Health risk assessment of heavy metals in wheat using implication for human health

Environmental Science and Pollution Research 24, 947-955 DOI: 10.1007/s11356-016-7865-9

Citation Report

#	Article	IF	CITATIONS
1	Residue and intake risk assessment of prothioconazole and its metabolite prothioconazole-desthio in wheat field. Environmental Monitoring and Assessment, 2017, 189, 236.	2.7	41
2	Accumulation of heavy metals in soil-crop systems: a review for wheat and corn. Environmental Science and Pollution Research, 2017, 24, 15209-15225.	5.3	120
3	The effect of sewage sludge on heavy metal concentrations in wheat plant (Triticum aestivum L.). Environmental Science and Pollution Research, 2017, 24, 15634-15644.	5.3	9
4	Deciphering adverse effects of heavy metals on diverse wheat germplasm on irrigation with urban wastewater of mixed municipal-industrial origin. Environmental Science and Pollution Research, 2018, 25, 18462-18475.	5.3	10
5	Heavy metal accumulation and health risk assessment in soil-wheat system under different nitrogen levels. Science of the Total Environment, 2018, 622-623, 1499-1508.	8.0	57
6	Modeling of Trace Metal Migration and Accumulation Processes in a Soil-Wheat System in Lihe Watershed, China. International Journal of Environmental Research and Public Health, 2018, 15, 2432.	2.6	10
7	A study on air quality and heavy metals content of urban food produced in a Mediterranean city (Barcelona). Journal of Cleaner Production, 2018, 195, 385-395.	9.3	65
8	Cadmium, copper and lead levels in different cultivars of lettuce and soil from urban agriculture. Environmental Pollution, 2018, 242, 383-389.	7.5	59
9	Chronic impact of an accidental wastewater spill from a smelter, China: A study of health risk of heavy metal(loid)s via vegetable intake. Ecotoxicology and Environmental Safety, 2019, 182, 109401.	6.0	41
10	Application of Novel MCDM for Location Selection of Surface Water Treatment Plant. IEEE Transactions on Engineering Management, 2022, 69, 1865-1877.	3.5	18
11	Monitoring wheat nitrogen requirement and top soil nitrate for nitrate residue controlling in drylands. Journal of Cleaner Production, 2019, 241, 118372.	9.3	15
12	Location selection for Installation of Surface Water Treatment Plant by Applying a New Sinusoidal Analytical Hierarchy Process. International Journal of Energy Optimization and Engineering, 2019, 8, 20-42.	0.6	4
13	Heavy metals and associated health risk of wheat grain in a traditional cultivation area of Baoji, Shaanxi, China. Environmental Monitoring and Assessment, 2019, 191, 428.	2.7	21
14	Sewage waste water application improves the productivity of diverse wheat (Triticum aestivum L.) cultivars on a sandy loam soil. Environmental Science and Pollution Research, 2019, 26, 17045-17054.	5.3	3
15	Assessment of the human health risks of heavy metals in nine typical areas. Environmental Science and Pollution Research, 2019, 26, 12311-12323.	5.3	30
16	Concentration of trace metals in winter wheat and spring barley as a result of digestate, cattle slurry, and mineral fertilizer application. Environmental Science and Pollution Research, 2020, 27, 4769-4785.	5.3	13
17	Potentially toxic elements (PTEs) in cereal-based foods: A systematic review and meta-analysis. Trends in Food Science and Technology, 2020, 96, 30-44.	15.1	51
18	Risk analysis by bioaccumulation of Cr, Cu, Ni, Pb and Cd from wastewater-irrigated soil to Brassica species. International Journal of Environmental Science and Technology, 2020, 17, 2889-2906.	3.5	11

#	Article	IF	CITATIONS
19	Heavy metal phyto-accretion, biochemical responses and non-carcinogenic human health risks of genetically diverse wheat genotypes cultivated with sewage of municipal origin. International Journal of Phytoremediation, 2021, 23, 1-13.	3.1	0
20	InÂvitro oral bioaccessibility investigation and human health risk assessment of heavy metals in wheat grains grown near the mines in North China. Chemosphere, 2020, 252, 126522.	8.2	31
21	Potential carcinogenic and non-carcinogenic health hazards of metal(loid)s in food grains. Environmental Science and Pollution Research, 2020, 27, 17032-17042.	5.3	15
22	Insight into the Chromium-Enriched Industrial Wastewater Irrigation Practice on <i>Lablab purpureus</i> . Journal of Environmental Engineering, ASCE, 2020, 146, .	1.4	6
23	Cadmium, chromium, nickel and nitrate accumulation in wheat (Triticum aestivum L.) using wastewater irrigation and health risks assessment. Ecotoxicology and Environmental Safety, 2021, 208, 111685.	6.0	33
24	Phytoavailability and human risk assessment of heavy metals in soils and food crops around Sutlej river, India. Chemosphere, 2021, 263, 128321.	8.2	67
25	Removal of Heavy Metals by a Membrane Bioreactor Combined with Activated Carbon. Analytical Letters, 2021, 54, 1616-1626.	1.8	3
26	Rapid Screening Wheat Genotypes for Tolerance to Heavy Metals. Springer Water, 2021, , 175-185.	0.3	2
27	Impact Analysis of Water, Energy, and Climatic Variables on Performance of Surface Water Treatment Plants. , 2021, , 199-219.		0
28	Metal accumulation potential, human health risks, and yield attributes of hundred bread wheat genotypes on irrigation with municipal and remediated wastewater. Environmental Science and Pollution Research, 2021, 28, 35023-35037.	5.3	5
29	Investigation of natural radionuclide and essential metal contents of ancient wheat einkorn (<i>Triticum monococcum</i> L.) grown in Turkey. Radiochimica Acta, 2020, 108, 999-1007.	1.2	4
30	Increased dryland wheat economic returns, and decreased greenhouse gas emissions by year-round straw mulching in dryland areas of China. Journal of Cleaner Production, 2021, 325, 129337.	9.3	4
31	Estimation of heavy-metal concentrations in winter wheat leaves from typical sewage irrigation area based on canopy reflectance spectra. Journal of Applied Remote Sensing, 2018, 12, 1.	1.3	2
32	Human Health Risk Assessment of Trace Elements in Tap Water and the Factors Influencing Its Value. Minerals (Basel, Switzerland), 2021, 11, 1291.	2.0	3
33	Smallâ€scale silvopasture: Addressing urban and periâ€urban livestock challenges in the United States with agroforestry practices. Urban Agriculture & Regional Food Systems, 2022, 7, .	0.9	1
34	Mercury Fractionation, Bioavailability, and the Major Factors Predicting its Transfer and Accumulation in Soilâ $\in ``Wheat Systems. SSRN Electronic Journal, 0, , .$	0.4	0
35	Human health exposure and risks of arsenic from contaminated soils and brinjal fruits collected from different producers and retailers levels. Environmental Geochemistry and Health, 2022, 44, 4665-4683.	3.4	4
36	Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. Science of the Total Environment, 2022, 826, 154161.	8.0	30

CITATION REPORT

#	Article	IF	CITATIONS
37	Mercury fractionation, bioavailability, and the major factors predicting its transfer and accumulation in soil–wheat systems. Science of the Total Environment, 2022, 847, 157432.	8.0	6
38	Incidence of Heavy Metals in the Application of Fertilizers to Crops (Wheat and Rice), a Fish (Common) Tj ETQq1	1	4.rgBT /Ove
39	Health risk implications of iron in wastewater soil-food crops grown in the vicinity of peri urban areas of the District Sargodha. PLoS ONE, 2022, 17, e0275497.	2.5	9
40	An integrated trapezoidal fuzzy <scp>FUCOMâ€TOPSIS</scp> method to determine alternatives' ranking and utilization in the water treatment plant. Environmental Progress and Sustainable Energy, 2023, 42, .	2.3	6
41	Essential Mineral Elements and Potentially Toxic Elements in Orange-Fleshed Sweet Potato Cultivated in Northern Ethiopia. Biology, 2023, 12, 266.	2.8	6
42	Sample Preparation and Analytical Techniques in the Determination of Trace Elements in Food: A Review. Foods, 2023, 12, 895.	4.3	17
43	New insights into the effects of antibiotics and copper on microbial community diversity and carbon source utilization. Environmental Geochemistry and Health, 2023, 45, 4779-4793.	3.4	2
44	An integrated trapezoidal fuzzy FUCOM with single-valued neutrosophic fuzzy MARCOS and GMDH method to determine the alternatives weight and its applications in efficiency analysis of water treatment plant. Expert Systems With Applications, 2023, 225, 120087.	7.6	5
45	Integrating trapezoidal fuzzy best–worst method and single-valued neutrosophic fuzzy MARCOS for efficiency analysis of surface water treatment plants. Soft Computing, 0, , .	3.6	0
46	Heavy metals in edible red soil of the rainbow island in the Persian gulf: Concentration and health risk assessment. Chemosphere, 2023, 331, 138778.	8.2	5
47	Risk evaluation of Dengue virus transmission in Sargodha district (Punjab, Pakistan): a cross-sectional survey of Aedes mosquito infestation in houses and containers. International Journal of Tropical Insect Science, 0, , .	1.0	0
48	Arsenic Levels and Seasonal Variation in Pasture Soil, Forage and Horse Blood Plasma in Central Punjab, Pakistan. Bulletin of Environmental Contamination and Toxicology, 2023, 111, .	2.7	0
49	Microalgae-Mediated Biosorption for Effective Heavy Metals Removal from Wastewater: A Review. Water (Switzerland), 2024, 16, 718.	2.7	0

CITATION REPORT