Tropospheric emissions: Monitoring of pollution (TEMF

Journal of Quantitative Spectroscopy and Radiative Transfer 186, 17-39 DOI: 10.1016/j.jqsrt.2016.05.008

Citation Report

#	Article	IF	CITATIONS
1	New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY. Atmospheric Measurement Techniques, 2016, 9, 3939-3967.	3.1	180
3	Fusion of Mobile In situ and Satellite Remote Sensing Observations of Chemical Release Emissions to Improve Disaster Response. Frontiers in Environmental Science, 2016, 4, .	3.3	1
4	Limb–nadir matching using non-coincident NO ₂ observations: proof of concept and the OMI-minus-OSIRIS prototype product. Atmospheric Measurement Techniques, 2016, 9, 4103-4122.	3.1	9
5	An algorithm for hyperspectral remote sensing of aerosols: 2. Information content analysis for aerosol parameters and principal components of surface spectra. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 192, 14-29.	2.3	40
6	Validation of Brewer and Pandora measurements using OMI total ozone. Atmospheric Environment, 2017, 160, 165-175.	4.1	6
7	Observation of Air Pollution in Asia Using UV/Visible Space Sensors. , 2017, , 287-307.		0
8	Monitoring Aerosol Properties in East Asia from Geostationary Orbit: GOCI, MI and GEMS. , 2017, , 323-333.		9
9	A Geostationary air quality monitor for the Middle East. Journal of Physics: Conference Series, 2017, 869, 012085.	0.4	0
10	The HITRAN2016 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203, 3-69.	2.3	2,840
11	Satellite remote sensing and spectroscopy: Joint ACE-Odin meeting, October 2015. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 186, 1-2.	2.3	0
12	Commentary on "O 3 variability in the troposphere as observed by IASI over 2008–2016: Contribution of atmospheric chemistry and dynamics―by Wespes et al Journal of Geophysical Research D: Atmospheres, 2017, 122, 6130-6134.	3.3	1
13	Global deposition of total reactive nitrogen oxides from 1996 to 2014 constrained with satellite observations of NO ₂ columns. Atmospheric Chemistry and Physics, 2017, 17, 10071-10091.	4.9	55
14	Assimilation of satellite NO ₂ observations at high spatial resolution using OSSEs. Atmospheric Chemistry and Physics, 2017, 17, 7067-7081.	4.9	23
15	Impact of intercontinental pollution transport on North American ozone air pollution: an HTAP phase 2 multi-model study. Atmospheric Chemistry and Physics, 2017, 17, 5721-5750.	4.9	51
16	A high-resolution and observationally constrained OMI NO ₂ satellite retrieval. Atmospheric Chemistry and Physics, 2017, 17, 11403-11421.	4.9	58
17	Sensitivity of formaldehyde (HCHO) column measurements from a geostationary satellite to temporal variation of the air mass factor in East Asia. Atmospheric Chemistry and Physics, 2017, 17, 4673-4686.	4.9	18
18	Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data. Atmospheric Chemistry and Physics, 2017, 17, 8725-8738.	4.9	72
19	Characterization and correction of OMPS nadir mapper measurements for ozone profile retrievals. Atmospheric Measurement Techniques, 2017, 10, 4373-4388.	3.1	31

#	Article	IF	CITATIONS
21	Investigation of Simultaneous Effects of Aerosol Properties and Aerosol Peak Height on the Air Mass Factors for Space-Borne NO2 Retrievals. Remote Sensing, 2017, 9, 208.	4.0	21
22	Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements. Atmospheric Measurement Techniques, 2017, 10, 939-953.	3.1	24
23	First Topâ€Down Estimates of Anthropogenic NO _{<i>x</i>} Emissions Using Highâ€Resolution Airborne Remote Sensing Observations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3269-3284.	3.3	21
24	Review of surface particulate monitoring of dust events using geostationary satellite remote sensing. Atmospheric Environment, 2018, 183, 154-164.	4.1	38
25	OMI Satellite and Groundâ€Based Pandora Observations and Their Application to Surface NO ₂ Estimations at Terrestrial and Marine Sites. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1441-1459.	3.3	16
26	Cross-comparison and evaluation of air pollution field estimation methods. Atmospheric Environment, 2018, 179, 49-60.	4.1	50
27	Maritime NO _x Emissions Over Chinese Seas Derived From Satellite Observations. Geophysical Research Letters, 2018, 45, 2031-2037.	4.0	44
28	Langley Calibration Analysis of Solar Spectroradiometric Measurements: Spectral Aerosol Optical Thickness Retrievals. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4221-4238.	3.3	8
29	Evaluation of potential sources of a priori ozone profiles for TEMPO tropospheric ozone retrievals. Atmospheric Measurement Techniques, 2018, 11, 3457-3477.	3.1	9
30	Primary emissions of glyoxal and methylglyoxal from laboratory measurements of open biomass burning. Atmospheric Chemistry and Physics, 2018, 18, 15451-15470.	4.9	28
31	Stratosphere–troposphere separation of nitrogen dioxide columns from the TEMPO geostationary satellite instrument. Atmospheric Measurement Techniques, 2018, 11, 6271-6287.	3.1	4
32	The Dawn of Geostationary Air Quality Monitoring: Case Studies From Seoul and Los Angeles. Frontiers in Environmental Science, 2018, 6, .	3.3	25
33	Assessing snow extent data sets over North America to inform and improve trace gas retrievals from solar backscatter. Atmospheric Measurement Techniques, 2018, 11, 2983-2994.	3.1	14
34	Nitrogen dioxide and formaldehyde measurements from the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator over Houston, Texas. Atmospheric Measurement Techniques, 2018, 11, 5941-5964.	3.1	39
35	A physics-based approach to oversample multi-satellite, multispecies observations to a common grid. Atmospheric Measurement Techniques, 2018, 11, 6679-6701.	3.1	64
37	A cloud algorithm based on the O ₂ -O ₂ 477 nm absorption band featuring an advanced spectral fitting method and the use of surface geometry-dependent Lambertian-equivalent reflectivity. Atmospheric Measurement Techniques, 2018, 11,	3.1	21
38	Global simulation of tropospheric chemistry at 12.5 km resolution: performance and evaluation of the GEOS-Chem chemical module (v10-1) within the NASA GEOS Earth system model (GEOS-5 ESM). Geoscientific Model Development, 2018, 11, 4603-4620.	3.6	60
39	The first evaluation of formaldehyde column observations by improved Pandora spectrometers during the KORUS-AQ field study. Atmospheric Measurement Techniques, 2018, 11, 4943-4961.	3.1	34

#	Article	IF	CITATIONS
40	High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: application to the southeast US. Atmospheric Chemistry and Physics, 2018, 18, 5483-5497.	4.9	64
41	Ecological contributions to human health in cities. Landscape Ecology, 2018, 33, 1655-1668.	4.2	16
42	Development of a Fuel-Based Oil and Gas Inventory of Nitrogen Oxides Emissions. Environmental Science & Technology, 2018, 52, 10175-10185.	10.0	19
43	The Ozone Monitoring Instrument: overview of 14 years in space. Atmospheric Chemistry and Physics, 2018, 18, 5699-5745.	4.9	259
44	The CHRONOS mission: capability for sub-hourly synoptic observations of carbon monoxide and methane to quantify emissions and transport of air pollution. Atmospheric Measurement Techniques, 2018, 11, 1061-1085.	3.1	3
45	Sun-induced chlorophyll fluorescence is more strongly related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy. Remote Sensing of Environment, 2018, 216, 658-673.	11.0	149
46	Advances in UV Remote Sensing. , 2018, , 340-352.		0
47	Impact of high-resolution a priori profiles on satellite-based formaldehyde retrievals. Atmospheric Chemistry and Physics, 2018, 18, 7639-7655.	4.9	2
48	Midlatitude Lightning NO _x Production Efficiency Inferred From OMI and WWLLN Data. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13475-13497.	3.3	25
49	Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50†years of progress. Remote Sensing of Environment, 2019, 231, 111177.	11.0	372
50	An Observationâ€Based Correction for Aerosol Effects on Nitrogen Dioxide Column Retrievals Using the Absorbing Aerosol Index. Geophysical Research Letters, 2019, 46, 8442-8452.	4.0	5
51	UNL-VRTM, A Testbed for Aerosol Remote Sensing: Model Developments and Applications. Springer Series in Light Scattering, 2019, , 1-69.	0.6	8
52	Cross-evaluation of GEMS tropospheric ozone retrieval performance using OMI data and the use of an ozonesonde dataset over East Asia for validation. Atmospheric Measurement Techniques, 2019, 12, 5201-5215.	3.1	12
53	Making full use of hyperspectral data for gross primary productivity estimation with multivariate regression: Mechanistic insights from observations and process-based simulations. Remote Sensing of Environment, 2019, 234, 111435.	11.0	24
54	Accuracy assessment of MODIS land aerosol optical thickness algorithms using AERONET measurements over North America. Atmospheric Measurement Techniques, 2019, 12, 4291-4307.	3.1	42
55	A Neural Network Correction to the Scalar Approximation in Radiative Transfer. Journal of Atmospheric and Oceanic Technology, 2019, 36, 819-832.	1.3	6
56	Exploiting OMI NO2 satellite observations to infer fossil-fuel CO2 emissions from U.S. megacities. Science of the Total Environment, 2019, 695, 133805.	8.0	37
57	Validation, comparison, and integration of GOCI, AHI, MODIS, MISR, and VIIRS aerosol optical depth over East Asia during the 2016 KORUS-AQ campaign. Atmospheric Measurement Techniques, 2019, 12, 4619-4641.	3.1	71

#	Article	IF	CITATIONS
58	What is global photosynthesis? History, uncertainties and opportunities. Remote Sensing of Environment, 2019, 223, 95-114.	11.0	266
59	An evaluation of the ability of the Ozone Monitoring Instrument (OMI) to observe boundary layer ozone pollution across China: application to 2005–2017 ozone trends. Atmospheric Chemistry and Physics, 2019, 19, 6551-6560.	4.9	65
60	A Case Study of Ozone Diurnal Variation in the Convective Boundary Layer in the Southeastern United States Using Multiple Observations and Large-Eddy Simulation. Climate, 2019, 7, 53.	2.8	0
61	Concept of small satellite UV/visible imaging spectrometer optimized for tropospheric NO2 measurements in air quality monitoring. Acta Astronautica, 2019, 160, 421-432.	3.2	2
62	Five decades observing Earth's atmospheric trace gases using ultraviolet and visible backscatter solar radiation from space. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 238, 106478.	2.3	26
63	A Geostationary Instrument Simulator for Aerosol Observing System Simulation Experiments. Atmosphere, 2019, 10, 2.	2.3	12
64	Intercomparison of four airborne imaging DOAS systems for tropospheric NO ₂ mapping – the AROMAPEX campaign. Atmospheric Measurement Techniques, 2019, 12, 211-236.	3.1	21
65	A method for quantifying near range point source induced O3 titration events using Co-located Lidar and Pandora measurements. Atmospheric Environment, 2019, 204, 43-52.	4.1	30
66	Evaluating the impact of spatial resolution on tropospheric NO ₂ column comparisons within urban areas using high-resolution airborne data. Atmospheric Measurement Techniques, 2019, 12, 6091-6111.	3.1	51
67	Explicit Aerosol Correction of OMI Formaldehyde Retrievals. Earth and Space Science, 2019, 6, 2087-2105.	2.6	11
68	Optimal Band Analysis of a Space-Based Multispectral Sensor for Urban Air Pollutant Detection. Atmosphere, 2019, 10, 631.	2.3	2
69	The Atmospheric Imaging Mission for Northern Regions: AIM-North. Canadian Journal of Remote Sensing, 2019, 45, 423-442.	2.4	14
70	Highâ€Resolution Global Contiguous SIF of OCOâ€2. Geophysical Research Letters, 2019, 46, 1449-1458.	4.0	79
71	The Ozone Water–Land Environmental Transition Study: An Innovative Strategy for Understanding Chesapeake Bay Pollution Events. Bulletin of the American Meteorological Society, 2019, 100, 291-306.	3.3	41
72	Atmospheric Chemistry Analysis: A Review. Analytical Chemistry, 2020, 92, 455-472.	6.5	19
73	New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS). Bulletin of the American Meteorological Society, 2020, 101, E1-E22.	3.3	165
74	Tropospheric SO2 and NO2 in 2012–2018: Contrasting views of two sensors (OMI and OMPS) from space. Atmospheric Environment, 2020, 223, 117214.	4.1	13
75	Remote sensing of night lights: A review and an outlook for the future. Remote Sensing of Environment, 2020, 237, 111443.	11.0	442

#	Article	IF	CITATIONS
76	Warmer spring alleviated the impacts of 2018 European summer heatwave and drought on vegetation photosynthesis. Agricultural and Forest Meteorology, 2020, 295, 108195.	4.8	48
77	An algorithm for hyperspectral remote sensing of aerosols: 3. Application to the GEO-TASO data in KORUS-AQ field campaign. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107161.	2.3	16
78	Spatio-Temporal Variability of Aerosol Optical Depth, Total Ozone and NO2 Over East Asia: Strategy for the Validation to the GEMS Scientific Products. Remote Sensing, 2020, 12, 2256.	4.0	11
79	Observing Nitrogen Dioxide Air Pollution Inequality Using High-Spatial-Resolution Remote Sensing Measurements in Houston, Texas. Environmental Science & Technology, 2020, 54, 9882-9895.	10.0	44
80	Three Years of the Lightning Imaging Sensor Onboard the International Space Station: Expanded Global Coverage and Enhanced Applications. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032918.	3.3	65
81	Systematic Orbital Geometry-Dependent Variations in Satellite Solar-Induced Fluorescence (SIF) Retrievals. Remote Sensing, 2020, 12, 2346.	4.0	25
82	Synergistic Use of Hyperspectral UV-Visible OMI and Broadband Meteorological Imager MODIS Data for a Merged Aerosol Product. Remote Sensing, 2020, 12, 3987.	4.0	9
83	Advances in air quality modeling and forecasting. Global Transitions, 2020, 2, 261-270.	4.1	64
84	Empirical normal intensity distribution for overtone vibrational spectra of triatomic molecules. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 252, 107084.	2.3	6
85	An Organized Collection of Theoretical Gas-Phase Geometric, Spectroscopic, and Thermochemical Data of Oxygenated Hydrocarbons, CxHyOz (x, y = 1, 2; z = 1–8), of Relevance to Atmospheric, Astrochemical, and Combustion Sciences. Journal of Physical and Chemical Reference Data, 2020, 49, .	4.2	13
86	Ground-based retrievals of aerosol column absorption in the UV spectral region and their implications for GEMS measurements. Remote Sensing of Environment, 2020, 245, 111759.	11.0	7
87	Using Satellites to Track Indicators of Global Air Pollution and Climate Change Impacts: Lessons Learned From a NASAâ€Supported Scienceâ€Stakeholder Collaborative. GeoHealth, 2020, 4, e2020GH000270.	4.0	25
88	High-resolution mapping of SO2 using airborne observations from the GeoTASO instrument during the KORUS-AQ field study: PCA-based vertical column retrievals. Remote Sensing of Environment, 2020, 241, 111725.	11.0	10
89	Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sensing of Environment, 2020, 241, 111733.	11.0	183
90	A first comparison of TROPOMI aerosol layer height (ALH) to CALIOP data. Atmospheric Measurement Techniques, 2020, 13, 3043-3059.	3.1	21
91	Revisiting the effectiveness of HCHO/NO2 ratios for inferring ozone sensitivity to its precursors using high resolution airborne remote sensing observations in a high ozone episode during the KORUS-AQ campaign. Atmospheric Environment, 2020, 224, 117341.	4.1	65
92	AlRduino: On-Demand Atmospheric Secondary Organic Aerosol Measurements with a Mobile Arduino Multisensor. Journal of Chemical Education, 2020, 97, 838-844.	2.3	12
93	Using networked Pandora observations to capture spatiotemporal changes in total column ozone associated with stratosphere-to-troposphere transport. Atmospheric Research, 2020, 238, 104872.	4.1	5

#	Article	IF	CITATIONS
94	Use of the complete basis set limit for computing highly accurate ab initio dipole moments. Journal of Chemical Physics, 2020, 152, 024105.	3.0	9
95	The SMARTâ€s Trace Gas and Aerosol Inversions: I. Algorithm Theoretical Basis for Column Property Retrievals. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032088.	3.3	2
96	Inferring Changes in Summertime Surface Ozone–NO _{<i>x</i>} –VOC Chemistry over U.S. Urban Areas from Two Decades of Satellite and Ground-Based Observations. Environmental Science & Technology, 2020, 54, 6518-6529.	10.0	133
97	Aerosol profiling using radiometric and polarimetric spectral measurements in the O2 near infrared bands: Estimation of information content and measurement uncertainties. Remote Sensing of Environment, 2021, 253, 112179.	11.0	5
98	Gas Flaring: A Review Focused On Its Analysis From Space. IEEE Geoscience and Remote Sensing Magazine, 2021, 9, 258-281.	9.6	18
99	The Influence of Atmospheric Composition on Polarization in the GEMS Spectral Region. Asia-Pacific Journal of Atmospheric Sciences, 2021, 57, 587-603.	2.3	5
100	A Fast Retrieval of Cloud Parameters Using a Triplet of Wavelengths of Oxygen Dimer Band around 477 nm. Remote Sensing, 2021, 13, 152.	4.0	4
101	Formaldehyde total column densities over Mexico City: comparison between multi-axis differential optical absorption spectroscopy and solar-absorption Fourier transform infrared measurements. Atmospheric Measurement Techniques, 2021, 14, 595-613.	3.1	4
102	Detection of anomalies in the UV–vis reflectances from the Ozone Monitoring Instrument. Atmospheric Measurement Techniques, 2021, 14, 961-974.	3.1	4
103	First validation of GOME-2/MetOp absorbing aerosol height using EARLINET lidar observations. Atmospheric Chemistry and Physics, 2021, 21, 3193-3213.	4.9	5
104	Is the efficacy of satellite-based inversion of SO ₂ emission model dependent?. Environmental Research Letters, 2021, 16, 035018.	5.2	4
105	Observations of Lightning NO _x Production From GOESâ€R Post Launch Test Field Campaign Flights. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033769.	3.3	9
106	Spectral Derivatives of Optical Depth for Partitioning Aerosol Type and Loading. Remote Sensing, 2021, 13, 1544.	4.0	5
107	TROPOMI NO ₂ in the United States: A Detailed Look at the Annual Averages, Weekly Cycles, Effects of Temperature, and Correlation With Surface NO ₂ Concentrations. Earth's Future, 2021, 9, e2020EF001665.	6.3	66
108	Radiative transfer acceleration based on the principal component analysis and lookup table of corrections: optimization and application to UV ozone profile retrievals. Atmospheric Measurement Techniques, 2021, 14, 2659-2672.	3.1	3
109	Evaluating Drought Responses of Surface Ozone Precursor Proxies: Variations With Land Cover Type, Precipitation, and Temperature. Geophysical Research Letters, 2021, 48, e2020GL091520.	4.0	9
111	Optimizing the Empirical Parameters of the Data-Driven Algorithm for SIF Retrieval for SIFIS Onboard TECIS-1 Satellite. Sensors, 2021, 21, 3482.	3.8	4
112	US COVIDâ€19 Shutdown Demonstrates Importance of Background NO ₂ in Inferring NO _x Emissions From Satellite NO ₂ Observations. Geophysical Research Letters, 2021, 48, e2021GL092783.	4.0	38

#	Article	IF	CITATIONS
113	Observations of Lightning NO _x Production From Tropospheric Monitoring Instrument Case Studies Over the United States. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034174.	3.3	10
114	Evaluation of Novel NASA Moderate Resolution Imaging Spectroradiometer and Visible Infrared Imaging Radiometer Suite Aerosol Products and Assessment of Smoke Height Boundary Layer Ratio During Extreme Smoke Events in the Western USA. Journal of Geophysical Research D: Atmospheres, 2021. 126. e2020ID034180.	3.3	9
115	Atmospheric Pollution Interventions in the Environment: Effects on Biotic and Abiotic Factors, Their Monitoring and Control. , 0, , .		0
116	Evaluation of Aerosol Properties Observed by DSCOVR/EPIC Instrument From the Earthâ€Sun Lagrange 1 Orbit. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033651.	3.3	7
117	Deep learning-based downscaling of tropospheric nitrogen dioxide using ground-level and satellite observations. Science of the Total Environment, 2021, 773, 145145.	8.0	14
118	Assessing sub-grid variability within satellite pixels over urban regions using airborne mapping spectrometer measurements. Atmospheric Measurement Techniques, 2021, 14, 4639-4655.	3.1	6
119	Overview of the Lake Michigan Ozone Study 2017. Bulletin of the American Meteorological Society, 2021, 102, E2207-E2225.	3.3	20
120	The potential for geostationary remote sensing of NO ₂ to improve weather prediction. Atmospheric Chemistry and Physics, 2021, 21, 9573-9583.	4.9	4
121	Emerging satellite observations for diurnal cycling of ecosystem processes. Nature Plants, 2021, 7, 877-887.	9.3	62
122	Satellite Monitoring for Air Quality and Health. Annual Review of Biomedical Data Science, 2021, 4, 417-447.	6.5	25
123	Ozone and Nitrogen Dioxide Pollution in a Coastal Urban Environment: The Role of Sea Breezes, and Implications of Their Representation for Remote Sensing of Local Air Quality. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035314.	3.3	17
124	A new methodology for inferring surface ozone from multispectral satellite measurements. Environmental Research Letters, 2021, 16, 105005.	5.2	6
125	Revolutionary Air-Pollution Applications from Future Tropospheric Emissions: Monitoring of Pollution (TEMPO) Observations. Bulletin of the American Meteorological Society, 2021, 102, E1735-E1741.	3.3	6
126	The HITRAN2020 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 277, 107949.	2.3	770
127	Evaluation of Version 3 Total and Tropospheric Ozone Columns From Earth Polychromatic Imaging Camera on Deep Space Climate Observatory for Studying Regional Scale Ozone Variations. Frontiers in Remote Sensing, 2021, 2, .	3.5	5
128	Solar-induced chlorophyll fluorescence from the Geostationary Carbon Cycle Observatory (GeoCarb): An extensive simulation study. Remote Sensing of Environment, 2021, 263, 112565.	11.0	9
129	Urban NO _x emissions around the world declined faster than anticipated between 2005 and 2019. Environmental Research Letters, 2021, 16, 115004.	5.2	17
130	Top-down estimates of anthropogenic VOC emissions in South Korea using formaldehyde vertical column densities from aircraft during the KORUS-AO campaign. Elementa, 2021, 9, .	3.2	16

#	Article	IF	CITATIONS
131	New in situ aerosol hyperspectral optical measurements over 300–700 nm – PartÂ2: Extinction, total absorption, water- and methanol-soluble absorption observed during the KORUS-OC cruise. Atmospheric Measurement Techniques, 2021, 14, 715-736.	3.1	5
132	Assessment of the TROPOMI tropospheric NO ₂ product based on airborne APEX observations. Atmospheric Measurement Techniques, 2021, 14, 615-646.	3.1	36
134	An evaluation of advanced baseline imager fire radiative power based wildfire emissions using carbon monoxide observed by the Tropospheric Monitoring Instrument across the conterminous United States. Environmental Research Letters, 2020, 15, 094049.	5.2	15
135	Inferring ground-level nitrogen dioxide concentrations at fine spatial resolution applied to the TROPOMI satellite instrument. Environmental Research Letters, 2020, 15, 104013.	5.2	47
136	What does success look like for air quality policy? A perspective. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190326.	3.4	5
137	Introducing the geostationary environment monitoring spectrometer. Journal of Applied Remote Sensing, 2018, 12, 1.	1.3	15
138	First experiment on retrieval of tropospheric NO2 over polluted areas with 2.4-km spatial resolution basing on satellite spectral measurements. , 2017, , .		13
139	TEMPO Green Paper: Chemistry, physics, and meteorology experiments with the Tropospheric Emissions: monitoring of pollution instrument. , 2019, , .		14
140	Preliminary validation of high-detailed GSA/Resurs-P tropospheric NO2 maps with alternative satellite measurements and transport simulations. , 2019, , .		5
141	Tropospheric Ozone Assessment Report. Elementa, 2020, 8, .	3.2	52
141 142		3.2 3.2	52 80
	Tropospheric Ozone Assessment Report. Elementa, 2020, 8, . Scientific assessment of background ozone over the U.S.: Implications for air quality management.		
142	Tropospheric Ozone Assessment Report. Elementa, 2020, 8, . Scientific assessment of background ozone over the U.S.: Implications for air quality management. Elementa, 2018, 6, 56. Observing Nightlights from Space with TEMPO. International Journal of Sustainable Lighting, 2017, 19,	3.2	80
142 143	Tropospheric Ozone Assessment Report. Elementa, 2020, 8, . Scientific assessment of background ozone over the U.S.: Implications for air quality management. Elementa, 2018, 6, 56. Observing Nightlights from Space with TEMPO. International Journal of Sustainable Lighting, 2017, 19, 26-35. A semi-empirical potential energy surface and line list for H _{2_{^{0 extending into}}}	3.2 1.9	80
142 143 144	Tropospheric Ozone Assessment Report. Elementa, 2020, 8, . Scientific assessment of background ozone over the U.S.: Implications for air quality management. Elementa, 2018, 6, 56. Observing Nightlights from Space with TEMPO. International Journal of Sustainable Lighting, 2017, 19, 26-35. A semi-empirical potential energy surface and line list for H _{2_{¹⁶O extending into the near-ultraviolet. Atmospheric Chemistry and Physics, 2020, 20, 10015-10027. Validation of satellite formaldehyde (HCHO) retrievals using observations from 12 aircraft campaigns.}}	3.2 1.9 4.9	80 1 17
142 143 144 145	Tropospheric Ozone Assessment Report. Elementa, 2020, 8, . Scientific assessment of background ozone over the U.S.: Implications for air quality management. Elementa, 2018, 6, 56. Observing Nightlights from Space with TEMPO. International Journal of Sustainable Lighting, 2017, 19, 26-35. A semi-empirical potential energy surface and line list for H ₂ ¹⁶ O extending into the near-ultraviolet. Atmospheric Chemistry and Physics, 2020, 20, 10015-10027. Validation of satellite formaldehyde (HCHO) retrievals using observations from 12 aircraft campaigns. Atmospheric Chemistry and Physics, 2020, 20, 12329-12345. Impacts of global NO _{<i>x</i>}	 3.2 1.9 4.9 4.9 	80 1 17 21
142 143 144 145 146	Tropospheric Ozone Assessment Report. Elementa, 2020, 8, . Scientific assessment of background ozone over the U.S.: Implications for air quality management. Elementa, 2018, 6, 56. Observing Nightlights from Space with TEMPO. International Journal of Sustainable Lighting, 2017, 19, 26-35. A semi-empirical potential energy surface and line list for H _{2</sub>¹⁶O extending into the near-ultraviolet. Atmospheric Chemistry and Physics, 2020, 20, 10015-10027. Validation of satellite formaldehyde (HCHO) retrievals using observations from 12 aircraft campaigns. Atmospheric Chemistry and Physics, 2020, 20, 12329-12345. Impacts of global NO_{<i>amp;gt; and ozone simulations. Atmospheric Chemistry and Physics, 2020, 20, 13109-13130. Effects of a priori profile shape assumptions on comparisons between satellite NO₂ columns and model simulations. Atmospheric Chemistry</i>}}	 3.2 1.9 4.9 4.9 4.9 	 80 1 17 21 22

\sim			-			
	ΓΔΤ	101	A R	FD	ORT	
\sim	. /	101	N 1 N			

#	Article	IF	CITATIONS
150	Principles of Atmospheric Remote Sensing Measurements. , 2017, , .		0
151	Hyperspectral remote sensing of air pollution from geosynchronous orbit with GEMS and TEMPO. , 2018, , .		2
152	Airborne hyperspectral trace gas sensors as testbeds for geostationary air quality missions. , 2019, , .		1
153	On validation high-detail mapping of tropospheric NO2 using GSA/Resurs-P observations with simulated data. , 2020, , .		2
154	TROPOMI observations allow for robust exploration of the relationship between solar-induced chlorophyll fluorescence and terrestrial gross primary production. Remote Sensing of Environment, 2022, 268, 112748.	11.0	50
155	A review of statistical methods used for developing large-scale and long-term PM2.5 models from satellite data. Remote Sensing of Environment, 2022, 269, 112827.	11.0	47
156	A high resolution spatiotemporal fine particulate matter exposure assessment model for the contiguous United States. Environmental Advances, 2022, 7, 100155.	4.8	6
157	Satellite observation of stratospheric intrusions and ozone transport using CrIS on SNPP. Atmospheric Environment, 2022, 273, 118956.	4.1	10
158	Validation of in situ and remote sensing-derived methane refinery emissions in a complex wind environment and chemical implications. Atmospheric Environment, 2022, 273, 118900.	4.1	2
159	Use of Hyper-Spectral Visible and Near-Infrared Satellite Data for Timely Estimates of the Earth's Surface Reflectance in Cloudy and Aerosol Loaded Conditions: Part 1–Application to RGB Image Restoration Over Land With GOME-2. Frontiers in Remote Sensing, 2022, 2, .	3.5	3
160	First global observation of tropospheric formaldehyde from Chinese GaoFen-5 satellite: Locating source of volatile organic compounds. Environmental Pollution, 2022, 297, 118691.	7.5	11
162	Surrogate models of radiative transfer codes for atmospheric trace gas retrievals from satellite observations. Machine Learning, 2023, 112, 1337-1363.	5.4	2
163	Quantifying urban, industrial, and background changes in NO ₂ during the COVID-19 lockdown period based on TROPOMI satellite observations. Atmospheric Chemistry and Physics, 2022, 22, 4201-4236.	4.9	16
164	Tropospheric and Surface Nitrogen Dioxide Changes in the Greater Toronto Area during the First Two Years of the COVID-19 Pandemic. Remote Sensing, 2022, 14, 1625.	4.0	7
165	Satellite-Based Diagnosis and Numerical Verification of Ozone Formation Regimes over Nine Megacities in East Asia. Remote Sensing, 2022, 14, 1285.	4.0	11
166	Improved ozone simulation in East Asia via assimilating observations from the first geostationary air-quality monitoring satellite: Insights from an Observing System Simulation Experiment. Atmospheric Environment, 2022, 274, 119003.	4.1	5
167	Impact of Using a New High-Resolution Solar Reference Spectrum on OMI Ozone Profile Retrievals. Remote Sensing, 2022, 14, 37.	4.0	2
168	NASA GEOS Composition Forecast Modeling System GEOS F v1.0: Stratospheric Composition. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	12

#	Article	IF	CITATIONS
169	Retrieval of UVB aerosol extinction profiles from the ground-based Langley Mobile Ozone Lidar (LMOL) system. Atmospheric Measurement Techniques, 2022, 15, 2465-2478.	3.1	1
170	Using Machine Learning for Timely Estimates of Ocean Color Information From Hyperspectral Satellite Measurements in the Presence of Clouds, Aerosols, and Sunglint. Frontiers in Remote Sensing, 2022, 3,	3.5	2
171	Ambient Formaldehyde over the United States from Ground-Based (AQS) and Satellite (OMI) Observations. Remote Sensing, 2022, 14, 2191.	4.0	7
172	Direct Retrieval of NO ₂ Vertical Columns from UV-Vis (390-495 nm) Spectral Radiances Using a Neural Network. Journal of Remote Sensing, 2022, 2022, .	6.7	2
173	Can Column Formaldehyde Observations Inform Air Quality Monitoring Strategies for Ozone and Related Photochemical Oxidants?. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	5
174	Difference in seasonal peak timing of soybean far-red SIF and GPP explained by canopy structure and chlorophyll content. Remote Sensing of Environment, 2022, 279, 113104.	11.0	11
175	Quantification of lightning-produced NO _{<i>x</i>} over the Pyrenees and the Ebro Valley by using different TROPOMI-NO ₂ and cloud research products. Atmospheric Measurement Techniques, 2022, 15, 3329-3351.	3.1	6
176	An Ultraâ€Broadband High Efficiency Polarization Beam Splitter for High Spectral Resolution Polarimetric Imaging in the Near Infrared. Advanced Science, 2022, 9, .	11.2	5
177	Integrating Multiscale Geospatial Environmental Data into Large Population Health Studies: Challenges and Opportunities. Toxics, 2022, 10, 403.	3.7	3
178	Impact of Hurricane Ida on Nitrogen Oxide Emissions in Southwestern Louisiana Detected from Space. Environmental Science and Technology Letters, 2022, 9, 808-814.	8.7	4
179	Polarization performance simulation for the GeoXO atmospheric composition instrument: NO ₂ retrieval impacts. Atmospheric Measurement Techniques, 2022, 15, 4489-4501.	3.1	0
180	VLIDORT-QS: A quasi-spherical vector radiative transfer model. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 291, 108341.	2.3	4
181	Investigating the Potential Accuracy of Spaceborne Solar-Induced Chlorophyll Fluorescence Retrieval for 12 Capable Satellites Based on Simulation Data. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	6.3	10
182	The NASA Tropospheric Emissions: Monitoring of Pollution (TEMPO) Satellite Mission: Early Adopters Program and Applied Science Activities. , 2022, , .		0
183	Air Pollution, Oxidative Stress, and the Risk of Development of Type 1 Diabetes. Antioxidants, 2022, 11, 1908.	5.1	4
184	Prediction of daily mean and one-hour maximum PM2.5 concentrations and applications in Central Mexico using satellite-based machine-learning models. Journal of Exposure Science and Environmental Epidemiology, 2022, 32, 917-925.	3.9	9
185	Satellite Data Applications for Sustainable Energy Transitions. Frontiers in Sustainability, 0, 3, .	2.6	6
187	Beyond the Ångström Exponent: Probing Additional Information in Spectral Curvature and Variability of In Situ Aerosol Hyperspectral (0.3–0.7Âμm) Optical Properties. Journal of Geophysical Research D: Atmospheres, 2022, 127	3.3	2

#	Article	IF	CITATIONS
188	Derivation of Emissions From Satelliteâ€Observed Column Amounts and Its Application to TROPOMI NO ₂ and CO Observations. Geophysical Research Letters, 2022, 49, .	4.0	9
189	Role of space station instruments for improving tropical carbon flux estimates using atmospheric data. Npj Microgravity, 2022, 8, .	3.7	1
190	Trends of ambient O3 levels associated with O3 precursor gases and meteorology in California: Synergies from ground and satellite observations. Remote Sensing of Environment, 2023, 284, 113358.	11.0	2
191	Geostationary Full-Spectrum Wide-Swath High-Fidelity Imaging Spectrometer: Optical Design and Prototype Development. Remote Sensing, 2023, 15, 396.	4.0	3
192	Anthropogenic VOCs in the Long Island Sound, NY Airshed and their role in ozone production. Atmospheric Environment, 2023, 296, 119583.	4.1	3
193	Use of machine learning and principal component analysis to retrieve nitrogen dioxide (NO ₂) with hyperspectral imagers and reduce noise in spectral fitting. Atmospheric Measurement Techniques, 2023, 16, 481-500.	3.1	1
194	Comparing Sentinel-5P TROPOMI NO ₂ column observations with the CAMS regional air quality ensemble. Geoscientific Model Development, 2023, 16, 509-534.	3.6	5
195	Estimates of the spatially complete, observational-data-driven planetary boundary layer height over the contiguous United States. Atmospheric Measurement Techniques, 2023, 16, 563-580.	3.1	2
196	Applications of Atomic and Molecular Physics to Global Change. Springer Handbooks, 2023, , 1337-1347.	0.6	0
197	Highly resolved mapping of NO ₂ vertical column densities from GeoTASO measurements over a megacity and industrial area during the KORUS-AQ campaign. Atmospheric Measurement Techniques, 2023, 16, 625-644.	3.1	2
198	Validation of the TROPOMI/S5P aerosol layer height using EARLINET lidars. Atmospheric Chemistry and Physics, 2023, 23, 1919-1940.	4.9	5
199	First Mapping of Monthly and Diurnal Climatology of Saharan Dust Layer Height Over the Atlantic Ocean From EPIC/DSCOVR in Deep Space. Geophysical Research Letters, 2023, 50, .	4.0	4
200	Variable effects of spatial resolution on modeling of nitrogen oxides. Atmospheric Chemistry and Physics, 2023, 23, 3031-3049.	4.9	2
201	Validation of Sentinel-5P TROPOMI tropospheric NO ₂ products by comparison with NO ₂ measurements from airborne imaging DOAS, ground-based stationary DOAS, and mobile car DOAS measurements during the S5P-VAL-DE-Ruhr campaign. Atmospheric Measurement Techniques, 2023, 16, 1357-1389.	3.1	2
202	Improving ozone simulations in Asia via multisource data assimilation: results from an observing system simulation experiment with GEMS geostationary satellite observations. Atmospheric Chemistry and Physics, 2023, 23, 3731-3748.	4.9	0
203	The Use of Remote Sensing in Air Pollution Control and Public Health. The Latin American Studies Book Series, 2023, , 139-157.	0.2	2
204	Ground solar absorption observations of total column CO, CO ₂ , CH ₄ , and aerosol optical depth from California's Sequoia Lightning Complex Fire: emission factors and modified combustion efficiency at regional scales. Atmospheric Chemistry and Physics, 2023, 23, 4521-4543.	4.9	2
205	Satellite remote-sensing capability to assess tropospheric-column ratios of formaldehyde and nitrogen dioxide: case study during the Long Island Sound Tropospheric Ozone Study 2018 (LISTOS) Ti ETOq1 1	0.784314	rgBT /Overlo

#	Article	IF	CITATIONS
206	Optical observations of thunderstorms from the International Space Station: recent results and perspectives. Npj Microgravity, 2023, 9, .	3.7	2
207	Downwind Ozone Changes of the 2019 Williams Flats Wildfire: Insights From WRFâ€Chem/DART Assimilation of OMI NO ₂ , HCHO, and MODIS AOD Retrievals. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	3
208	Exploring geometrical stereoscopic aerosol top height retrieval from geostationary satellite imagery in East Asia. Atmospheric Measurement Techniques, 2023, 16, 2673-2690.	3.1	1
209	Diurnal carbon monoxide observed from a geostationary infrared hyperspectral sounder: first result from GIIRS on board FengYun-4B. Atmospheric Measurement Techniques, 2023, 16, 3059-3083.	3.1	2

210 éJ™æ¢è¼″éមa…e°±æ®µå®½è¦†ç>−æˆåf光谱仪å…‰å¦ç³»ç»Ÿè®¾è®¡ä,Žé«ĩä;真å^†å…‰ç³»ç»Ÿç"å^¶. Gua⊉gxue Xoebao/Acta

211	Regional and Urban Air Quality in the Americas. , 2023, , 1-43.		0
212	Validation of OMPS Suomi NPP and OMPS NOAAâ€⊋0 Formaldehyde Total Columns With NDACC FTIR Observations. Earth and Space Science, 2023, 10, .	2.6	3
213	Global Formaldehyde Products From the Ozone Mapping and Profiler Suite (OMPS) Nadir Mappers on Suomi NPP and NOAAâ€20. Earth and Space Science, 2023, 10, .	2.6	3
214	Implications of Sea Breezes on Air Quality Monitoring in a Coastal Urban Environment: Evidence From High Resolution Modeling of NO ₂ and O ₃ . Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	1
215	Examining TROPOMI formaldehyde to nitrogen dioxide ratios in the Lake Michigan region: implications for ozone exceedances. Atmospheric Chemistry and Physics, 2023, 23, 7867-7885.	4.9	1
216	Optimal estimation retrieval of tropospheric ammonia from the Geostationary Interferometric Infrared Sounder on board FengYun-4B. Atmospheric Measurement Techniques, 2023, 16, 3693-3713.	3.1	0
217	Reliability Analysis Based on Air Quality Characteristics in East Asia Using Primary Data from the Test Operation of Geostationary Environment Monitoring Spectrometer (GEMS). Atmosphere, 2023, 14, 1458.	2.3	Ο
218	A Comparative Study of Ground-Gridded and Satellite-Derived Formaldehyde during Ozone Episodes in the Chinese Greater Bay Area. Remote Sensing, 2023, 15, 3998.	4.0	1
219	Satellites capture socioeconomic disruptions during the 2022 full-scale war in Ukraine. Scientific Reports, 2023, 13, .	3.3	1
220	Effects of Air Pollutants from Wildfires on Downwind Ecosystems: Observations, Knowledge Gaps, and Questions for Assessing Risk. Environmental Science & Technology, 2023, 57, 14787-14796.	10.0	0
221	New-generation geostationary satellite reveals widespread midday depression in dryland photosynthesis during 2020 western U.S. heatwave. Science Advances, 2023, 9, .	10.3	4
222	An integrated monitoring system (IMS) for air quality: Observations of a unique ozone-exceedance event in Maryland. Atmospheric Environment, 2023, 313, 120028.	4.1	1
223	CLASP: CLustering of Atmospheric Satellite Products and Its Applications in Feature Detection of Atmospheric Trace Gases. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	0

#	Article	IF	CITATIONS
224	Estimating Hourly Nitrogen Oxide Emissions over East Asia from Geostationary Satellite Measurements. Environmental Science and Technology Letters, 2024, 11, 122-129.	8.7	2
225	Regional and Urban Air Quality in the Americas. , 2023, , 665-707.		0
226	Improved Spatial Resolution in Modeling of Nitrogen Oxide Concentrations in the Los Angeles Basin. Environmental Science & Technology, 2023, 57, 20689-20698.	10.0	0
227	Evaluation of total ozone measurements from Geostationary Environmental Monitoring Spectrometer (GEMS). Atmospheric Measurement Techniques, 2023, 16, 5461-5478.	3.1	2
228	Analyzing the Impact of Evolving Combustion Conditions on the Composition of Wildfire Emissions Using Satellite Data. Geophysical Research Letters, 2023, 50, .	4.0	1
229	National ground-level NO2 predictions via satellite imagery driven convolutional neural networks. Frontiers in Environmental Science, 0, 11, .	3.3	0
230	Spherical air mass factors in one and two dimensions with SASKTRAN 1.6.0. Geoscientific Model Development, 2023, 16, 7491-7507.	3.6	0
232	Public Health Benefits From Improved Identification of Severe Air Pollution Events With Geostationary Satellite Data. GeoHealth, 2024, 8, .	4.0	Ο
233	Utility of Geostationary Lightning Mapper-derived lightning NO emission estimates in air quality modeling studies. Atmospheric Chemistry and Physics, 2024, 24, 41-63.	4.9	0
234	Mobile Observations of Ozone and Aerosols in Alabama: Southeastern US Summer Pollution and Coastal Variability. Journal of Geophysical Research D: Atmospheres, 2024, 129, .	3.3	Ο
235	Geostationary Environment Monitoring Spectrometer (GEMS) polarization characteristics and correction algorithm. Atmospheric Measurement Techniques, 2024, 17, 145-164.	3.1	0
236	An Observing System Simulation Experiment Analysis of How Well Geostationary Satellite Traceâ€Gas Observations Constrain NO _x Emissions in the US. Journal of Geophysical Research D: Atmospheres, 2024, 129, .	3.3	0
237	Underappreciated Emission Spikes From Power Plants During Heatwaves Observed From Space: Case Studies in India and China. Earth's Future, 2024, 12, .	6.3	0
238	High-resolution estimation of near-surface ozone concentration and population exposure risk in China. Environmental Monitoring and Assessment, 2024, 196, .	2.7	0
239	Level0 to Level1B processor for MethaneAIR. Atmospheric Measurement Techniques, 2024, 17, 1347-1362.	3.1	0