Photoinduced Chemistry in Fluorescent Proteins: Curse

Chemical Reviews 117, 758-795 DOI: 10.1021/acs.chemrev.6b00238

Citation Report

#	Article	IF	CITATIONS
1	Scalable and continuous nanomaterial integration with transgenic fibers for enhanced photoluminescence. Materials Horizons, 2017, 4, 281-289.	6.4	14
2	The Effect of Conjugation on the Competition between Internal Conversion and Electron Detachment: A Comparison between Green Fluorescent and Red Kaede Protein Chromophores. Journal of Physical Chemistry Letters, 2017, 8, 765-771.	2.1	17
3	Introduction: Light Harvesting. Chemical Reviews, 2017, 117, 247-248.	23.0	15
4	Mechanism of resonant electron emission from the deprotonated GFP chromophore and its biomimetics. Chemical Science, 2017, 8, 3154-3163.	3.7	38
5	Combined quantumâ€mechanical molecular mechanics calculations with NWChem and AMBER: Excited state properties of green fluorescent protein chromophore analogue in aqueous solution. Journal of Computational Chemistry, 2017, 38, 1631-1639.	1.5	3
6	Analytical Derivative Coupling for Multistate CASPT2 Theory. Journal of Chemical Theory and Computation, 2017, 13, 2561-2570.	2.3	109
7	Highâ€level <i>Ab Initio</i> Absorption Spectra Simulations of Neutral, Anionic and Neutral+ Chromophore of Green Fluorescence Protein Chromophore Models in Gas Phase and Solution. Photochemistry and Photobiology, 2017, 93, 1356-1367.	1.3	4
8	A metal–organic framework as a flask: photophysics of confined chromophores with a benzylidene imidazolinone core. Chemical Communications, 2017, 53, 7361-7364.	2.2	20
9	A Double Decarboxylation in Superfolder Green Fluorescent Protein Leads to High Contrast Photoactivation. Journal of Physical Chemistry Letters, 2017, 8, 2862-2868.	2.1	1
10	Genetically encoded fluorescent tags. Molecular Biology of the Cell, 2017, 28, 848-857.	0.9	104
11	Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores. Chemical Reviews, 2017, 117, 13502-13565.	23.0	223
12	Mutants of the Flavoprotein iLOV as Prospective Red-Shifted Fluorescent Markers. Journal of Physical Chemistry B, 2017, 121, 10018-10025.	1.2	25
13	DNA mimics of red fluorescent proteins (RFP) based on G-quadruplex-confined synthetic RFP chromophores. Nucleic Acids Research, 2017, 45, 10380-10392.	6.5	70
14	Photoswitching of Green mEos2 by Intense 561 nm Light Perturbs Efficient Green-to-Red Photoconversion in Localization Microscopy. Journal of Physical Chemistry Letters, 2017, 8, 4424-4430.	2.1	20
15	Photoelectron spectroscopy of isolated luciferin and infraluciferin anions <i>in vacuo</i> : competing photodetachment, photofragmentation and internal conversion. Physical Chemistry Chemical Physics, 2017, 19, 22711-22720.	1.3	14
16	Chromophores of chromophores: a bottom-up Hückel picture of the excited states of photoactive proteins. Physical Chemistry Chemical Physics, 2017, 19, 29772-29779.	1.3	24
17	Protein labeling for live cell fluorescence microscopy with a highly photostable renewable signal. Chemical Science, 2017, 8, 7138-7142.	3.7	62
18	Site-Specific One-to-One Click Coupling of Single Proteins to Individual Carbon Nanotubes: A Single-Molecule Approach. Journal of the American Chemical Society, 2017, 139, 17834-17840.	6.6	30

#	Article	IF	CITATIONS
19	Improving the Design of the Triple-Decker Motif in Red Fluorescent Proteins. Journal of Physical Chemistry B, 2017, 121, 10602-10609.	1.2	8
20	Molecular Modeling Clarifies the Mechanism of Chromophore Maturation in the Green Fluorescent Protein. Journal of the American Chemical Society, 2017, 139, 10239-10249.	6.6	39
21	Struggle for photostability: Bleaching mechanisms of fluorescent proteins. Russian Journal of Bioorganic Chemistry, 2017, 43, 625-633.	0.3	9
22	A Long-Lived Triplet State Is the Entrance Gateway to Oxidative Photochemistry in Green Fluorescent Proteins. Journal of the American Chemical Society, 2018, 140, 2897-2905.	6.6	32
23	Calculations of non-adiabatic couplings within equation-of-motion coupled-cluster framework: Theory, implementation, and validation against multi-reference methods. Journal of Chemical Physics, 2018, 148, 044103.	1.2	44
24	An introduction to optical super-resolution microscopy for the adventurous biologist. Methods and Applications in Fluorescence, 2018, 6, 022003.	1.1	147
25	Molecular engineering of the photo switching in the ortho chromophores of the nanostructured green fluorescence protein. Journal of Luminescence, 2018, 196, 406-424.	1.5	7
26	Photochromism into nanosystems: towards lighting up the future nanoworld. Chemical Society Reviews, 2018, 47, 1044-1097.	18.7	549
27	Fluorescent Proteins Detect Host Structural Rearrangements via Electrostatic Mechanism. Journal of the American Chemical Society, 2018, 140, 1203-1206.	6.6	12
28	Pyridinium Analogues of Green Fluorescent Protein Chromophore: Fluorogenic Dyes with Large Solvent-Dependent Stokes Shift. Journal of Physical Chemistry Letters, 2018, 9, 1958-1963.	2.1	37
29	Spectroscopy in Complex Environments from QM–MM Simulations. Chemical Reviews, 2018, 118, 4071-4113.	23.0	136
30	Greenâ€Lightâ€Activated Photoreaction via Genetic Hybridization of Farâ€Red Fluorescent Protein and Silk. Advanced Science, 2018, 5, 1700863.	5.6	15
31	Spiers Memorial Lecture : Introductory lecture: the impact of structure on photoinduced processes in nucleic acids and proteins. Faraday Discussions, 2018, 207, 9-26.	1.6	2
32	Detection of protease activity by fluorescent protein FRET sensors: from computer simulation to live cells. Methods and Applications in Fluorescence, 2018, 6, 022001.	1.1	18
33	Probing the excited state dynamics of Venus: origin of dual-emission in fluorescent proteins. Faraday Discussions, 2018, 207, 39-54.	1.6	14
34	Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science. Journal of Chemical Physics, 2018, 149, 180901.	1.2	72
35	Simulation of Spectra of Red Fluorescent Protein Mutants. Moscow University Chemistry Bulletin, 2018, 73, 212-215.	0.2	4
36	Orthopalladation of GFPâ€Like Fluorophores Through C–H Bond Activation: Scope and Photophysical Properties. European Journal of Organic Chemistry, 2018, 2018, 6158-6166.	1.2	11

#	Article	IF	CITATIONS
37	Rational designing of 8â€hydroxyquinolinâ€imidazolinoneâ€based fluorescent protein mutants with dramatically red shifted emission: A computational study. Journal of Computational Chemistry, 2018, 39, 2307-2315.	1.5	2
38	Observation of Near-Threshold Resonances in the Flavin Chromophore Anions Alloxazine and Lumichrome. Journal of Physical Chemistry Letters, 2018, 9, 6124-6130.	2.1	23
39	Insight into GFPmut2 pH Dependence by Single Crystal Microspectrophotometry and X-ray Crystallography. Journal of Physical Chemistry B, 2018, 122, 11326-11337.	1.2	3
40	Modeling structure and excitation of biliverdin-binding domains in infrared fluorescent proteins. Chemical Physics Letters, 2018, 710, 59-63.	1.2	14
41	Role of Photoisomerization on the Photodetachment of the Photoactive Yellow Protein Chromophore. Journal of Physical Chemistry A, 2018, 122, 8222-8228.	1.1	13
42	Fluorogenic Proteinâ€Based Strategies for Detection, Actuation, and Sensing. BioEssays, 2018, 40, e1800118.	1.2	12
43	Systematic Excited State Studies of Reversibly Switchable Fluorescent Proteins. Journal of Chemical Theory and Computation, 2018, 14, 3163-3172.	2.3	10
44	The Switching from <i>Cis</i> -to- <i>trans</i> One-way Photoisomerization to Mutual Photoisomerization of a Stilbene–Urea Compound Triggered by Proton Transfer Reaction. Chemistry Letters, 2018, 47, 536-539.	0.7	0
45	A photoelectron imaging and quantum chemistry study of the deprotonated indole anion. Physical Chemistry Chemical Physics, 2018, 20, 15543-15549.	1.3	8
46	A Facile Approach towards Fluorescent Nanogels with AIE-Active Spacers. Polymers, 2018, 10, 722.	2.0	6
47	Multireference Approaches for Excited States of Molecules. Chemical Reviews, 2018, 118, 7293-7361.	23.0	287
48	A proton transfer network that generates deprotonated tyrosine is a key to producing reactive oxygen species in phototoxic KillerRed protein. Physical Chemistry Chemical Physics, 2018, 20, 22342-22350.	1.3	9
49	Incorporating spin–orbit effects into surface hopping dynamics using the diagonal representation: a linear-response time-dependent density functional theory implementation with applications to 2-thiouracil. Physical Chemistry Chemical Physics, 2018, 20, 15445-15454.	1.3	9
50	Ultrafasttrans-cisphotoisomerization of the neutral chromophore in green fluorescent proteins: Surface-hopping dynamics simulation. Journal of Chemical Physics, 2018, 149, 074304.	1.2	4
51	Role of Gln222 in Photoswitching of <i>Aequorea</i> Fluorescent Proteins: A Twisting and H-Bonding Affair?. ACS Chemical Biology, 2018, 13, 2082-2093.	1.6	14
52	Positive functional synergy of structurally integrated artificial protein dimers assembled by Click chemistry. Communications Chemistry, 2019, 2, .	2.0	16
53	Mechanistic investigation of mEos4b reveals a strategy to reduce track interruptions in sptPALM. Nature Methods, 2019, 16, 707-710.	9.0	43
54	Modeling of the glycine tripeptide cyclization in the Ser65Gly/Tyr66Gly mutant of green fluorescent protein. Mendeleev Communications, 2019, 29, 187-189.	0.6	8

#	Article	IF	CITATIONS
55	Influence of the First Chromophore-Forming Residue on Photobleaching and Oxidative Photoconversion of EGFP and EYFP. International Journal of Molecular Sciences, 2019, 20, 5229.	1.8	18
56	Computational Modeling Reveals the Mechanism of Fluorescent State Recovery in the Reversibly Photoswitchable Protein Dreiklang. Journal of Physical Chemistry B, 2019, 123, 8901-8909.	1.2	11
57	Anion photoelectron spectroscopy of protein chromophores. International Reviews in Physical Chemistry, 2019, 38, 1-34.	0.9	29
58	Far Red Fluorescent Proteins: Where Is the Limit of the Acylimine Chromophore?. Journal of Chemical Theory and Computation, 2019, 15, 4228-4240.	2.3	12
59	Artificial Electron-transport Chains Based on Green Fluorescent Protein. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2019, 126, 102-105.	0.2	1
60	Chemistry of Photosensitive Fluorophores for Single-Molecule Localization Microscopy. ACS Chemical Biology, 2019, 14, 1077-1090.	1.6	83
61	Computational Challenges in Modeling of Representative Bioimaging Proteins: GFP-Like Proteins, Flavoproteins, and Phytochromes. Journal of Physical Chemistry B, 2019, 123, 6133-6149.	1.2	38
62	Fluorescent Probes for Nanoscopic Imaging of Mitochondria. CheM, 2019, 5, 1697-1726.	5.8	104
63	Site-Selective Isomerization of Cyano-Substituted Butadienes: Chemical Control of Nonadiabatic Dynamics. Journal of Physical Chemistry A, 2019, 123, 4693-4701.	1.1	9
64	A photoelectron imaging and quantum chemistry study of the deprotonated cyan fluorescent protein chromophore anion. Molecular Physics, 2019, 117, 3027-3035.	0.8	3
65	Electrostatic Spectral Tuning Maps for Biological Chromophores. Journal of Physical Chemistry B, 2019, 123, 4813-4824.	1.2	23
66	Tailoring the photoluminescence of atomically precise nanoclusters. Chemical Society Reviews, 2019, 48, 2422-2457.	18.7	655
67	A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods and Applications in Fluorescence, 2019, 7, 022002.	1.1	57
68	Photoelectron Imaging and Quantum Chemistry Study of Phenolate, Difluorophenolate, and Dimethoxyphenolate Anions. Journal of Physical Chemistry A, 2019, 123, 2709-2718.	1.1	8
69	Rational design of genetically encoded singlet oxygen photosensitizing proteins. Current Opinion in Structural Biology, 2019, 57, 56-62.	2.6	34
70	Origin of the π-stacking induced shifts in absorption spectral bands of the green fluorescent protein chromophore. Chemical Physics, 2019, 522, 32-38.	0.9	15
71	Excited State Electronic Interconversion and Structural Transformation of Engineered Red-Emitting Green Fluorescent Protein Mutant. Journal of Physical Chemistry B, 2019, 123, 2316-2324.	1.2	13
72	Split Green Fluorescent Proteins: Scope, Limitations, and Outlook. Annual Review of Biophysics, 2019, 48, 19-44.	4.5	131

#	Article	IF	CITATIONS
73	Fluorescent Protein-Based Indicators for Functional Super-Resolution Imaging of Biomolecular Activities in Living Cells. International Journal of Molecular Sciences, 2019, 20, 5784.	1.8	23
74	Unveiling coupled electronic and vibrational motions of chromophores in condensed phases. Journal of Chemical Physics, 2019, 151, 200901.	1.2	40
75	Early Photocycle of Slr1694 Blue-Light Using Flavin Photoreceptor Unraveled through Adiabatic Excited-State Quantum Mechanical/Molecular Mechanical Dynamics. Journal of the American Chemical Society, 2019, 141, 20470-20479.	6.6	33
76	Lifetime-based photoconversion of EGFP as a tool for FLIM. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 266-277.	1.1	9
77	Side chain torsion dictates planarity and ionizability of green fluorescent protein's chromophore leading to spectral perturbations. Journal of Biomolecular Structure and Dynamics, 2019, 37, 4450-4459.	2.0	2
78	Assessment of Functionals for TDDFT Calculations of One- and Two-Photon Absorption Properties of Neutral and Anionic Fluorescent Proteins Chromophores. Journal of Chemical Theory and Computation, 2019, 15, 490-508.	2.3	27
79	Bioinspired non-aromatic compounds emitters displaying aggregation independent emission and recoverable photo-bleaching. Talanta, 2020, 206, 120232.	2.9	13
80	UV Photoinduced Dynamics of Conformer-Resolved Aromatic Peptides. Chemical Reviews, 2020, 120, 3296-3327.	23.0	44
81	An experimental and computational study of the effect of aqueous solution on the multiphoton ionisation photoelectron spectrum of phenol. Faraday Discussions, 2019, 221, 202-218.	1.6	7
82	Dual Illumination Enhances Transformation of an Engineered Greenâ€ŧoâ€Red Photoconvertible Fluorescent Protein. Angewandte Chemie, 2020, 132, 1661-1669.	1.6	2
83	Dual Illumination Enhances Transformation of an Engineered Greenâ€ŧoâ€Red Photoconvertible Fluorescent Protein. Angewandte Chemie - International Edition, 2020, 59, 1644-1652.	7.2	21
84	Electrostatic control of photoisomerization pathways in proteins. Science, 2020, 367, 76-79.	6.0	78
85	Electrostatics affect the glow. Science, 2020, 367, 26-26.	6.0	0
86	Direct Observation of the Protonation States in the Mutant Green Fluorescent Protein. Journal of Physical Chemistry Letters, 2020, 11, 492-496.	2.1	9
87	Site-Specific Protein Photochemical Covalent Attachment to Carbon Nanotube Side Walls and Its Electronic Impact on Single Molecule Function. Bioconjugate Chemistry, 2020, 31, 584-594.	1.8	16
88	A Bioresponsive Nearâ€Infrared Fluorescent Probe for Facile and Persistent Live ell Tracking. Small, 2020, 16, e2002211.	5.2	18
89	Dipole Moment Variation Clears Up Electronic Excitations in the π-Stacked Complexes of Fluorescent Protein Chromophores. Journal of Chemical Information and Modeling, 2020, 60, 6288-6297.	2.5	5
90	A Not Obvious Correlation Between the Structure of Green Fluorescent Protein Chromophore Pocket and Hydrogen Bond Dynamics: A Choreography From ab initio Molecular Dynamics. Frontiers in Molecular Biosciences, 2020, 7, 569990.	1.6	23

		CITATION REPORT		
#	Article		IF	CITATIONS
91	Organic Dyes and Visible Fluorescent Proteins as Fluorescence Reporters. , 2020, , 167	7-236.		0
92	Imaging Intracellular <i>S</i> -Adenosyl Methionine Dynamics in Live Mammalian Cells Genetically Encoded Red Fluorescent RNA-Based Sensor. Journal of the American Chen 2020, 142, 14117-14124.	with a nical Society,	6.6	51
93	A General Mechanism of Green-to-Red Photoconversions of GFP. Frontiers in Molecula 2020, 7, 176.	r Biosciences,	1.6	10
94	Structure-Based Rational Design of Two Enhanced Bacterial Lipocalin <i>Blc</i> Tags f Protein-PAINT Super-resolution Microscopy. ACS Chemical Biology, 2020, 15, 2456-24	or 65.	1.6	9
95	Combined Quantum-Classical Simulation of Photoinduced Electronic Density Redistrib Biopolymer Segments to Photochromic Probes. Russian Physics Journal, 2020, 63, 138	oution from 36-1394.	0.2	0
96	Photoelectric Silk via Genetic Encoding and Bioassisted Plasmonics. Advanced Biology e2000040.	, 2020, 4,	3.0	6
97	Mechanistic Investigations of Green mEos4b Reveal a Dynamic Long-Lived Dark State. American Chemical Society, 2020, 142, 10978-10988.	Journal of the	6.6	29
98	Fragment Quantum Mechanical Method for Excited States of Proteins: Development a to the Green Fluorescent Protein. Journal of Chemical Theory and Computation, 2020,	nd Application 16, 5174-5188.	2.3	26
99	Photoconvertible diazaxanthilidene dyes for live cell imaging. Methods in Enzymology, 379-388.	, 2020, 639,	0.4	2
100	Devising Efficient Redâ€Shifting Strategies for Bioimaging: A Generalizable Donorâ€Ao Prototype. Chemistry - an Asian Journal, 2020, 15, 1514-1523.	cceptor Fluorophore	1.7	36
101	Structural and spectroscopic characterization of photoactive yellow protein and photo fluorescent protein constructs containing heavy atoms. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112738.	oswitchable 1	2.0	2
102	Two-Dimensional Impulsively Stimulated Resonant Raman Spectroscopy of Molecular Physical Review X, 2020, 10, .	Excited States.	2.8	15
103	Photoisomerization of DiD: Molecular Dynamics Calculations Reveal the Influence of T Journal of Physical Chemistry C, 2020, 124, 5829-5837.	ail Lengths.	1.5	1
104	Mapping Structural Dynamics of Proteins with Femtosecond Stimulated Raman Spect Review of Physical Chemistry, 2020, 71, 239-265.	roscopy. Annual	4.8	37
105	Ultrafast excited state intramolecular proton transfer (ESIPT) mechanism for 2,6-bis(benzothiazolyl-2-yl)phenol: A theoretical investigation. Chemical Physics Letter 137226.	rs, 2020, 744,	1.2	14
106	Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and ima Trends in Analytical Chemistry, 2020, 125, 115811.	ging. TrAC -	5.8	33
107	Bayesian counting of photobleaching steps with physical priors. Journal of Chemical Pl 152, 024110.	ıysics, 2020,	1.2	11
108	Stalling chromophore synthesis of the fluorescent protein Venus reveals the molecular final oxidation step. Chemical Science, 2021, 12, 7735-7745.	r basis of the	3.7	8

#	Article	IF	CITATIONS
109	Spin-Flip Density Functional Theory for the Redox Properties of Organic Photoredox Catalysts in Excited States. Journal of Chemical Theory and Computation, 2021, 17, 767-776.	2.3	6
110	Fluorescent proteins of the EosFP clade: intriguing marker tools with multiple photoactivation modes for advanced microscopy. RSC Chemical Biology, 2021, 2, 796-814.	2.0	13
111	Interplay between Locally Excited and Charge Transfer States Governs the Photoswitching Mechanism in the Fluorescent Protein Dreiklang. Journal of Physical Chemistry B, 2021, 125, 757-770.	1.2	13
112	A photoelectron imaging study of the deprotonated GFP chromophore anion and RNA fluorescent tags. Physical Chemistry Chemical Physics, 2021, 23, 19911-19922.	1.3	3
113	Fluorescent Orthopalladated Complexes of 4-Aryliden-5(4H)-oxazolones from the Kaede Protein: Synthesis and Characterization. Molecules, 2021, 26, 1238.	1.7	6
114	Frontiers in Multiscale Modeling of Photoreceptor Proteins. Photochemistry and Photobiology, 2021, 97, 243-269.	1.3	26
115	Photo-transformable genetically-encoded optical probes for functional highlighting in vivo. Journal of Neuroscience Methods, 2021, 355, 109129.	1.3	4
116	Stable Transfection of the Singlet Oxygen Photosensitizing Protein SOPP3: Examining Aspects of Intracellular Behavior ^{â€} . Photochemistry and Photobiology, 2021, 97, 1417-1430.	1.3	8
117	Control of Triplet Blinking Using Cyclooctatetraene to Access the Dynamics of Biomolecules at the Singleâ€Molecule Level. Angewandte Chemie, 2021, 133, 13051-13058.	1.6	3
118	Control of Triplet Blinking Using Cyclooctatetraene to Access the Dynamics of Biomolecules at the Singleâ€Molecule Level. Angewandte Chemie - International Edition, 2021, 60, 12941-12948.	7.2	11
119	Developing Bright Green Fluorescent Protein (GFP)â€like Fluorogens for Liveâ€Cell Imaging with Nonpolar Proteinâ^'Chromophore Interactions. Chemistry - A European Journal, 2021, 27, 8946-8950.	1.7	16
120	Light-Regulated Natural Fluorescence of the PCC 6803@ZIF-8 Composite as an Encoded Microsphere for the Detection of Multiple Biomarkers. ACS Sensors, 2021, 6, 2574-2583.	4.0	5
121	Quantum mechanical/molecular mechanical studies of photophysical properties of fluorescent proteins. Wiley Interdisciplinary Reviews: Computational Molecular Science, 0, , e1557.	6.2	1
122	Chromophore reduction plus reversible photobleaching: how the mKate2 "photoconversion―works. Photochemical and Photobiological Sciences, 2021, 20, 791-803.	1.6	6
123	Synthesis of pH Dependent Pyrazole, Imidazole, and Isoindolone Dipyrrinone Fluorophores using a Claisen-Schmidt Condensation Approach. Journal of Visualized Experiments, 2021, , .	0.2	0
124	Fluorescenceâ€Detected Pump–Probe Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 18867-18875.	7.2	16
125	Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chemical Reviews, 2021, 121, 9243-9358.	23.0	162
126	Three Simultaneous Fluorescence Resonance Energy Transfer Processes and Structural Relaxation of Enhanced Yellow Fluorescent Protein Observed by Picosecond Time-Resolved Fluorescence Anisotropy, Journal of Physical Chemistry B, 2021, 125, 7997-8009	1.2	1

		CITATION REPORT		
#	Article		IF	CITATIONS
127	Fluoreszenzâ€detektierte Pumpâ€Probeâ€Spektroskopie. Angewandte Chemie, 2021, 13	33, 19015-19024.	1.6	0
128	X-ray transient absorption reveals the 1Au (nÏ \in *) state of pyrazine in electronic relaxatior Communications, 2021, 12, 5003.	n. Nature	5.8	29
129	Excited-State Proton Transfer Dynamics in LSSmOrange Studied by Time-Resolved Impuls Raman Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 7466-7473.	ive Stimulated	2.1	6
130	Confinement fluorescence effect (CFE): Lighting up life by enhancing the absorbed photo utilization efficiency of fluorophores. Coordination Chemistry Reviews, 2021, 440, 21397	on energy 79.	9.5	18
131	Tuning Protein Dynamics to Sense Rapid Endoplasmicâ€Reticulum Calcium Dynamics. An - International Edition, 2021, 60, 23289-23298.	igewandte Chemie	7.2	10
132	Tuning Protein Dynamics to Sense Rapid Endoplasmicâ€Reticulum Calcium Dynamics. An 2021, 133, 23477.	gewandte Chemie,	1.6	2
133	High-resolution imaging of catalytic activity of a single graphene sheet using electrochemiluminescence microscopy. Chemical Science, 2021, 12, 4794-4799.		3.7	35
134	Green Fluorescent Protein GFP-Chromophore-Based Probe for the Detection of Mitochon Viscosity in Living Cells. ACS Applied Bio Materials, 2021, 4, 2128-2134.	drial	2.3	24
135	Long-living and highly efficient bio-hybrid light-emitting diodes with zero-thermal-quench biophosphors. Nature Communications, 2020, 11, 879.	ing	5.8	24
136	A mutant of the phototoxic protein KillerRed that does not form DsRed-like chromophore Russian State Medical University, 2019, , 45-48.	2. Bulletin of	0.3	1
137	Modeling Spectral Tuning in Red Fluorescent Proteins Using the Dipole Moment Variation Excitation. Journal of Chemical Information and Modeling, 2021, 61, 5125-5132.	ו upon	2.5	2
141	Introduction: Fluorescent Materials for Cell Imaging. , 2020, , 1-15.			2
143	Embracing the uncertainty: the evolution of SOFI into a diverse family of fluctuation-base super-resolution microscopy methods. JPhys Photonics, 2022, 4, 012002.	.d	2.2	7
144	Liquid-microjet photoelectron spectroscopy of the green fluorescent protein chromopho Communications, 2022, 13, 507.	re. Nature	5.8	10
145	Internal conversion of the anionic GFP chromophore: in and out of the I-twisted S ₁ /S ₀ conical intersection seam. Chemical Science, 2022, 13, 3	373-385.	3.7	23
146	Photophysical Engineering of Fluorescent Proteins: Accomplishments and Challenges of I Chemistry Strategies. Journal of Physical Chemistry B, 2022, 126, 735-750.	Physical	1.2	14
147	Super-Resolution Radial Fluctuations (SRRF) Microscopy. Methods in Molecular Biology, 2 225-251.	2022, 2440,	0.4	0
148	Energetic Basis and Design of Enzyme Function Demonstrated Using GFP, an Excited-Sta Journal of the American Chemical Society, 2022, 144, 3968-3978.	te Enzyme.	6.6	9

#	Δρτιςι ε	IF	CITATIONS
" 150	Triple proton transfer after water rearrangement in (2,6-aza)Ind·(H2O)2. Journal of Molecular Liquids, 2022, 353, 118847.	2.3	2
151	Photoinduced bleaching in an efficient singlet oxygen photosensitizing protein: Identifying a culprit in the flavin-binding LOV-based protein SOPP3. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 429, 113894.	2.0	5
152	Differential Bioâ€Optoelectronic Gating of Semiconducting Carbon Nanotubes by Varying the Covalent Attachment Residue of a Green Fluorescent Protein. Advanced Functional Materials, 2022, 32, .	7.8	7
154	TDDFT Investigation of the Raman and Resonant Raman Spectra of Fluorescent Protein Chromophore Models. Journal of Physical Chemistry B, 2022, 126, 3414-3424.	1.2	4
155	AIE mechanism of 2-(2-hydroxyphenyl) benzothiazole derivatives: CASPT2 and spin-flip study. Dyes and Pigments, 2022, 204, 110396.	2.0	2
156	Micelle triggered emission from non-conjugated amines: An abiotic system akin to GFP. Journal of Luminescence, 2022, 248, 118931.	1.5	1
158	Protein Mobility Measurements through Oxidative Green-to-Red Photoconversion of EGFP. Journal of Physical Chemistry B, 0, , .	1.2	0
159	Photoswitchable Fluorescent Proteins: Mechanisms on Ultrafast Timescales. International Journal of Molecular Sciences, 2022, 23, 6459.	1.8	11
160	Directed Evolution of a Bright Variant of mCherry: Suppression of Nonradiative Decay by Fluorescence Lifetime Selections. Journal of Physical Chemistry B, 2022, 126, 4659-4668.	1.2	19
161	Action-Absorption Spectroscopy at the Band Origin of the Deprotonated Green Fluorescent Protein Chromophore In Vacuo. Journal of Physical Chemistry Letters, 0, , 6683-6685.	2.1	3
162	Applications of fluorescent biosensors based on quantum dots. , 0, 3, 93-100.		0
163	An endoplasmic reticulum targeting green fluorescent protein chromophore-based probe for the detection of viscosity. Chemical Communications, 2022, 58, 10727-10730.	2.2	16
164	Non-Aromatic Fluorescence in Biological Matter: The Exception or the Rule?. Journal of Physical Chemistry B, 2022, 126, 7203-7211.	1.2	10
165	Observation of Cation Chromophore Photoisomerization of a Fluorescent Protein Using Millisecond Synchrotron Serial Crystallography and Infrared Vibrational and Visible Spectroscopy. Journal of Physical Chemistry B, 2022, 126, 9288-9296.	1.2	4
166	To twist or not to twist: From chromophore structure to dynamics inside engineered photoconvertible and photoswitchable fluorescent proteins. Protein Science, 2023, 32, .	3.1	5
167	Good Vibrations: Calculating Excited-State Frequencies Using Ground-State Self-Consistent Field Models. Journal of Chemical Theory and Computation, 2022, 18, 7286-7297.	2.3	1
168	Recent advances in quantum fragmentation approaches to complex molecular and condensedâ€phase systems. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	10
169	Precisely Confined AlEgens in Giant Imidazolium–Terpyridinyl Cuboctahedra with Enhanced Fluorescence for Single Supramolecule. Advanced Optical Materials, 2023, 11, .	3.6	1

#	Article	IF	CITATIONS
171	Interexcited State Photophysics I: Benchmarking Density Functionals for Computing Nonadiabatic Couplings and Internal Conversion Rate Constants. Journal of Chemical Theory and Computation, 2023, 19, 271-292.	2.3	5
172	Modeling Light-Induced Chromophore Hydration in the Reversibly Photoswitchable Fluorescent Protein Dreiklang. Molecules, 2023, 28, 505.	1.7	2
173	Conformational Dynamics of mCherry Variants: A Link between Side-Chain Motions and Fluorescence Brightness. Journal of Physical Chemistry B, 2023, 127, 52-61.	1.2	1
174	Photoacid Dynamics in the Green Fluorescent Protein. Annual Review of Physical Chemistry, 2023, 74, 123-144.	4.8	5
175	Alternative Strategy for Spectral Tuning of Flavin-Binding Fluorescent Proteins. Journal of Physical Chemistry B, 2023, 127, 1301-1311.	1.2	4
176	Multiple Photoisomerization Pathways of the Green Fluorescent Protein Chromophore in a Reversibly Photoswitchable Fluorescent Protein: Insights from Quantum Mechanics/Molecular Mechanics Simulations. Journal of Physical Chemistry Letters, 2023, 14, 2588-2598.	2.1	1
177	It's a twoâ€way street: Photoswitching and reversible changes of the protein matrix in photoswitchable fluorescent proteins and bacteriophytochromes. FEBS Letters, 2023, 597, 1319-1344.	1.3	0
178	Characterization of mApple as a Red Fluorescent Protein for Cryogenic Single-Molecule Imaging with Turn-Off and Turn-On Active Control Mechanisms. Journal of Physical Chemistry B, 2023, 127, 2690-2700.	1.2	6
188	Near-infrared co-illumination of fluorescent proteins reduces photobleaching and phototoxicity. Nature Biotechnology, 0, , .	9.4	3