Semiconductor Metal–Organic Frameworks: Future I

Advanced Materials 29, 1605071 DOI: 10.1002/adma.201605071

Citation Report

#	Article	IF	CITATIONS
1	An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chemical Society Reviews, 2017, 46, 3185-3241.	18.7	987
2	Syntheses, Structures, and Photophysical Properties of Two Coordination Polymers Based on 2,3â€Dioxoâ€1,2,3,4â€tetrahydroquinoxalineâ€6â€carboxylic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 531-535.	0.6	0
3	Missing Linkers: An Alternative Pathway to UiO-66 Electronic Structure Engineering. Chemistry of Materials, 2017, 29, 3006-3019.	3.2	176
4	Bimetal–organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage. Journal of Materials Chemistry A, 2017, 5, 23744-23752.	5.2	119
5	Synthesis of α-acyloxy ethers via direct esterification of carboxylic acids with ethers under metal-organic framework catalysis. Tetrahedron, 2017, 73, 5883-5891.	1.0	11
6	Accelerating Palladium Nanowire H ₂ Sensors Using Engineered Nanofiltration. ACS Nano, 2017, 11, 9276-9285.	7.3	190
7	Syntheses of Exceptionally Stable Aluminum(III) Metal–Organic Frameworks: How to Grow Highâ€Quality, Large, Single Crystals. Chemistry - A European Journal, 2017, 23, 15518-15528.	1.7	60
8	A highly sensitive turn-on ratiometric luminescent probe based on postsynthetic modification of Tb ³⁺ @Cu-MOF for H ₂ S detection. Journal of Materials Chemistry C, 2017, 5, 9943-9951.	2.7	77
9	Lowering Band Gap of an Electroactive Metal–Organic Framework via Complementary Guest Intercalation. ACS Applied Materials & Interfaces, 2017, 9, 32413-32417.	4.0	75
10	Electronic structure design for nanoporous, electrically conductive zeolitic imidazolate frameworks. Journal of Materials Chemistry C, 2017, 5, 7726-7731.	2.7	40
11	Direct Formation of Sub-Micron and Nanoparticles of a Bioinspired Coordination Polymer Based on Copper with Adenine. Polymers, 2017, 9, 565.	2.0	9
12	Understanding and Controlling the Dielectric Response of Metal–Organic Frameworks. ChemPlusChem, 2018, 83, 308-316.	1.3	36
13	Fast and efficient direct formation of size-controlled nanostructures of coordination polymers based on copper(<scp>i</scp>)–iodine bearing functional pyridine terminal ligands. Dalton Transactions, 2018, 47, 5607-5613.	1.6	8
14	A Novel Nanocomposite with Superior Antibacterial Activity: A Silverâ€Based Metal Organic Framework Embellished with Graphene Oxide. Advanced Materials Interfaces, 2018, 5, 1701365.	1.9	107
15	Synthesis, crystal structures and photocatalytic properties of four silver(I) coordination polymers based on nitroterephthalic acid. Polyhedron, 2018, 148, 161-170.	1.0	6
16	Expanding the dimensions of metal–organic framework research towards dielectrics. Coordination Chemistry Reviews, 2018, 360, 77-91.	9.5	48
17	Bottomâ€Up Fabrication of Semiconductive Metal–Organic Framework Ultrathin Films. Advanced Materials, 2018, 30, 1704291.	11.1	162
18	New OLEDs Based on Zirconium Metalâ€Organic Framework. Advanced Optical Materials, 2018, 6, 1701060.	3.6	42

#	Article	IF	CITATIONS
19	Surface-tension-confined assembly of a metal–organic framework in femtoliter droplet arrays. RSC Advances, 2018, 8, 3680-3686.	1.7	4
20	A general microwave synthesis of metal (Ni, Cu, Zn) selenide nanoparticles and their competitive interaction with human serum albumin. New Journal of Chemistry, 2018, 42, 5759-5766.	1.4	28
21	Deformation behavior of an amorphous zeolitic imidazolate framework – from a supersoft material to a complex organometallic alloy. Physical Chemistry Chemical Physics, 2018, 20, 29001-29011.	1.3	21
22	Thiophene insertion for continuous modulation of the photoelectronic properties of triphenylamine-based metal–organic frameworks for photocatalytic sulfonylation–cyclisation of activated alkenes. New Journal of Chemistry, 2018, 42, 18448-18457.	1.4	13
23	Synthesis and enhanced visible light-induced photocatalytic activity of a hierarchical porous biomorphic N/Zn–TiO2@NH2-MIL-125 photocatalyst. Journal of Materials Science: Materials in Electronics, 2018, 29, 20356-20366.	1.1	4
24	Efficient heterogeneous catalysis by dual ligand Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) MOFs for the Knoevenagel condensation reaction: adaptable synthetic routes, characterization, crystal structures and luminescence studies. Inorganic Chemistry Frontiers, 2018, 5, 2630-2640.	3.0	59
25	High- <i>k</i> Gate Dielectrics for Emerging Flexible and Stretchable Electronics. Chemical Reviews, 2018, 118, 5690-5754.	23.0	530
26	The role of redox hopping in metal–organic framework electrocatalysis. Chemical Communications, 2018, 54, 6965-6974.	2.2	127
27	Zr-MOFs based on Keggin-type polyoxometalates for photocatalytic hydrogen production. Journal of Materials Science, 2018, 53, 12016-12029.	1.7	72
28	Two anthracene-based metal–organic frameworks for highly effective photodegradation and luminescent detection in water. Journal of Materials Chemistry A, 2018, 6, 17177-17185.	5.2	95
29	Three copper(II) complexes constructed from 4-(2-pyridyl)-1H-1,2,3-triazole ligands: syntheses, structures, optical, and electrochemical properties. Transition Metal Chemistry, 2018, 43, 731-737.	0.7	5
30	Design of Single‣ite Photocatalysts by Using Metal–Organic Frameworks as a Matrix. Chemistry - an Asian Journal, 2018, 13, 1767-1779.	1.7	49
31	Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nature Communications, 2018, 9, 3405.	5.8	442
32	The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of Metal–organic frameworks. Polyhedron, 2018, 155, 232-253.	1.0	34
33	A Co(<scp>ii</scp>) framework derived from a tris(4-(triazol-1-yl)phenyl)amine redox-active linker: an electrochemical and magnetic study. Dalton Transactions, 2018, 47, 9341-9346.	1.6	10
34	Adsorption cooling system employing novel MIL-101(Cr)/CaCl2 composites: Numerical study. International Journal of Refrigeration, 2019, 107, 246-261.	1.8	29
35	A sulfur coordination polymer with wide bandgap semiconductivity formed from zinc(II) and 5-methylsulfanyl-1,3,4-thiadiazole-2-thione. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1243-1249.	0.2	2
36	Metal–Organic Frameworks in Modern Physics: Highlights and Perspectives. Advanced Science, 2019, 6, 1900506.	5.6	71

#	Article	IF	CITATIONS
37	A Highly Conductive MOF of Graphene Analogue Ni ₃ (HITP) ₂ as a Sulfur Host for Highâ€Performance Lithium–Sulfur Batteries. Small, 2019, 15, e1902605.	5.2	136
38	A novel biosensor for early diagnosis of liver cancer cases using smart nanoâ€magnetic metal–organic framework. Applied Organometallic Chemistry, 2019, 33, e5249.	1.7	24
39	Nanostructured and oriented metal–organic framework films enabling extreme surface wetting properties. Beilstein Journal of Nanotechnology, 2019, 10, 1994-2003.	1.5	12
40	Achieving current rectification ratios ≥ 10 ⁵ across thin films of coordination polymer. Chemical Science, 2019, 10, 10040-10047.	3.7	12
41	Novel semiconducting iron–quinizarin metal–organic framework for application in supercapacitors. Molecular Physics, 2019, 117, 3424-3433.	0.8	4
42	Photoactive Ag(I)-Based Coordination Polymer as a Potential Semiconductor for Photocatalytic Water Splitting and Environmental Remediation: Experimental and Theoretical Approach. Journal of Physical Chemistry C, 2019, 123, 23940-23950.	1.5	12
43	A highly crystalline anthracene-based MOF-74 series featuring electrical conductivity and luminescence. Nanoscale, 2019, 11, 20949-20955.	2.8	53
44	Sodium-coupled electron transfer reactivity of metal–organic frameworks containing titanium clusters: the importance of cations in redox chemistry. Chemical Science, 2019, 10, 1322-1331.	3.7	20
45	Syntheses, structures and properties of a new Cu(II) coordination polymer based on 4,4′-(hexafluoroisopropylidene)bis(benzoic acid) ligand. Journal of Molecular Structure, 2019, 1183, 292-297.	1.8	7
46	Supramolecular aggregation of a redox-active copper-naphthalenediimide network with intrinsic electron conduction. Chemical Communications, 2019, 55, 1643-1646.	2.2	40
47	Phenyl-grafted carbon nitride semiconductor for photocatalytic CO ₂ -reduction and rapid degradation of organic dyes. Catalysis Science and Technology, 2019, 9, 822-832.	2.1	39
48	Improving photoelectrochemical response of ZnO nanowire arrays by coating with p-type ZnO-resembling metal–organic framework. Dalton Transactions, 2019, 48, 9310-9316.	1.6	10
49	Spectroelectrochemical studies of the redox active tris[4-(triazol-1-yl)phenyl]amine linker and redox state manipulation of Mn(<scp>ii</scp>)/Cu(<scp>ii</scp>) coordination frameworks. Dalton Transactions, 2019, 48, 10122-10128.	1.6	9
50	Selfâ€assembly: An intriguing relationship between structures of metal complexes and shapes of ancient Chinese characters. Journal of the Chinese Chemical Society, 2019, 66, 1027-1030.	0.8	0
51	Solar-driven advanced oxidation process catalyzed by metal–organic frameworks for water depollution. Polyhedron, 2019, 170, 325-333.	1.0	24
52	Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. Journal of Materials Chemistry A, 2019, 7, 17079-17095.	5.2	253
53	Degradation of hazardous organic dyes with solarâ€driven advanced oxidation process catalyzed by the mixed metal–organic frameworks. Applied Organometallic Chemistry, 2019, 33, e4928.	1.7	12
54	Semiconductor polymeric graphitic carbon nitride photocatalysts: the "holy grail―for the photocatalytic hydrogen evolution reaction under visible light. Energy and Environmental Science, 2019, 12, 2080-2147.	15.6	803

#	Article	IF	CITATIONS
55	Redox Activities of Metal–Organic Frameworks Incorporating Rare-Earth Metal Chains and Tetrathiafulvalene Linkers. Inorganic Chemistry, 2019, 58, 3698-3706.	1.9	66
56	Fluorescent Dye-Based Metal–Organic Framework Piezochromic and Multicolor-Emitting Two-Dimensional Materials for Light-Emitting Devices. ACS Applied Nano Materials, 2019, 2, 1614-1620.	2.4	20
57	Long-range ferromagnetism in nickel-based hybrid structure with semiconductor behavior. Chemical Communications, 2019, 55, 5211-5214.	2.2	4
58	Integration of a (–Cu–S–)n plane in a metal–organic framework affords high electrical conductivity. Nature Communications, 2019, 10, 1721.	5.8	134
59	Anchoring Co ^{II} lons into a Thiolâ€Laced Metal–Organic Framework for Efficient Visibleâ€Lightâ€Driven Conversion of CO ₂ into CO. ChemSusChem, 2019, 12, 2166-2170.	3.6	58
60	2D coordination polymers: Design guidelines and materials perspective. Applied Physics Reviews, 2019, 6, 041311.	5.5	39
61	Metal carbonyl cluster-based coordination polymers: diverse syntheses, versatile network structures, and special properties. CrystEngComm, 2019, 21, 7341-7364.	1.3	20
62	Metal-organic framework thin films from copper hydroxide nano-assemblies. Journal of Sol-Gel Science and Technology, 2019, 89, 128-134.	1.1	7
63	Metal–Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability. Journal of the American Chemical Society, 2019, 141, 870-878.	6.6	204
64	Twoâ€dimensional Ï€â€conjugated metalâ€organic framework with high electrical conductivity for electrochemical sensing. Journal of the Chinese Chemical Society, 2019, 66, 522-528.	0.8	27
65	Single-Molecule-Based Electroluminescent Device as Future White Light Source. ACS Applied Materials & Interfaces, 2019, 11, 4084-4092.	4.0	10
66	Modulating photoelectronic performance of metal–organic frameworks for premium photocatalysis. Coordination Chemistry Reviews, 2019, 380, 201-229.	9.5	112
67	Simulation and design of energy materials accelerated by machine learning. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1421.	6.2	41
68	Mixed-ligand strategy affording two 6-connected 3-fold interpenetrated metal-organic frameworks with binuclear Coll2/Nill2 subunits: Synthesis, crystal structures and magnetic properties. Inorganic Chemistry Communication, 2020, 111, 107624.	1.8	8
69	Metal–organic frameworks: preparation and applications in highly efficient heterogeneous photocatalysis. Sustainable Energy and Fuels, 2020, 4, 504-521.	2.5	71
70	A review of functional sorbents for adsorptive removal of arsenic ions in aqueous systems. Journal of Hazardous Materials, 2020, 388, 121815.	6.5	98
71	TiO2-UiO-66-NH2 nanocomposites as efficient photocatalysts for the oxidation of VOCs. Chemical Engineering Journal, 2020, 385, 123814.	6.6	107
72	Enhanced d–d transitions in HKUST/Bi ₂ WO ₆ nanocomposite mediated visible-light driven selective conversion of benzyl alcohol to benzaldehyde. New Journal of Chemistry, 2020, 44, 18380-18388.	1.4	5

#	Article	IF	CITATIONS
73	Recent progress in metal-organic framework-based supercapacitor electrode materials. Coordination Chemistry Reviews, 2020, 420, 213438.	9.5	280
74	Electronic Structure Modeling of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8641-8715.	23.0	149
75	Zrâ€Based Metalâ€Organic Framework Films Grown on Bioâ€Template for Photoelectrocatalysis. ChemistrySelect, 2020, 5, 13855-13861.	0.7	6
76	An Ideal Spin Filter: Long-Range, High-Spin Selectivity in Chiral Helicoidal 3-Dimensional Metal Organic Frameworks. Nano Letters, 2020, 20, 8476-8482.	4.5	47
77	Investigations on optoelectronic properties of metal (Terbium)-organic framework / tris(8-hydroxyquinolinato)aluminium composite for potential device applications. Materials Chemistry and Physics, 2020, 255, 123569.	2.0	9
78	Iontronics Using V ₂ CT _{<i>x</i>} MXene-Derived Metal–Organic Framework Solid Electrolytes. ACS Nano, 2020, 14, 9840-9847.	7.3	27
79	Current Progress and Future Directions in Gasâ€Phase Metalâ€Organic Framework Thinâ€Film Growth. ChemSusChem, 2020, 13, 5433-5442.	3.6	16
80	Synthesis of the highly porous semiconductors with different electrical features using isostructural metal-organic frameworks as precursor. Synthetic Metals, 2020, 270, 116600.	2.1	2
81	Water-stable Mn-based MOF nanosheet as robust visible-light-responsive photocatalyst in aqueous solution. Science China Chemistry, 2020, 63, 1756-1760.	4.2	14
82	Three-Dimensional Polycatenation of a Uranium-Based Metal–Organic Cage: Structural Complexity and Radiation Detection. Journal of the American Chemical Society, 2020, 142, 16218-16222.	6.6	89
83	UiO-67 metal–organic gel material deposited on photonic crystal matrix for photoelectrocatalytic hydrogen production. RSC Advances, 2020, 10, 14778-14784.	1.7	13
84	Graphitic carbon nitride–based nanocomposite materials for photocatalytic hydrogen generation. , 2020, , 293-324.		6
85	Engineering the interfaces in water-splitting photoelectrodes – an overview of the technique development. Journal of Materials Chemistry A, 2020, 8, 6984-7002.	5.2	44
86	Metal-organic framework as a photocatalyst: Progress in modulation strategies and environmental/energy applications. Progress in Energy and Combustion Science, 2020, 81, 100870.	15.8	156
87	Electrical conductivity and magnetic bistability in metal–organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale. Chemical Society Reviews, 2020, 49, 5601-5638.	18.7	122
88	A Semiconducting Bi ₂ O ₂ (C ₄ O ₄) Coordination Polymer Showing a Photoelectric Response. Inorganic Chemistry, 2020, 59, 3406-3416.	1.9	12
89	Deterministic control of surface mounted metal–organic framework growth orientation on metallic and insulating surfaces. Physical Chemistry Chemical Physics, 2020, 22, 5839-5846.	1.3	18
90	An Electroactive Zinc-based Metal–Organic Framework: Bifunctional Fluorescent Quenching Behavior and Direct Observation of Nitrobenzene. Inorganic Chemistry, 2020, 59, 2997-3003.	1.9	20

#	Article	IF	CITATIONS
91	Zinc(II)–Organic Framework Films with Thermochromic and Solvatochromic Applications. Chemistry - A European Journal, 2020, 26, 4204-4208.	1.7	14
92	Advances in metal–organic framework coatings: versatile synthesis and broad applications. Chemical Society Reviews, 2020, 49, 3142-3186.	18.7	327
93	Highly hydrophobic metal–organic framework for self-protecting gate dielectrics. Journal of Materials Chemistry A, 2020, 8, 11958-11965.	5.2	16
94	Synthesis and structural characterization of a novel Zn(II) metal organic complex (Zn-MOC) and elimination of highly consumed antibiotic; tetracycline from aqueous solution by their nanostructures photocatalyst under visible light. Journal of Molecular Structure, 2021, 1228, 129448.	1.8	20
95	Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coordination Chemistry Reviews, 2021, 430, 213655.	9.5	56
96	Direct X-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks. Nature Materials, 2021, 20, 93-99.	13.3	112
97	Effects of ligand functionalization on the band gaps and luminescent properties of a Zr12 oxo-cluster based metal–organic framework. CrystEngComm, 2021, 23, 2961-2967.	1.3	10
98	Computational techniques for characterisation of electrically conductive MOFs: quantum calculations and machine learning approaches. Journal of Materials Chemistry C, 2021, 9, 13584-13599.	2.7	14
99	Metal-organic framework photocatalysts for carbon dioxide reduction. , 2021, , 389-420.		0
100	Effect of Benzene Derivatives as Guest Molecules on Semiconductor Properties of MOFâ€199. ChemistrySelect, 2021, 6, 425-429.	0.7	8
101	Safety of nanomaterials for energy applications. , 2021, , 333-355.		1
102	Crystalline Porous Materials for Nonlinear Optics. Small, 2021, 17, e2006416.	5.2	52
103	Integration of Highâ€Performance Costâ€Effective Copperâ€Metalâ€Organicâ€Nanoclusterâ€based Gate Dielect for Nextâ€Generation CMOS Applications. Advanced Electronic Materials, 2021, 7, 2000835.	ric 2.6	1
104	What Lies beneath a Metal–Organic Framework Crystal Structure? New Design Principles from Unexpected Behaviors. Journal of the American Chemical Society, 2021, 143, 6705-6723.	6.6	48
106	Photoconductive Coordination Polymer with a Lead–Sulfur Two-Dimensional Coordination Sheet Structure. Inorganic Chemistry, 2021, 60, 5436-5441.	1.9	4
107	Carbon Dioxide Enrichment PEBAX/MOF Composite Membrane for CO2 Separation. Membranes, 2021, 11, 404.	1.4	24
108	Two-dimensional MOF and COF nanosheets for next-generation optoelectronic applications. Coordination Chemistry Reviews, 2021, 435, 213781.	9.5	88
109	Band gap engineering of metal-organic frameworks for solar fuel productions. Coordination Chemistry Reviews, 2021, 435, 213785.	9.5	57

#	ARTICLE	IF	CITATIONS
110	Coordination Polymer Frameworks for Next Generation Optoelectronic Devices. , 0, , .		0
111	Templated interfacial synthesis of metal-organic framework (MOF) nano- and micro-structures with precisely controlled shapes and sizes. Communications Chemistry, 2021, 4, .	2.0	29
112	Comparative analysis of machine learning approaches on the prediction of the electronic properties of perovskites: A case study of ABX3 and A2BB'X6. Materials Today Communications, 2021, 27, 102462.	0.9	11
113	Design of a Metal–Organic Frameworkâ€Đerived Co ₉ S ₈ /S Material for Achieving High Durability and High Performance of Lithium–Sulfur Batteries. ChemElectroChem, 2021, 8, 3040-3048.	1.7	4
114	When Conductive MOFs Meet MnO ₂ : High Electrochemical Energy Storage Performance in an Aqueous Asymmetric Supercapacitor. ACS Applied Materials & amp; Interfaces, 2021, 13, 33083-33090.	4.0	109
115	Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coordination Chemistry Reviews, 2021, 439, 213915.	9.5	125
116	A review on state of art and perspectives of Metal-Organic frameworks (MOFs) in the fight against coronavirus SARS-CoV-2. Journal of Coordination Chemistry, 2021, 74, 2111-2127.	0.8	15
117	Hybrid Porous Crystalline Materials from Metal Organic Frameworks and Covalent Organic Frameworks. Advanced Science, 2021, 8, e2101883.	5.6	83
118	Cooperative Coupling of Oxidative Organic Synthesis and Hydrogen Production over Semiconductor-Based Photocatalysts. Chemical Reviews, 2021, 121, 13051-13085.	23.0	426
119	Hydrophobic Metalâ^'Organic Frameworks and Derived Composites for Microelectronics Applications. Chemistry - A European Journal, 2021, 27, 16543-16563.	1.7	4
120	Weak interactions in conducting metal–organic frameworks. Coordination Chemistry Reviews, 2021, 442, 213987.	9.5	22
121	Chemical metallization of ultrathin polymer insulation film for through-silicon via application. Thin Solid Films, 2021, 734, 138842.	0.8	3
122	Nanoscale Probing of Surface Charges in Functional Copperâ€Metal Organic Clusters by Kelvin Probe Force Microscopy for Fieldâ€Effect Transistors. Advanced Materials Interfaces, 2021, 8, 2100529.	1.9	2
123	A review on metal-organic frameworks photoelectrochemistry: A headlight for future applications. Coordination Chemistry Reviews, 2021, 445, 214097.	9.5	70
124	Water-assisted spin-flop antiferromagnetic behaviour of hydrophobic Cu-based metal–organic frameworks. Dalton Transactions, 2021, 50, 5754-5758.	1.6	5
125	A data-driven perspective on the colours of metal–organic frameworks. Chemical Science, 2021, 12, 3587-3598.	3.7	16
126	Dual-wavelength responsive photoelectrochemical aptasensor based on ionic liquid functionalized Zn-MOFs and noble metal nanoparticles for the simultaneous detection of multiple tumor markers. Nanoscale, 2021, 13, 19066-19075.	2.8	16
127	Fabrication of Metal-organic Framework (MOF) Thin Films from Copper Hydroxide Nano-assemblies. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67, 132-139.	0.1	0

#	Article	IF	CITATIONS
128	Metal–Organic Frameworks for Electrocatalysis. , 2020, , 29-66.		1
129	Cu-Based Conductive MOF Grown in situ on Cu Foam as a Highly Selective and Stable Non-Enzymatic Glucose Sensor. Frontiers in Chemistry, 2021, 9, 786970.	1.8	24
130	High-Hole-Mobility Metal–Organic Framework as Dopant-Free Hole Transport Layer for Perovskite Solar Cells. Nanoscale Research Letters, 2022, 17, 6.	3.1	7
131	In-situ growth of porous Cu3(BTC)2 on cellulose nanofibrils for ultra-low dielectric films with high flexibility. Journal of Materials Science and Technology, 2022, 112, 202-211.	5.6	16
132	Solvent-free bottom-up patterning of zeolitic imidazolate frameworks. Nature Communications, 2022, 13, 420.	5.8	20
133	Rare-Earth Doping in Nanostructured Inorganic Materials. Chemical Reviews, 2022, 122, 5519-5603.	23.0	338
134	MOFs in photoelectrochemical water splitting: New horizons and challenges. International Journal of Hydrogen Energy, 2022, 47, 5192-5210.	3.8	14
135	Thin Film Growth of 3D Srâ€based Metalâ€Organic Framework on Conductive Glass via Electrochemical Deposition. ChemistryOpen, 2022, 11, e202100295.	0.9	4
136	Zinc-metal–organic frameworks with tunable UV diffuse-reflectance as sunscreens. Journal of Nanobiotechnology, 2022, 20, 87.	4.2	7
137	Regimented Charge Transport Phenomena in Semiconductive Self-Assembled Rhenium Nanotubes. ACS Applied Materials & Interfaces, 2022, 14, 12423-12433.	4.0	1
138	Cu-MOF@PVP/PVDF hybrid composites as tunable proton-conducting materials. Journal of Solid State Chemistry, 2022, 310, 123070.	1.4	9
139	Self-enhancement photoelectrochemical strategy for kanamycin determination with amino functionalized MOFs. Mikrochimica Acta, 2022, 189, 193.	2.5	7
140	Structural, Thermodynamic, and Transport Properties of the Small-Gap Two-Dimensional Metal–Organic Kagomé Materials Cu ₃ (hexaiminobenzene) ₂ and Ni ₃ (hexaiminobenzene) ₂ . Inorganic Chemistry, 2022, 61, 6480-6487.	1.9	4
141	The role of supramolecular interactions and pyridine groups in the (photo)electrocatalytic properties of a non-precious Co-based MOF. Sustainable Energy and Fuels, 2022, 6, 2532-2541.	2.5	2
142	Improving the surface area of metal organic framework-derived porous carbon through constructing inner support by compatible graphene quantum dots. Journal of Colloid and Interface Science, 2022, 623, 77-85.	5.0	22
143	<scp>Nitrogenâ€doped</scp> porous <scp>nanocarbonsâ€conducting</scp> polymer composite film electrodes for flexible supercapacitors. International Journal of Energy Research, 0, , .	2.2	0
144	Photochemistry of Metal-Organic Frameworks. Springer Handbooks, 2022, , 691-732.	0.3	2
145	Recent Progress in 2D Inorganic/Organic Charge Transfer Heterojunction Photodetectors. Advanced Functional Materials, 2022, 32, .	7.8	23

#	Article	IF	CITATIONS
146	Optimizing Pt Electronic States through Formation of a Schottky Junction on Nonâ€reducible Metal–Organic Frameworks for Enhanced Photocatalysis. Angewandte Chemie, 2022, 134, .	1.6	6
147	Long-Lived Internal Charge-Separated State in Two-Dimensional Metal–Organic Frameworks Improving Photocatalytic Performance. ACS Energy Letters, 2022, 7, 2323-2330.	8.8	24
148	Optimizing Pt Electronic States through Formation of a Schottky Junction on Nonâ€reducible Metal–Organic Frameworks for Enhanced Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	55
149	Nanomaterial-enabled photothermal-based solar water disinfection processes: Fundamentals, recent advances, and mechanisms. Journal of Hazardous Materials, 2022, 437, 129373.	6.5	21
150	The Chemistry and Applications of Metal–Organic Frameworks (MOFs) as Industrial Enzyme Immobilization Systems. Molecules, 2022, 27, 4529.	1.7	57
151	Stabilization and Performance Enhancement Strategies for Halide Perovskite Photocatalysts. Advanced Materials, 2023, 35, .	11.1	31
152	Metalâ€Organic Frameworks based Lithiumâ€Oxygen Batteries. Chemistry - A European Journal, 0, , .	1.7	1
153	MOFâ€Based Chemiresistive Gas Sensors: Toward New Functionalities. Advanced Materials, 2023, 35, .	11.1	59
154	Millimeter-scale semiconductive metal-organic framework single crystal for X-ray imaging. Cell Reports Physical Science, 2022, 3, 101004. http://www.w3.org/1998/Math/MathML" altimg="si45.svg"	2.8	4
155	display= inline_id= d1e845 > <mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:mrow </mml:msub> Cu <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si45.svg" display="inline" id="d1e853"><mml:msub><mml:mrow< td=""><td>0.9</td><td>7</td></mml:mrow<></mml:msub></mml:math 	0.9	7
156	Semiconducting metal-organic framework derivatives-gated organic photoelectrochemical transistor immunoassay. Biosensors and Bioelectronics, 2022, 217, 114700.	5.3	8
157	Controlled Fabrication of Au@Nh2-Mil-125(Ti)/Cds with Enhanced Photocatalytic Ability for the Degradation of Mb. SSRN Electronic Journal, 0, , .	0.4	0
158	Visible to Mid-IR Spectromicroscopy with Top-Down Illumination and Nanoscale (â‰^10 nm) Resolution. Analytical Chemistry, 2022, 94, 15564-15569.	3.2	8
159	Status and opportunities in the treatment of tetracyclines from aquatic environments by metal-organic frameworks (MOFs) and MOFs-based composites. Materials Today Chemistry, 2022, 26, 101209.	1.7	6
160	Selective and moisture-sensitive degradation of bromocresol green for isostructural MOFs assembled with D-camphorate and bipyridine. Inorganic Chemistry Communication, 2022, 146, 110044.	1.8	0
161	Eight semiconducting MOFs constructed with conjugated ligands and d-metals (Cd, Zn, Co and Ni) serve as functional materials for oxygen evolution reactions, photocatalytic degradation of dyes and photoluminescence. CrystEngComm, 2022, 24, 8407-8426.	1.3	2
162	Recent advances in metal-organic frameworks for X-ray detection. Science China Chemistry, 2022, 65, 2338-2350.	4.2	12
163	Conducting Polymer Based Ammonia and Hydrogen Sulfide Chemical Sensors and Their Suitability for Detecting Food Spoilage, Advanced Materials Technologies, 2023, 8	3.0	11

#	ARTICLE	IF	CITATIONS
164	Highly functionalized photo-activated metal–organic frameworks for dye degradation: Recent advancements. Materials Today Communications, 2023, 34, 105180.	0.9	4
165	Metal–Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chemical Reviews, 2023, 123, 445-490.	23.0	84
166	Signal-On Near-Infrared Photoelectrochemical Aptasensors for Sensing VEGF165 Based on Ionic Liquid-Functionalized Nd-MOF Nanorods and In-Site Formation of Gold Nanoparticles. Analytical Chemistry, 2022, 94, 17835-17842.	3.2	6
167	Charge transfer in metal–organic frameworks. Chemical Communications, 2023, 59, 1569-1588.	2.2	12
168	In situ vertically growth of 2D NiCo-BTC nanosheet arrays for binder-free flexible wearable energy storage, 2023, 60, 106578.	3.9	3
169	Metalâ€Organic Frameworks for Photocatalytic Water Splitting and CO ₂ Reduction. Angewandte Chemie, 2023, 135, .	1.6	14
170	Arsenic: Chemistry, occurrence, and exposure. , 2023, , 1-49.		2
171	Recent electrochemical-energy-storage applications of metal–organic frameworks featuring iron-series elements (Fe, Co, and Ni). Journal of Energy Storage, 2023, 65, 107217.	3.9	5
172	Constructing functional metal-organic frameworks by ligand design for environmental applications. Journal of Hazardous Materials, 2023, 447, 130848.	6.5	14
173	Metalâ€Organic Frameworks for Photocatalytic Water Splitting and CO ₂ Reduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	81
174	Structures, Electric Properties and STM Images of GeSe Monolayers Doped by Group IV–VI Atoms: A First-Principles Study. Crystals, 2023, 13, 284.	1.0	1
175	Synthesis, Characterization, Crystal Structures, and Supramolecular Assembly of Copper Complexes Derived from Nitroterephthalic Acid along with Hirshfeld Surface Analysis and Quantum Chemical Studies. ACS Omega, 2023, 8, 8530-8540.	1.6	7
176	Fabrication of 3D Oriented MOF Micropatterns with Anisotropic Fluorescent Properties. Advanced Materials, 2023, 35, .	11.1	6
177	Recrystallization of 2D C-MOF Films for High-Performance Electrochemical Sensors. ACS Applied Materials & Material	4.0	11
182	Recent Advances in Photoelectrochemical Sensing of Alzheimer's Biomarkers. Biochip Journal, 2023, 17, 218-229.	2.5	0
183	Beyond the Status Quo: Density Functional Tight Binding and Neural Network Potentials as a Versatile Simulation Strategy to Characterize Host–Guest Interactions in Metal- and Covalent Organic Frameworks. Journal of Physical Chemistry Letters, 2023, 14, 6018-6027.	2.1	3
187	Thin Films of MOF-on-Guest@MOF: A Simple Strategy of Designing Electronic Heterostructures. Inorganic Chemistry, 2023, 62, 10887-10891.	1.9	4