Lipopolysaccharide- and \hat{I}^2 -1,3-glucan-binding protein functions as a pattern recognition receptor with a broad in the defense against microorganisms

Developmental and Comparative Immunology 67, 434-444

DOI: 10.1016/j.dci.2016.07.006

Citation Report

#	Article	IF	CITATIONS
1	The fragmentation mechanism and immune-protective effect of CfTEP in the scallop Chlamys farreri. Developmental and Comparative Immunology, 2017, 76, 220-228.	1.0	19
2	A mannose-specific C-type lectin from Fenneropenaeus merguiensis exhibited antimicrobial activity to mediate shrimp innate immunity. Molecular Immunology, 2017, 92, 87-98.	1.0	24
3	A study on \hat{l}^2 -glucan binding protein (\hat{l}^2 -GBP) and its involvement in phenoloxidase cascade in Indian white shrimp Fenneropenaeus indicus. Molecular Immunology, 2017, 92, 1-11.	1.0	13
4	The recognition mechanism of triple-helical \hat{l}^2 -1,3-glucan by a \hat{l}^2 -1,3-glucanase. Chemical Communications, 2017, 53, 9368-9371.	2.2	32
5	An alternative function of C-type lectin comprising low-density lipoprotein receptor domain from Fenneropenaeus merguiensis to act as a binding receptor for viral protein and vitellogenin. Fish and Shellfish Immunology, 2018, 74, 295-308.	1.6	35
6	Lipopolysaccharide- and \hat{I}^2 -1,3-glucan-binding protein from Litopenaeus vannamei: Purification, cloning and contribution in shrimp defense immunity via phenoloxidase activation. Developmental and Comparative Immunology, 2018, 81, 167-179.	1.0	42
7	FmLC6: An ultimate dual-CRD C-type lectin from Fenneropenaeus merguiensis mediated its roles in shrimp defense immunity towards bacteria and virus. Fish and Shellfish Immunology, 2018, 80, 200-213.	1.6	23
8	Arthropoda: Pattern Recognition Proteins in Crustacean Immunity. , 2018, , 213-224.		6
9	Expression of Macrobrachium rosenbergii lipopolysaccharide- and \hat{l}^2 -1,3-glucan-binding protein (LGBP) in Saccharomyces cerevisiae and evaluation of its immune function. Fish and Shellfish Immunology, 2019, 84, 341-351.	1.6	10
10	Phloroglucinol Treatment Induces Transgenerational Epigenetic Inherited Resistance Against Vibrio Infections and Thermal Stress in a Brine Shrimp (Artemia franciscana) Model. Frontiers in Immunology, 2019, 10, 2745.	2.2	42
11	Endocrine-disrupting chemicals impair the innate immune prophenoloxidase system in the intertidal mud crab, Macrophthalmus japonicus. Fish and Shellfish Immunology, 2019, 87, 322-332.	1.6	16
12	A unique lectin composing of fibrinogen-like domain from Fenneropenaeus merguiensis contributed in shrimp immune defense and firstly found to mediate encapsulation. Fish and Shellfish Immunology, 2019, 92, 276-287.	1.6	16
13	Molecular cloning and characterization of the \hat{l}^2 -1,3-glucan recognition protein in Anatolica polita. Gene, 2019, 697, 144-151.	1.0	3
14	Molecular characterization of a pattern recognition protein LGBP highly expressed in the early stages of mud crab Scylla paramamosain. Comparative Biochemistry and Physiology Part A, Molecular & Samp; Integrative Physiology, 2019, 227, 25-31.	0.8	6
15	Review: The structure and function of cellulase (endo- \hat{l}^2 -1,4-glucanase) and hemicellulase (\hat{l}^2 -1,3-glucanase and endo- \hat{l}^2 -1,4-mannase) enzymes in invertebrates that consume materials ranging from microbes, algae to leaf litter. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2020, 240, 110354.	0.7	48
16	Dietary supplementation of marine yeast Yarrowia lipolytica modulates immune response in Litopenaeus vannamei. Fish and Shellfish Immunology, 2020, 105, 469-476.	1.6	19
17	A proteomic study of resistance to Brown Ring disease in the Manila clam, Ruditapes philippinarum. Fish and Shellfish Immunology, 2020, 99, 641-653.	1.6	14
18	White shrimp Litopenaeus vannamei that have received mixtures of heat-killed and formalin-inactivated Vibrio alginolyticus and V. harveyi exhibit recall memory and show increased phagocytosis and resistance to Vibrio infection. Fish and Shellfish Immunology, 2021, 112, 151-158.	1.6	9

#	Article	IF	CITATIONS
19	Physiological and antioxidant response of Litopenaeus vannamei against Vibrio parahaemolyticus infection after feeding supplemented diets containing Dunaliella sp. flour and Î ² -glucans. Journal of Invertebrate Pathology, 2022, 187, 107702.	1.5	4
20	Effects of the interaction between a clip domain serine protease and a white spot syndrome virus protein on phenoloxidase activity. Developmental and Comparative Immunology, 2022, 130, 104360.	1.0	2
21	Galectin, another lectin from Fenneropenaeus merguiensis, contributed in shrimp immune defense. Journal of Invertebrate Pathology, 2022, 190, 107738.	1.5	5
23	Antibacterial and antibiofilm activity of peptide PvGBP2 against pathogenic bacteria that contaminate Auricularia auricular culture bags. Food Science and Human Wellness, 2022, 11, 1607-1613.	2.2	2
24	Molecular basis for interactions between protists and other organisms: How protists recognize and capture prey cells. Hikaku Seiri Seikagaku (Comparative Physiology and Biochemistry), 2022, 39, 92-97.	0.0	0
25	Characterization of a Lipopolysaccharide- and Beta-1,3-Glucan Binding Protein (LGBP) from the Hepatopancreas of Freshwater Prawn, Macrobrachium rosenbergii, Possessing Lectin-Like Activity. Probiotics and Antimicrobial Proteins, 2023, 15, 1596-1607.	1.9	3
30	Crustaceans: Microbes and Defense Mechanisms. , 2023, , 151-166.		0