphyrins Encapsulated or Supported on Siliceous Materials: Synthesis, Characterization, and Photoelectrochemical Properties. Materials, 2022, 15, 7473. Enantiomeric Resolution and Enantiomer Isolation of H ₂ TPPS4â€Jâ€Aggregate from Aqueous Solution Is Enabled by Vortexes. Chemistry - A European Journal, 2023, 29, . High-dimensional zinc porphyrin nanoframeworks as efficient radiosensitizers for cervical cancer. Chinese Chemical Letters, 2023, 34, 107945. Hypervalent Phosphorus(V) Porphyrins with <i>meso</i> Methoxyphenyl Substituents: Significance of the Number and Position of Methoxy Groups in Promoting Intramolecular Charge Transfer. Inorganic Chemistry, 2022, 61, 16573-16585.	1.6 1.3 1.7 4.8 1.9	5 1 2 3 4
268 269 270 271 272 272	Porphyryne. ACS Omega, 2022, 7, 40275-40278. V-Porphyrins Encapsulated or Supported on Siliceous Materials: Synthesis, Characterization, and Photoelectrochemical Properties. Materials, 2022, 15, 7473. Enantiomeric Resolution and Enantiomer Isolation of H ₂ TPPS4â€Jâ€Aggregate from Aqueous Solution Is Enabled by Vortexes. Chemistry - A European Journal, 2023, 29, . High-dimensional zinc porphyrin nanoframeworks as efficient radiosensitizers for cervical cancer. Chinese Chemical Letters, 2023, 34, 107945. Hypervalent Phosphorus(V) Porphyrins with <> meso Methoxyphenyl Substituents: Significance of the Number and Position of Methoxy Groups in Promoting Intramolecular Charge Transfer. Inorganic Chemistry, 2022, 61, 16573-16585. A novel supported ionic liquid catalyst, GO-[DBU][Br] catalyzes cycloaddition of CO2 in a fixed-bed reactor. Molecular Catalysis, 2022, 532, 112743.	1.6 1.3 1.7 4.8 1.9	5 1 2 3 4 3
268 269 270 271 272 273 273	Porphyryne. ACS Omega, 2022, 7, 40275-40278. V-Porphyrins Encapsulated or Supported on Siliceous Materials: Synthesis, Characterization, and Photoelectrochemical Properties. Materials, 2022, 15, 7473. Enantiomeric Resolution and Enantiomer Isolation of H ₂ TPPS4â€Jâ€Aggregate from Aqueous Solution Is Enabled by Vortexes. Chemistry - A European Journal, 2023, 29, . High-dimensional zinc porphyrin nanoframeworks as efficient radiosensitizers for cervical cancer. Chinese Chemical Letters, 2023, 34, 107945. Hypervalent Phosphorus(V) Porphyrins with <i>meso</i> Methoxyphenyl Substituents: Significance of the Number and Position of Methoxy Groups in Promoting Intramolecular Charge Transfer. Inorganic Chemistry, 2022, 61, 16573-16585. A novel supported ionic liquid catalyst, GO-[DBU][Br] catalyzes cycloaddition of CO2 in a fixed-bed reactor. Molecular Catalysis, 2022, 532, 112743. An exchange coupled <i>meso</i> §26	1.6 1.3 1.7 4.8 1.9 1.0 3.7	5 1 2 3 4 3 3
268 269 270 271 272 273 273	Porphyryne. ACS Omega, 2022, 7, 40275-40278. V-Porphyrins Encapsulated or Supported on Siliceous Materials: Synthesis, Characterization, and Photoelectrochemical Properties. Materials, 2022, 15, 7473. Enantiomeric Resolution and Enantiomer Isolation of H ₂ TPPS4a€Ja€Aggregate from Aqueous Solution Is Enabled by Vortexes. Chemistry - A European Journal, 2023, 29, . High-dimensional zinc porphyrin nanoframeworks as efficient radiosensitizers for cervical cancer. Chinese Chemical Letters, 2023, 34, 107945. Hypervalent Phosphorus(V) Porphyrins with <i>meso</i> Methoxy Derophyrin generation of Methoxy Groups in Promoting Intramolecular Charge Transfer. Inorganic Chemistry, 2022, 61, 16573-16585. A novel supported ionic liquid catalyst, GO-[DBU][Br] catalyzes cycloaddition of CO2 in a fixed-bed reactor. Molecular Catalysis, 2022, 532, 112743. An exchange coupled <i>meso</i> Science, 2022, 14, 61-69. Metal-free polyporphyrin based photocatalysts for the functionalization of C(sp ³)à€"H bonds in water. Chemical Communications, 2022, 58, 13234-13237.	1.6 1.3 1.7 4.8 1.9 1.0 3.7 2.2	5 1 2 3 4 3 3 18

#	Article	IF	CITATIONS
277	Butadiyne-linked porphyrin nanoring as a highly selective O2 gas sensor: A fast response hybrid sensor. Journal of Molecular Graphics and Modelling, 2023, 119, 108371.	1.3	5
278	New A3B-type naphthyl Zn(II) porphyrins as DSSC dyes: Effect of anchoring group and co-adsorption for enhanced efficiency. Journal of Molecular Structure, 2023, 1276, 134766.	1.8	2
279	Molecular Engineering of Metalloporphyrins for Highâ€Performance Energy Storage: Central Metal Matters. ChemSusChem, 2023, 16, .	3.6	5
280	Exploring Deep Learning for Metalloporphyrins: Databases, Molecular Representations, and Model Architectures. Catalysts, 2022, 12, 1485.	1.6	1
281	Exploring the Electronic Influence of βâ€Br Substitutions in CuTPP on Electrochemical Overall Water Splitting in Alkaline Medium. ChemistrySelect, 2022, 7, .	0.7	1
282	Twisting of Porphyrin by Assembly in a Metalâ€Organic Framework yielding Chiral Photoconducting Films for Circularlyâ€Polarizedâ€Light Detection. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
283	Hypercorroles Formed via the Tail that Wagged the Dog: Charge Transfer Interactions from Innocent Corroles to <i>Meso</i> -Nitrophenyl Substituents. Inorganic Chemistry, 2022, 61, 20576-20586.	1.9	6
284	Selective and Greener Route in Synthesis of Industrially Important Alkyl Acrylates by Porphyrin Photocatalyst Comprising 1,2,4-Triazole-based Ionic Liquid. Catalysis Letters, 0, , .	1.4	0
285	Twisting of Porphyrin by Assembly in a Metalâ€Organic Framework yielding Chiral Photoconducting Films for Circularlyâ€Polarizedâ€Light Detection. Angewandte Chemie, 0, , .	1.6	1
286	Electrochemical organic reactions: A tutorial review. Frontiers in Chemistry, 0, 10, .	1.8	11
287	Destabilizing Predictive Copperâ€Catalyzed Click Reactions by Remote Interactions with a Zincâ€₽orphyrin Backbone. Helvetica Chimica Acta, 2023, 106, .	1.0	2
288	New AB3-type Porphyrins with Piperidine and Morpholine Motifs; Synthesis, Photo-physicochemical and Biological Properties. Dalton Transactions, 0, , .	1.6	0
289	Recent advancements review Suzuki and Heck reactions catalyzed by metalloporphyrins. Inorganic Chemistry Communication, 2023, 149, 110359.	1.8	2
290	Photosensitization of asymmetric molecular, and bimolecular aliphatic-μ-bridged-meso-phenyl porphyrin. Journal of Porphyrins and Phthalocyanines, 0, , .	0.4	0
291	TEtraQuinolines: A Missing Link in the Family of Porphyrinoid Macrocycles . Journal of the American Chemical Society, 2023, 145, 2609-2618.	6.6	15
292	A porphyrin-based ion pair receptor constructed through click chemistry. Journal of Porphyrins and Phthalocyanines, 0, , .	0.4	0
293	Oxidative insertion of amines into conjugated macrocycles: transformation of antiaromatic norcorrole into aromatic azacorrole. Chemical Communications, 2023, 59, 3739-3742.	2.2	3
294	Short bandgap of porphyrin molecules (Py) filled in a semiconducting single-walled carbon nanotube (Py@NT17) for highly efficient organic photovoltaic cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 293, 116456.	1.7	2

#	Article	IF	Citations
295	Synthesis and functionalization of electron-deficient perfluoroalkyl porphyrin building blocks for supermolecular systems. Journal of Porphyrins and Phthalocyanines, 0, , A-P.	0.4	0
296	Synthesis and Self-Assembly of β-Octa[(4-Diethoxyphosphoryl)phenyl]porphyrins. Inorganic Chemistry, 2023, 62, 3431-3444.	1.9	0
297	Structures of <i>S</i> -(pyridin-2-yl) 4-nitrobenzothioate, <i>S</i> -(pyridin-2-yl) 4-methylbenzothioate and <i>S</i> -(pyridin-2-yl) 4-methoxybenzothioate: building blocks for low-symmetry multifunctional tetrapyrroles. Acta Crystallographica Section E: Crystallographic Communications, 2023, 79, 157-162.	0.2	0
298	Porphyrin-based supramolecular polymers. Chemical Society Reviews, 2023, 52, 1947-1974.	18.7	18
299	Carbon dioxide conversion into propylene carbonate using meso-substituted free-base and Co(II)metalloporphyrins. , 2023, , 369-388.		0
300	Metalloporphyrin-Based Biomimetic Catalysis: Applications, Modifications and Flexible Microenvironment Influences (A Review). Russian Journal of General Chemistry, 2023, 93, 189-214.	0.3	0
301	Effects of functional groups in iron porphyrin on the mechanism and activity of oxygen reduction reaction. RSC Advances, 2023, 13, 8523-8534.	1.7	2
302	Luminescence and Palladium: The Odd Couple. Molecules, 2023, 28, 2663.	1.7	6
303	Metalloporphyrin modified defective TiO ₂ porous cages with the enhanced photocatalytic activity for coupling of hydrogen generation and tetracycline removal. RSC Advances, 2023, 13, 8822-8829.	1.7	1
304	Optical properties of red/near infrared light-harvesting supramolecular porphyrin synthesized via electrochemical polymerization of pyrrole – Effect of aging, Ca-metallation and H2O2 interaction. Optical Materials, 2023, 138, 113689.	1.7	1
305	Ironâ€Catalyzed Biomimetic Dimerization of Tryptophanâ€Containing Peptides. Angewandte Chemie, 2023, 135, .	1.6	0
306	Ironâ€Catalyzed Biomimetic Dimerization of Tryptophanâ€Containing Peptides. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
307	Nanoarchitectonics of supramolecular porphyrins based on a bis(porphyrin) cleft molecule. Journal of Porphyrins and Phthalocyanines, 2023, 27, 966-979.	0.4	1
308	Zinc-Porphine on Coinage Metal Surfaces: Adsorption Configuration and Ligand-Induced Central Atom Displacement. Journal of Physical Chemistry C, 2023, 127, 7501-7512.	1.5	0
309	Bending Effect on the Electronic Properties and Nonlinear Optical Responses of Linear Porphyrin Oligomer. Advanced Theory and Simulations, 0, , .	1.3	0
322	Main-group porphyrins in artificial photosynthesis. , 2023, , 165-195.		0
334	Reticular framework materials for photocatalytic organic reactions. Chemical Society Reviews, 2023, 52, 7949-8004.	18.7	8
345	Bioactive nutraceuticals as G4 stabilizers: potential cancer prevention and therapy—a critical review. Naunyn-Schmiedeberg's Archives of Pharmacology, 0, , .	1.4	0

	Сітаті	CITATION REPORT		
#	Article	IF	CITATIONS	
359	Energy Gaps and Bacteriochlorophyll Molecular Graph Representation Based on Machine Learning Algorithm Advances in Bioinformatics and Biomedical Engineering Book Series, 2024, , 47-54.	0.2	0	