Prediction of 30-Day All-Cause Readmissions in Patient

JAMA Cardiology 2, 204 DOI: 10.1001/jamacardio.2016.3956

Citation Report

#	Article	IF	CITATIONS
1	Predicting readmissions after hospitalization for heart failure: Medical reasoning vs calculators. International Journal of Cardiology, 2017, 236, 348-349.	0.8	0
2	Association of Multiorgan Computed Tomographic Phenomap With Adverse Cardiovascular Health Outcomes. JAMA Cardiology, 2017, 2, 1236.	3.0	19
3	Serum Neprilysin and Recurrent Admissions in Patients With Heart Failure. Journal of the American Heart Association, 2017, 6, .	1.6	20
4	Holding the Readmission Gates. JACC: Heart Failure, 2017, 5, 589-590.	1.9	0
5	Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients. Journal of the American Heart Association, 2018, 7, .	1.6	153
6	Identifying the low risk patient in surgical intensive and intermediate care units using continuous monitoring. Surgery, 2018, 163, 811-818.	1.0	13
7	Outpatient Worsening Heart Failure as a Target for Therapy. JAMA Cardiology, 2018, 3, 252.	3.0	90
8	Machine learning in cardiovascular medicine: are we there yet?. Heart, 2018, 104, 1156-1164.	1.2	329
9	Development and Validation of a Deep Neural Network Model for Prediction of Postoperative In-hospital Mortality. Anesthesiology, 2018, 129, 649-662.	1.3	128
10	Predicting Emergency Visits and Hospital Admissions During Radiation and Chemoradiation: An Internally Validated Pretreatment Machine Learning Algorithm. JCO Clinical Cancer Informatics, 2018, 2, 1-11.	1.0	39
11	Setting Up a Heart Failure Program in 2018: Moving Towards New Paradigm(s). Current Heart Failure Reports, 2018, 15, 357-367.	1.3	3
12	Predicting Suicide Attempts and Suicide Deaths Following Outpatient Visits Using Electronic Health Records. American Journal of Psychiatry, 2018, 175, 951-960.	4.0	273
13	Machine Learning and Evidence-Based Medicine. Annals of Internal Medicine, 2018, 169, 44.	2.0	29
14	A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data. BMC Medical Informatics and Decision Making, 2018, 18, 44.	1.5	165
15	Artificial Intelligence in Cardiology. Journal of the American College of Cardiology, 2018, 71, 2668-2679.	1.2	690
16	Customizing national models for a medical center's population to rapidly identify patients at high risk of 30-day all-cause hospital readmission following a heart failure hospitalization. Heart and Lung: Journal of Acute and Critical Care, 2018, 47, 290-296.	0.8	5
17	Machine-learning Algorithm to Predict Hypotension Based on High-fidelity Arterial Pressure Waveform Analysis. Anesthesiology, 2018, 129, 663-674.	1.3	334
18	Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. European Heart Journal, 2019, 40, 1975-1986.	1.0	327

#	Article	IF	CITATIONS
19	Updated Left Ventricular Diastolic Function Recommendations and Cardiovascular Events in Patients with Heart Failure Hospitalization. Journal of the American Society of Echocardiography, 2019, 32, 1286-1297.e2.	1.2	23
20	Novel application of approaches to predicting medication adherence using medical claims data. Health Services Research, 2019, 54, 1255-1262.	1.0	14
21	Role of Big Data in Cardiovascular Research. Journal of the American Heart Association, 2019, 8, e012791.	1.6	26
22	Impact of Artificial Intelligence on Interventional Cardiology. JACC: Cardiovascular Interventions, 2019, 12, 1293-1303.	1.1	76
23	Artificial intelligence algorithm for predicting mortality of patients with acute heart failure. PLoS ONE, 2019, 14, e0219302.	1.1	84
24	Neural networks versus Logistic regression for 30 days all-cause readmission prediction. Scientific Reports, 2019, 9, 9277.	1.6	45
25	The Role of Genetic Factors in Characterizing Extra-Intestinal Manifestations in Crohn's Disease Patients: Are Bayesian Machine Learning Methods Improving Outcome Predictions?. Journal of Clinical Medicine, 2019, 8, 865.	1.0	10
26	Clinical and Socioeconomic Predictors of Heart Failure Readmissions: A Review of Contemporary Literature. Mayo Clinic Proceedings, 2019, 94, 1304-1320.	1.4	32
27	Large Magnetoresistance in an Electric-Field-Controlled Antiferromagnetic Tunnel Junction. Physical Review Applied, 2019, 12, .	1.5	8
28	Applications of Artificial Intelligence in Cardiology. The Future is Already Here. Revista Espanola De Cardiologia (English Ed), 2019, 72, 1065-1075.	0.4	42
29	Machine Learning-Based Prediction Models for 30-Day Readmission after Hospitalization for Chronic Obstructive Pulmonary Disease. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2019, 16, 338-343.	0.7	29
30	Predicting common maternal postpartum complications: leveraging health administrative data and machine learning. BJOG: an International Journal of Obstetrics and Gynaecology, 2019, 126, 702-709.	1.1	35
31	Putting the data before the algorithm in big data addressing personalized healthcare. Npj Digital Medicine, 2019, 2, 78.	5.7	81
32	Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS ONE, 2019, 14, e0221202.	1.1	96
33	Artificial Intelligence: Practical Primer for Clinical Research in Cardiovascular Disease. Journal of the American Heart Association, 2019, 8, e012788.	1.6	104
34	Prescriptive Cluster-Dependent Support Vector Machines with an Application to Reducing Hospital Readmissions *. , 2019, , .		2
35	Comparison of Machine Learning Techniques for Prediction of Hospitalization in Heart Failure Patients. Journal of Clinical Medicine, 2019, 8, 1298.	1.0	35
36	Development and Prospective Validation of a Machine Learning-Based Risk of Readmission Model in a Large Military Hospital. Applied Clinical Informatics, 2019, 10, 316-325.	0.8	12

#	Article	IF	CITATIONS
37	Using Data Science to Predict Readmissions in Heart Failure. Current Emergency and Hospital Medicine Reports, 2019, 7, 175-183.	0.6	0
38	Ensembling Electrical and Proteogenomics Biomarkers for Improved Prediction of Cardiac-Related 3-Month Hospitalizations: A Pilot Study. Canadian Journal of Cardiology, 2019, 35, 471-479.	0.8	6
39	Value of machine learning in predicting TAVI outcomes. Netherlands Heart Journal, 2019, 27, 443-450.	0.3	27
40	Early Unplanned Readmissions After Admission to Hospital With Heart Failure. American Journal of Cardiology, 2019, 124, 736-745.	0.7	16
41	Machine learning in â€~big data': handle with care. Europace, 2019, 21, 1284-1285.	0.7	9
42	Determinants of Inâ€Hospital Mortality After Percutaneous Coronary Intervention: A Machine Learning Approach. Journal of the American Heart Association, 2019, 8, e011160.	1.6	52
43	Machine learningâ€based prediction of heart failure readmission or death: implications of choosing the right metrics. ESC Heart Failure, 2019, 6, 428-435.	1.4	89
44	A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. Journal of Clinical Epidemiology, 2019, 110, 12-22.	2.4	992
45	Predictive Abilities of Machine Learning Techniques May Be Limited by Dataset Characteristics: Insights From the UNOS Database. Journal of Cardiac Failure, 2019, 25, 479-483.	0.7	48
46	SALMANTICOR study. Rationale and design of a population-based study to identify structural heart disease abnormalities: a spatial and machine learning analysis. BMJ Open, 2019, 9, e024605.	0.8	13
48	A Framework for Integrating Domain Knowledge in Logistic Regression with Application to Hospital Readmission Prediction. International Journal on Artificial Intelligence Tools, 2019, 28, 1960006.	0.7	1
49	Predictors of Readmissions and Length of Stay for Diabetes Related Patients. , 2019, , .		4
51	Machine learning can accurately predict pre-admission baseline hemoglobin and creatinine in intensive care patients. Npj Digital Medicine, 2019, 2, 116.	5.7	17
52	Outpatient versus inpatient worsening heart failure: distinguishing biology and risk from location of care. European Journal of Heart Failure, 2019, 21, 121-124.	2.9	14
53	Big data and targeted machine learning in action to assist medical decision in the ICU. Anaesthesia, Critical Care & Pain Medicine, 2019, 38, 377-384.	0.6	42
54	Machine learning versus traditional risk stratification methods in acute coronary syndrome: a pooled randomized clinical trial analysis. Journal of Thrombosis and Thrombolysis, 2020, 49, 1-9.	1.0	36
55	Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes. JAMA Network Open, 2020, 3, e1918962.	2.8	152
56	Predicting postpartum psychiatric admission using a machine learning approach. Journal of Psychiatric Research, 2020, 130, 35-40.	1.5	21

#	Article	IF	CITATIONS
57	Data-driven ICU management: Using Big Data and algorithms to improve outcomes. Journal of Critical Care, 2020, 60, 300-304.	1.0	22
58	A Machine Learning Approach to Predicting Readmission or Mortality in Patients Hospitalized for Stroke or Transient Ischemic Attack. Applied Sciences (Switzerland), 2020, 10, 6337.	1.3	15
59	Comparing a novel machine learning method to the Friedewald formula and Martin-Hopkins equation for low-density lipoprotein estimation. PLoS ONE, 2020, 15, e0239934.	1.1	26
60	Clinical applications of machine learning in the diagnosis, classification, and prediction of heart failure. American Heart Journal, 2020, 229, 1-17.	1.2	85
61	Machine learning to assist clinical decision-making during the COVID-19 pandemic. Bioelectronic Medicine, 2020, 6, 14.	1.0	66
62	Risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning. Scientific Reports, 2020, 10, 20140.	1.6	11
63	Prediction of 30-Day Hospital Readmissions for All-Cause Dental Conditions using Machine Learning. Risk Management and Healthcare Policy, 2020, Volume 13, 2047-2056.	1.2	2
64	Machine learning does not improve upon traditional regression in predicting outcomes in atrial fibrillation: an analysis of the ORBIT-AF and GARFIELD-AF registries. Europace, 2020, 22, 1635-1644.	0.7	16
65	A new analytical framework for missing data imputation and classification with uncertainty: Missing data imputation and heart failure readmission prediction. PLoS ONE, 2020, 15, e0237724.	1.1	15
66	Comparison of Conventional Statistical Methods with Machine Learning in Medicine: Diagnosis, Drug Development, and Treatment. Medicina (Lithuania), 2020, 56, 455.	0.8	178
67	Technology Solutions for Nurse Leaders. Nursing Administration Quarterly, 2020, 44, 300-315.	0.9	1
68	Implementation of Artificial Intelligence-Based Clinical Decision Support to Reduce Hospital Readmissions at a Regional Hospital. Applied Clinical Informatics, 2020, 11, 570-577.	0.8	27
69	Predicting hospitalization following psychiatric crisis care using machine learning. BMC Medical Informatics and Decision Making, 2020, 20, 332.	1.5	7
70	Machine-learning prediction of unplanned 30-day rehospitalization using the French hospital medico-administrative database. Medicine (United States), 2020, 99, e22361.	0.4	7
71	Utilizing electronic health data and machine learning for the prediction of 30-day unplanned readmission or all-cause mortality in heart failure. Cardiovascular Digital Health Journal, 2020, 1, 71-79.	0.5	9
72	Predicting High-Risk Patients and High-Risk Outcomes in Heart Failure. Heart Failure Clinics, 2020, 16, 387-407.	1.0	19
73	Effects of moderate hypothermia versus normothermia on survival outcomes according to the initial body temperature in out-of-hospital cardiac patients: A nationwide observational study. Resuscitation, 2020, 151, 157-165.	1.3	3
74	Variability in Language used on Social Media prior to Hospital Visits. Scientific Reports, 2020, 10, 4346.	1.6	20

#	Article	IF	CITATIONS
75	Deep Learning–Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography. Journal of the American Heart Association, 2020, 9, e014717.	1.6	113
76	Logistic regression has similar performance to optimised machine learning algorithms in a clinical setting: application to the discrimination between type 1 and type 2 diabetes in young adults. Diagnostic and Prognostic Research, 2020, 4, 6.	0.8	69
77	The major effects of health-related quality of life on 5-year survival prediction among lung cancer survivors: applications of machine learning. Scientific Reports, 2020, 10, 10693.	1.6	26
78	Nationwide prediction of type 2 diabetes comorbidities. Scientific Reports, 2020, 10, 1776.	1.6	31
79	Stateâ€ofâ€ŧheâ€Art Machine Learning Techniques Aiming to Improve Patient Outcomes Pertaining to the Cardiovascular System. Journal of the American Heart Association, 2020, 9, e013924.	1.6	76
80	Training and Validation of Deep Neural Networks for the Prediction of 90-Day Post-Liver Transplant Mortality Using UNOS Registry Data. Transplantation Proceedings, 2020, 52, 246-258.	0.3	35
81	Development and validation of machine learning prediction model based on computed tomography angiography–derived hemodynamics for rupture status of intracranial aneurysms: a Chinese multicenter study. European Radiology, 2020, 30, 5170-5182.	2.3	27
82	Predicting 30-day hospital readmissions using artificial neural networks with medical code embedding. PLoS ONE, 2020, 15, e0221606.	1.1	27
83	The Admit-AF risk score: A clinical risk score for predicting hospital admissions in patients with atrial fibrillation. European Journal of Preventive Cardiology, 2021, 28, 624-630.	0.8	3
84	Development and validation of machine learning models to predict gastrointestinal leak and venous thromboembolism after weight loss surgery: an analysis of the MBSAQIP database. Surgical Endoscopy and Other Interventional Techniques, 2021, 35, 182-191.	1.3	39
85	Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality. ESC Heart Failure, 2021, 8, 106-115.	1.4	82
86	The Potential for Health Information Technology Tools to Reduce Racial Disparities in Maternal Morbidity and Mortality. Journal of Women's Health, 2021, 30, 274-279.	1.5	16
87	2021 ISHNE/HRS/EHRA/APHRS collaborative statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals. Journal of Arrhythmia, 2021, 37, 271-319.	0.5	21
88	Machine learning-based prediction models for accidental hypothermia patients. Journal of Intensive Care, 2021, 9, 6.	1.3	5
89	2021 ISHNE/ HRS/ EHRA/ APHRS collaborative statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals. Annals of Noninvasive Electrocardiology, 2021, 26, e12795.	0.5	29
90	Using machine learning to predict paediatric 30-day unplanned hospital readmissions: a case-control retrospective analysis of medical records, including written discharge documentation. Australian Health Review, 2021, 45, 328-337.	0.5	8
91	Predicting all-cause 90-day hospital readmission for dental patients using machine learning methods. BDJ Open, 2021, 7, 1.	0.8	13
92	The Impact of Non-coding RNA Networks on Disease Comorbidity: Cardiometabolic Diseases, Inflammatory Diseases, and Cancer. , 2021, , 247-265.		0

#	Article	IF	CITATIONS
93	2021 ISHNE/HRS/EHRA/APHRS Expert Collaborative Statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals: From the International Society for Holter and Noninvasive Electrocardiology/Heart Rhythm Society/European Heart Rhythm Association/Asia-Pacific Heart Rhythm Society. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e009204.	2.1	45
94	2021 ISHNE/HRS/EHRA/APHRS Collaborative Statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals. Cardiovascular Digital Health Journal, 2021, 2, 4-54.	0.5	10
96	Machine-Learning vs. Expert-Opinion Driven Logistic Regression Modelling for Predicting 30-Day Unplanned Rehospitalisation in Preterm Babies: A Prospective, Population-Based Study (EPIPAGE 2). Frontiers in Pediatrics, 2020, 8, 585868.	0.9	2
97	Cardiovascular informatics: building a bridge to data harmony. Cardiovascular Research, 2021, , .	1.8	4
98	Reviewing the use and quality of machine learning in developing clinical prediction models for cardiovascular disease. Postgraduate Medical Journal, 2022, 98, 551-558.	0.9	9
99	Prediction of short-term mortality in acute heart failure patients using minimal electronic health record data. BioData Mining, 2021, 14, 23.	2.2	12
100	Effect of a Real-Time Risk Score on 30-day Readmission Reduction in Singapore. Applied Clinical Informatics, 2021, 12, 372-382.	0.8	5
101	Machine Learning-Enabled 30-Day Readmission Model for Stroke Patients. Frontiers in Neurology, 2021, 12, 638267.	1.1	16
102	Strengthening the Learning Health System in Cardiovascular Disease Prevention: Time to Leverage Big Data and Digital Solutions. Current Atherosclerosis Reports, 2021, 23, 19.	2.0	6
103	Machine learning for the prediction of bone metastasis in patients with newly diagnosed thyroid cancer. Cancer Medicine, 2021, 10, 2802-2811.	1.3	35
104	Development of Machine Learning Models to Predict Platinum Sensitivity of High-Grade Serous Ovarian Carcinoma. Cancers, 2021, 13, 1875.	1.7	16
105	Machine Learning–Driven Models to Predict Prognostic Outcomes in Patients Hospitalized With Heart Failure Using Electronic Health Records: Retrospective Study. Journal of Medical Internet Research, 2021, 23, e24996.	2.1	11
106	Artificial Intelligence in Hypertension. Circulation Research, 2021, 128, 1100-1118.	2.0	26
107	Cautious optimism for machine learning techniques for prediction of heart failure outcomes. European Journal of Heart Failure, 2021, 23, 1000-1001.	2.9	2
108	Decongestion discriminates risk for oneâ€year mortality in patients with improving renal function in acute heart failure. European Journal of Heart Failure, 2021, 23, 1122-1130.	2.9	14
109	Machine learning for subtype definition and risk prediction in heart failure, acute coronary syndromes and atrial fibrillation: systematic review of validity and clinical utility. BMC Medicine, 2021, 19, 85.	2.3	33
110	Application of machine learning in predicting hospital readmissions: a scoping review of the literature. BMC Medical Research Methodology, 2021, 21, 96.	1.4	46
111	Predicting the 9-year course of mood and anxiety disorders with automated machine learning: A comparison between auto-sklearn, naĀ ve Bayes classifier, and traditional logistic regression.	1.7	16

#	Article	IF	CITATIONS
113	Machine Learning Applications in Heart Failure Disease Management: Hype or Hope?. Current Treatment Options in Cardiovascular Medicine, 2021, 23, 1.	0.4	1
114	DSWorkFlow: A Framework for Capturing Data Scientists' Workflows. , 2021, , .		1
115	Development and Internal Validation of a Prognostic Model for 4-Year Risk of Metabolic Syndrome in Adults: A Retrospective Cohort Study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 2229-2237.	1.1	9
116	Derivation and validation of a twoâ€variable index to predict 30â€day outcomes following heart failure hospitalization. ESC Heart Failure, 2021, 8, 2690-2697.	1.4	8
117	Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation. PLoS ONE, 2021, 16, e0252068.	1.1	14
118	Development and validation of the Tool for Pharmacists to Predict 30-day hospital readmission in patients with Heart Failure (ToPP-HF). American Journal of Health-System Pharmacy, 2021, 78, 1691-1700.	0.5	4
119	Predicting mortality and hospitalization in heart failure using machine learning: A systematic literature review. IJC Heart and Vasculature, 2021, 34, 100773.	0.6	16
120	Machine learning, artificial intelligence and mechanical circulatory support: A primer for clinicians. Journal of Heart and Lung Transplantation, 2021, 40, 414-425.	0.3	6
121	Improving Risk Identification of Adverse Outcomes in Chronic Heart Failure Using SMOTE+ENN and Machine Learning. Risk Management and Healthcare Policy, 2021, Volume 14, 2453-2463.	1.2	23
122	Artificial intelligence in personalized cardiovascular medicine and cardiovascular imaging. Cardiovascular Diagnosis and Therapy, 2021, 11, 911-923.	0.7	15
123	Regression and Random Forest Machine Learning Have Limited Performance in Predicting Bowel Preparation in Veteran Population. Digestive Diseases and Sciences, 2021, , 1.	1.1	2
124	Measuring algorithmically infused societies. Nature, 2021, 595, 197-204.	13.7	52
125	Prediction of preterm birth in nulliparous women using logistic regression and machine learning. PLoS ONE, 2021, 16, e0252025.	1.1	20
126	Using Deep Learning to Identify High-Risk Patients with Heart Failure with Reduced Ejection Fraction. Journal of Health Economics and Outcomes Research, 2021, 8, 6-13.	0.6	13
127	Evaluating the association of social needs assessment data with cardiometabolic health status in a federally qualified community health center patient population. BMC Cardiovascular Disorders, 2021, 21, 342.	0.7	9
128	Early prediction of diagnostic-related groups and estimation of hospital cost by processing clinical notes. Npj Digital Medicine, 2021, 4, 103.	5.7	20
129	Prediction of Distal Aortic Enlargement after Proximal Repair of Aortic Dissection Using Machine Learning. Annals of Vascular Surgery, 2021, 75, 332-340.	0.4	10
130	Comparison of Machine Learning Methods for Predicting Outcomes After In-Hospital Cardiac Arrest. Critical Care Medicine, 2022, 50, e162-e172.	0.4	8

#	Article	IF	CITATIONS
131	Prediction models for hospital readmissions in patients with heart disease: a systematic review and meta-analysis. BMJ Open, 2021, 11, e047576.	0.8	3
132	Applying Machine Learning Approaches to Suicide Prediction Using Healthcare Data: Overview and Future Directions. Frontiers in Psychiatry, 2021, 12, 707916.	1.3	21
133	Development and Validation of a Nomogram to Predict the 180-Day Readmission Risk for Chronic Heart Failure: A Multicenter Prospective Study. Frontiers in Cardiovascular Medicine, 2021, 8, 731730.	1.1	9
134	Internal-external cross-validation helped to evaluate the generalizability of prediction models in large clustered datasets. Journal of Clinical Epidemiology, 2021, 137, 83-91.	2.4	23
135	Using Machine Learning Algorithms to Predict Hospital Acquired Thrombocytopenia after Operation in the Intensive Care Unit: A Retrospective Cohort Study. Diagnostics, 2021, 11, 1614.	1.3	4
136	Predictive modelling of hospital readmission: Evaluation of different preprocessing techniques on machine learning classifiers. Intelligent Data Analysis, 2021, 25, 1073-1098.	0.4	2
137	Use of Machine Learning and Artificial Intelligence Methods in Geriatric Mental Health Research Involving Electronic Health Record or Administrative Claims Data: A Systematic Review. Frontiers in Psychiatry, 2021, 12, 738466.	1.3	12
138	Development of Prediction Models for Unplanned Hospital Readmission within 30 Days Based on Common Data Model: A Feasibility Study. Methods of Information in Medicine, 2021, , .	0.7	6
139	The Use of Machine Learning for the Care of Hypertension and HeartÂFailure. JACC Asia, 2021, 1, 162-172.	0.5	9
140	Remote monitoring for heart failure: Assessing the risks of readmission and mortality. American Heart Journal Plus, 2021, 10, 100045.	0.3	3
141	Ethical and legal challenges. , 2021, , 395-410.		0
142	Predicting Mortality Risk After a Hospital or Emergency Department Visit for Nonfatal Opioid Overdose. Journal of General Internal Medicine, 2021, 36, 908-915.	1.3	4
143	2021 ISHNE / HRS / EHRA / APHRS Collaborative Statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals. European Heart Journal Digital Health, 2021, 2, 7-48.	0.7	4
144	Machine learning for predictive analytics. , 2021, , 45-69.		1
145	A Comorbidity Knowledge-Aware Model for Disease Prognostic Prediction. IEEE Transactions on Cybernetics, 2022, 52, 9809-9819.	6.2	1
147	Apps and Online Platforms for Patients with Heart Failure. Cardiac Failure Review, 2020, 6, e14.	1.2	5
148	Clinical Predictive Models for COVID-19: Systematic Study. Journal of Medical Internet Research, 2020, 22, e21439.	2.1	70
149	Review of applications and challenges of quantitative systems pharmacology modeling and machine learning for heart failure, Journal of Pharmacokinetics and Pharmacodynamics, 2022, 49, 39-50.	0.8	10

ARTICLE IF CITATIONS Predictive modeling for 14-day unplanned hospital readmission risk by using machine learning 150 1.5 16 algorithms. BMC Medical Informatics and Decision Making, 2021, 21, 288. Prediction of Diabetic Patient Readmission Using Machine Learning. Communications in Computer and 0.4 Information Science, 2019, , 78-88. Every Bit Counts: Using Deep Learning and Vectorization to Analyze Healthcare Big Data. SSRN 152 0.4 0 Electronic Journal, 0, , . Application of machine learning to predict the occurrence of arrhythmia after acute myocardial 154 infarction. BMC Medical Informatics and Decision Making, 2021, 21, 301. Predicting <scp>90 day</scp> acute heart failure readmission and death using machine 155 0.7 25 <scp>learningâ€supported (scp> decision analysis. Clinical Cardiology, 2021, 44, 230-237. Predicting Hospital Readmission in Heart Failure Patients in Iran: A Comparison of Various Machine 1.0 Learning Methods. Healthcare Informatics Research, 2021, 27, 307-314. Emergency department routine data and the diagnosis of acute ischemic heart disease in patients with 157 1.1 2 atypical chest pain. PLoS ONE, 2020, 15, e0241920. Interactive Cost-benefit Analysis: Providing Real-World Financial Context to Predictive Analytics. 0.2 AMIA ... Annual Symposium proceedings, 2018, 2018, 1076-1083. Validação de um Algoritmo de Inteligência Artificial para a Predição DiagnÃ3stica de Doença 160 Coronariana: Comparação com um Modelo EstatÃstico Tradicional. Arquivos Brasileiros De 0.3 3 Cardiologia, 2021, 117, 1061-1070. Directly and Simultaneously Expressing Absolute and Relative Treatment Effects in Medical Data 1.1 Models and Applications. Entropy, 2021, 23, 1517. Prediction of Hospital Readmission from Longitudinal Mobile Data Streams. Sensors, 2021, 21, 7510. 162 2.1 1 Machine Learning in Healthcare: Operational and Financial Impact. Springer Series in Supply Chain Management, 2022, , 153-174. Using Machine Learning to Predict Complications in Pregnancy: A Systematic Review. Frontiers in 164 2.0 31 Bioengineering and Biotechnology, 2021, 9, 780389. Risk Factor Prediction of Infection Following Secondary CIED Procedures. JACC: Clinical 1.3 Electrophysiology, 2022, 8, 112-114. A Clinically Applicable Nomogram for Predicting the Risk of Invasive Mechanical Ventilation in 166 1.8 5 Pneumocystis jirovecii Pneumonia. Frontiers in Cellular and Infection Microbiology, 2022, 12, 850741. The Impact of Social Determinants of Health on 30 and 90-Day Readmission Rates After Spine Surgery. 1.4 Journal of Bone and Joint Surgery - Series A, 2022, 104, 412-420. Electronic Health Records and Heart Failure. Heart Failure Clinics, 2022, 18, 201-211. 168 1.0 2 Utilizing Artificial Intelligence to Enhance Health Equity Among Patients with Heart Failure. Heart Failure Clinics, 2022, 18, 259-273.

#	Article	IF	CITATIONS
170	Development of a Machine Learning-Based Predictive Model for Lung Metastasis in Patients With Ewing Sarcoma. Frontiers in Medicine, 2022, 9, 807382.	1.2	9
171	Comparing Machine Learning Models and Statistical Models for Predicting Heart Failure Events: A Systematic Review and Meta-Analysis. Frontiers in Cardiovascular Medicine, 2022, 9, 812276.	1.1	11
172	Information Extraction From Electronic Health Records to Predict Readmission Following Acute Myocardial Infarction: Does Natural Language Processing Using Clinical Notes Improve Prediction of Readmission?. Journal of the American Heart Association, 2022, 11, e024198.	1.6	4
173	Decongestion, kidney injury and prognosis in patients with acute heart failure. International Journal of Cardiology, 2022, 354, 29-37.	0.8	6
174	Implementing Machine Learning in Interventional Cardiology: The Benefits Are Worth the Trouble. Frontiers in Cardiovascular Medicine, 2021, 8, 711401.	1.1	12
175	The Contribution of Artificial Intelligence in Achieving the Sustainable Development Goals (SDGs): What Can Eye Health Can Learn From Commercial Industry and Early Lessons From the Application of Machine Learning in Eye Health Programmes. Frontiers in Public Health, 2021, 9, 752049.	1.3	3
176	Predicting preeclampsia and related risk factors using data mining approaches: A cross-sectional study. International Journal of Reproductive BioMedicine, 2021, 19, 959-968.	0.5	4
177	Comparing <scp>LASSO</scp> and random forest models for predicting neurological dysfunction among fluoroquinolone users. Pharmacoepidemiology and Drug Safety, 2022, 31, 393-403.	0.9	4
178	Predicting 30-Day Readmissions in Patients With Heart Failure Using Administrative Data: A Machine Learning Approach. Journal of Cardiac Failure, 2022, 28, 710-722.	0.7	13
179	Machine learning can identify patients at risk of hyperparathyroidism without known calcium and intact parathyroid hormone. Head and Neck, 2022, 44, 817-822.	0.9	4
180	What can machines learn about heart failure? A systematic literature review. International Journal of Data Science and Analytics, 2022, 13, 163-183.	2.4	3
181	Understanding Heart Failure Patients EHR Clinical Features via SHAP Interpretation of Tree-Based Machine Learning Model Predictions AMIA Annual Symposium proceedings, 2021, 2021, 813-822.	0.2	1
185	Machine Learning for the Prevalence and Severity of Coronary Artery Calcification in Nondialysis Chronic Kidney Disease Patients. Journal of Thoracic Imaging, 2022, 37, 401-408.	0.8	4
186	Current state of artificial intelligence-based algorithms for hospital admission prediction in patients with heart failure: a scoping review. European Heart Journal Digital Health, 2022, 3, 415-425.	0.7	9
187	A Novel Composite Indicator of Predicting Mortality Risk for Heart Failure Patients With Diabetes Admitted to Intensive Care Unit Based on Machine Learning. Frontiers in Endocrinology, 0, 13, .	1.5	3
188	Exploratory analysis using machine learning of predictive factors for falls in type 2 diabetes. Scientific Reports, 2022, 12, .	1.6	3
189	Data-driven versus a domain-led approach to k-means clustering on an open heart failure dataset. International Journal of Data Science and Analytics, 2023, 15, 49-66.	2.4	8
190	Electronic Health Record-Based Deep Learning Prediction of Death or Severe Decompensation in HeartÂFailure Patients. JACC: Heart Failure, 2022, 10, 637-647.	1.9	7

#	Article	IF	CITATIONS
191	A machine learning framework supporting prospective clinical decisions applied to risk prediction in oncology. Npj Digital Medicine, 2022, 5, .	5.7	6
192	What drives performance in machine learning models for predicting heart failure outcome?. European Heart Journal Digital Health, 2023, 4, 175-187.	0.7	2
193	Performance of multilabel machine learning models and risk stratification schemas for predicting stroke and bleeding risk in patients with non-valvular atrial fibrillation. Computers in Biology and Medicine, 2022, 150, 106126.	3.9	4
194	Personalizing the Patient Discharge Process and Follow-Up Using Machine Learning Algorithms, Assessment Questionnaires and Ontology Reasoning. , 2023, , 39-62.		0
195	Machine Learning Approach to Predict Inâ€Hospital Mortality in Patients Admitted for Peripheral Artery Disease in the United States. Journal of the American Heart Association, 2022, 11, .	1.6	5
196	Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases. Frontiers in Cardiovascular Medicine. 0. 9.	1.1	18
197	Development and validation of medical record-based logistic regression and machine learning models to diagnose diabetic retinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology, 2023, 261, 681-689.	1.0	4
198	Big Data in cardiac surgery: real world and perspectives. Journal of Cardiothoracic Surgery, 2022, 17, .	0.4	3
199	A Predictive Model of Early Readmission for Patients with Heart Failure. , 2022, 1, 88-96.		0
201	Development and validation of a machine learning model to predict the risk of lymph node metastasis in renal carcinoma. Frontiers in Endocrinology, 0, 13, .	1.5	3
202	Development and validation of the prediction models for preeclampsia: a retrospective, single-center, case-control study. Annals of Translational Medicine, 2022, 10, 1221-1221.	0.7	0
203	Artificial Intelligence and Cardiovascular Risk Prediction: All That Glitters is not Gold. European Cardiology Review, 0, 17, .	0.7	7
204	A hybrid machine learning framework to improve prediction of all-cause rehospitalization among elderly patients in Hong Kong. BMC Medical Research Methodology, 2023, 23, .	1.4	2
205	Predicting 30-day all-cause hospital readmission using multimodal spatiotemporal graph neural networks. IEEE Journal of Biomedical and Health Informatics, 2023, , 1-12.	3.9	6
206	A comparison of machine learning algorithms and traditional regression-based statistical modeling for predicting hypertension incidence in a Canadian population. Scientific Reports, 2023, 13, .	1.6	8
207	Predicting Six-Month Re-Admission Risk in Heart Failure Patients Using Multiple Machine Learning Methods: A Study Based on the Chinese Heart Failure Population Database. Journal of Clinical Medicine, 2023, 12, 870.	1.0	3
208	Clinical applications of machine learning in heart failure. , 2023, , 217-233.		0
209	Integration of patient experience factors improves readmission prediction. Medicine (United States), 2023, 102, e32632.	0.4	0

#	Article	IF	CITATIONS
210	Associations between continuity of care, perceived control and selfâ€care and their impact on healthâ€related quality of life and hospital readmission—A structural equation model. Journal of Advanced Nursing, 2023, 79, 2305-2315.	1.5	3
212	Machine learning to improve frequent emergency department use prediction: a retrospective cohort study. Scientific Reports, 2023, 13, .	1.6	6
213	Prediction of Gastrointestinal Tract Cancers Using Longitudinal Electronic Health Record Data. Cancers, 2023, 15, 1399.	1.7	0
214	Early prediction of 30- and 14-day all-cause unplanned readmissions. Health Informatics Journal, 2023, 29, 146045822311646.	1.1	1
215	Role of Artificial Intelligence and Machine Learning in Interventional Cardiology. Current Problems in Cardiology, 2023, 48, 101698.	1.1	6
216	A cardiologist's guide to machine learning in cardiovascular disease prognosis prediction. Basic Research in Cardiology, 2023, 118, .	2.5	10
217	Development and Internal Validation of an Interpretable Machine Learning Model to Predict Readmissions in a United States Healthcare System. Informatics, 2023, 10, 33.	2.4	0
218	Risk prediction model of early-onset preeclampsia based on risk factors and routine laboratory indicators. International Journal of Sexual and Reproductive Health Care, 2023, 6, 011-018.	0.1	0
219	Survival prediction of heart failure patients using motion-based analysis method. Computer Methods and Programs in Biomedicine, 2023, 236, 107547.	2.6	7
220	Comparison of Machine Learning Algorithms for Predicting Hospital Readmissions and Worsening Heart Failure Events in Patients With Heart Failure With Reduced Ejection Fraction: Modeling Study. JMIR Formative Research, 0, 7, e41775.	0.7	4
221	The Construction and Validation of a new Predictive Model for Overall Survival of Clear Cell Renal Cell Carcinoma Patients with Bone Metastasis Based on Machine Learning Algorithm. Technology in Cancer Research and Treatment, 2023, 22, 153303382311651.	0.8	2
240	Improving Maternal Health by Predicting Various Pregnancy-Related Abnormalities Using Machine Learning Algorithms. Advances in Computational Intelligence and Robotics Book Series, 2023, , 303-326. ––––––––––––––––––––––––––––––––––––	0.4	0
242	Adopting artificial intelligence in cardiovascular medicine: a scoping review. Hypertension Research, 2024, 47, 685-699.	1.5	5