A novel method for the synthesis of glyceryl monocaffe transesterification and kinetic analysis

Food Chemistry 214, 192-198

DOI: 10.1016/j.foodchem.2016.07.087

Citation Report

#	Article	IF	CITATIONS
1	Enzymatic preparation of novel caffeoyl structured lipids using monoacylglycerols as caffeoyl acceptor and transesterification mechanism. Biochemical Engineering Journal, 2017, 124, 78-87.	1.8	17
2	Synthesis of glyceryl monocaffeate using ionic liquids as catalysts. Journal of Molecular Liquids, 2017, 248, 643-650.	2.3	15
3	Enzymatic Synthesis and Antioxidant Activity of 1â€Caffeoylglycerol Prepared from Alkyl Caffeates and Glycerol. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 149-159.	0.8	5
4	Enzymatic preparation of "functional oil―rich in feruloylated structured lipids with solvent-free ultrasound pretreatment. Food Chemistry, 2018, 248, 272-278.	4.2	21
5	Parameters study of lipase-transesterification reaction of ethyl caffeate and glycerol in deep eutectic solvent (DES). IOP Conference Series: Materials Science and Engineering, 0, 440, 012004.	0.3	3
6	Novozym 40086 as a novel biocatalyst to improve benzyl cinnamate synthesis. RSC Advances, 2018, 8, 37184-37192.	1.7	14
7	Antioxidant Profile of 1â€Monocaffeoyl Glycerol in Lipophobic/Lipophilic Media. Journal of Food Science, 2019, 84, 2091-2100.	1.5	3
8	Solventâ€Free Enzymatic Synthesis of 1―o â€Galloylglycerol Optimized by the Taguchi Method. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 877-889.	0.8	10
9	A novel caffeic acid-based deep eutectic solvent as caffeoyl donor to enhance glycerol caffeates synthesis. Journal of Molecular Liquids, 2019, 277, 556-562.	2.3	8
10	Novozym 435: the "perfect―lipase immobilized biocatalyst?. Catalysis Science and Technology, 2019, 9, 2380-2420.	2.1	393
11	Enzyme-Catalyzed Transesterification for Biodiesel Production., 2019,, 53-87.		1
12	Enzymatic synthesis of 1-caffeoylglycerol with deep eutectic solvent under continuous microflow conditions. Biochemical Engineering Journal, 2019, 142, 41-49.	1.8	24
13	Influence of ionic liquid on Novozym 435-catalyzed the transesterification of castor oil and ethyl caffeate. 3 Biotech, 2019, 9, 34.	1.1	6
14	Synthesis of Lipophilic Caffeoyl Alkyl Ester Using a Novel Natural Deep Eutectic Solvent. ACS Omega, 2020, 5, 11131-11137.	1.6	14
15	Ultrasonic-promoted enzymatic preparation, identification and multi-active studies of nature-identical phenolic acid glycerol derivatives. RSC Advances, 2020, 10, 11139-11147.	1.7	3
16	Hydrophilic Glyceryl Ferulates Preparation Catalyzed by Free Lipase B from <i>Candida antartica</i> . Journal of Oleo Science, 2020, 69, 43-53.	0.6	5
17	Lipase-catalysed synthesis of mono- and di-acyl esters of glyceryl caffeate in propylene carbonate and their antioxidant properties in tuna oil. Journal of Biotechnology, 2021, 325, 217-225.	1.9	10
18	An Effective Strategy for the Production of Lauric Acid–Enriched Monoacylglycerol via Enzymatic Glycerolysis from Black Soldier Fly (Hermetia illucens) Larvae (BSFL) Oil. Applied Biochemistry and Biotechnology, 2021, 193, 2781-2792.	1.4	3

#	Article	IF	CITATIONS
19	Biodiesel preparation from high acid value phoenix seed oil using Eversa transform 2.0 as a novel catalyst. Biomass Conversion and Biorefinery, 2023, 13, 9821-9830.	2.9	5
20	An efficient and robust continuous-flow bioreactor for the enzymatic preparation of phytosterol esters based on hollow lipase microarray. Food Chemistry, 2022, 372, 131256.	4.2	15
21	Enhancement of the hydrophilic feruloyl glycerol synthesis using A-35 as a catalyst and its functional characteristics. Food and Function, 2021, 12, 9763-9772.	2.1	4
22	Choline Chloride-urea Deep Eutectic Mixture Water for the Synthesis of an Amphiphilic Compound of Glyceryl Monocaffeate. Journal of Oleo Science, 2021, 70, 1437-1445.	0.6	O
23	Enzymatic preparation of structured TAG containing conjugated linoleic acid (CLA) at solvent-free. International Journal of Food Engineering, 2020, 16 , .	0.7	2
24	Lipase-catalyzed one-step regioselective synthesis of 1,2-dioctanoylgalloylglycerol in a solvent-free system: Optimization of reaction conditions and structural elucidation. Food Chemistry, 2022, 382, 132302.	4.2	4
25	Chain-locked precursor ion scanning based HPLC–MS/MS for in-depth molecular analysis of lipase-catalyzed transesterification of structured phospholipids containing ω-3 fatty acyl chains. Food Chemistry, 2023, 399, 133982.	4.2	4
26	One-pot enzymatic synthesis of hydrophilicity and lipophilicity caffeoyl structured lipids using diacylglycerols as acceptor in solvent-free system. Biochemical Engineering Journal, 2022, 187, 108608.	1.8	1
27	A new approach for the direct acylation of bio-oil enriched with levoglucosan: Kinetic study and lipase thermostability. Biochemical Engineering Journal, 2023, 195, 108915.	1.8	1
28	Application of Steapsin lipase for bioconversion of glycerol acetates from glycerol. Biocatalysis and Agricultural Biotechnology, 2023, 48, 102641.	1.5	3
29	Synthesis of hydrophilic glyceryl monocaffeate with economical catalyst cationâ€exchange resin Amberlystâ€35. Journal of the Science of Food and Agriculture, 2023, 103, 4676-4684.	1.7	0