Synthesis of Black TiO<i>_x</i> Nanoparticl TiO₂ Nanocrystals and their Application fo

Advanced Energy Materials 7, 1601811 DOI: 10.1002/aenm.201601811

Citation Report

#	Article	IF	CITATIONS
1	Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation. ACS Applied Materials & Interfaces, 2017, 9, 15052-15057.	4.0	463
2	Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. Journal of Materials Chemistry A, 2017, 5, 16359-16368.	5.2	158
3	Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating. RSC Advances, 2017, 7, 19849-19855.	1.7	85
4	Reduced Graphene Oxide–Polyurethane Nanocomposite Foam as a Reusable Photoreceiver for Efficient Solar Steam Generation. Chemistry of Materials, 2017, 29, 5629-5635.	3.2	257
5	New insights into high temperature hydrothermal synthesis in the preparation of visible-light active, ordered mesoporous SiO ₂ –TiO ₂ composited photocatalysts. RSC Advances, 2017, 7, 19557-19564.	1.7	7
6	Solar water evaporation by black photothermal sheets. Nano Energy, 2017, 41, 269-284.	8.2	415
7	Interfacial solar heating by self-assembled Fe ₃ O ₄ @C film for steam generation. Materials Chemistry Frontiers, 2017, 1, 2620-2626.	3.2	59
8	A bioinspired capillary-driven pump for solar vapor generation. Nano Energy, 2017, 42, 115-121.	8.2	118
9	Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination. Nanoscale, 2017, 9, 12843-12849.	2.8	91
10	Anti-icing properties of superhydrophobic stainless steel mesh at subzero temperatures. Surface Innovations, 2017, 5, 154-160.	1.4	18
11	Black titania/graphene oxide nanocomposite films with excellent photothermal property for solar steam generation. Journal of Materials Research, 2018, 33, 674-684.	1.2	65
12	Graphite powder/semipermeable collodion membrane composite for water evaporation. Solar Energy Materials and Solar Cells, 2018, 180, 34-45.	3.0	45
13	Two-Dimensional Flexible Bilayer Janus Membrane for Advanced Photothermal Water Desalination. ACS Energy Letters, 2018, 3, 1165-1171.	8.8	203
14	Air–water interface solar heating using titanium gauze coated with reduced TiO2 nanotubes. Journal of Materials Science, 2018, 53, 9742-9754.	1.7	16
15	Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science: Nano, 2018, 5, 1078-1089.	2.2	269
16	Black TiO2 Nanomaterials: A Review of Recent Advances. Chemical Engineering Journal, 2018, 343, 708-736.	6.6	283
17	Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons, 2018, 5, 323-343.	6.4	513
18	Phosphorus induced crystallinity in carbon dots for solar light assisted seawater desalination. Journal of Materials Chemistry A, 2018, 6, 4111-4118.	5.2	53

#	Article	IF	CITATIONS
19	Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation. Nanoscale, 2018, 10, 2876-2886.	2.8	94
20	A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation. Journal of Materials Chemistry A, 2018, 6, 7942-7949.	5.2	182
21	Macroporous Double-Network Hydrogel for High-Efficiency Solar Steam Generation Under 1 sun Illumination. ACS Applied Materials & Interfaces, 2018, 10, 10998-11007.	4.0	194
22	Constructing a novel strategy for controllable synthesis of corrosion resistant Ti ³⁺ self-doped titanium–silicon materials with efficient hydrogen evolution activity from simulated seawater. Nanoscale, 2018, 10, 2275-2284.	2.8	39
23	An Ultrathin Flexible 2D Membrane Based on Singleâ€Walled Nanotube–MoS ₂ Hybrid Film for Highâ€Performance Solar Steam Generation. Advanced Functional Materials, 2018, 28, 1704505.	7.8	271
24	Black NiO-TiO2 nanorods for solar photocatalysis: Recognition of electronic structure and reaction mechanism. Applied Catalysis B: Environmental, 2018, 224, 705-714.	10.8	177
25	Omnidirectional and effective salt-rejecting absorber with rationally designed nanoarchitecture for efficient and durable solar vapour generation. Journal of Materials Chemistry A, 2018, 6, 22976-22986.	5.2	48
26	All-Poly(ionic liquid) Membrane-Derived Porous Carbon Membranes: Scalable Synthesis and Application for Photothermal Conversion in Seawater Desalination. ACS Nano, 2018, 12, 11704-11710.	7.3	104
27	Low Cost, Robust, Environmentally Friendly Geopolymer–Mesoporous Carbon Composites for Efficient Solar Powered Steam Generation. Advanced Functional Materials, 2018, 28, 1803266.	7.8	117
28	Bifunctional, Moth-Eye-Like Nanostructured Black Titania Nanocomposites for Solar-Driven Clean Water Generation. ACS Applied Materials & Interfaces, 2018, 10, 39661-39669.	4.0	113
29	Titanium Dioxide/Graphene and Titanium Dioxide/Graphene Oxide Nanocomposites: Synthesis, Characterization and Photocatalytic Applications for Water Decontamination. Catalysts, 2018, 8, 491.	1.6	86
30	Highly Efficient Water Harvesting with Optimized Solar Thermal Membrane Distillation Device. Global Challenges, 2018, 2, 1800001.	1.8	108
31	Melt Electrospun Reduced Tungsten Oxide /Polylactic Acid Fiber Membranes as a Photothermal Material for Light-Driven Interfacial Water Evaporation. ACS Applied Materials & Interfaces, 2018, 10, 28955-28962.	4.0	106
32	Research progress on novel solar steam generation system based on black nanomaterials. Canadian Journal of Chemical Engineering, 2018, 96, 2086-2099.	0.9	13
33	Floating, highly efficient, and scalable graphene membranes for seawater desalination using solar energy. Green Chemistry, 2018, 20, 3689-3695.	4.6	98
34	A cake making strategy to prepare reduced graphene oxide wrapped plant fiber sponges for high-efficiency solar steam generation. Journal of Materials Chemistry A, 2018, 6, 14571-14576.	5.2	84
35	Core–shell structured titanium dioxide nanomaterials for solar energy utilization. Chemical Society Reviews, 2018, 47, 8203-8237.	18.7	258
36	Phaseâ€Transition Induced Conversion into a Photothermal Material: Quasiâ€Metallic WO 2.9 Nanorods for Solar Water Evaporation and Anticancer Photothermal Therapy. Angewandte Chemie, 2018, 130, 10826-10831.	1.6	29

#	Article	IF	CITATIONS
37	Phaseâ€Transition Induced Conversion into a Photothermal Material: Quasiâ€Metallic WO _{2.9} Nanorods for Solar Water Evaporation and Anticancer Photothermal Therapy. Angewandte Chemie - International Edition, 2018, 57, 10666-10671.	7.2	104
38	A Novel Inkâ€Stained Paper for Solar Heavy Metal Treatment and Desalination. Solar Rrl, 2018, 2, 1800073.	3.1	49
39	Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy and Environmental Science, 2019, 12, 841-864.	15.6	1,235
40	Recyclable Polydopamine-Functionalized Sponge for High-Efficiency Clean Water Generation with Dual-Purpose Solar Evaporation and Contaminant Adsorption. ACS Applied Materials & Interfaces, 2019, 11, 32559-32568.	4.0	99
41	Harnessing Solarâ€Driven Photothermal Effect toward the Water–Energy Nexus. Advanced Science, 2019, 6, 1900883.	5.6	188
42	Recent progress of nanostructured interfacial solar vapor generators. Applied Materials Today, 2019, 17, 45-84.	2.3	70
43	Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coordination Chemistry Reviews, 2019, 397, 138-167.	9.5	164
44	Hierarchical K2Mn4O8 nanoflowers: A novel photothermal conversion material for efficient solar vapor generation. Solar Energy Materials and Solar Cells, 2019, 200, 110043.	3.0	18
45	Pathways and challenges for efficient solar-thermal desalination. Science Advances, 2019, 5, eaax0763.	4.7	311
46	A Hybrid Solar Absorber–Electrocatalytic Nâ€Doped Carbon/Alloy/Semiconductor Electrode for Localized Photothermic Electrocatalysis. Advanced Materials, 2019, 31, e1903605.	11.1	43
47	Biomimetic MXene Textures with Enhanced Lightâ€ŧoâ€Heat Conversion for Solar Steam Generation and Wearable Thermal Management. Advanced Energy Materials, 2019, 9, 1901687.	10.2	210
48	Enhancing solar steam generation through manipulating the heterostructure of PVDF membranes with reduced reflection and conduction. Journal of Materials Chemistry A, 2019, 7, 17505-17515.	5.2	46
49	WS2 quantum dots/MoS2@WO3-x core-shell hierarchical dual Z-scheme tandem heterojunctions with wide-spectrum response and enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2019, 257, 117913.	10.8	113
50	Bioinspired functions. , 2019, , 147-246.		1
51	Development and Evolution of the System Structure for Highly Efficient Solar Steam Generation from Zero to Three Dimensions. Advanced Functional Materials, 2019, 29, 1903255.	7.8	249
52	Thermal Efficiency of Solar Steam Generation Approaching 100 % through Capillary Water Transport. Angewandte Chemie - International Edition, 2019, 58, 19041-19046.	7.2	167
53	Enhanced Photothermal Conversion by Hot-Electron Effect in Ultrablack Carbon Aerogel for Solar Steam Generation. ACS Applied Materials & amp; Interfaces, 2019, 11, 42057-42065.	4.0	109
54	Ultra-robust carbon fibers for multi-media purification <i>via</i> solar-evaporation. Journal of Materials Chemistry A, 2019, 7, 586-593.	5.2	136

#	Article	IF	CITATIONS
55	Photothermal materials for efficient solar powered steam generation. Frontiers of Chemical Science and Engineering, 2019, 13, 636-653.	2.3	49
56	Defective Black TiO ₂ Nanotube Arrays for Enhanced Photocatalytic and Photoelectrochemical Applications. ACS Applied Nano Materials, 2019, 2, 7372-7378.	2.4	43
57	Thermal Efficiency of Solar Steam Generation Approaching 100 % through Capillary Water Transport. Angewandte Chemie, 2019, 131, 19217-19222.	1.6	122
58	Advances in solar evaporator materials for freshwater generation. Journal of Materials Chemistry A, 2019, 7, 24092-24123.	5.2	190
59	Mixed Ligand Shell Formation upon Catechol Ligand Adsorption on Hydrophobic TiO ₂ Nanoparticles. Langmuir, 2019, 35, 12518-12531.	1.6	14
60	Mass production of superhydrophilic sponges for efficient and stable solar-driven highly corrosive water evaporation. Environmental Science: Water Research and Technology, 2019, 5, 2041-2047.	1.2	5
61	Constructing hierarchical carbon framework and quantifying water transfer for novel solar evaporation configuration. Carbon, 2019, 155, 25-33.	5.4	44
62	Enhancing efficiency of carbonized wood based solar steam generator for wastewater treatment by optimizing the thickness. Solar Energy, 2019, 193, 434-441.	2.9	55
63	Facile preparation of a robust porous photothermal membrane with antibacterial activity for efficient solar-driven interfacial water evaporation. Journal of Materials Chemistry A, 2019, 7, 704-710.	5.2	77
64	Plasmon Ag-Promoted Solar–Thermal Conversion on Floating Carbon Cloth for Seawater Desalination and Sewage Disposal. ACS Applied Materials & Interfaces, 2019, 11, 7066-7073.	4.0	80
65	Incorporation of gold nanocages into electrospun nanofibers for efficient water evaporation through photothermal heating. Materials Today Energy, 2019, 12, 129-135.	2.5	54
66	Multifunctional CuO Nanowire Mesh for Highly Efficient Solar Evaporation and Water Purification. ACS Sustainable Chemistry and Engineering, 2019, 7, 5476-5485.	3.2	141
67	Defective Black Nano-Titania Thermogels for Cutaneous Tumor-Induced Therapy and Healing. Nano Letters, 2019, 19, 2138-2147.	4.5	116
68	Plasmon Based Double‣ayer Hydrogel Device for a Highly Efficient Solar Vapor Generation. Advanced Functional Materials, 2019, 29, 1901312.	7.8	136
69	Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption. Applied Surface Science, 2019, 491, 328-334.	3.1	38
70	Phase role of white TiO2 precursor in its reduction to black TiO2. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2978-2982.	0.9	14
71	Co _{2.67} S ₄ -Based Photothermal Membrane with High Mechanical Properties for Efficient Solar Water Evaporation and Photothermal Antibacterial Applications. ACS Applied Materials & Interfaces, 2019, 11, 20820-20827.	4.0	63
72	3D-carbon dots decorated black TiO2 nanotube Array@Ti foam with enhanced photothermal and photocatalytic activities. Ceramics International, 2019, 45, 17512-17520.	2.3	26

# 73	ARTICLE Highly Efficient Solar Steam Generation from Activated Carbon Fiber Cloth with Matching Water Supply and Durable Fouling Resistance. ACS Applied Energy Materials, 2019, 2, 4354-4361.	IF 2.5	CITATIONS
74	A Janus evaporator with low tortuosity for long-term solar desalination. Journal of Materials Chemistry A, 2019, 7, 15333-15340.	5.2	170
75	Nature-inspired salt resistant polypyrrole–wood for highly efficient solar steam generation. Sustainable Energy and Fuels, 2019, 3, 3000-3008.	2.5	100
76	Membrane assembled from anti-fouling copper-zinc-tin-selenide nanocarambolas for solar-driven interfacial water evaporation. Chemical Engineering Journal, 2019, 373, 955-962.	6.6	87
77	Shape Conformal and Thermal Insulative Organic Solar Absorber Sponge for Photothermal Water Evaporation and Thermoelectric Power Generation. Advanced Energy Materials, 2019, 9, 1900250.	10.2	286
78	Interfacial Solarâ€ŧoâ€Heat Conversion for Desalination. Advanced Energy Materials, 2019, 9, 1900310.	10.2	174
79	Highly Conductive Off-Stoichiometric Zirconium Oxide Nanofibers with Controllable Crystalline Structures and Bandgaps and Improved Electrochemical Activities. ACS Applied Energy Materials, 2019, 2, 3513-3522.	2.5	28
80	A carbon black floating film for seawater desalination based on interfacial solar heating. Water Science and Technology: Water Supply, 2019, 19, 1938-1944.	1.0	5
81	SnSe@SnO ₂ core–shell nanocomposite for synchronous photothermal–photocatalytic production of clean water. Environmental Science: Nano, 2019, 6, 1507-1515.	2.2	45
82	Photothermal materials: A key platform enabling highly efficient water evaporation driven by solar energy. Materials Today Energy, 2019, 12, 277-296.	2.5	250
83	Hierarchical Porous SWCNT Stringed Carbon Polyhedrons and PSS Threaded MOF Bilayer Membrane for Efficient Solar Vapor Generation. Small, 2019, 15, e1900354.	5.2	89
84	Hollow black TiAlO _x nanocomposites for solar thermal desalination. Nanoscale, 2019, 11, 9958-9968.	2.8	23
85	Laserâ€lgnited Relayâ€Dominoâ€Like Reactions in Graphene Oxide/CLâ€20 Films for Highâ€Temperature Pulse Preparation of Biâ€Layered Photothermal Membranes. Small, 2019, 15, e1900338.	5.2	40
86	Porous three-dimensional carbon foams with interconnected microchannels for high-efficiency solar-to-vapor conversion and desalination. Journal of Materials Chemistry A, 2019, 7, 13036-13042.	5.2	99
87	Microwave absorption of magnesium/hydrogen-treated titanium dioxide nanoparticles. Nano Materials Science, 2019, 1, 48-59.	3.9	61
88	Challenges and Opportunities for Solar Evaporation. Joule, 2019, 3, 683-718.	11.7	850
89	Self-floating monodisperse microparticles with a nano-engineered surface composition and structure for highly efficient solar-driven water evaporation. Journal of Materials Chemistry A, 2019, 7, 6963-6971.	5.2	39
90	Bioinspired Sootâ€Deposited Janus Fabrics for Sustainable Solar Steam Generation with Saltâ€Rejection. Global Challenges, 2019, 3, 1800117.	1.8	73

#	Article	IF	CITATIONS
91	A nanopump for low-temperature and efficient solar water evaporation. Journal of Materials Chemistry A, 2019, 7, 24311-24319.	5.2	34
92	Manipulating light trapping and water vaporization enthalpy <i>via</i> porous hybrid nanohydrogels for enhanced solar-driven interfacial water evaporation with antibacterial ability. Journal of Materials Chemistry A, 2019, 7, 26769-26775.	5.2	36
93	Bifunctional Cu2-xSe-decorated hierarchical TiO2 nanotube mesh with solar water evaporation and photodegradation effects for clean water generation. Water Science and Technology: Water Supply, 2019, 19, 2001-2008.	1.0	7
94	Mesoporous hollow black TiO ₂ with controlled lattice disorder degrees for highly efficient visible-light-driven photocatalysis. RSC Advances, 2019, 9, 36907-36914.	1.7	15
95	Highly-dispersed nickel nanoparticles decorated titanium dioxide nanotube array for enhanced solar light absorption. Applied Surface Science, 2019, 464, 716-724.	3.1	16
96	Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy, 2019, 57, 507-518.	8.2	597
97	Dual-phase molybdenum nitride nanorambutans for solar steam generation under one sun illumination. Nano Energy, 2019, 57, 842-850.	8.2	96
98	A Flexible, Selfâ€Floating Composite for Efficient Water Evaporation. Global Challenges, 2019, 3, 1800085.	1.8	9
99	Highly efficient solar steam generation via mass-produced carbon nanosheet frameworks. Carbon, 2019, 145, 352-358.	5.4	57
100	Simple, Low-Dose, Durable, and Carbon-Nanotube-Based Floating Solar Still for Efficient Desalination and Purification. ACS Sustainable Chemistry and Engineering, 2019, 7, 3925-3932.	3.2	63
101	Self-Floating Carbonized Tissue Membrane Derived from Commercial Facial Tissue for Highly Efficient Solar Steam Generation. ACS Sustainable Chemistry and Engineering, 2019, 7, 2911-2915.	3.2	76
102	Synergistic effect of surface plasmon resonance, Ti3+ and oxygen vacancy defects on Ag/MoS2/TiO2-x ternary heterojunctions with enhancing photothermal catalysis for low-temperature wastewater degradation. Journal of Hazardous Materials, 2019, 364, 117-124.	6.5	93
103	Highly efficient solar steam generation of low cost TiN/bio-carbon foam. Science China Materials, 2019, 62, 711-718.	3.5	55
104	Oxygenâ€Defected Molybdenum Oxides Hierarchical Nanostructure Constructed by Atomicâ€Level Thickness Nanosheets as an Efficient Absorber for Solar Steam Generation. Solar Rrl, 2019, 3, 1800277.	3.1	62
105	Copper nanoparticles with near-unity, omnidirectional, and broadband optical absorption for highly efficient solar steam generation. Nanotechnology, 2019, 30, 015402.	1.3	59
106	Recent advances in Ti3+ self-doped nanostructured TiO2 visible light photocatalysts for environmental and energy applications. Chemical Engineering Journal, 2020, 382, 123011.	6.6	122
107	Surface doping of TiO2 powders via a gas–melt reaction using thermal plasma as an excitation source. Ceramics International, 2020, 46, 1577-1585.	2.3	4
108	Novel advances in metal-based solar absorber for photothermal vapor generation. Chinese Chemical Letters, 2020, 31, 2159-2166.	4.8	39

ARTICLE IF CITATIONS Photothermal-assisted photocatalytic degradation with ultrahigh solar utilization: Towards 109 6.6 67 practical application. Chemical Engineering Journal, 2020, 379, 122382. A flowerlike sponge coated with carbon black nanoparticles for enhanced solar vapor generation. 1.7 Journal of Materials Science, 2020, 55, 298-308. Transparent Photothermal Heaters from a Soluble NIRâ€Absorbing Diimmonium Salt. Advanced 111 11.1 32 Materials, 2020, 32, e1905096. A simple and universal strategy to deposit Ag/polypyrrole on various substrates for enhanced interfacial solar evaporation and antibacterial activity. Chemical Engineering Journal, 2020, 384, 126 123379. Laser-Synthesized Rutile TiO₂ with Abundant Oxygen Vacancies for Enhanced Solar Water 113 3.2 65 Evaporation. ACS Sustainable Chemistry and Engineering, 2020, 8, 1095-1101. Candle soot nanoparticle-decorated wood for efficient solar vapor generation. Sustainable Energy 2.5 and Fuels, 2020, 4, 354-361. Solar evaporation for simultaneous steam and power generation. Journal of Materials Chemistry A, 115 5.2 132 2020, 8, 513-531. Enhanced solar evaporation using a photo-thermal umbrella for wastewater management. Nature 11.5 151 Sustainability, 2020, 3, 144-151. A reverse slipping strategy for bulk-reduced TiO_{2â^'x} preparation from Magnéli phase 117 3.0 2 Ti₄O_T. Inorganic Chemistry Frontiers, 2020, 7, 212-220. Solar–Thermal Water Evaporation: A Review. ACS Energy Letters, 2020, 5, 437-456. 8.8 224 Biomass Carbon Materials for Efficient Solar Steam Generation Prepared from Carbonized 119 32 1.8 Enteromorpha Prolifera. Energy Technology, 2020, 8, 1901215. Designing a 1D/2D W18O49/rGO heterostructure and constructing a bilayer structure of light 2.1 absorber for highly efficient steam generation. Powder Technology, 2020, 361, 817-826. In situ chemoâ€polymerized polypyrroleâ€coated filter paper for highâ€efficient solar vapor generation. 121 2.2 22 International Journal of Energy Research, 2020, 44, 1191-1204. 3D network structure and hydrophobic Ni-G-WO3-x solar-driven interfacial evaporator for highly efficient steam generation. Solar Energy Materials and Solar Cells, 2020, 217, 110593. A solar-electro-thermal evaporation system with high water-production based on a facile integrated 123 5.221 evaporator. Journal of Materials Chemistry A, 2020, 8, 21771-21779. Manipulating Interfacial Charge-Transfer Absorption of Cocrystal Absorber for Efficient Solar 124 Seawater Desalination and Water Purification. ACS Energy Letters, 2020, 5, 2698-2705. Towards highly efficient solar-driven interfacial evaporation for desalination. Journal of Materials 125 5.2115 Chemistry Å, 2020, 8, 17907-17937. Reduced Graphene Oxide/Carbon Fiber Composite Membrane for Self-floating Solar-thermal Steam 1.3 Production. Chemical Research in Chinese Universities, 2020, 36, 699-702.

#	Article	IF	CITATIONS
127	Superwetting B4C bilayer foam for high cost-performance solar water purification. Materials Today Energy, 2020, 18, 100498.	2.5	9
128	Cost-effective and eco-friendly laser-processed cotton paper for high-performance solar evaporation. Solar Energy Materials and Solar Cells, 2020, 218, 110693.	3.0	18
129	Blue ordered/disordered Janus-type TiO ₂ nanoparticles for enhanced photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2020, 8, 22828-22839.	5.2	24
130	A mechanically durable, excellent recyclable 3D hierarchical Ni3S2@Ni foam photothermal membrane. Green Energy and Environment, 2022, 7, 492-499.	4.7	13
131	Wood-Based Solar Interface Evaporation Device with Self-Desalting and High Antibacterial Activity for Efficient Solar Steam Generation. ACS Applied Materials & Interfaces, 2020, 12, 47029-47037.	4.0	147
132	Nanoconfined Waterâ€Molecule Channels for Highâ€Yield Solar Vapor Generation under Weaker Sunlight. Advanced Materials, 2020, 32, e2001544.	11.1	94
133	Gallium–Carbenicillin Framework Coated Defectâ€Rich Hollow TiO ₂ as a Photocatalyzed Oxidative Stress Amplifier against Complex Infections. Advanced Functional Materials, 2020, 30, 2004861.	7.8	50
134	MoS ₂ Nanosheet–Carbon Foam Composites for Solar Steam Generation. ACS Applied Nano Materials, 2020, 3, 9706-9714.	2.4	42
135	Sponge-templating synthesis of sandwich-like reduced graphene oxide nanoplates with confined gold nanoparticles and their enhanced stability for solar evaporation. Science China Materials, 2020, 63, 1957-1965.	3.5	20
136	Integral approach of treatment of phenolic wastewater using nano-metal coated graphene oxide in combination with advanced oxidation. Surfaces and Interfaces, 2020, 21, 100660.	1.5	10
137	Black TiO2 Synthesis by Chemical Reduction Methods for Photocatalysis Applications. Frontiers in Chemistry, 2020, 8, 565489.	1.8	47
138	CoWO _{4–<i>x</i>} -Based Photothermal Membranes for Solar-Driven Water Evaporation and Eutrophic Lake Water Purification. ACS Omega, 2020, 5, 31598-31607.	1.6	17
139	Well oil dispersed Au/oxygen-deficient TiO2 nanofluids towards full spectrum solar thermal conversion. Solar Energy Materials and Solar Cells, 2020, 212, 110575.	3.0	25
140	Ultrafast synthesis of surface defect-modified Bi/BiOCl nanosheets via the deflagration of NaN3 for solar water evaporation. Journal of Alloys and Compounds, 2020, 836, 155380.	2.8	12
141	Clean Water from Air Utilizing Black TiO ₂ -Based Photothermal Nanocomposite Sheets. ACS Applied Nano Materials, 2020, 3, 6827-6835.	2.4	21
142	Biradicalâ€Featured Stable Organicâ€5mallâ€Molecule Photothermal Materials for Highly Efficient Solarâ€Driven Water Evaporation. Advanced Materials, 2020, 32, e1908537.	11.1	149
143	Donor–Acceptor Charge Migration System of Superhydrophilic Covalent Triazine Framework and Carbon Nanotube toward High Performance Solar Thermal Conversion. ACS Energy Letters, 2020, 5, 1300-1306.	8.8	47
144	Processing Natural Wood into an Efficient and Durable Solar Steam Generation Device. ACS Applied Materials & Martine Steam Content and Steam Processing Action Acti	4.0	58

#	Article	IF	CITATIONS
145	Geometrically Structured Nanomaterials for Nanosensors, NEMS, and Nanosieves. Advanced Materials, 2020, 32, e1907082.	11.1	26
146	The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies. Energy and Environmental Science, 2020, 13, 1694-1710.	15.6	206
147	Modular Deformable Steam Electricity Cogeneration System with Photothermal, Water, and Electrochemical Tunable Multilayers. Advanced Functional Materials, 2020, 30, 2002867.	7.8	133
148	Broadband Nickel Sulfide/Nickel Foam-Based Solar Evaporator for Highly Efficient Water Purification and Electricity Generation. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	9
149	Facile Deflagration Synthesis of Hollow Carbon Nanospheres with Efficient Performance for Solar Water Evaporation. ACS Applied Materials & Interfaces, 2020, 12, 35193-35200.	4.0	33
150	Volatile-Organic-Compound-Intercepting Solar Distillation Enabled by a Photothermal/Photocatalytic Nanofibrous Membrane with Dual-Scale Pores. Environmental Science & Technology, 2020, 54, 9025-9033.	4.6	108
151	Defect Engineering in Titanium-Based Oxides for Electrochemical Energy Storage Devices. Electrochemical Energy Reviews, 2020, 3, 286-343.	13.1	52
152	Ruthenium Nanoparticles Supported on Mg(OH) ₂ Microflowers as Catalysts for Photothermal Carbon Dioxide Hydrogenation. ACS Applied Nano Materials, 2020, 3, 3028-3033.	2.4	25
153	Freshwater production via efficient oil-water separation and solar-assisted water evaporation using black titanium oxide nanoparticles. Journal of Colloid and Interface Science, 2020, 566, 183-193.	5.0	37
154	Interfacial solar evaporation for water production: from structure design to reliable performance. Molecular Systems Design and Engineering, 2020, 5, 419-432.	1.7	35
155	Solar vapor generation optimization of a carbonâ€black/woodâ€flour system with strength enhanced by polystyrene. International Journal of Energy Research, 2020, 44, 3687-3696.	2.2	17
156	Surface charge density-dependent performance of Ni–Al layered double hydroxide-based flexible self-powered generators driven by natural water evaporation. Nano Energy, 2020, 70, 104502.	8.2	55
157	Hydrophilic polymer-stabilized porous composite membrane for water evaporation and solar desalination. RSC Advances, 2020, 10, 2507-2512.	1.7	25
158	Hierarchical Porous Aluminophosphate-Treated Wood for High-Efficiency Solar Steam Generation. ACS Applied Materials & Interfaces, 2020, 12, 19511-19518.	4.0	86
159	Ag/polypyrrole co-modified poly(ionic liquid)s hydrogels as efficient solar generators for desalination. Materials Today Energy, 2020, 16, 100417.	2.5	44
160	Spray oated Commercial PTFE Membrane from MoS ₂ /LaF ₃ /PDMS Ink as Solar Absorber for Efficient Solar Steam Generation. Solar Rrl, 2020, 4, 2000126.	3.1	31
161	Oxygen Vacancy Engineering in Titanium Dioxide for Sodium Storage. Chemistry - an Asian Journal, 2021, 16, 3-19.	1.7	27
162	Ti3C2/PVDF membrane for efficient seawater desalination based on interfacial solar heating. Water Science and Technology: Water Supply, 2021, 21, 918-926.	1.0	1

# 163	ARTICLE Three-dimensional self-floating foam composite impregnated with porous carbon and polyaniline for solar steam generation. Journal of Colloid and Interface Science, 2021, 581, 504-513.	IF 5.0	CITATIONS 67
164	Single-crystal-like black Zr-TiO2 nanotube array film: An efficient photocatalyst for fast reduction of Cr(VI). Chemical Engineering Journal, 2021, 403, 126331.	6.6	30
165	Renewable energy-driven desalination for more water and less carbon. , 2021, , 333-372.		1
166	Nanoenabled Photothermal Materials for Clean Water Production. Global Challenges, 2021, 5, 200055.	1.8	58
167	Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Materials Today, 2021, 42, 178-191.	8.3	274
168	Porous evaporators with special wettability for low-grade heat-driven water desalination. Journal of Materials Chemistry A, 2021, 9, 702-726.	5.2	60
169	Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment. Desalination, 2021, 500, 114853.	4.0	179
170	Exceptional interfacial solar evaporation <i>via</i> heteromorphic PTFE/CNT hollow fiber arrays. Journal of Materials Chemistry A, 2021, 9, 390-399.	5.2	45
171	Dual-functional superwettable nano-structured membrane: From ultra-effective separation of oil-water emulsion to seawater desalination. Chemical Engineering Journal, 2021, 411, 128042.	6.6	34
172	Highly salt-resistant and all-weather solar-driven interfacial evaporators with photothermal and electrothermal effects based on Janus graphene@silicone sponges. Nano Energy, 2021, 81, 105682.	8.2	127
173	Carbon nanofibers enhanced solar steam generation device based on loofah biomass for water purification. Materials Chemistry and Physics, 2021, 258, 123998.	2.0	51
174	Solar-driven evaporators for water treatment: challenges and opportunities. Environmental Science: Water Research and Technology, 2021, 7, 24-39.	1.2	94
175	Harvesting Solar Energy by 3D Graphene-based Macroarchitectures. Chemistry in the Environment, 2021, , 257-295.	0.2	0
176	A solution to break the salt barrier for high-rate sustainable solar desalination. Energy and Environmental Science, 2021, 14, 2451-2459.	15.6	87
177	Principle of Solar Energy Interface Water Evaporation Desalination. Advances in Energy and Power Engineering, 2021, 09, 35-39.	0.0	0
178	Band restructuring of ordered/disordered blue TiO ₂ for visible light photocatalysis. Journal of Materials Chemistry A, 2021, 9, 4822-4830.	5.2	17
179	Progress in Preparation and Characterization of Black TiO ₂ . Material Sciences, 2021, 11, 247-261.	0.0	0
180	An integrated highly hydrated cellulose network with a synergistic photothermal effect for efficient solar-driven water evaporation and salt resistance. Journal of Materials Chemistry A, 2021, 9, 15482-15492.	5.2	71

#	Article	IF	CITATIONS
181	Ultrafast Synthesis of Defective Black TiO2 via One-Step NaN3 Deflagration for High-efficiency Solar Water Evaporation. Surfaces and Interfaces, 2021, 22, 100901.	1.5	6
182	Designing Carbonized Loofah Sponge Architectures with Plasmonic Cu Nanoparticles Encapsulated in Graphitic Layers for Highly Efficient Solar Vapor Generation. Nano Letters, 2021, 21, 1709-1715.	4.5	79
183	Environmental Applications of Nanotechnology: Nano-enabled Remediation Processes in Water, Soil and Air Treatment. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	14
184	A salt-rejecting solar evaporator for continuous steam generation. Journal of Environmental Chemical Engineering, 2021, 9, 105010.	3.3	31
185	Solution Plasma-Synthesized Black TiO ₂ Nanoparticles for Solar–Thermal Water Evaporation. ACS Applied Nano Materials, 2021, 4, 3940-3948.	2.4	25
186	Scalable and low-cost fabrication of hydrophobic PVDF/WS2 porous membrane for highly efficient solar steam generation. Journal of Colloid and Interface Science, 2021, 588, 369-377.	5.0	36
187	NiS ₂ Nanocubes Coated Ti ₃ C ₂ Nanosheets with Enhanced Lightâ€ŧoâ€Heat Conversion for Fast and Efficient Solar Seawater Steam Generation. Solar Rrl, 2021, 5, 2100183.	3.1	13
188	Interfacial Solar EvaporatorÂ- Physical Principles and Fabrication Methods. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 1347-1367.	2.7	16
189	Defect Engineering of Photocatalysts towards Elevated CO ₂ Reduction Performance. ChemSusChem, 2021, 14, 2635-2654.	3.6	19
190	Ultra-thin dark amorphous TiOx hollow nanotubes for full spectrum solar energy harvesting and conversionâ€j. Nano Energy, 2021, 84, 105872.	8.2	21
191	Synthesis, characterization and utilization of oxygen vacancy contained metal oxide semiconductors for energy and environmental catalysis. Chemosphere, 2021, 272, 129534.	4.2	41
192	Harvesting Solar Energy by Flowerlike Carbon Cloth Nanocomposites for Simultaneous Generation of Clean Water and Electricity. ACS Applied Materials & Interfaces, 2021, 13, 27129-27139.	4.0	71
193	Aligned Millineedle Arrays for Solar Power Seawater Desalination with Siteâ€Specific Salt Formation. Small, 2021, 17, e2101487.	5.2	36
194	Plasmonic silver nanoparticles embedded in flexible three-dimensional carbonized melamine foam with enhanced solar-driven water evaporation. Desalination, 2021, 507, 115038.	4.0	55
195	Mechanically Strong, Liquid-Resistant Photothermal Bioplastic Constructed from Cellulose and Metal-Organic Framework for Light-Driven Mechanical Motion. Molecules, 2021, 26, 4449.	1.7	2
196	Simulationâ€Guided Design of Bamboo Leafâ€Derived Carbonâ€Based Highâ€Efficiency Evaporator for Solarâ€Driven Interface Water Evaporation. Energy and Environmental Materials, 2022, 5, 1323-1331.	7.3	35
197	Black single-crystal TiO2 nanosheet array films with oxygen vacancy on {001} facets for boosting photocatalytic CO2 reduction. Journal of Alloys and Compounds, 2021, 870, 159400.	2.8	42
198	Lanthanide-Doped Topological Nanosheets with Enhanced Near-Infrared Photothermal Performance for Energy Conversion. ACS Applied Materials & amp; Interfaces, 2021, 13, 43094-43103.	4.0	16

# 199	ARTICLE Lowâ€Cost, Unsinkable, and Highly Efficient Solar Evaporators Based on Coating MWCNTs on Nonwovens with Unidirectional Waterâ€Transfer. Advanced Science, 2021, 8, e2101727.	IF 5.6	Citations 65
200	Amorphous Highâ€Entropy Hydroxides of Tunable Wide Solar Absorption for Solar Water Evaporation. Particle and Particle Systems Characterization, 2021, 38, 2100094.	1.2	3
201	g-C3N4/MoS2 based floating solar still for clean water production by thermal/light activation of persulfate. Chemosphere, 2021, 280, 130618.	4.2	27
202	Interfacial solar evaporator for clean water production and beyond: From design to application. Applied Energy, 2021, 299, 117317.	5.1	33
203	Composite hydrogel-based photothermal self-pumping system with salt and bacteria resistance for super-efficient solar-powered water evaporation. Desalination, 2021, 515, 115192.	4.0	24
204	Tailoring polypyrrole-based Janus aerogel for efficient and stable solar steam generation. Desalination, 2021, 516, 115228.	4.0	63
205	Three-dimensional hierarchical oxygen vacancy-rich WO3-decorated Ni foam evaporator for high-efficiency solar-driven interfacial steam generation. Journal of Colloid and Interface Science, 2021, 602, 767-777.	5.0	27
206	Application of wooden arrays in solar water evaporation and desalination. Materials Today Communications, 2021, 29, 102819.	0.9	6
207	A review on photothermal material and its usage in the development of photothermal membrane for sustainable clean water production. Desalination, 2021, 517, 115259.	4.0	100
208	Black TiO2: An Emerging Photocatalyst and Its Applications. , 2021, , 267-297.		0
209	Photothermal Devices for Sustainable Uses Beyond Desalination. Advanced Energy and Sustainability Research, 2021, 2, 2000056.	2.8	32
210	3D tree-shaped hierarchical flax fabric for highly efficient solar steam generation. Journal of Materials Chemistry A, 2021, 9, 2248-2258.	5.2	43
211	A scalable, eco-friendly, and ultrafast solar steam generator fabricated using evolutional 3D printing. Journal of Materials Chemistry A, 2021, 9, 9909-9917.	5.2	36
212	Templating synthesis of natural cotton-based hierarchically structured carbon hollow microfibers for high-performance solar vapor generation. Journal of Materials Chemistry A, 2021, 9, 15346-15354.	5.2	24
213	Industrial dye degradation bydifferent nanocomposite doped material. , 2021, , 377-404.		0
214	Superior photothermal black TiO2 with random size distribution as flexible film for efficient solar steam generation. Applied Materials Today, 2020, 20, 100669.	2.3	27
215	Construction of Novel Biomassâ€Based Solar Evaporator with Asymmetric Dualâ€Layer Structure for Water Desalination. Advanced Sustainable Systems, 2022, 6, 2100274.	2.7	5
216	Excellent energy capture of hierarchical MoS2 nanosheets coupled with MXene for efficient solar evaporators and thermal packs. Carbon, 2022, 186, 19-27.	5.4	36

#	Article	IF	CITATIONS
218	Solar-driven enhanced chemical adsorption and interfacial evaporation using porous graphene-based spherical composites. Chemosphere, 2022, 291, 133013.	4.2	6
219	Recent Progress of Subâ€Nanometric Materials in Photothermal Energy Conversion. Advanced Science, 2022, 9, e2104225.	5.6	23
220	Potassium hydride reduced black TiO2â^'x for boosting the hydrogenation of magnesium at room temperature. Journal of Alloys and Compounds, 2022, 897, 162750.	2.8	6
221	Hierarchical MnO ₂ Nanosheets Grown on Cotton Fabric as a Flexible and Washable Solar Evaporator for Seawater Desalination. ACS Applied Nano Materials, 2021, 4, 13724-13733.	2.4	19
222	Design of a Separated Solar Interfacial Evaporation System for Simultaneous Water and Salt Collection. ACS Applied Materials & Interfaces, 2021, 13, 59518-59526.	4.0	26
223	Narrow-Bandgap LaMO3 (MÂ=ÂNi, Co) nanomaterials for efficient interfacial solar steam generation. Journal of Colloid and Interface Science, 2022, 612, 203-212.	5.0	30
224	Alkaline earth metals doped VO2 nanoparticles for enhanced interfacial solar steam generation. Materials Research Bulletin, 2022, 149, 111705.	2.7	19
225	Accessing Highly Efficient Photothermal Conversion with Stable Openâ€Shell Aromatic Nitric Acid Radicals. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
226	Accessing Highly Efficient Photothermal Conversion with Stable Open‧hell Aromatic Nitric Acid Radicals. Angewandte Chemie, 0, , .	1.6	5
227	Metal–Oxide Semiconductor Nanomaterials for Photothermal Catalysis. RSC Nanoscience and Nanotechnology, 2022, , 135-157.	0.2	0
228	The influence of mechanochemical treatment in hexane on dispersibility and floatability of graphite flakes with enhanced water evaporation performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 638, 128326.	2.3	5
229	Hierarchically structured bilayer Aerogel-based Salt-resistant solar interfacial evaporator for highly efficient seawater desalination. Separation and Purification Technology, 2022, 287, 120534.	3.9	37
230	Nonsolid TiO _{<i>x</i>} Nanoparticles/PVDF Nanocomposite for Improved Energy Storage Performance. ACS Applied Materials & Interfaces, 2022, 14, 8226-8234.	4.0	21
231	Integrated Water and Thermal Managements in Bioinspired Hierarchical MXene Aerogels for Highly Efficient Solarâ€Powered Water Evaporation. Advanced Functional Materials, 2022, 32, .	7.8	94
232	Flexible CuO-rGO/ PANI thermal absorber with high broadband photoresponse and salt resistance for efficient desalination of oil-contaminated seawater. Desalination, 2022, 528, 115612.	4.0	33
233	Reshapable MXene/Graphene Oxide/Polyaniline Plastic Hybrids with Patternable Surfaces for Highly Efficient Solarâ€Driven Water Purification. Advanced Functional Materials, 2022, 32, .	7.8	79
234	N-doped carbon@Cu core–shell nanostructure with nearly full solar spectrum absorption and enhanced solar evaporation efficiency. Journal of Materials Chemistry A, 2022, 10, 9575-9581.	5.2	37
235	Remarkably enhanced piezo-photocatalytic performance of Z-scheme Bi2WO6/Black TiO2 heterojunction via piezoelectric effect. Ceramics International, 2022, 48, 15899-15907.	2.3	30

#	Article	IF	CITATIONS
236	Variable range hopping conduction mechanisms in reduced rutile TiO ₂ . Physica Scripta, 2022, 97, 045408.	1.2	1
237	A Simple Polypyrrole/Polyvinylidene Fluoride Membrane with Hydrophobic and Self-Floating Ability for Solar Water Evaporation. Nanomaterials, 2022, 12, 859.	1.9	14
238	Preparation of Three-dimensional Graphene-based Sponge as Photo-thermal Conversion Material to Desalinate Seawater. Chemical Research in Chinese Universities, 2022, 38, 1425-1434.	1.3	2
239	Hierarchically Structured Black Gold Film with Ultrahigh Porosity for Solar Steam Generation. Advanced Materials, 2022, 34, e2200108.	11.1	84
240	Triggering ambient polymer-based Li-O2 battery via photo-electro-thermal synergy. Nano Energy, 2022, 98, 107248.	8.2	47
241	Bamboo derived SiC ceramics-phase change composites for efficient, rapid, and compact solar thermal energy storage. Solar Energy Materials and Solar Cells, 2022, 240, 111726.	3.0	36
242	Selective ceramic absorber with vertical pore structure for efficient solar evaporation. Separation and Purification Technology, 2022, 292, 121009.	3.9	11
243	Architecting Hybrid Donor–Acceptor Dendritic Nanosheets Based on Polyoxometalate and Porphyrin for High‥ield Solar Water Purification. Advanced Functional Materials, 2022, 32, .	7.8	24
244	Advances and challenges of broadband solar absorbers for efficient solar steam generation. Environmental Science: Nano, 2022, 9, 2264-2296.	2.2	20
245	Oxygenâ€Deficient Metal Oxides for Supercapacitive Energy Storage: From Theoretical Calculation to Structural Regulation and Utilization. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	5
246	Gradient Titanium Oxide Nanowire Film: a Multifunctional Solar Energy Utilization Platform for High-Salinity Organic Sewage Treatment. ACS Applied Materials & Interfaces, 2022, 14, 19652-19658.	4.0	6
247	A highly efficient and stable solar energy-driven device using lignocellulosic biomass <i>Juncus effusus</i> for the recovery of ethanol–water mixture. Green Chemistry, 2022, 24, 4812-4823.	4.6	8
248	Plasmonic Titanium Nitride Tubes Decorated with Ru Nanoparticles as Photo-Thermal Catalyst for CO2 Methanation. Molecules, 2022, 27, 2701.	1.7	4
249	Versatile Janus structured integrated device for photodynamic heat transformation. Desalination, 2022, 535, 115819.	4.0	3
250	Discovery of Dualâ€Functional Amorphous Titanium Suboxide to Promote Polysulfide Adsorption and Regulate Sulfide Growth in Li–S Batteries. Advanced Science, 2022, 9, .	5.6	9
251	Recent progress in solar photothermal steam technology for water purification and energy utilization. Chemical Engineering Journal, 2022, 448, 137603.	6.6	53
252	The advent of thermoplasmonic membrane distillation. Chemical Society Reviews, 2022, 51, 6087-6125.	18.7	56
253	Role of disinfectants in green chemistry. , 2022, , 209-235.		0

	CHATION	REPORT	
#	Article	IF	CITATIONS
254	Highly efficient solar distiller integrated with photothermal membrane, superhydrophilic glass, and superhydrophobic heat sink. Sustainable Energy Technologies and Assessments, 2022, 53, 102517.	1.7	1
255	Performance analysis of nanofluid-based water desalination system using integrated solar still, flat plate and parabolic trough collectors. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, .	0.8	11
256	A sustainable approach in water desalination with the integration of renewable energy sources: Environmental engineering challenges and perspectives. Environmental Advances, 2022, 9, 100281.	2.2	20
257	Enhancement of photoelectrochemical activity by Ag coating on black TiO2 nanoparticles. Materials Chemistry and Physics, 2022, 291, 126675.	2.0	4
258	Recent Advancements in Photocatalysis Coupling by External Physical Fields. Catalysts, 2022, 12, 1042.	1.6	7
259	Reduced graphene oxide/FeOOH-based asymmetric evaporator for the simultaneous generation of clean water and electrical power. Carbon, 2023, 201, 318-327.	5.4	11
260	Recent advances in structural regulation and optimization of high-performance solar-driven interfacial evaporation systems. Journal of Materials Chemistry A, 2022, 10, 18509-18541.	5.2	29
261	From Materials to Devices: Rationally Designing Solar Steam System for Advanced Applications. Small Methods, 2022, 6, .	4.6	17
262	Electrically powered artificial black body for low-voltage high-speed interfacial evaporation. Journal of Materials Chemistry A, 2022, 10, 22992-23000.	5.2	2
263	Bioinspired Micro/Nanostructured Polyethylene/Poly(Ethylene Oxide)/Graphene Films with Robust Superhydrophobicity and Excellent Antireflectivity for Solar–Thermal Power Generation, Thermal Management, and Afterheat Utilization. ACS Nano, 2022, 16, 16624-16635.	7.3	21
264	Freshwater Production Towards Microgrid Integration: Physics, Progress, and Prospects of Solar-Thermal Evaporation. , 2022, , 100037.		1
265	Enhanced photocatalytic overall water splitting by tuning the relative concentration ratio of bulk defects to surface defects in SrTiO3. International Journal of Hydrogen Energy, 2023, 48, 1360-1369.	3.8	3
266	Multi-angle wide-spectrum light-trapping nanofiber membrane for highly efficient solar desalination. Applied Energy, 2022, 328, 120203.	5.1	10
267	Synergy of oxygen vacancies and thermoelectric effect enhances uranium(VI) photoreduction. Applied Catalysis B: Environmental, 2023, 322, 122087.	10.8	22
268	A novel TiO2-x/TiN@ACB composite for synchronous photocatalytic Cr(VI) reduction and water photothermal evaporation under visible/infrared light illumination. Chemosphere, 2023, 311, 137137.	4.2	7
269	TiO2-based catalysts for photothermal catalysis: Mechanisms, materials and applications. Journal of Cleaner Production, 2022, 381, 135156.	4.6	14
270	Progress on TiO2-based materials for solar water interfacial evaporation. Frontiers in Chemical Engineering, 0, 4, .	1.3	1
271	Passive freezing desalination driven by radiative cooling. Joule, 2022, 6, 2762-2775.	11.7	12

# 272	ARTICLE Efficient interfacial solar driven water evaporation and photocatalytic pollutant degradation by	IF 2.3	CITATIONS 3
273	TiO2 Nanoparticle/Polyimide Nanocomposite for Ultrahigh-Temperature Energy Storage. Nanomaterials, 2022, 12, 4458.	1.9	2
274	Systematic Review of Material and Structural Design in Interfacial Solar Evaporators for Clean Water Production. Solar Rrl, 2023, 7, .	3.1	8
275	Photonic crystals umbrella for thermal desalination: simulation study. Scientific Reports, 2022, 12, .	1.6	2
276	Topographic Manipulation of Graphene Oxide by Polyaniline Nanocone Arrays Enables Highâ€Performance Solarâ€Driven Water Evaporation. Advanced Functional Materials, 2023, 33, .	7.8	28
277	Coupling ultrafine plasmonic Co3O4 with thin-layer carbon over SiO2 nanosphere for dual-functional PMS activation and solar interfacial water evaporation. Journal of Alloys and Compounds, 2023, 940, 168816.	2.8	13
279	Fast and Integral Nano-Surface-Coating of Various Fiber Materials via Interfacial Polymerization. ACS Macro Letters, 2023, 12, 93-100.	2.3	0
280	Functional Aerogels Composed of Regenerated Cellulose and Tungsten Oxide for UV Detection and Seawater Desalination. Gels, 2023, 9, 10.	2.1	0
281	Black Titania and Niobia within Ten Minutes – Mechanochemical Reduction of Metal Oxides with Alkali Metal Hydrides. Chemistry - A European Journal, 2023, 29, .	1.7	2
282	Water strider inspired floating solar evaporator with high salt-resistant ability for desalination of contaminated seawater. Journal of Environmental Chemical Engineering, 2023, 11, 109800.	3.3	5
283	Self-interlocked down Biomass-based carbon fiber aerogel for highly efficient and stable solar steam generation. Chemical Engineering Journal, 2023, 465, 142826.	6.6	10
284	Resource recovery from textile wastewater: Dye, salt, and water regeneration using solar-driven interfacial evaporation. Journal of Cleaner Production, 2023, 391, 136148.	4.6	10
285	Smart Strategies for Light and Thermal Management in Highâ€Efficiency Solar Steam Generation. Solar Rrl, 2023, 7, .	3.1	11
286	TiN-Based Materials for Multispectral Electromagnetic Wave Absorption. Journal of Electronic Materials, 2023, 52, 3549-3562.	1.0	3
287	Turning dead leaves into an active multifunctional material as evaporator, photocatalyst, and bioplastic. Nature Communications, 2023, 14, .	5.8	27
288	Fabrication and Application of Ag, Black TiO2 and Nitrogen-Doped 3D Reduced Graphene Oxide (3D Black) Tj ETC	2q1_1 0.78 	4314 rgBT
289	Dual Charge-Transfer Channels Harmonize Carrier Separation for Efficient U(VI) Photoreduction. Inorganic Chemistry, 2023, 62, 4705-4715.	1.9	2
290	Interfacial charge transfer weakens hydrogen bonds between water molecules to accelerate solar water evaporation. Journal of Materials Chemistry A, 2023, 11, 7662-7669.	5.2	4

.

#	Article	IF	CITATIONS
291	Electrochemically prepared coniferous leaf-like nickel black membrane for desalination by solar-thermal energy conversion. Nano Research, 2023, 16, 10358-10368.	5.8	0
292	Nano-enabled solar driven-interfacial evaporation: Advanced design and opportunities. Nano Research, 2023, 16, 6015-6038.	5.8	24
293	Material Design Strategies for Recovery of Critical Resources from Water. Advanced Materials, 2023, 35, .	11.1	8
309	Polymeric Foam for Energy Applications. ACS Symposium Series, 0, , 187-208.	0.5	1
321	A Systematic Review on Solar-Driven Interfacial Evaporation for Desalination. Lecture Notes in Mechanical Engineering, 2024, , 47-57.	0.3	0