Novel insights and therapeutic interventions for pediat

Future Oncology 13, 357-368 DOI: 10.2217/fon-2016-0261

Citation Report

#	Article	IF	CITATIONS
1	Managing sarcoma: where have we come from and where are we going?. Therapeutic Advances in Medical Oncology, 2017, 9, 637-659.	1.4	54
3	Ominous Trends in Childhood Cancer Mortality: Who was Right?. Journal of Pediatric Hematology/Oncology, 2017, 39, 577-578.	0.3	0
4	Pediatric sarcomas (Review). Oncology Letters, 2018, 15, 1397-1402.	0.8	2
5	Knockdown of HuR represses osteosarcoma cells migration, invasion and stemness through inhibition of YAP activation and increases susceptibility to chemotherapeutic agents. Biomedicine and Pharmacotherapy, 2018, 102, 587-593.	2.5	16
6	Inhibition of STAT3 blocks protein synthesis and tumor metastasis in osteosarcoma cells. Journal of Experimental and Clinical Cancer Research, 2018, 37, 244.	3.5	47
7	Eggshell derived Se-doped HA nanorods for enhanced antitumor effect and curcumin delivery. Journal of Sol-Gel Science and Technology, 2018, 87, 600-607.	1.1	22
8	An update on emerging drugs in osteosarcoma: towards tailored therapies?. Expert Opinion on Emerging Drugs, 2019, 24, 153-171.	1.0	51
10	Emerging Anticancer Potentials of Selenium on Osteosarcoma. International Journal of Molecular Sciences, 2019, 20, 5318.	1.8	34
11	miR-671-5p Inhibits Tumor Proliferation by Blocking Cell Cycle in Osteosarcoma. DNA and Cell Biology, 2019, 38, 996-1004.	0.9	34
12	Are Regulatory Age Limits in Pediatric Melanoma Justified?. Current Therapeutic Research, 2019, 90, 113-118.	0.5	3
13	Prognostic Significance of Programmed Death Ligand 1 Expression and Tumor-Infiltrating Lymphocytes in Axial Osteosarcoma. World Neurosurgery, 2019, 129, e240-e254.	0.7	15
14	Lnc RNA THOR increases osteosarcoma cell stemness and migration by enhancing SOX 9 mRNA stability. FEBS Open Bio, 2019, 9, 781-790.	1.0	32
15	Screening of a growth inhibitor library of sarcoma cell lines to identify potent anti-cancer drugs. Journal of Electrophoresis, 2019, 63, 1-7.	0.2	2
16	MicroRNAâ€221 regulates osteosarcoma cell proliferation, apoptosis, migration, and invasion by targeting CDKN1B/p27. Journal of Cellular Biochemistry, 2019, 120, 4665-4674.	1.2	41
18	MiR-455-3p downregulation facilitates cell proliferation and invasion and predicts poor prognosis of osteosarcoma. Journal of Orthopaedic Surgery and Research, 2020, 15, 454.	0.9	14
19	Long Noncoding RNA LINC00839 Promotes the Malignant Progression of Osteosarcoma by Competitively Binding to MicroRNA-454-3p and Consequently Increasing c-Met Expression. Cancer Management and Research, 2020, Volume 12, 8975-8987.	0.9	12
20	Alantolactone inhibits proliferation, metastasis and promotes apoptosis of human osteosarcoma cells by suppressing Wnt/β-catenin and MAPKs signaling pathways. Genes and Diseases, 2022, 9, 466-478.	1.5	12
21	The novel circ_0028171/miR-218-5p/IKBKB axis promotes osteosarcoma cancer progression. Cancer Cell International, 2020, 20, 484.	1.8	16

#	Article	IF	CITATIONS
22	Effects of Rapamycin Combined with Cisplatin on Tumor Necrosis Factor TNF-α in MG-63 Cells. Cell Transplantation, 2020, 29, 096368972092615.	1.2	1
23	SPAG5 promotes osteosarcoma metastasis via activation of FOXM1/MMP2 axis. International Journal of Biochemistry and Cell Biology, 2020, 126, 105797.	1.2	11
24	Combinatorial Nanomedicine Made of Squalenoyl-Gemcitabine and Edelfosine for the Treatment of Osteosarcoma. Cancers, 2020, 12, 1895.	1.7	7
25	Establishment of immune prognostic signature and analysis of prospective molecular mechanisms in childhood osteosarcoma patients. Medicine (United States), 2020, 99, e23251.	0.4	5
26	CENPE, PRC1, TTK, and PLK4 May Play Crucial Roles in the Osteosarcoma Progression. Technology in Cancer Research and Treatment, 2020, 19, 153303382097327.	0.8	4
27	Silencing hsa_circRNA_0008035 exerted repressive function on osteosarcoma cell growth and migration by upregulating microRNA-375. Cell Cycle, 2020, 19, 2139-2147.	1.3	6
28	miR-541 serves as a prognostic biomarker of osteosarcoma and its regulatory effect on tumor cell proliferation, migration and invasion by targeting TGIF2. Diagnostic Pathology, 2020, 15, 96.	0.9	7
29	Targeting aggressive osteosarcoma with a peptidase-enhanced cytotoxic melphalan flufenamide. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592093789.	1.4	8
30	Construction and Validation of Nomograms for Predicting the Prognosis of Juvenile Osteosarcoma: A Real-World Analysis in the SEER Database. Technology in Cancer Research and Treatment, 2020, 19, 153303382094771.	0.8	12
31	Circular RNA hsa_circ_0000282 contributes to osteosarcoma cell proliferation by regulating miR-192/XIAP axis. BMC Cancer, 2020, 20, 1026.	1.1	9
32	What Are the Minimum Clinically Important Differences in SF-36 Scores in Patients with Orthopaedic Oncologic Conditions?. Clinical Orthopaedics and Related Research, 2020, 478, 2148-2158.	0.7	33
33	Role of crosstalk between <scp>STAT3</scp> and <scp>mTOR</scp> signaling in driving sensitivity to chemotherapy in osteosarcoma cell lines. IUBMB Life, 2020, 72, 2146-2153.	1.5	6
34	Targeting Molecular Mechanisms Underlying Treatment Efficacy and Resistance in Osteosarcoma: A Review of Current and Future Strategies. International Journal of Molecular Sciences, 2020, 21, 6885.	1.8	156
35	Identification of 9-Gene Epithelial–Mesenchymal Transition Related Signature of Osteosarcoma by Integrating Multi Cohorts. Technology in Cancer Research and Treatment, 2020, 19, 153303382098076.	0.8	13
36	<p>METTL14 Overexpression Promotes Osteosarcoma Cell Apoptosis and Slows Tumor Progression via Caspase 3 Activation</p> . Cancer Management and Research, 2020, Volume 12, 12759-12767.	0.9	19
37	Piceatannol Suppresses the Proliferation and Induced Apoptosis of Osteosarcoma Cells Through PI3K/AKT/mTOR Pathway. Cancer Management and Research, 2020, Volume 12, 2631-2640.	0.9	19
38	Long non-coding RNA LINC01419 mediates miR-519a-3p/PDRG1 axis to promote cell progression in osteosarcoma. Cancer Cell International, 2020, 20, 147.	1.8	11
39	miRâ \in 874â \in 3p inhibits cell migration through targeting RGS4 in osteosarcoma. Journal of Gene Medicine, 2020, 22, e3213.	1.4	15

#	Article	IF	CITATIONS
40	URG4 mediates cell proliferation and cell cycle in osteosarcoma via GSK3β/β-catenin/cyclin D1 signaling pathway. Journal of Orthopaedic Surgery and Research, 2020, 15, 226.	0.9	6
41	Integrative findings indicate anti-tumor biotargets and molecular mechanisms of calycosin against osteosarcoma. Biomedicine and Pharmacotherapy, 2020, 126, 110096.	2.5	9
42	FGD1 promotes tumor progression and regulates tumor immune response in osteosarcoma via inhibiting PTEN activity. Theranostics, 2020, 10, 2859-2871.	4.6	36
43	Pharmacogenomics and Pharmacogenetics in Osteosarcoma: Translational Studies and Clinical Impact. International Journal of Molecular Sciences, 2020, 21, 4659.	1.8	12
44	Nanocomplexes loaded with miR-128-3p for enhancing chemotherapy effect of colorectal cancer through dual-targeting silence the activity of PI3K/AKT and MEK/ERK pathway. Drug Delivery, 2020, 27, 323-333.	2.5	17
45	Downregulation of miR-1826 Indicates a Poor Prognosis for Osteosarcoma Patients and Regulates Tumor Cell Proliferation, Migration, and Invasion. International Journal of Genomics, 2020, 2020, 1-6.	0.8	1
46	The Major Heat Shock Proteins, Hsp70 and Hsp90, in 2-Methoxyestradiol-Mediated Osteosarcoma Cell Death Model. International Journal of Molecular Sciences, 2020, 21, 616.	1.8	8
47	Long noncoding RNA LINC01278 favors the progression of osteosarcoma via modulating miRâ€133aâ€3p/PTHR1 signaling. Journal of Cellular Physiology, 2020, , .	2.0	24
48	Long Noncoding RNA SERTAD2-3 Inhibits Osteosarcoma Proliferation and Migration by Competitively Binding miR-29c. Genetic Testing and Molecular Biomarkers, 2020, 24, 67-72.	0.3	4
49	JAK1/STAT3 regulatory effect of βâ€caryophyllene on MGâ€63 osteosarcoma cells via ROSâ€induced apoptotic mitochondrial pathway by DNA fragmentation. Journal of Biochemical and Molecular Toxicology, 2020, 34, e22514.	1.4	22
50	miRâ€487b and TRAK2 that form an axis to regulate the aggressiveness of osteosarcoma, are potential therapeutic targets and prognostic biomarkers. Journal of Biochemical and Molecular Toxicology, 2020, 34, e22511.	1.4	4
51	Prognostic Significance of β-Catenin Expression in Osteosarcoma: A Meta-Analysis. Frontiers in Oncology, 2020, 10, 402.	1.3	9
52	The performance of the alarmin HMGB1 in pediatric diseases: From lab to clinic. Immunity, Inflammation and Disease, 2021, 9, 8-30.	1.3	14
53	Fabrication of a hydroxyapatite-PDMS microfluidic chip for bone-related cell culture and drug screening. Bioactive Materials, 2021, 6, 169-178.	8.6	41
54	Targetable <i>BRAF</i> and <i>RAF1</i> Alterations in Advanced Pediatric Cancers. Oncologist, 2021, 26, e153-e163.	1.9	14
55	Identification and Analysis of Three Hub Prognostic Genes Related to Osteosarcoma Metastasis. Journal of Oncology, 2021, 2021, 1-16.	0.6	9
56	LncRNA HOTTIP facilitates cell proliferation, invasion, and migration in osteosarcoma by interaction with PTBP1 to promote KHSRP level. Cell Cycle, 2021, 20, 283-297.	1.3	16
57	MPP8 Promotes Proliferation and Restrains Apoptosis in Osteosarcoma by Regulating p38αMAPK Pathway. Technology in Cancer Research and Treatment, 2021, 20, 153303382199527.	0.8	1

#	Article	IF	CITATIONS
58	Circular RNA circVRK1 suppresses the proliferation, migration and invasion of osteosarcoma cells by regulating zinc finger protein ZNF652 expression via microRNA miR-337-3p. Bioengineered, 2021, 12, 5411-5427.	1.4	9
59	Hypoxia stimulates the migration and invasion of osteosarcoma via up-regulating the NUSAP1 expression. Open Medicine (Poland), 2021, 16, 1083-1089.	0.6	5
60	Patient Derived Xenografts for Genome-Driven Therapy of Osteosarcoma. Cells, 2021, 10, 416.	1.8	19
61	Bone Marrow Mesenchymal Stem Cells-Derived Extracellular Vesicles Promote Proliferation, Invasion and Migration of Osteosarcoma Cells via the IncRNA MALAT1/miR-143/NRSN2/Wnt/β-Catenin Axis. OncoTargets and Therapy, 2021, Volume 14, 737-749.	1.0	22
62	Sauchinone inhibits hypoxia-induced invasion and epithelial–mesenchymal transition in osteosarcoma cells via inactivation of the sonic hedgehog pathway. Journal of Receptor and Signal Transduction Research, 2022, 42, 173-179.	1.3	6
63	Comprehensive Analysis of Aerobic Exercise-Related Genes Identifies CDCA4 That Promotes the Progression of Osteosarcoma. Frontiers in Genetics, 2021, 12, 637755.	1.1	5
64	miR-485-3p regulated by MALAT1 inhibits osteosarcoma glycolysis and metastasis by directly suppressing c-MET and AKT3/mTOR signalling. Life Sciences, 2021, 268, 118925.	2.0	29
65	circPVT1 promotes osteosarcoma glycolysis and metastasis by sponging miRâ€423â€5p to activate Wnt5a/Ror2 signaling. Cancer Science, 2021, 112, 1707-1722.	1.7	20
66	Long non-coding RNA FGD5-AS1 enhances osteosarcoma cell proliferation and migration by targeting miR-506-3p/RAB3D axis. Human Cell, 2021, 34, 1255-1265.	1.2	11
67	Successive Osteosarcoma Relapses after the First Line O2006/Sarcome-09 Trial: What Can We Learn for Further Phase-II Trials?. Cancers, 2021, 13, 1683.	1.7	11
68	Suicide and accidental deaths among patients with primary malignant bone tumors. Journal of Bone Oncology, 2021, 27, 100353.	1.0	6
69	Antitumor and antimigration effects of <i>Salvia clandestina</i> L. extract on osteosarcoma cells. Annals of the New York Academy of Sciences, 2021, 1500, 34-47.	1.8	4
70	Complement C1q (C1qA, C1qB, and C1qC) May Be a Potential Prognostic Factor and an Index of Tumor Microenvironment Remodeling in Osteosarcoma. Frontiers in Oncology, 2021, 11, 642144.	1.3	41
71	Construction and Validation of a Macrophage-Associated Risk Model for Predicting the Prognosis of Osteosarcoma. Journal of Oncology, 2021, 2021, 1-18.	0.6	6
72	Long noncoding RNA taurine-up regulated gene 1 for the prognosis of osteosarcoma. Medicine (United) Tj ETQqO	0.0 rgBT / 0.4	Overlock 10
73	Overexpression of KIAA1199, a novel strong hyaluronidase, is a poor prognostic factor in patients with osteosarcoma. Journal of Orthopaedic Surgery and Research, 2021, 16, 439.	0.9	8
74	The Escalation of Osteosarcoma Stem Cells Apoptosis After the Co-Cultivation of Peripheral Blood Mononuclear Cells Sensitized with Mesenchymal Stem Cells Secretome and Colony Stimulating Factor-2 in vitro. Journal of Blood Medicine, 2021, Volume 12, 601-611.	0.7	1

75	Rhaponticin suppresses osteosarcoma through the inhibition of PI3K-Akt-mTOR pathway. Saudi Journal of Biological Sciences, 2021, 28, 3641-3649.	1.8	16	
----	---	-----	----	--

#	Article	IF	Citations
76	SLFN11 is Widely Expressed in Pediatric Sarcoma and Induces Variable Sensitization to Replicative Stress Caused By DNA-Damaging Agents. Molecular Cancer Therapeutics, 2021, 20, 2151-2165.	1.9	6
77	RNF38 inhibits osteosarcoma cell proliferation by binding to CRY1. Biochemistry and Cell Biology, 2021, 99, 629-635.	0.9	3
78	Overexpression of Long Non-Coding RNA MIR22HG Represses Proliferation and Enhances Apoptosis via miR-629-5p/TET3 Axis in Osteosarcoma Cells. Journal of Microbiology and Biotechnology, 2021, 31, 1331-1342.	0.9	5
79	Diffusion-Weighted Imaging-Magnetic Resonance Imaging Information under Class-Structured Deep Convolutional Neural Network Algorithm in the Prognostic Chemotherapy of Osteosarcoma. Scientific Programming, 2021, 2021, 1-12.	0.5	1
80	OLIE, ITCC-082: a Phase II trial of lenvatinib plus ifosfamide and etoposide in relapsed/refractory osteosarcoma. Future Oncology, 2021, 17, 4249-4261.	1.1	2
81	lncRNA MELTF-AS1 facilitates osteosarcoma metastasis by modulating MMP14 expression. Molecular Therapy - Nucleic Acids, 2021, 26, 787-797.	2.3	12
82	Comprehensive analysis of metabolism-related lncRNAs related to the progression and prognosis in osteosarcoma from TCGA. Journal of Orthopaedic Surgery and Research, 2021, 16, 523.	0.9	8
83	Decoration of Squalenoylâ€Gemcitabine Nanoparticles with Squalenylâ€Hydroxybisphosphonate for the Treatment of Bone Tumors. ChemMedChem, 2021, 16, 3730-3738.	1.6	5
84	T cell exhaustion drives osteosarcoma pathogenesis. Annals of Translational Medicine, 2021, 9, 1447-1447.	0.7	10
85	Carvacrol Suppresses Human Osteosarcoma Cells via the Wnt/β-Catenin Signaling Pathway. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, 1714-1722.	0.9	3
86	Zeylenone synergizes with cisplatin in osteosarcoma by enhancing <scp>DNA</scp> damage, apoptosis, and necrosis via the Hsp90/ <scp>AKT</scp> / <scp>GSK3β</scp> and Fanconi anaemia pathway. Phytotherapy Research, 2021, 35, 5899-5918.	2.8	3
87	Development and Validation of Prognostic Nomograms for Elderly Patients with Osteosarcoma. International Journal of General Medicine, 2021, Volume 14, 5581-5591.	0.8	8
88	Differential gene expression analysis for osteosarcoma lung metastases. Cancer Biomarkers, 2021, , 1-9.	0.8	3
89	Hsa_circ_0088212-mediated miR-520Âh/APOA1 axis inhibits osteosarcoma progression. Translational Oncology, 2021, 14, 101219.	1.7	11
90	Cantharidin inhibits osteosarcoma proliferation and metastasis by directly targeting miR-214-3p/DKK3 axis to inactivate β-catenin nuclear translocation and LEF1 translation. International Journal of Biological Sciences, 2021, 17, 2504-2522.	2.6	20
91	Biological and molecular markers in childhood malignancies. , 2021, , 635-690.		0
92	MiR-33b inhibits osteosarcoma cell proliferation through suppression of glycolysis by targeting Lactate Dehydrogenase A (LDHA). Cellular and Molecular Biology, 2018, 64, 31-35.	0.3	17
93	CircSAMD4A contributes to cell doxorubicin resistance in osteosarcoma by regulating the miR-218-5p/KLF8 axis. Open Life Sciences, 2020, 15, 848-859.	0.6	9

#	Article	IF	CITATIONS
94	Overexpression of klotho suppresses growth and pulmonary metastasis of osteosarcoma in vivo. Genetics and Molecular Biology, 2020, 43, e20190229.	0.6	7
95	LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis. Aging, 2019, 11, 8374-8385.	1.4	99
96	Circular RNA hsa_circ_0000073 contributes to osteosarcoma cell proliferation, migration, invasion and methotrexate resistance by sponging miR-145-5p and miR-151-3p and upregulating NRAS. Aging, 2020, 12, 14157-14173.	1.4	33
97	Detection of circulating tumor DNA in patients with osteosarcoma. Oncotarget, 2018, 9, 12695-12704.	0.8	38
98	Quercetin induced NUPR1-dependent autophagic cell death by disturbing reactive oxygen species homeostasis in osteosarcoma cells. Journal of Clinical Biochemistry and Nutrition, 2020, 67, 137-145.	0.6	20
99	MicroRNAâ€ʿ22 mediates the cisplatin resistance of osteosarcoma cells by inhibiting autophagy via the PI3K/Akt/mTOR pathway. Oncology Reports, 2020, 43, 1169-1186.	1.2	25
100	Sea cucumber Cucumaria frondosa fucoidan inhibits osteosarcoma adhesion and migration by regulating cytoskeleton remodeling. Oncology Reports, 2020, 44, 469-476.	1.2	15
101	Abemaciclib is synergistic with doxorubicin in osteosarcoma pre-clinical models via inhibition of CDK4/6–Cyclin D–Rb pathway. Cancer Chemotherapy and Pharmacology, 2022, 89, 31-40.	1.1	7
102	The Multifaceted Therapeutic Mechanisms of Curcumin in Osteosarcoma: State-of-the-Art. Journal of Oncology, 2021, 2021, 1-15.	0.6	8
103	ZIP10 drives osteosarcoma proliferation and chemoresistance through ITGA10-mediated activation of the PI3K/AKT pathway. Journal of Experimental and Clinical Cancer Research, 2021, 40, 340.	3.5	31
104	Long Non-Coding RNA ANRIL as a Potential Biomarker of Chemosensitivity and Clinical Outcomes in Osteosarcoma. International Journal of Molecular Sciences, 2021, 22, 11168.	1.8	14
105	Molecular profiling of osteosarcoma in children and adolescents from different age groups using a next-generation sequencing panel. Cancer Genetics, 2021, 258-259, 85-92.	0.2	5
106	Sarcomas de partes moles nos membros, mais comuns e tão graves quanto os sarcomas ósseos. Revista Brasileira De Ortopedia, 2021, 56, 419-424.	0.2	2
108	Long non-coding RNA tumor metastasis in osteosarcoma. International Journal of Clinical and Experimental Pathology, 2017, 10, 10918-10925.	0.5	1
109	Radiosensitizing effects of c‑myc gene knockdown‑induced G2/M phase arrest by intrinsic stimuli via the mitochondrial signaling pathway. Oncology Reports, 2020, 44, 2669-2677.	1.2	1
110	The therapeutic effects of X-ray devitalization and replantation and alcoholic devitalization and replantation in adolescent patients with lower limb osteosarcoma. American Journal of Translational Research (discontinued), 2021, 13, 5547-5553.	0.0	0
111	LncRNA HCG18 promotes cell multiplication and metastasis by miR-148b/ETV5 regulation in osteosarcoma. American Journal of Translational Research (discontinued), 2021, 13, 7783-7793.	0.0	0
112	MicroRNA-22-3p targeted regulating transcription factor 7-like 2 (TCF7L2) constrains the Wnt/β-catenin pathway and malignant behavior in osteosarcoma. Bioengineered, 2022, 13, 9135-9147.	1.4	10

#	Article	IF	CITATIONS
113	Precise Diagnosis and Therapy of Bone Cancer Using Near-Infrared Lights. Frontiers in Bioengineering and Biotechnology, 2021, 9, 771153.	2.0	1
114	Identification of key genes as predictive biomarkers for osteosarcoma metastasis using translational bioinformatics. Cancer Cell International, 2021, 21, 640.	1.8	8
115	Radiosensitizing effects of c‑myc gene knockdown‑induced G2/M phase arrest by intrinsic stimuli via the mitochondrial signaling pathway. Oncology Reports, 2020, 44, 2669-2677.	1.2	6
116	Liensinine Inhibits Osteosarcoma Growth by ROS-Mediated Suppression of the JAK2/STAT3 Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-21.	1.9	18
117	Exosomal Long Non-Coding RNA ANCR Mediates Drug Resistance in Osteosarcoma. Frontiers in Oncology, 2021, 11, 735254.	1.3	7
119	My knee won't stop swelling! Osteosarcoma. , 2022, , 334-336.		0
120	Circular RNA hsa_circ_0069117 suppresses proliferation and migration of osteosarcoma cells lines via miR-875-3p/PF4V1 axis. Journal of Orthopaedic Surgery and Research, 2022, 17, 37.	0.9	1
121	Synchronous lung and multiple soft tissue metastases developed from osteosarcoma of tibia: a rare case report and genetic profile analysis. BMC Musculoskeletal Disorders, 2022, 23, 74.	0.8	2
122	Circular RNA circ_UBAP2 facilitates the progression of osteosarcoma by regulating microRNA miR-637/high-mobility group box (HMGB) 2 axis. Bioengineered, 2022, 13, 4411-4427.	1.4	9
123	mir-204-5p Acts as a Tumor Suppressor by Targeting DNM2 in Osteosarcoma Cells. Journal of Healthcare Engineering, 2022, 2022, 1-7.	1.1	3
124	MicroRNA miR-23b-3p promotes osteosarcoma by targeting ventricular zone expressed PH domain-containing 1 (VEPH1)/phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. Bioengineered, 2021, 12, 12568-12582.	1.4	7
125	Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of osteosarcoma cancer. BMC Cancer, 2021, 21, 1345.	1.1	12
126	Comprehensive Analysis of a Zinc Finger Protein Gene–Based Signature with Regard to Prognosis and Tumor Immune Microenvironment in Osteosarcoma. Frontiers in Genetics, 2022, 13, 835014.	1.1	6
127	Circular RNA_ANKIB1 accelerates chemo-resistance of osteosarcoma via binding microRNA-26b-5p and modulating enhancer of zeste homolog 2. Bioengineered, 2022, 13, 7351-7366.	1.4	5
128	Canine and murine models of osteosarcoma. Veterinary Pathology, 2022, 59, 399-414.	0.8	22
129	Development and Validation of Novel Prognostic Models for Immune-Related Genes in Osteosarcoma. Frontiers in Molecular Biosciences, 2022, 9, 828886.	1.6	7
130	N6-methyladenosine Modification-Related Long Non-Coding RNAs are Potential Biomarkers for Predicting the Prognosis of Patients With Osteosarcoma. Technology in Cancer Research and Treatment, 2022, 21, 153303382210853.	0.8	6
131	Identification of Cell Subpopulations and Interactive Signaling Pathways From a Single-Cell RNA Sequencing Dataset in Osteosarcoma: A Comprehensive Bioinformatics Analysis. Frontiers in Oncology, 2022, 12, 853979.	1.3	4

#	Article	IF	CITATIONS
132	A Nutritional Metabolism Related Prognostic Scoring System for Patients With Newly Diagnosed Osteosarcoma. Frontiers in Nutrition, 2022, 9, 883308.	1.6	2
133	Hematological Prognostic Scoring System Can Predict Overall Survival and Can Indicate Response to Immunotherapy in Patients With Osteosarcoma. Frontiers in Immunology, 2022, 13, .	2.2	3
134	MicroRNA-744-5p suppresses tumorigenesis and metastasis of osteosarcoma through the p38 mitogen-activated protein kinases pathway by targeting transforming growth factor-beta 1. Bioengineered, 2022, 13, 12309-12325.	1.4	3
135	MIR503HG overexpression inhibits the malignant behaviors of osteosarcoma cells by sponging miR-103a-3p. Critical Reviews in Eukaryotic Gene Expression, 2022, , .	0.4	0
136	Identification of Small-Molecule Inhibitors for Osteosarcoma Targeted Therapy: Synchronizing In Silico, In Vitro, and In Vivo Analyses. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	0
137	Extracellular vesicles from bone mesenchymal stem cells transport microRNA-206 into osteosarcoma cells and target NRSN2 to block the ERK1/2-Bcl-xL signaling pathway. European Journal of Histochemistry, 2022, 66, .	0.6	5
138	HIF-1α-mediated augmentation of miRNA-18b-5p facilitates proliferation and metastasis in osteosarcoma through attenuation PHF2. Scientific Reports, 2022, 12, .	1.6	6
139	Bioinformatics Analysis Reveals an Association between Autophagy, Prognosis, Tumor Microenvironment, and Immunotherapy in Osteosarcoma. Journal of Oncology, 2022, 2022, 1-15.	0.6	3
140	Propofol inhibits the malignant development of osteosarcoma U2OS cells via AMPK/FΟΧO1‑mediated autophagy. Oncology Letters, 2022, 24, .	0.8	3
141	EZH2 promotes the progression of osteosarcoma through the activation of the AKT/GSK3 \hat{I}^2 pathway. Clinical and Experimental Pharmacology and Physiology, 0, , .	0.9	3
142	Zinc oxide nanoparticles inhibit osteosarcoma metastasis by downregulating β-catenin via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway. Bioactive Materials, 2023, 19, 690-702.	8.6	35
143	Hypermethylated PODN represses the progression of osteosarcoma by inactivating the TGF-β/Smad2/3 pathway. Pathology Research and Practice, 2022, 238, 154075.	1.0	3
144	Current Status and Prospects of Clinical Treatment of Osteosarcoma. Technology in Cancer Research and Treatment, 2022, 21, 153303382211246.	0.8	16
145	A 3D Collagen-Based Bioprinted Model to Study Osteosarcoma Invasiveness and Drug Response. Polymers, 2022, 14, 4070.	2.0	5
146	Two novel predictive biomarkers for osteosarcoma and glycolysis pathways: A profiling study on HS2ST1 and SDC3. Medicine (United States), 2022, 101, e30192.	0.4	1
148	Targeted Delivery of PDâ€L1â€Derived Phosphorylationâ€Mimicking Peptides by Engineered Biomimetic Nanovesicles to Enhance Osteosarcoma Treatment. Advanced Healthcare Materials, 2022, 11, . 	3.9	9
149	LIMS2 is Downregulated in Osteosarcoma and Inhibits Cell Growth and Migration. Journal of Oncology, 2022, 2022, 1-13.	0.6	2
150	Pharmacogenomic Profiling of Cisplatin-Resistant and -Sensitive Human Osteosarcoma Cell Lines by Multimodal Targeted Next Generation Sequencing. International Journal of Molecular Sciences, 2022, 23, 11787.	1.8	2

#	Article	IF	CITATIONS
151	A Feedback Loop of <scp>LINC00665</scp> and the Wnt Signaling Pathway Expedites Osteosarcoma Cell Proliferation, Invasion, and Epithelialâ€Mesenchymal Transition. Orthopaedic Surgery, 0, , .	0.7	1
152	The role of long non-coding RNA HCG18 in cancer. Clinical and Translational Oncology, 2023, 25, 611-619.	1.2	3
153	Lung metastases pattern in limb osteosarcoma: A population-based study from 2010 to 2018. Medicine (United States), 2022, 101, e31212.	0.4	0
154	A deep belief network-based clinical decision system for patients with osteosarcoma. Frontiers in Immunology, 0, 13, .	2.2	5
155	Ebastine exerts antitumor activity and induces autophagy by activating AMPK/ULK1 signaling in an IPMK-dependent manner in osteosarcoma. International Journal of Biological Sciences, 2023, 19, 537-551.	2.6	5
156	Circ_0000253 promotes the progression of osteosarcoma via the miR-1236-3p/SP1 axis. Journal of Pharmacy and Pharmacology, 2023, 75, 227-235.	1.2	2
157	Construction and validation of a prognostic model for osteosarcoma patients based on autophagy-related genes. Discover Oncology, 2022, 13, .	0.8	1
158	Construction of a novel mRNAsi-related risk model for predicting prognosis and immunotherapy response in osteosarcoma. Annals of Translational Medicine, 2023, 11, 61-61.	0.7	1
159	ETC-159, an Upstream Wnt inhibitor, Induces Tumour Necrosis via Modulation of Angiogenesis in Osteosarcoma. International Journal of Molecular Sciences, 2023, 24, 4759.	1.8	1
160	Pharmacogenetics of the Primary and Metastatic Osteosarcoma: Gene Expression Profile Associated with Outcome. International Journal of Molecular Sciences, 2023, 24, 5607.	1.8	2
161	Chitosan targets PI3K/Akt/FoxO3a axis to up-regulate FAM172A and suppress MAPK/ERK pathway to exert anti-tumor effect in osteosarcoma. Chemico-Biological Interactions, 2023, 373, 110354.	1.7	2
162	TREM2 as a Prognostic Biomarker for Osteosarcoma Microenvironment Remodeling. Journal of Oncology, 2023, 2023, 1-14.	0.6	0
163	The bioinformatic approach identifies PARM1 as a new potential prognostic factor in osteosarcoma. Frontiers in Oncology, 0, 12, .	1.3	1