Cancer nanomedicine: progress, challenges and opportu

Nature Reviews Cancer 17, 20-37

DOI: 10.1038/nrc.2016.108

Citation Report

#	Article	IF	CITATIONS
1	Site-Specific Biomimetic Precision Chemistry of Bimodal Contrast Agent with Modular Peptides for Tumor-Targeted Imaging. Bioconjugate Chemistry, 2017, 28, 330-335.	3.6	18
2	Exploiting the cancer niche: Tumor-associated macrophages and hypoxia as promising synergistic targets for nano-based therapy. Journal of Controlled Release, 2017, 253, 82-96.	9.9	67
3	Phototriggered Ring-Opening Polymerization of a Photocaged $<$ scp $>$ l $<$ lscp $>$ -Lysine $<$ i $>N<$ li $>$ -Carboxyanhydride to Synthesize Hyperbranched and Linear Polypeptides. ACS Macro Letters, 2017, 6, 292-297.	4.8	37
4	Quantifying the Plasmonic Nanoparticle Size Effect on Photoacoustic Conversion Efficiency. Journal of Physical Chemistry C, 2017, 121, 5805-5811.	3.1	21
5	Targeting tumors with cyclic RGD-conjugated lipid nanoparticles loaded with an IR780 NIR dye: In vitro and in vivo evaluation. International Journal of Pharmaceutics, 2017, 532, 677-685.	5.2	33
6	Peptides for tumor-specific drug targeting: state of the art and beyond. Journal of Materials Chemistry B, 2017, 5, 4348-4364.	5 . 8	39
7	Two-dimensional Pd-based nanomaterials for bioapplications. Science Bulletin, 2017, 62, 579-588.	9.0	45
8	Combination antitumor therapy with targeted dual-nanomedicines. Advanced Drug Delivery Reviews, 2017, 115, 23-45.	13.7	111
9	Cancer immunotherapy: Wound-bound checkpoint blockade. Nature Biomedical Engineering, 2017, 1, .	22.5	15
10	Biocompatible Cupâ€Shaped Nanocrystal with Ultrahigh Photothermal Efficiency as Tumor Therapeutic Agent. Advanced Functional Materials, 2017, 27, 1700605.	14.9	59
11	Exerting Enhanced Permeability and Retention Effect Driven Delivery by Ultrafine Iron Oxide Nanoparticles with ⟨i>T⟨/i>⟨sub>1⟨/sub>–⟨i>T⟨/i>⟨sub>2⟨/sub> Switchable Magnetic Resonance Imaging Contrast. ACS Nano, 2017, 11, 4582-4592.	14.6	182
12	Facile encapsulation of hydroxycamptothecin nanocrystals into zein-based nanocomplexes for active targeting in drug delivery and cell imaging. Acta Biomaterialia, 2017, 61, 88-100.	8.3	74
13	Dual-targeted peptide-conjugated multifunctional fluorescent probe with AlEgen for efficient nucleus-specific imaging and long-term tracing of cancer cells. Chemical Science, 2017, 8, 4571-4578.	7.4	99
14	A pH responsive complexation-based drug delivery system for oxaliplatin. Chemical Science, 2017, 8, 4458-4464.	7.4	182
15	Photosensitization Priming of Tumor Microenvironments Improves Delivery of Nanotherapeutics via Neutrophil Infiltration. Advanced Materials, 2017, 29, 1701021.	21.0	134
16	Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy. Journal of Controlled Release, 2017, 258, 95-107.	9.9	207
17	Exploring the Potential of Nanotherapeutics in Targeting Tumor Microenvironment for Cancer Therapy. Pharmacological Research, 2017, 126, 109-122.	7.1	59
18	Yeast capsules for targeted delivery: the future of nanotherapy?. Nanomedicine, 2017, 12, 955-957.	3.3	7

#	Article	IF	CITATIONS
19	Rethinking cancer nanotheranostics. Nature Reviews Materials, 2017, 2, .	48.7	860
20	Spatial Targeting of Tumor-Associated Macrophages and Tumor Cells with a pH-Sensitive Cluster Nanocarrier for Cancer Chemoimmunotherapy. Nano Letters, 2017, 17, 3822-3829.	9.1	158
21	Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. Journal of Controlled Release, 2017, 258, 226-253.	9.9	309
22	Anisotropy in Shape and Ligandâ€Conjugation of Hybrid Nanoparticulates Manipulates the Mode of Bio–Nano Interaction and Its Outcome. Advanced Functional Materials, 2017, 27, 1700406.	14.9	16
23	One-Pot Synthesis of MoS ₂ Nanoflakes with Desirable Degradability for Photothermal Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 17347-17358.	8.0	104
24	Near-infrared light-activatable polymeric nanoformulations for combined therapy and imaging of cancer. Advanced Drug Delivery Reviews, 2017, 115, 155-170.	13.7	84
25	Optofluidic device for the quantification of circulating tumor cells in breast cancer. Scientific Reports, 2017, 7, 3677.	3.3	23
26	Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. Biomaterials, 2017, 138, 13-21.	11.4	214
27	Inhibition of Cancer Cell Proliferation by Carbon Dots Derived from Date Pits at Low-Dose. ChemistrySelect, 2017, 2, 4079-4083.	1.5	25
28	Antimonene Quantum Dots: Synthesis and Application as Nearâ€Infrared Photothermal Agents for Effective Cancer Therapy. Angewandte Chemie - International Edition, 2017, 56, 11896-11900.	13.8	465
29	Nanomaterials in Daily Life. , 2017, , .		13
30	Tumor Microenvironment-Responsive Multistaged Nanoplatform for Systemic RNAi and Cancer Therapy. Nano Letters, 2017, 17, 4427-4435.	9.1	119
31	Antimonene Quantum Dots: Synthesis and Application as Nearâ€Infrared Photothermal Agents for Effective Cancer Therapy. Angewandte Chemie, 2017, 129, 12058-12062.	2.0	93
32	Effect of trastuzumab on the micellization properties, endocytic pathways and antitumor activities of polyurethane-based drug delivery system. Chinese Journal of Polymer Science (English Edition), 2017, 35, 909-923.	3.8	11
33	Imaging of anticancer drug action in single cells. Nature Reviews Cancer, 2017, 17, 399-414.	28.4	80
34	Nanomaterial-Enabled Cancer Therapy. Molecular Therapy, 2017, 25, 1501-1513.	8.2	110
35	Tuning complement activation and pathway through controlled molecular architecture of dextran chains in nanoparticle corona. International Journal of Pharmaceutics, 2017, 532, 769-778.	5.2	32
36	Augmented glioma-targeted theranostics using multifunctional polymer-coated carbon nanodots. Biomaterials, 2017, 141, 29-39.	11.4	52

#	ARTICLE	IF	Citations
37	Unveiling Molecular Changes in Water by Small Luminescent Nanoparticles. Small, 2017, 13, 1700968.	10.0	20
38	Covalent nano delivery systems for selective imaging and treatment of brain tumors. Advanced Drug Delivery Reviews, 2017, 113, 177-200.	13.7	67
39	Cationic Nanohydrogel Particles for Therapeutic Oligonucleotide Delivery. Macromolecular Bioscience, 2017, 17, 1700092.	4.1	28
40	Nuclear Membrane-Targeted Gold Nanoparticles Inhibit Cancer Cell Migration and Invasion. ACS Nano, 2017, 11, 3716-3726.	14.6	135
41	Alpha-particle radiotherapy: For large solid tumors diffusion trumps targeting. Biomaterials, 2017, 130, 67-75.	11.4	27
42	Cancerâ€Associated, Stimuliâ€Driven, Turn on Theranostics for Multimodality Imaging and Therapy. Advanced Materials, 2017, 29, 1606857.	21.0	290
43	Lessons from immuno-oncology: a new era for cancer nanomedicine?. Nature Reviews Drug Discovery, 2017, 16, 369-370.	46.4	37
44	Highly Emissive Dye-Sensitized Upconversion Nanostructure for Dual-Photosensitizer Photodynamic Therapy and Bioimaging. ACS Nano, 2017, 11, 4133-4144.	14.6	342
45	Mapping of Molecular Structure of the Nanoscale Surface in Bionanoparticles. Journal of the American Chemical Society, 2017, 139, 111-114.	13.7	90
46	Tumour regression and improved gastrointestinal tolerability from controlled release of SN-38 from novel polyoxazoline-modified dendrimers. Journal of Controlled Release, 2017, 247, 73-85.	9.9	32
47	Cube-shaped theranostic paclitaxel prodrug nanocrystals with surface functionalization of SPC and MPEG-DSPE for imaging and chemotherapy. Colloids and Surfaces B: Biointerfaces, 2017, 160, 649-660.	5.0	11
48	Recent advances in nanocarrier-loaded gels: Which drug delivery technologies against which diseases?. Journal of Controlled Release, 2017, 266, 140-155.	9.9	56
49	Targeting tumor associated macrophages: The new challenge for nanomedicine. Seminars in Immunology, 2017, 34, 103-113.	5.6	110
50	The application of nanoparticles for neuroprotection in acute ischemic stroke. Therapeutic Delivery, 2017, 8, 915-928.	2.2	25
51	Redox-triggered activation of nanocarriers for mitochondria-targeting cancer chemotherapy. Nanoscale, 2017, 9, 17044-17053.	5.6	52
52	Acid-Activatable Theranostic Unimolecular Micelles Composed of Amphiphilic Star-like Polymeric Prodrug with High Drug Loading for Enhanced Cancer Therapy. Molecular Pharmaceutics, 2017, 14, 4032-4041.	4.6	33
53	Synergistic photodynamic therapeutic effect of indole-3-acetic acid using a pH sensitive nano-carrier based on poly(aspartic acid- <i>graft</i> -imidazole)-poly(ethylene glycol). Journal of Materials Chemistry B, 2017, 5, 8498-8505.	5.8	13
54	Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chemical Society Reviews, 2017, 46, 6570-6599.	38.1	290

#	Article	IF	CITATIONS
55	Recent Progress in Near Infrared Light Triggered Photodynamic Therapy. Small, 2017, 13, 1702299.	10.0	247
56	NGR-modified pH-sensitive liposomes for controlled release and tumor target delivery of docetaxel. Colloids and Surfaces B: Biointerfaces, 2017, 160, 395-405.	5.0	18
57	Acrylamides with hydrolytically labile carbonate ester side chains as versatile building blocks for well-defined block copolymer micelles via RAFT polymerization. Polymer Chemistry, 2017, 8, 6544-6557.	3.9	4
58	Nanotechnology as a Delivery Tool for Precision Cancer Therapies. AAPS Journal, 2017, 19, 1632-1642.	4.4	9
59	Fast Image-Guided Stratification Using Anti-Programmed Death Ligand 1 Gold Nanoparticles for Cancer Immunotherapy. ACS Nano, 2017, 11, 11127-11134.	14.6	101
60	Inkjet printed nanomaterial based flexible radio frequency identification (RFID) tag sensors for the internet of nano things. RSC Advances, 2017, 7, 48597-48630.	3.6	160
61	Programmed Nanococktail Based on pH-Responsive Function Switch for Self-Synergistic Tumor-Targeting Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39127-39142.	8.0	30
62	From Polymers to Functional Biomaterials. Macromolecular Bioscience, 2017, 17, 1700307.	4.1	1
63	Fluorescence-coded DNA Nanostructure Probe System to Enable Discrimination of Tumor Heterogeneity via a Screening of Dual Intracellular microRNA Signatures in situ. Scientific Reports, 2017, 7, 13499.	3.3	5
64	Intracellular Fate of Nanoparticles with Polydopamine Surface Engineering and a Novel Strategy for Exocytosis-Inhibiting, Lysosome Impairment-Based Cancer Therapy. Nano Letters, 2017, 17, 6790-6801.	9.1	143
65	Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. Journal of Controlled Release, 2017, 264, 306-332.	9.9	369
66	Biopolymer–Drug Conjugate Nanotheranostics for Multimodal Imaging-Guided Synergistic Cancer Photothermal–Chemotherapy. ACS Applied Materials & 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	8.0	49
67	Tantalum Sulfide Nanosheets as a Theranostic Nanoplatform for Computed Tomography Imagingâ€Guided Combinatorial Chemoâ€Photothermal Therapy. Advanced Functional Materials, 2017, 27, 1703261.	14.9	89
68	Two-Dimensional Graphene Augments Nanosonosensitized Sonocatalytic Tumor Eradication. ACS Nano, 2017, 11, 9467-9480.	14.6	248
69	Capturing "Extraordinary―Softâ€Assembled Chargeâ€Like Polypeptides as a Strategy for Nanocarrier Design. Advanced Materials, 2017, 29, 1702888.	21.0	38
70	Poloxamer-Decorated Polymer Nanoparticles for Lung Surfactant Compatibility. Molecular Pharmaceutics, 2017, 14, 3464-3472.	4.6	19
71	Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chemical Reviews, 2017, 117, 11476-11521.	47.7	464
72	An experimental and computational framework for engineering multifunctional nanoparticles: designing selective anticancer therapies. Nanoscale, 2017, 9, 13760-13771.	5.6	11

#	Article	IF	Citations
73	X-Ray responsive nanoparticles with triggered release of nitrite, a precursor of reactive nitrogen species, for enhanced cancer radiosensitization. Nanoscale, 2017, 9, 14627-14634.	5.6	32
74	Replacement of quaternary ammonium headgroups by tri-ornithine in cationic lipids for the improvement of gene delivery in vitro and in vivo. Journal of Materials Chemistry B, 2017, 5, 7963-7973.	5 . 8	16
75	Chemotherapy-Induced Macrophage Infiltration into Tumors Enhances Nanographene-Based Photodynamic Therapy. Cancer Research, 2017, 77, 6021-6032.	0.9	16
76	Methotrexate–Camptothecin Prodrug Nanoassemblies as a Versatile Nanoplatform for Biomodal Imaging-Guided Self-Active Targeted and Synergistic Chemotherapy. ACS Applied Materials & Interfaces, 2017, 9, 34650-34665.	8.0	105
77	Bridging Bio–Nano Science and Cancer Nanomedicine. ACS Nano, 2017, 11, 9594-9613.	14.6	304
78	Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nature Nanotechnology, 2017, 12, 1096-1102.	31.5	408
79	Tumor-associated macrophages, nanomedicine and imaging: the axis of success in the future of cancer immunotherapy. Immunotherapy, 2017, 9, 819-835.	2.0	41
80	A non-cytotoxic dendrimer with innate and potent anticancer and anti-metastatic activities. Nature Biomedical Engineering, 2017, 1, 745-757.	22.5	74
81	Overcoming key biological barriers to cancer drug delivery and efficacy. Journal of Controlled Release, 2017, 267, 15-30.	9.9	92
82	Nanoparticles target early-stage breast cancer metastasis <i>in vivo</i> . Nanotechnology, 2017, 28, 43LT01.	2.6	33
83	Multiscale technologies for treatment of ischemic cardiomyopathy. Nature Nanotechnology, 2017, 12, 845-855.	31.5	104
84	Carrier-free, self-assembled pure drug nanorods composed of 10-hydroxycamptothecin and chlorin e6 for combinatorial chemo-photodynamic antitumor therapy in vivo. Nanoscale, 2017, 9, 14347-14356.	5.6	103
85	Cancer Nanomedicine: Lessons for Immuno-Oncology. Trends in Cancer, 2017, 3, 551-560.	7.4	42
86	Mussel-Inspired Polydopamine-Coated Lanthanide Nanoparticles for NIR-II/CT Dual Imaging and Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26674-26683.	8.0	118
87	Integration of IRâ€808 Sensitized Upconversion Nanostructure and MoS ₂ Nanosheet for 808 nm NIR Light Triggered Phototherapy and Bioimaging. Small, 2017, 13, 1701841.	10.0	117
88	Dually folate/CD44 receptor-targeted self-assembled hyaluronic acid nanoparticles for dual-drug delivery and combination cancer therapy. Journal of Materials Chemistry B, 2017, 5, 6835-6846.	5 . 8	43
89	Protein nanocages that penetrate airway mucus and tumor tissue. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6595-E6602.	7.1	102
90	Recent advances in nanoparticle-mediated drug delivery. Journal of Drug Delivery Science and Technology, 2017, 41, 260-268.	3.0	127

#	ARTICLE	IF	Citations
91	Leveraging H ₂ O ₂ Levels for Biomedical Applications. Advanced Biology, 2017, 1, e1700084.	3.0	66
92	ROSâ€Responsive Polyprodrug Nanoparticles for Triggered Drug Delivery and Effective Cancer Therapy. Advanced Materials, 2017, 29, 1700141.	21.0	370
93	Polymers as drugsâ€"Advances in therapeutic applications of polymer binding agents. Journal of Polymer Science Part A, 2017, 55, 3146-3157.	2.3	33
94	Thiol-Triggered Release of Intraliposomal Content from Liposomes Made of Extremophile-Inspired Tetraether Lipids. Bioconjugate Chemistry, 2017, 28, 2041-2045.	3.6	11
95	Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 2017, 46, 4218-4244.	38.1	1,709
96	FRET-enabled monitoring of the thermosensitive nanoscale assembly of polymeric micelles into macroscale hydrogel and sequential cognate micelles release. Biomaterials, 2017, 145, 81-91.	11.4	38
97	Recent advance of pH-sensitive nanocarriers targeting solid tumors. Journal of Pharmaceutical Investigation, 2017, 47, 383-394.	5.3	33
98	Graphene– gold based nanocomposites applications in cancer diseases; Efficient detection and therapeutic tools. European Journal of Medicinal Chemistry, 2017, 139, 349-366.	5.5	24
99	The light at the end of the tunnelâ€"second generation HPMA conjugates for cancer treatment. Current Opinion in Colloid and Interface Science, 2017, 31, 30-42.	7.4	60
100	Biocompatibility assessment of silk nanoparticles: hemocompatibility and internalization by human blood cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2633-2642.	3.3	60
101	Promises and limitations of nanoparticles in the era of cell therapy: Example with CD19-targeting chimeric antigen receptor (CAR)-modified T cells. International Journal of Pharmaceutics, 2017, 532, 813-824.	5.2	12
102	Evolution and clinical translation of drug delivery nanomaterials. Nano Today, 2017, 15, 91-106.	11.9	196
103	Evolution of macromolecular complexity in drug delivery systems. Nature Reviews Chemistry, 2017, 1, .	30.2	233
104	Construction of Silicaâ€Based Micro/Nanoplatforms for Ultrasound Theranostic Biomedicine. Advanced Healthcare Materials, 2017, 6, 1700646.	7.6	51
105	Aromatics from Syngas: CO Taking Control. CheM, 2017, 3, 202-204.	11.7	8
106	Image-Guided Therapy Using Maghemite-MOF Nanovectors. CheM, 2017, 3, 200-202.	11.7	3
107	Tumor Acidic Microenvironment Targeted Drug Delivery Based on pHLIP-Modified Mesoporous Organosilica Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 30543-30552.	8.0	54
108	Degradable Vanadium Disulfide Nanostructures with Unique Optical and Magnetic Functions for Cancer Theranostics. Angewandte Chemie - International Edition, 2017, 56, 12991-12996.	13.8	115

#	Article	IF	CITATIONS
109	Non-covalently coated biopolymeric nanoparticles for improved tamoxifen delivery. European Polymer Journal, 2017, 95, 348-357.	5.4	21
110	Organic Nanoparticle-Based Combinatory Approaches for Gene Therapy. Trends in Biotechnology, 2017, 35, 1121-1124.	9.3	26
111	CPX-351 in acute myeloid leukemia: can a new formulation maximize the efficacy of old compounds?. Expert Review of Hematology, 2017, 10, 853-862.	2.2	21
112	Degradable Vanadium Disulfide Nanostructures with Unique Optical and Magnetic Functions for Cancer Theranostics. Angewandte Chemie, 2017, 129, 13171-13176.	2.0	45
113	Continuous low plasma concentrations of everolimus provides equivalent efficacy to oral daily dosing in mouse xenograft models of human cancer. Cancer Chemotherapy and Pharmacology, 2017, 80, 869-878.	2.3	5
114	Biodegradable Micelles Based on Poly(ethylene glycol)-b-polylipopeptide Copolymer: A Robust and Versatile Nanoplatform for Anticancer Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2017, 9, 27587-27595.	8.0	34
115	Tumor-Targeted Accumulation of Ligand-Installed Polymeric Micelles Influenced by Surface PEGylation Crowdedness. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44045-44052.	8.0	17
116	Recent developments in <scp>d</scp> -î±-tocopheryl polyethylene glycol-succinate-based nanomedicine for cancer therapy. Drug Delivery, 2017, 24, 1831-1842.	5.7	67
117	Nanoparticles: "magic bullets―for targeting the immune system. Seminars in Immunology, 2017, 34, 1-2.	5.6	6
118	Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines. Scientific Reports, 2017, 7, 16049.	3.3	38
119	A Substrate-Selective Enzyme-Catalysis Assembly Strategy for Oligopeptide Hydrogel-Assisted Combinatorial Protein Delivery. Nano Letters, 2017, 17, 7447-7454.	9.1	40
120	Autonomous self-navigating drug-delivery vehicles: from science fiction to reality. Therapeutic Delivery, 2017, 8, 1063-1075.	2.2	12
121	Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of doxorubicin. Frontiers of Materials Science, 2017, 11, 328-343.	2.2	7
122	Epidermal Penetration of Gold Nanoparticles and Its Underlying Mechanism Based on Human Reconstructed 3D Episkin Model. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42577-42588.	8.0	25
123	Intelligent "Peptide-Gathering Mechanical Arm―Tames Wild "Trojan-Horse―Peptides for the Controlled Delivery of Cancer Nanotherapeutics. ACS Applied Materials & Delivery of Cancer Nanotherapeutics. ACS Applie	8.0	23
124	Dually responsive mesoporous silica nanoparticles regulated by upper critical solution temperature polymers for intracellular drug delivery. Journal of Materials Chemistry B, 2017, 5, 9497-9501.	5.8	31
125	Nanocolloidosomes with Selective Drug Release for Active Tumor-Targeted Imaging-Guided Photothermal/Chemo Combination Therapy. ACS Applied Materials & Drug Interfaces, 2017, 9, 42225-42238.	8.0	58
126	Red Blood Cells for Drug Delivery. Small Methods, 2017, 1, 1700270.	8.6	62

#	ARTICLE	IF	CITATIONS
127	Light-Responsive Nanoparticles for Highly Efficient Cytoplasmic Delivery of Anticancer Agents. ACS Nano, 2017, 11, 12134-12144.	14.6	175
128	Near-infrared remotely triggered drug-release strategies for cancer treatment. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12419-12424.	7.1	64
129	Reversing the undesirable pH-profile of doxorubicin <i>via</i> activation of a di-substituted maleamic acid prodrug at tumor acidity. Chemical Communications, 2017, 53, 12826-12829.	4.1	17
130	Anti-RhoJ antibody functionalized Au@I nanoparticles as CT-guided tumor vessel-targeting radiosensitizers in patient-derived tumor xenograft model. Biomaterials, 2017, 141, 1-12.	11.4	32
131	Insights into the unique functionality of inorganic micro/nanoparticles for versatile ultrasound theranostics. Biomaterials, 2017, 142, 13-30.	11.4	120
132	Cyclodextrin-based biological stimuli-responsive carriers for smart and precision medicine. Biomaterials Science, 2017, 5, 1736-1745.	5.4	50
133	Multifunctional nanodiamonds in regenerative medicine: Recent advances and future directions. Journal of Controlled Release, 2017, 261, 62-86.	9.9	88
134	Advances in Alzheimer's Diagnosis and Therapy: The Implications of Nanotechnology. Trends in Biotechnology, 2017, 35, 937-953.	9.3	121
135	Challenges in DNA Delivery and Recent Advances in Multifunctional Polymeric DNA Delivery Systems. Biomacromolecules, 2017, 18, 2231-2246.	5.4	147
136	Size, Shape, and Sequence-Dependent Immunogenicity of RNA Nanoparticles. Molecular Therapy - Nucleic Acids, 2017, 9, 399-408.	5.1	90
137	Drug-Triggered Self-Assembly of Linear Polymer into Nanoparticles for Simultaneous Delivery of Hydrophobic and Hydrophilic Drugs in Breast Cancer Cells. ACS Omega, 2017, 2, 8730-8740.	3.5	13
138	Directing intracellular supramolecular assembly with N-heteroaromatic quaterthiophene analogues. Nature Communications, 2017, 8, 1850.	12.8	22
139	Cancer resistance to treatment and antiresistance tools offered by multimodal multifunctional nanoparticles. Cancer Nanotechnology, 2017, 8, 7.	3.7	39
140	Cryo-STEM-EDX spectroscopy for the characterisation of nanoparticles in cell culture media. Journal of Physics: Conference Series, 2017, 902, 012006.	0.4	6
141	The impact of receptor recycling on the exocytosis of $\hat{l}\pm v\hat{l}^23$ integrin targeted gold nanoparticles. Oncotarget, 2017, 8, 38618-38630.	1.8	15
142	Circulating Tumor Cells: From Theory to Nanotechnology-Based Detection. Frontiers in Pharmacology, 2017, 08, 35.	3.5	44
143	Photothermal therapy of single cancer cells mediated by naturally created gold nanorod clusters. Optics Express, 2017, 25, 15093.	3.4	14
144	A Laser-Activated Biocompatible Theranostic Nanoagent for Targeted Multimodal Imaging and Photothermal Therapy. Theranostics, 2017, 7, 4410-4423.	10.0	79

#	Article	IF	Citations
145	Prediction of Anti-cancer Nanotherapy Efficacy by Imaging. Nanotheranostics, 2017, 1, 296-312.	5.2	64
146	Nano-Formulation of Ethambutol with Multifunctional Graphene Oxide and Magnetic Nanoparticles Retains Its Anti-Tubercular Activity with Prospects of Improving Chemotherapeutic Efficacy. Molecules, 2017, 22, 1697.	3.8	20
147	Advances in Fluorescent Single-Chain Nanoparticles. Molecules, 2017, 22, 1819.	3.8	38
148	Practical Liposomal Formulation for Taxanes with Polyethoxylated Castor Oil and Ethanol with Complete Encapsulation Efficiency and High Loading Efficiency. Nanomaterials, 2017, 7, 290.	4.1	8
149	Photo Irradiation-Induced Core Crosslinked Poly(ethylene glycol)-block-poly(aspartic acid) Micelles: Optimization of Block Copolymer Synthesis and Characterization of Core Crosslinked Micelles. Polymers, 2017, 9, 710.	4.5	3
150	Novel Anti-Tuberculosis Nanodelivery Formulation of Ethambutol with Graphene Oxide. Molecules, 2017, 22, 1560.	3.8	25
151	Nanoparticlesâ€"Emerging Potential for Managing Leukemia and Lymphoma. Frontiers in Bioengineering and Biotechnology, 2017, 5, 79.	4.1	63
152	Tumor Microenvironment on a Chip: The Progress and Future Perspective. Bioengineering, 2017, 4, 64.	3.5	56
153	Nanomedicine Strategies to Target Tumor-Associated Macrophages. International Journal of Molecular Sciences, 2017, 18, 979.	4.1	79
154	Recent Successes and Future Directions in Immunotherapy of Cutaneous Melanoma. Frontiers in Immunology, 2017, 8, 1617.	4.8	43
155	The elF4E2-Directed Hypoxic Cap-Dependent Translation Machinery Reveals Novel Therapeutic Potential for Cancer Treatment. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-12.	4.0	20
156	Theranostic Probes for Targeting Tumor Microenvironment: An Overview. International Journal of Molecular Sciences, 2017, 18, 1036.	4.1	43
157	Bioengineering of Artificial Antigen Presenting Cells and Lymphoid Organs. Theranostics, 2017, 7, 3504-3516.	10.0	54
158	Enhancing siRNA-based cancer therapy using a new pH-responsive activatable cell-penetrating peptide-modified liposomal system. International Journal of Nanomedicine, 2017, Volume 12, 2385-2405.	6.7	56
159	Surface-enhanced Raman scattering investigation of targeted delivery and controlled release of gemcitabine. International Journal of Nanomedicine, 2017, Volume 12, 7763-7776.	6.7	28
160	Assessment of gold nanoparticles on human peripheral blood cells by metabolic profiling with 1H-NMR spectroscopy, a novel translational approach on a patient-specific basis. PLoS ONE, 2017, 12, e0182985.	2.5	11
161	A New Approach to Deliver Anti-cancer Nanodrugs with Reduced Off-target Toxicities and Improved Efficiency by Temporarily Blunting the Reticuloendothelial System with Intralipid. Scientific Reports, 2017, 7, 16106.	3.3	20
162	Mithramycin-loaded mPEG-PLGA nanoparticles exert potent antitumor efficacy against pancreatic carcinoma. International Journal of Nanomedicine, 2017, Volume 12, 5255-5269.	6.7	23

#	Article	IF	Citations
163	Emerging Advances in Nanotheranostics with Intelligent Bioresponsive Systems. Theranostics, 2017, 7, 3915-3919.	10.0	48
164	CO ₂ -based amphiphilic polycarbonate micelles enable a reliable and efficient platform for tumor imaging. Theranostics, 2017, 7, 4689-4698.	10.0	23
165	Systemic toxicity induced by aggregated layered double hydroxide nanoparticles. International Journal of Nanomedicine, 2017, Volume 12, 7183-7195.	6.7	12
166	α _v β ₃ integrin-targeted micellar mertansine prodrug effectively inhibits triple-negative breast cancer in vivo. International Journal of Nanomedicine, 2017, Volume 12, 7913-7921.	6.7	24
167	Surface De-PEGylation Controls Nanoparticle-Mediated siRNA Delivery <i>In Vitro</i> and <i>In Vivo</i> Theranostics, 2017, 7, 1990-2002.	10.0	81
168	The Potential of Zebrafish as a Model Organism for Improving the Translation of Genetic Anticancer Nanomedicines. Genes, 2017, 8, 349.	2.4	27
169	Margination of Fluorescent Polylactic Acid–Polyaspartamide based Nanoparticles in Microcapillaries In Vitro: the Effect of Hematocrit and Pressure. Molecules, 2017, 22, 1845.	3.8	3
170	Be Active or Not: the Relative Contribution of Active and Passive Tumor Targeting of Nanomaterials. Nanotheranostics, 2017, 1, 346-357.	5.2	76
171	Bionanomedicine: A "Panacea―In Medicine?. Makara Journal of Health Research, 2017, 21, .	0.1	2
172	An efficient synergistic cancer therapy by integrating cell cycle inhibitor and photosensitizer into polydopamine nanoparticles. Journal of Materials Chemistry B, 2018, 6, 2620-2629.	5.8	16
173	Follicle-stimulating hormone peptide-conjugated nanoparticles for targeted shRNA delivery lead to effective gro-1± silencing and antitumor activity against ovarian cancer. Drug Delivery, 2018, 25, 576-584.	5.7	21
174	Copper oxide loaded PLGA nanospheres: towards a multifunctional nanoscale platform for ultrasound-based imaging and therapy. Nanotechnology, 2018, 29, 185102.	2.6	16
175	Recent Advances of Membrane-Cloaked Nanoplatforms for Biomedical Applications. Bioconjugate Chemistry, 2018, 29, 838-851.	3.6	49
176	Self-Templated, Green-Synthetic, Size-Controlled Protein Nanoassembly as a Robust Nanoplatform for Biomedical Application. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11457-11466.	8.0	28
177	Y1 receptor ligand-based nanomicelle as a novel nanoprobe for glioma-targeted imaging and therapy. Nanoscale, 2018, 10, 5845-5851.	5.6	14
178	Lightâ€Triggered Retention and Cascaded Therapy of Albuminâ€Based Theranostic Nanomedicines to Alleviate Tumor Adaptive Treatment Tolerance. Advanced Functional Materials, 2018, 28, 1707291.	14.9	68
179	Label-free in-flow detection of receptor recognition motifs on the biomolecular corona of nanoparticles. Nanoscale, 2018, 10, 5474-5481.	5.6	27
180	Enzyme Degradable Hyperbranched Polyphosphoester Micellar Nanomedicines for NIR Imaging-Guided Chemo-Photothermal Therapy of Drug-Resistant Cancers. Biomacromolecules, 2018, 19, 1130-1141.	5.4	28

#	Article	IF	CITATIONS
181	Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chemical Society Reviews, 2018, 47, 3574-3620.	38.1	352
182	Direct and effective preparation of core-shell PCL/PEG nanoparticles based on shell insertion strategy by using coaxial electrospray. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547, 1-7.	4.7	15
183	Intracellularly Activatable Nanovasodilators To Enhance Passive Cancer Targeting Regime. Nano Letters, 2018, 18, 2637-2644.	9.1	71
184	Extracellular vesicles as a platform for membraneâ€associated therapeutic protein delivery. Journal of Extracellular Vesicles, 2018, 7, 1440131.	12.2	168
185	Influence of supramolecular layer-crosslinked structure on stability of dual pH-Responsive polymer nanoparticles for doxorubicin delivery. Journal of Drug Delivery Science and Technology, 2018, 45, 81-92.	3.0	8
186	Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry: Basic Principles, Strategies, and Applications. Accounts of Chemical Research, 2018, 51, 778-788.	15.6	77
187	Understanding the Effects of Nanocapsular Mechanical Property on Passive and Active Tumor Targeting. ACS Nano, 2018, 12, 2846-2857.	14.6	126
188	Precision nanomedicines for prostate cancer. Nanomedicine, 2018, 13, 803-807.	3.3	7
189	Role of Surface Tension in Gas Nanobubble Stability Under Ultrasound. ACS Applied Materials & Amp; Interfaces, 2018, 10, 9949-9956.	8.0	52
190	Cargo-free particles of ammonio methacrylate copolymers: From pharmaceutical inactive ingredients to effective anticancer immunotherapeutics. Biomaterials, 2018, 166, 1-12.	11.4	9
191	Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics. Applied Radiation and Isotopes, 2018, 141, 182-186.	1.5	15
192	Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. Journal of Controlled Release, 2018, 277, 1-13.	9.9	214
193	Near-Infrared Fluorescent Dye-Decorated Nanocages to Form Grenade-like Nanoparticles with Dual Control Release for Photothermal Theranostics and Chemotherapy. Bioconjugate Chemistry, 2018, 29, 1384-1398.	3.6	14
194	Magnetic nanoparticles based cancer therapy: current status and applications. Science China Life Sciences, 2018, 61, 400-414.	4.9	74
195	Highly penetrative liposome nanomedicine generated by a biomimetic strategy for enhanced cancer chemotherapy. Biomaterials Science, 2018, 6, 1546-1555.	5.4	34
196	Facile preparation of multifunctionalisable  stealth' upconverting nanoparticles for biomedical applications. Dalton Transactions, 2018, 47, 8595-8604.	3.3	26
197	A polypeptide based podophyllotoxin conjugate for the treatment of multi drug resistant breast cancer with enhanced efficiency and minimal toxicity. Acta Biomaterialia, 2018, 73, 388-399.	8.3	40
198	Towards tailored management of malignant brain tumors with nanotheranostics. Acta Biomaterialia, 2018, 73, 52-63.	8.3	15

#	Article	IF	CITATIONS
199	Targeted-gene silencing of BRAF to interrupt BRAF/MEK/ERK pathway synergized photothermal therapeutics for melanoma using a novel FA-GNR-siBRAF nanosystem. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1679-1693.	3.3	16
200	Molecularly precise self-assembly of theranostic nanoprobes within a single-molecular framework for <i>in vivo</i> tracking of tumor-specific chemotherapy. Chemical Science, 2018, 9, 4959-4969.	7.4	81
201	A Dual Immunotherapy Nanoparticle Improves T ell Activation and Cancer Immunotherapy. Advanced Materials, 2018, 30, e1706098.	21.0	130
202	Comparison of Linear and Hyperbranched Polyether Lipids for Liposome Shielding by ¹⁸ F-Radiolabeling and Positron Emission Tomography. Biomacromolecules, 2018, 19, 2506-2516.	5.4	20
203	Engineering Proteins at Interfaces: From Complementary Characterization to Material Surfaces with Designed Functions. Angewandte Chemie - International Edition, 2018, 57, 12626-12648.	13.8	40
204	Engineering von Proteinen an OberflÄchen: Von komplementÄrer Charakterisierung zu MaterialoberflÄchen mit maÄŸgeschneiderten Funktionen. Angewandte Chemie, 2018, 130, 12806-12830.	2.0	3
205	Bromelain-immobilized and lactobionic acid-modified chitosan nanoparticles for enhanced drug penetration in tumor tissues. International Journal of Biological Macromolecules, 2018, 115, 129-142.	7.5	37
206	Remoteâ€Loaded Platelet Vesicles for Diseaseâ€Targeted Delivery of Therapeutics. Advanced Functional Materials, 2018, 28, 1801032.	14.9	64
207	Nanoenzyme-Augmented Cancer Sonodynamic Therapy by Catalytic Tumor Oxygenation. ACS Nano, 2018, 12, 3780-3795.	14.6	437
208	A Comparative In Vivo Study of Albuminâ€Coated Paclitaxel Nanocrystals and Abraxane. Small, 2018, 14, e1703670.	10.0	47
209	Organic Dye Based Nanoparticles for Cancer Phototheranostics. Small, 2018, 14, e1704247.	10.0	226
210	Heterogeneity in VEGFR3 levels drives lymphatic vessel hyperplasia through cell-autonomous and non-cell-autonomous mechanisms. Nature Communications, 2018, 9, 1296.	12.8	45
211	pH protective Y1 receptor ligand functionalized antiphagocytosis BPLP-WPU micelles for enhanced tumor imaging and therapy with prolonged survival time. Biomaterials, 2018, 170, 70-81.	11.4	45
212	Effective cancer immunotherapy in mice by polyIC-imiquimod complexes and engineered magnetic nanoparticles. Biomaterials, 2018, 170, 95-115.	11.4	81
213	Perfluorocarbon-based nanomedicine: emerging strategy for diagnosis and treatment of diseases. MRS Communications, 2018, 8, 303-313.	1.8	23
214	Photo- and Reduction-Responsive Polymersomes for Programmed Release of Small and Macromolecular Payloads. Biomacromolecules, 2018, 19, 2071-2081.	5.4	54
215	Cell Membrane Coating Nanotechnology. Advanced Materials, 2018, 30, e1706759.	21.0	1,100
216	Quantifying the Sub ellular Distributions of Gold Nanospheres Taken Up by Cells through Stepwise, Siteâ€Selective Etching. Chemistry - A European Journal, 2018, 24, 8513-8518.	3.3	4

#	Article	IF	Citations
217	Magnetic Mesoporous Silica Gated with Doped Carbon Dot for Site-Specific Drug Delivery, Fluorescence, and MR Imaging. Langmuir, 2018, 34, 5253-5262.	3.5	39
218	Orthogonal Clickable Iron Oxide Nanoparticle Platform for Targeting, Imaging, and Onâ€Demand Release. Chemistry - A European Journal, 2018, 24, 8624-8631.	3.3	13
219	Coating with Microbial Hydrophobins: A Novel Approach to Develop Smart Drug Nanoparticles. Trends in Biotechnology, 2018, 36, 1103-1106.	9.3	25
220	Progress and challenges towards targeted delivery of cancer therapeutics. Nature Communications, 2018, 9, 1410.	12.8	1,488
221	Bevacizumab and near infrared probe conjugated iron oxide nanoparticles for vascular endothelial growth factor targeted MR and optical imaging. Biomaterials Science, 2018, 6, 1517-1525.	5.4	32
222	Induction of necrotic cell death and activation of STING in the tumor microenvironment <i>via</i> cationic silica nanoparticles leading to enhanced antitumor immunity. Nanoscale, 2018, 10, 9311-9319.	5.6	77
223	Reduction-responsive core-crosslinked hyaluronic acid-b-poly(trimethylene carbonate-co-dithiolane) Tj ETQq0 0 0 r negative breast tumor in vivo. Journal of Materials Chemistry B, 2018, 6, 3040-3047.	rgBT /Overl 5.8	lock 10 Tf 50 27
224	New Strategies in the Design of Nanomedicines to Oppose Uptake by the Mononuclear Phagocyte System and Enhance Cancer Therapeutic Efficacy. Chemistry - an Asian Journal, 2018, 13, 3333-3340.	3.3	51
225	Tumorâ€Specific Selfâ€Degradable Nanogels as Potential Carriers for Systemic Delivery of Anticancer Proteins. Advanced Functional Materials, 2018, 28, 1707371.	14.9	85
226	Redox-responsive micelles for triggered drug delivery and effective laryngopharyngeal cancer therapy. International Journal of Biological Macromolecules, 2018, 112, 65-73.	7.5	36
227	Glucose & Clucose & Comparison of the Comparison	11.4	196
228	Lipopepsomes: A novel and robust family of nano-vesicles capable of highly efficient encapsulation and tumor-targeted delivery of doxorubicin hydrochloride in vivo. Journal of Controlled Release, 2018, 272, 107-113.	9.9	43
229	A photosensitive liposome with NIR light triggered doxorubicin release as a combined photodynamic-chemo therapy system. Journal of Controlled Release, 2018, 277, 114-125.	9.9	92
230	Design of bright near-infrared-emitting quantum dots capped with different stabilizing ligands for tumor targeting. RSC Advances, 2018, 8, 4221-4229.	3.6	8
231	Cell membrane-coated nanocarriers: the emerging targeted delivery system for cancer theranostics. Drug Discovery Today, 2018, 23, 891-899.	6.4	112
232	Folate-Conjugated Polyphosphoester with Reversible Cross-Linkage and Reduction Sensitivity for Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 7811-7820.	8.0	39
233	Recent advances in anti-angiogenic nanomedicines for cancer therapy. Nanoscale, 2018, 10, 5393-5423.	5.6	69
234	Highly stable molybdenum dioxide nanoparticles with strong plasmon resonance are promising in photothermal cancer therapy. Biomaterials, 2018, 163, 43-54.	11.4	56

#	Article	IF	CITATIONS
235	Using immunotherapy to boost the abscopal effect. Nature Reviews Cancer, 2018, 18, 313-322.	28.4	844
236	An Intracellular H ₂ O ₂ â€Responsive AlEgen for the Peroxidaseâ€Mediated Selective Imaging and Inhibition of Inflammatory Cells. Angewandte Chemie - International Edition, 2018, 57, 3123-3127.	13.8	197
237	Advanced architectures in the design of responsive polymers for cancer nanomedicine. Journal of Applied Polymer Science, 2018, 135, 46154.	2.6	50
238	An Intracellular H ₂ O ₂ â€Responsive AlEgen for the Peroxidaseâ€Mediated Selective Imaging and Inhibition of Inflammatory Cells. Angewandte Chemie, 2018, 130, 3177-3181.	2.0	19
239	Current Status of Nonviral Vectors for Gene Therapy in China. Human Gene Therapy, 2018, 29, 110-120.	2.7	16
240	Integrated Multifunctional Micelles Coâ€6elfâ€Assembled from Polypeptides Conjugated with Natural Ferulic Acid and Lipoic Acid for Doxorubicin Delivery. ChemPhysChem, 2018, 19, 2070-2077.	2.1	14
241	Leukocyte-derived biomimetic nanoparticulate drug delivery systems for cancer therapy. Acta Pharmaceutica Sinica B, 2018, 8, 4-13.	12.0	65
242	Synthesis of Cisplatin(IV) Prodrug-Tethered CuFeS ₂ Nanoparticles in Tumor-Targeted Chemotherapy and Photothermal Therapy. ACS Applied Materials & Diterfaces, 2018, 10, 4590-4602.	8.0	54
243	Controlled synthesis and size effects of multifunctional mesoporous silica nanosystem for precise cancer therapy. Drug Delivery, 2018, 25, 293-306.	5.7	42
244	Preoccupation of Empty Carriers Decreases Endo-/Lysosome Escape and Reduces the Protein Delivery Efficiency of Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 5340-5347.	8.0	29
245	Dual Drug Backboned Shattering Polymeric Theranostic Nanomedicine for Synergistic Eradication of Patientâ€Derived Lung Cancer. Advanced Materials, 2018, 30, 1706220.	21.0	142
246	Nanotherapeutics in oral and parenteral drug delivery: Key learnings and future outlooks as we think small. Journal of Controlled Release, 2018, 272, 159-168.	9.9	55
247	Intracellular Mechanistic Understanding of 2D MoS ₂ Nanosheets for Anti-Exocytosis-Enhanced Synergistic Cancer Therapy. ACS Nano, 2018, 12, 2922-2938.	14.6	188
248	Reduction-sensitive fluorescence enhanced polymeric prodrug nanoparticles for combinational photothermal-chemotherapy. Biomaterials, 2018, 163, 14-24.	11.4	109
249	Nanoparticle-enabled delivery of surfactants in porous media. Journal of Colloid and Interface Science, 2018, 519, 44-57.	9.4	51
250	Intracellular drug delivery: Potential usefulness of engineered Shiga toxin subunit B for targeted cancer therapy. Biotechnology Advances, 2018, 36, 613-623.	11.7	34
251	Chemical Design of Both a Glutathione-Sensitive Dimeric Drug Guest and a Glucose-Derived Nanocarrier Host to Achieve Enhanced Osteosarcoma Lung Metastatic Anticancer Selectivity. Journal of the American Chemical Society, 2018, 140, 1438-1446.	13.7	94
252	Biomimetic Nanosponges for Treating Antibody-Mediated Autoimmune Diseases. Bioconjugate Chemistry, 2018, 29, 870-877.	3.6	12

#	Article	IF	CITATIONS
253	Recent advances in cell-mediated nanomaterial delivery systems for photothermal therapy. Journal of Materials Chemistry B, 2018, 6, 1296-1311.	5.8	22
254	Engineering Multifunctional RNAi Nanomedicine To Concurrently Target Cancer Hallmarks for Combinatorial Therapy. Angewandte Chemie - International Edition, 2018, 57, 1510-1513.	13.8	168
255	Optimization and comparison of CD4â€targeting lipid–polymer hybrid nanoparticles using different binding ligands. Journal of Biomedical Materials Research - Part A, 2018, 106, 1177-1188.	4.0	12
256	Self-immolative chemistry in nanomedicine. Chemical Engineering Journal, 2018, 340, 24-31.	12.7	37
257	Engineering Multifunctional RNAi Nanomedicine To Concurrently Target Cancer Hallmarks for Combinatorial Therapy. Angewandte Chemie, 2018, 130, 1526-1529.	2.0	29
258	Tumor Microenvironmentâ€Enabled Nanotherapy. Advanced Healthcare Materials, 2018, 7, e1701156.	7.6	158
259	Translation of combination nanodrugs into nanomedicines: lessons learned and future outlook. Journal of Drug Targeting, 2018, 26, 435-447.	4.4	26
260	Enhanced anti-hepatocarcinoma efficacy by GLUT1 targeting and cellular microenvironment-responsive PAMAM–camptothecin conjugate. Drug Delivery, 2018, 25, 153-165.	5.7	27
261	Inhibit or Evade Multidrug Resistance P-Glycoprotein in Cancer Treatment. Journal of Medicinal Chemistry, 2018, 61, 5108-5121.	6.4	260
262	Entry of nanoparticles into cells: the importance of nanoparticle properties. Polymer Chemistry, 2018, 9, 259-272.	3.9	294
263	pH-sensitive micelles with charge-reversible property for tumor growth inhibition and anti-metastasis. Journal of Materials Chemistry B, 2018, 6, 458-468.	5.8	9
264	Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care. ACS Nano, 2018, 12, 24-43.	14.6	192
265	Smart Nanoparticles Undergo Phase Transition for Enhanced Cellular Uptake and Subsequent Intracellular Drug Release in a Tumor Microenvironment. ACS Applied Materials & Interfaces, 2018, 10, 278-289.	8.0	27
266	High Drug Loading and Sub-Quantitative Loading Efficiency of Polymeric Micelles Driven by Donor–Receptor Coordination Interactions. Journal of the American Chemical Society, 2018, 140, 1235-1238.	13.7	236
267	Cell Membrane Bioconjugation and Membrane-Derived Nanomaterials for Immunotherapy. Bioconjugate Chemistry, 2018, 29, 624-634.	3.6	37
268	Nitric Oxide Dependent Degradation of Polyethylene Glycolâ€Modified Singleâ€Walled Carbon Nanotubes: Implications for Intraâ€Articular Delivery. Advanced Healthcare Materials, 2018, 7, e1700916.	7.6	14
269	Recent trends of nanomedicinal approaches in clinics. International Journal of Pharmaceutics, 2018, 538, 263-278.	5.2	77
270	Modulating Phagocytic Cell Sequestration by Tailoring Nanoconstruct Softness. ACS Nano, 2018, 12, 1433-1444.	14.6	89

#	Article	IF	CITATIONS
271	Physiologically stable F127-GO supramolecular hydrogel with sustained drug release characteristic for chemotherapy and photothermal therapy. RSC Advances, 2018, 8, 1693-1699.	3.6	19
272	Nanomedicine development guided by FRET imaging. Nano Today, 2018, 18, 124-136.	11.9	59
273	Red Blood Cells as Smart Delivery Systems. Bioconjugate Chemistry, 2018, 29, 852-860.	3.6	144
274	Molecular Scale Insights into Activity of Polyoxometalate as Membrane-Targeting Nanomedicine from Single-Molecule Observations. Journal of Physical Chemistry C, 2018, 122, 1404-1411.	3.1	15
275	NIR-responsive cancer cytomembrane-cloaked carrier-free nanosystems for highly efficient and self-targeted tumor drug delivery. Biomaterials, 2018, 159, 25-36.	11.4	111
276	Near-Infrared Cyanine-Loaded Liposome-like Nanocapsules of Camptothecin–Floxuridine Conjugate for Enhanced Chemophotothermal Combination Cancer Therapy. ACS Applied Materials & Interfaces, 2018, 10, 3219-3228.	8.0	42
277	Potential anticancer activity of biogenic silver nanoparticles using leaf extract of <i>Rhynchosia suaveolens</i> : an insight into the mechanism. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 104-114.	2.8	67
278	Effect of XlogP and Hansen Solubility Parameters on Small Molecule Modified Paclitaxel Anticancer Drug Conjugates Self-Assembled into Nanoparticles. Bioconjugate Chemistry, 2018, 29, 437-444.	3.6	22
279	Mannose and Mannoseâ€6â€Phosphate Receptor–Targeted Drug Delivery Systems and Their Application in Cancer Therapy. Advanced Healthcare Materials, 2018, 7, e1701398.	7.6	62
280	Bilirubin Nanoparticle-Assisted Delivery of a Small Molecule-Drug Conjugate for Targeted Cancer Therapy. Biomacromolecules, 2018, 19, 2270-2277.	5.4	41
281	Reduction/photo dual-responsive polymeric prodrug nanoparticles for programmed siRNA and doxorubicin delivery. Biomaterials Science, 2018, 6, 1457-1468.	5.4	51
282	Carbon coated core–shell multifunctional fluorescent SPIONs. Nanoscale, 2018, 10, 10389-10394.	5.6	24
283	Reverse-engineered silk hydrogels for cell and drug delivery. Therapeutic Delivery, 2018, 9, 469-487.	2.2	36
284	PEGylated carbon dot/MnO2 nanohybrid: a new pH/H2O2-driven, turn-on cancer nanotheranostics. Science China Materials, 2018, 61, 1325-1338.	6.3	44
285	Folic acid modified cell membrane capsules encapsulating doxorubicin and indocyanine green for highly effective combinational therapy in vivo. Acta Biomaterialia, 2018, 74, 374-384.	8.3	40
286	An autonomous tumor-targeted nanoprodrug for reactive oxygen species-activatable dual-cytochrome c/doxorubicin antitumor therapy. Nanoscale, 2018, 10, 11418-11429.	5.6	43
287	Nano-Photothermal ablation effect of Hydrophilic and Hydrophobic Functionalized Gold Nanorods on Staphylococcus aureus and Propionibacterium acnes. Scientific Reports, 2018, 8, 6881.	3.3	48
288	Direct surface-enhanced Raman scattering (SERS) spectroscopy of nucleic acids: from fundamental studies to real-life applications. Chemical Society Reviews, 2018, 47, 4909-4923.	38.1	180

#	ARTICLE	IF	CITATIONS
289	Repolarization of Tumor-Associated Macrophages in a Genetically Engineered Nonsmall Cell Lung Cancer Model by Intraperitoneal Administration of Hyaluronic Acid-Based Nanoparticles Encapsulating MicroRNA-125b. Nano Letters, 2018, 18, 3571-3579.	9.1	196
290	Synergistic effect of shape-selective silver nanostructures decorating reduced graphene oxide nanoplatelets for enhanced cytotoxicity against breast cancer. Nanotechnology, 2018, 29, 285102.	2.6	5
291	Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy – an illustration with firsthand examples. Acta Pharmacologica Sinica, 2018, 39, 825-844.	6.1	85
292	Multivalent Binding of a Ligand-Coated Particle: Role of Shape, Size, and Ligand Heterogeneity. Biophysical Journal, 2018, 114, 1830-1846.	0.5	27
293	Translating Current Bioanalytical Techniques for Studying Corona Activity. Trends in Biotechnology, 2018, 36, 661-672.	9.3	10
294	Nanoinformatics Revolutionizes Personalized Cancer Therapy. Trends in Cancer, 2018, 4, 397-399.	7.4	5
295	Preparation of PEGylated Iodineâ€Loaded Nanoparticles via Polymerâ€Directed Selfâ€Assembly. Macromolecular Chemistry and Physics, 2018, 219, 1700592.	2,2	5
296	Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery. Nanoscale, 2018, 10, 8413-8421.	5.6	22
297	Reduction-active polymeric prodrug micelles based on \hat{l}_{\pm} -cyclodextrin polyrotaxanes for triggered drug release and enhanced cancer therapy. Carbohydrate Polymers, 2018, 193, 153-162.	10.2	34
298	Self-assembled nanomicelles of amphiphilic clotrimazole glycyl-glycine analogue augmented drug delivery, apoptosis and restrained melanoma tumour progression. Materials Science and Engineering C, 2018, 89, 75-86.	7.3	11
299	Cell-based assay for characterizing cell adhesion properties of active targeted nanoparticles under static and flow condition using an integrated flow chamber. Journal of Drug Delivery Science and Technology, 2018, 45, 296-302.	3.0	0
300	Biomimetic Targeting of Nanoparticles to Immune Cell Subsets via Cognate Antigen Interactions. Molecular Pharmaceutics, 2018, 15, 3723-3728.	4.6	23
301	Quantification of ligand density and stoichiometry on the surface of liposomes using single-molecule fluorescence imaging. Journal of Controlled Release, 2018, 278, 80-86.	9.9	25
302	A Universal Approach to Render Nanomedicine with Biological Identity Derived from Cell Membranes. Biomacromolecules, 2018, 19, 2043-2052.	5.4	22
303	π-Extended Benzoporphyrin-Based Metal–Organic Framework for Inhibition of Tumor Metastasis. ACS Nano, 2018, 12, 4630-4640.	14.6	136
304	Simulation of Stimuli-Responsive and Stoichiometrically Controlled Release Rate of Doxorubicin from Liposomes in Tumor Interstitial Fluid. Pharmaceutical Research, 2018, 35, 103.	3.5	4
305	(Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures. Nanoscale, 2018, 10, 7494-7504.	5.6	70
306	Self-assembled nanodiamond supraparticles for anticancer chemotherapy. Nanoscale, 2018, 10, 8969-8978.	5.6	24

#	Article	IF	CITATIONS
307	Aqueous-Soluble, Acid-Transforming Chitosan for Efficient and Stimuli-Responsive Gene Silencing. Biomacromolecules, 2018, 19, 1508-1516.	5.4	25
308	Nearâ€Infraredâ€Lightâ€Activatable Nanomaterialâ€Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment. Advanced Materials, 2018, 30, e1706320.	21.0	414
309	Material Chemistry of Two-Dimensional Inorganic Nanosheets in Cancer Theranostics. CheM, 2018, 4, 1284-1313.	11.7	132
310	Phosphorylcholine-Based Stealthy Nanocapsules Decorating TPGS for Combatting Multi-Drug-Resistant Cancer. ACS Biomaterials Science and Engineering, 2018, 4, 1679-1686.	5.2	7
311	Hierarchical Nanoassemblies-Assisted Combinational Delivery of Cytotoxic Protein and Antibiotic for Cancer Treatment. Nano Letters, 2018, 18, 2294-2303.	9.1	71
312	Debugging Nano–Bio Interfaces: Systematic Strategies to Accelerate Clinical Translation of Nanotechnologies. Trends in Biotechnology, 2018, 36, 755-769.	9.3	145
313	Single- and two-photon imaging of human micrometastases and disseminated tumour cells with conjugates of nanobodies and quantum dots. Scientific Reports, 2018, 8, 4595.	3.3	34
314	Environment-stimulated nanocarriers enabling multi-active sites for high drug encapsulation as an "on demand―drug release system. Journal of Materials Chemistry B, 2018, 6, 2258-2273.	5.8	19
315	NanoTRAILâ€Oncology: A Strategic Approach in Cancer Research and Therapy. Advanced Healthcare Materials, 2018, 7, e1800053.	7.6	9
316	Targeting epigenetic pathway with gold nanoparticles for acute myeloid leukemia therapy. Biomaterials, 2018, 167, 80-90.	11.4	83
317	Size shrinkable drug delivery nanosystems and priming the tumor microenvironment for deep intratumoral penetration of nanoparticles. Journal of Controlled Release, 2018, 277, 35-47.	9.9	113
318	Effect of Cell Sex on Uptake of Nanoparticles: The Overlooked Factor at the Nanobio Interface. ACS Nano, 2018, 12, 2253-2266.	14.6	87
319	Bridging the Knowledge of Different Worlds to Understand the Big Picture of Cancer Nanomedicines. Advanced Healthcare Materials, 2018, 7, 1700432.	7.6	30
320	The acidic tumor microenvironment: a target for smart cancer nano-theranostics. National Science Review, 2018, 5, 269-286.	9.5	250
321	Evaluating Nanomedicines: Obstacles and Advancements. Methods in Molecular Biology, 2018, 1682, 3-16.	0.9	23
322	Efficient Uptake of ¹⁷⁷ Luâ€Porphyrinâ€PEG Nanocomplexes by Tumor Mitochondria for Multimodalâ€Imagingâ€Guided Combination Therapy. Angewandte Chemie - International Edition, 2018, 57, 218-222.	13.8	85
323	Cisplatin and doxorubicin high-loaded nanodrug based on biocompatible thioether- and ethane-bridged hollow mesoporous organosilica nanoparticles. Journal of Colloid and Interface Science, 2018, 513, 214-221.	9.4	28
324	Delivery of cisplatin by folic acid-targeted liposomal nanoparticles into liver cancer cell line. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 865-872.	3.4	7

#	Article	IF	Citations
325	Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy. Cancer Letters, 2018, 414, 57-70.	7.2	56
326	Targeting and isolation of cancer cells using micro/nanomotors. Advanced Drug Delivery Reviews, 2018, 125, 94-101.	13.7	125
327	Vincristine-loaded hydroxyapatite nanoparticles as a potential delivery system for bone cancer therapy. Journal of Drug Targeting, 2018, 26, 592-603.	4.4	33
328	Anomalous Vascular Dynamics of Nanoworms within Blood Flow. ACS Biomaterials Science and Engineering, 2018, 4, 66-77.	5.2	16
329	Efficient Uptake of ¹⁷⁷ Luâ€Porphyrinâ€PEG Nanocomplexes by Tumor Mitochondria for Multimodalâ€Imagingâ€Guided Combination Therapy. Angewandte Chemie, 2018, 130, 224-228.	2.0	10
330	Simultaneous Activation of Shortâ€Wave Infrared (SWIR) Light and Paramagnetism by a Functionalized Shell for High Penetration and Spatial Resolution Theranostics. Advanced Functional Materials, 2018, 28, 1705057.	14.9	29
331	Bioprosthesis of Core–Shell Gold Nanorod/Serum Albumin Nanoimitation: A Half-Native and Half-Artificial Nanohybrid for Cancer Theranostics. Chemistry of Materials, 2018, 30, 729-747.	6.7	18
332	Recent Advances in Managing Atherosclerosis via Nanomedicine. Small, 2018, 14, 1702793.	10.0	87
333	Ultrasound-mediated cavitation-enhanced extravasation of mesoporous silica nanoparticles for controlled-release drug delivery. Chemical Engineering Journal, 2018, 340, 2-8.	12.7	77
334	Acidity-triggered TAT-presenting nanocarriers augment tumor retention and nuclear translocation of drugs. Nano Research, 2018, 11, 5716-5734.	10.4	27
335	Titaniaâ€Coated Gold Nanoâ€Bipyramids for Blocking Autophagy Flux and Sensitizing Cancer Cells to Proteasome Inhibitorâ€Induced Death. Advanced Science, 2018, 5, 1700585.	11.2	50
336	Ultrafast charge-conversional nanocarrier for tumor-acidity-activated targeted drug elivery. Biomaterials Science, 2018, 6, 350-355.	5.4	21
337	Comparative Study of In Situ Loaded Antibody and PEGâ€Fab NIPAAM Gels. Macromolecular Bioscience, 2018, 18, 1700255.	4.1	16
338	Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. Biomaterials, 2018, 154, 147-157.	11.4	127
339	Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer. Drug Discovery Today, 2018, 23, 315-332.	6.4	59
340	Self-Assembled Hybrid Nanostructures: Versatile Multifunctional Nanoplatforms for Cancer Diagnosis and Therapy. Chemistry of Materials, 2018, 30, 25-53.	6.7	83
341	Albumin/sulfonamide stabilized iron porphyrin metal organic framework nanocomposites: targeting tumor hypoxia by carbonic anhydrase IX inhibition and ⟨i>T⟨/i>⟨sub>1⟨/sub>–⟨i>T⟨/i>⟨sub>2⟨/sub> dual mode MRI guided photodynamic/photothermal therapy. Journal of Materials Chemistry B, 2018, 6, 265-276.	5.8	70
342	On the use of liposome controls in studies investigating the clinical potential of extracellular vesicle-based drug delivery systems – A commentary. Journal of Controlled Release, 2018, 269, 10-14.	9.9	66

#	Article	IF	CITATIONS
343	Fabrication of adenosine $5\hat{a}\in^2$ -triphosphate-capped silver nanoparticles: Enhanced cytotoxicity efficacy and targeting effect against tumor cells. Process Biochemistry, 2018, 65, 186-196.	3.7	16
344	Carboxymethyl dextran-based hypoxia-responsive nanoparticles for doxorubicin delivery. International Journal of Biological Macromolecules, 2018, 110, 399-405.	7.5	57
345	Potential Nanomedicine Applications of Multifunctional Carbon Nanoparticles Developed Using Green Technology. ACS Sustainable Chemistry and Engineering, 2018, 6, 1235-1245.	6.7	20
346	Remodeling the Tumor Microenvironment with Emerging Nanotherapeutics. Trends in Pharmacological Sciences, 2018, 39, 59-74.	8.7	171
347	Particle Targeting in Complex Biological Media. Advanced Healthcare Materials, 2018, 7, 1700575.	7.6	94
348	Nanoplumbers: biomaterials to fight cardiovascular diseases. Materials Today, 2018, 21, 122-143.	14.2	38
349	Forming next-generation antibody–nanoparticle conjugates through the oriented installation of non-engineered antibody fragments. Chemical Science, 2018, 9, 79-87.	7.4	79
350	Design-led 3D visualization of nanomedicines in virtual reality. , 2018, , .		1
351	Nanobubble Extravasation in Prostate Tumors Imaged with Ultrasound: Role of Active versus Passive Targeting. , $2018, \ldots$		11
352	Rational Design of Nanoparticles with Deep Tumor Penetration for Effective Treatment of Tumor Metastasis. Advanced Functional Materials, 2018, 28, 1801840.	14.9	112
353	Gasâ€Generating Nanoplatforms: Material Chemistry, Multifunctionality, and Gas Therapy. Advanced Materials, 2018, 30, e1801964.	21.0	225
354	Exogenous Physical Irradiation on Titania Semiconductors: Materials Chemistry and Tumorâ€Specific Nanomedicine. Advanced Science, 2018, 5, 1801175.	11.2	39
355	Mitochondria targeting IR780-based nanoGUMBOS for enhanced selective toxicity towards cancer cells. RSC Advances, 2018, 8, 31700-31709.	3.6	23
356	Enzymeâ€Powered Nanobots Enhance Anticancer Drug Delivery. Advanced Functional Materials, 2018, 28, 1705086.	14.9	207
357	Fluorinated polymeric micelles to overcome hypoxia and enhance photodynamic cancer therapy. Biomaterials Science, 2018, 6, 3096-3107.	5.4	53
358	Anti-EGFR lipid micellar nanoparticles co-encapsulating quantum dots and paclitaxel for tumor-targeted theranosis. Nanoscale, 2018, 10, 19338-19350.	5.6	45
359	Engineering docetaxel-loaded micelles for non-small cell lung cancer: a comparative study of microfluidic and bulk nanoparticle preparation. RSC Advances, 2018, 8, 31950-31966.	3.6	28
360	A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1–insensitive models of triple-negative breast cancer. JCI Insight, 2018, 3, .	5.0	175

#	Article	IF	CITATIONS
361	Continuous low-dose infusion of patupilone increases the therapeutic index in mouse and rat tumour models. Anti-Cancer Drugs, 2018, 29, 691-701.	1.4	1
362	Novel 'Stereoscopic Response' Strategy Can Be Used in Combination Therapy. Critical Reviews in Therapeutic Drug Carrier Systems, 2018, 35, 369-390.	2.2	2
363	Laser-Induced Transformable BiS@HSA/DTX Multiple Nanorods for Photoacoustic/Computed Tomography Dual-Modal Imaging Guided Photothermal/Chemo Combinatorial Anticancer Therapy. ACS Applied Materials & Diterfaces, 2018, 10, 41167-41177.	8.0	16
364	pH-sensitive PEGylation of RIPL peptide-conjugated nanostructured lipid carriers: design and in vitro evaluation. International Journal of Nanomedicine, 2018, Volume 13, 6661-6675.	6.7	15
365	Quinic Acidâ€Conjugated Nanoparticles Enhance Drug Delivery to Solid Tumors via Interactions with Endothelial Selectins. Small, 2018, 14, e1803601.	10.0	25
366	Predicting drug delivery efficiency into tumor tissues through molecular simulation of transport in complex vascular networks. Journal of Controlled Release, 2018, 292, 221-234.	9.9	15
367	Distinction Between Active and Passive Targeting of Nanoparticles Dictate Their Overall Therapeutic Efficacy. Langmuir, 2018, 34, 15343-15349.	3.5	120
368	Amphiphilic Drug Conjugates as Nanomedicines for Combined Cancer Therapy. Bioconjugate Chemistry, 2018, 29, 3967-3981.	3.6	59
369	A high therapeutic efficacy of polymeric prodrug nano-assembly for a combination of photodynamic therapy and chemotherapy. Communications Biology, 2018, 1, 202.	4.4	81
370	Augmented tumor accumulation and photothermal ablation using gold nanoparticles with a particular cellular entry orientation. Journal of Bioactive and Compatible Polymers, 2018, 33, 660-675.	2.1	1
371	Size-Controlled Synthesis of Drug-Loaded Zeolitic Imidazolate Framework in Aqueous Solution and Size Effect on Their Cancer Theranostics in Vivo. ACS Applied Materials & Samp; Interfaces, 2018, 10, 42165-42174.	8.0	67
372	pH-Sensitive Hydrazone-Linked Doxorubicin Nanogels via Polymeric-Activated Ester Scaffolds: Synthesis, Assembly, and In Vitro and In Vivo Evaluation in Tumor-Bearing Zebrafish. Chemistry of Materials, 2018, 30, 8587-8596.	6.7	28
373	Sonopermeation to improve drug delivery to tumors: from fundamental understanding to clinical translation. Expert Opinion on Drug Delivery, 2018, 15, 1249-1261.	5.0	76
374	The π–π stacking-guided supramolecular self-assembly of nanomedicine for effective delivery of antineoplastic therapies. Nanomedicine, 2018, 13, 3159-3177.	3.3	38
375	PLGA-Based Nanoparticles in Cancer Treatment. Frontiers in Pharmacology, 2018, 9, 1260.	3.5	372
376	Targeted Nanomedicine to Treat Bone Metastasis. Pharmaceutics, 2018, 10, 205.	4.5	38
377	Epidermal Growth Factor Receptor-Targeting Peptide Nanoparticles Simultaneously Deliver Gemcitabine and Olaparib To Treat Pancreatic Cancer with <i>Breast Cancer 2</i> (<i>BRCA2</i>) Mutation. ACS Nano, 2018, 12, 10785-10796.	14.6	77
378	How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation. Nature Biomedical Engineering, 2018, 2, 797-809.	22.5	99

#	Article	IF	CITATIONS
379	Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy. Nature Communications, 2018, 9, 5306.	12.8	55
380	P-glycoprotein-targeted photodynamic therapy boosts cancer nanomedicine by priming tumor microenvironment. Theranostics, 2018, 8, 6274-6290.	10.0	34
381	Antibody conjugated nanoparticles as a novel form of antibody drug conjugate chemotherapy. Drug Discovery Today: Technologies, 2018, 30, 63-69.	4.0	61
382	A Robust Nanoparticle Platform for RNA Interference in Macrophages to Suppress Tumor Cell Migration. Frontiers in Pharmacology, 2018, 9, 1465.	3.5	13
383	Modular Nanoparticulate Prodrug Design Enables Efficient Treatment of Solid Tumors Using Bioorthogonal Activation. ACS Nano, 2018, 12, 12814-12826.	14.6	72
384	Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Research Letters, 2018, 13, 339.	5.7	872
385	Natural Products as Sources of Anticancer Agents: Current Approaches and Perspectives. , 2018, , 309-331.		10
386	Nanoparticles targeting extra domain B of fibronectin-specific to the atherosclerotic lesion types III, IV, and V-enhance plaque detection and cargo delivery. Theranostics, 2018, 8, 6008-6024.	10.0	19
387	Optimizing Antitumor Efficacy and Adverse Effects of Pegylated Liposomal Doxorubicin by Scheduled Plasmapheresis: Impact of Timing and Dosing. Current Drug Delivery, 2018, 15, 1261-1270.	1.6	8
388	Fabricating polydopamine-coated MoSe ₂ -wrapped hollow mesoporous silica nanoplatform for controlled drug release and chemo-photothermal therapy. International Journal of Nanomedicine, 2018, Volume 13, 7607-7621.	6.7	26
389	Quantitative Imaging of Tumor-Associated Macrophages and Their Response to Therapy Using ⁶⁴ Cu-Labeled Macrin. ACS Nano, 2018, 12, 12015-12029.	14.6	117
390	Bismuth Ferrite Second Harmonic Nanoparticles for Pulmonary Macrophage Tracking. Small, 2019, 15, e1803776.	10.0	7
391	Molecular imaging with nanoparticles: the dwarf actors revisited 10Âyears later. Histochemistry and Cell Biology, 2018, 150, 733-794.	1.7	13
392	Aerosol-synthesized siliceous nanoparticles: impact of morphology and functionalization on biodistribution. International Journal of Nanomedicine, 2018, Volume 13, 7375-7393.	6.7	5
393	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	8.2	336
394	Organosilica Nanoparticles and Medical Imaging. The Enzymes, 2018, 44, 137-173.	1.7	11
395	Fab-conjugated PLGA nanoparticles effectively target cancer cells expressing human CD44v6. Acta Biomaterialia, 2018, 81, 208-218.	8.3	39
396	Cyclic RGD-Peptide-Functionalized Polylipopeptide Micelles for Enhanced Loading and Targeted Delivery of Monomethyl Auristatin E. Molecular Pharmaceutics, 2018, 15, 4854-4861.	4.6	16

#	Article	IF	CITATIONS
397	Strategies to Enhance the Photosensitization: Polymerization and the Donor–Acceptor Even–Odd Effect. Angewandte Chemie, 2018, 130, 15409-15413.	2.0	35
398	Flexible MoS ₂ â€Embedded Human Serum Albumin Hollow Nanocapsules with Long Circulation Times and High Targeting Ability for Efficient Tumor Ablation. Advanced Functional Materials, 2018, 28, 1804081.	14.9	35
399	PEGylated Multistimuli-Responsive Dendritic Prodrug-Based Nanoscale System for Enhanced Anticancer Activity. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35770-35783.	8.0	40
400	The Application of Nanoparticle-Based Drug Delivery Systems in Checkpoint Blockade Cancer Immunotherapy. Journal of Immunology Research, 2018, 2018, 1-13.	2.2	17
401	Peptide-decorated polymeric nanomedicines for precision cancer therapy. Journal of Controlled Release, 2018, 290, 11-27.	9.9	63
402	Targeting Tumor Microenvironment by Bioreduction-Activated Nanoparticles for Light-Triggered Virotherapy. ACS Nano, 2018, 12, 9894-9902.	14.6	61
403	Multifunctional Cargo-Free Nanomedicine for Cancer Therapy. International Journal of Molecular Sciences, 2018, 19, 2963.	4.1	21
404	Rectal administration of nanosystems: from drug delivery to diagnostics. Materials Today Chemistry, 2018, 10, 128-141.	3.5	23
405	Synthetic Glycopolypeptide Micelle for Targeted Drug Delivery to Hepatic Carcinoma. Polymers, 2018, 10, 611.	4.5	11
406	Strategies to Enhance the Photosensitization: Polymerization and the Donor–Acceptor Even–Odd Effect. Angewandte Chemie - International Edition, 2018, 57, 15189-15193.	13.8	198
407	Advances in redox-responsive drug delivery systems of tumor microenvironment. Journal of Nanobiotechnology, 2018, 16, 74.	9.1	264
408	Design and self-assembly of albumin nanoclusters as a dynamic-covalent targeting co-delivery and stimuli-responsive controlled release platform. Journal of Materials Chemistry B, 2018, 6, 6817-6830.	5.8	6
409	Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2-overexpressing breast cancer. Nature Communications, 2018, 9, 4141.	12.8	126
410	DNA Polymer Nanoparticles Programmed via Supersandwich Hybridization for Imaging and Therapy of Cancer Cells. Analytical Chemistry, 2018, 90, 12951-12958.	6.5	50
411	Selfâ€Assembled Nanomedicines for Anticancer and Antibacterial Applications. Advanced Healthcare Materials, 2018, 7, e1800670.	7.6	63
412	<i>In Situ</i> SiRNA Assembly in Living Cells for Gene Therapy with MicroRNA Triggered Cascade Reactions Templated by Nucleic Acids. ACS Nano, 2018, 12, 10797-10806.	14.6	61
413	An effective "three-in-one―screening assay for testing drug and nanoparticle toxicity in human endothelial cells. PLoS ONE, 2018, 13, e0206557.	2.5	11
414	In Situ Proapoptotic Peptide-Generating Rapeseed Protein-Based Nanocomplexes Synergize Chemotherapy for Cathepsin-B Overexpressing Breast Cancer. ACS Applied Materials & Diterfaces, 2018, 10, 41056-41069.	8.0	29

#	Article	IF	CITATIONS
415	POxylated Dendrimerâ€Based Nanoâ€inâ€Micro Dry Powder Formulations for Inhalation Chemotherapy. ChemistryOpen, 2018, 7, 772-779.	1.9	14
416	Safety considerations for nanoparticles in tumor treatment. Nanomedicine, 2018, 13, 2373-2376.	3.3	4
417	Multi-hierarchical profiling the structure-activity relationships of engineered nanomaterials at nano-bio interfaces. Nature Communications, 2018, 9, 4416.	12.8	61
418	Graphene Oxide–PEG–Protocatechuic Acid Nanocomposite Formulation with Improved Anticancer Properties. Nanomaterials, 2018, 8, 820.	4.1	36
419	Injectable Hydrogels as Unique Platforms for Local Chemotherapeuticsâ€Based Combination Antitumor Therapy. Macromolecular Bioscience, 2018, 18, e1800240.	4.1	65
420	Tumor Microenvironment Targeted Nanotherapy. Frontiers in Pharmacology, 2018, 9, 1230.	3.5	113
421	A Chimeric Peptide Logic Gate for Orthogonal Stimuliâ€Triggered Precise Tumor Therapy. Advanced Functional Materials, 2018, 28, 1804609.	14.9	17
422	Drug resistance related to aberrant glycosylation in colorectal cancer. Oncotarget, 2018, 9, 1380-1402.	1.8	69
423	Tumor-Associated Fibronectin Targeted Liposomal Nanoplatform for Cyclophilin A siRNA Delivery and Targeted Malignant Glioblastoma Therapy. Frontiers in Pharmacology, 2018, 9, 1194.	3.5	28
424	Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opinion on Drug Delivery, 2018, 15, 1127-1142.	5.0	39
425	A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy. Nature Communications, 2018, 9, 4335.	12.8	197
426	Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS Applied Bio Materials, 2018, 1, 1768-1786.	4.6	219
427	Ag/Au bimetallic nanoparticles induce apoptosis in human cancer cell lines via <i>P53</i> , <i>CASPASE-3</i> and <i>BAX/BCL-2</i> pathways. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 389-398.	2.8	38
428	An Adenosine Triphosphate-Responsive Autocatalytic Fenton Nanoparticle for Tumor Ablation with Self-Supplied H ₂ O ₂ and Acceleration of Fe(III)/Fe(II) Conversion. Nano Letters, 2018, 18, 7609-7618.	9.1	468
429	Physicochemical Characterization of FRET-Labelled Chitosan Nanocapsules and Model Degradation Studies. Nanomaterials, 2018, 8, 846.	4.1	9
430	Magnetic Nanoparticles Create Hot Spots in Polymer Matrix for Controlled Drug Release. Nanomaterials, 2018, 8, 850.	4.1	33
431	Nanotoxicity in Cancer Research: Technical Protocols and Considerations for the Use of 3D Tumour Spheroids. , 2018, , .		1
432	Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11454-11459.	7.1	58

#	Article	IF	CITATIONS
433	Controlled Release With Emphasis on Ultrasound-Induced Release. The Enzymes, 2018, 43, 101-122.	1.7	9
434	Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA. Nature Biomedical Engineering, 2018, 2, 850-864.	22.5	214
435	Therapeutic Peptide Amphiphile as a Drug Carrier with ATP-Triggered Release for Synergistic Effect, Improved Therapeutic Index, and Penetration of 3D Cancer Cell Spheroids. International Journal of Molecular Sciences, 2018, 19, 2773.	4.1	11
436	Oxygen-Carrying Micro/Nanobubbles: Composition, Synthesis Techniques and Potential Prospects in Photo-Triggered Theranostics. Molecules, 2018, 23, 2210.	3.8	58
437	Cancer-specific chemotherapeutic strategy based on the vitamin K3 mediated ROS regenerative feedback and visualized drug release in vivo. Biomaterials, 2018, 185, 73-85.	11.4	37
438	Immunomodulating Nanomedicine for Cancer Therapy. Nano Letters, 2018, 18, 6655-6659.	9.1	121
439	Cooperative Multifunctional Selfâ€Propelled Paramagnetic Microrobots with Chemical Handles for Cell Manipulation and Drug Delivery. Advanced Functional Materials, 2018, 28, 1804343.	14.9	81
440	Redoxâ€Responsive Nanoparticleâ€Mediated Systemic RNAi for Effective Cancer Therapy. Small, 2018, 14, e1802565.	10.0	85
441	Biotransporting Biocatalytic Reactors toward Therapeutic Nanofactories. Advanced Science, 2018, 5, 1800801.	11.2	43
442	Sensitive detection of MCF-7 human breast cancer cells by using a novel DNA-labeled sandwich electrochemical biosensor. Biosensors and Bioelectronics, 2018, 122, 175-182.	10.1	80
443	Deployment and exploitation of nanotechnology nanomaterials and nanomedicine. AIP Conference Proceedings, 2018, , .	0.4	31
444	RNAi-based therapeutics for lung cancer: biomarkers, microRNAs, and nanocarriers. Expert Opinion on Drug Delivery, 2018, 15, 965-982.	5.0	15
445	Biomimetic Shells Endow Sub-50 nm Nanoparticles with Ultrahigh Paclitaxel Payloads for Specific and Robust Chemotherapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33976-33985.	8.0	28
446	Antiproliferative and Apoptosis Triggering Potential of Paclitaxel-Based Targeted-Lipid Nanoparticles with Enhanced Cellular Internalization by Transferrin Receptors—a Study in Leukemia Cells. Nanoscale Research Letters, 2018, 13, 271.	5.7	13
447	Leutusome: A Biomimetic Nanoplatform Integrating Plasma Membrane Components of Leukocytes and Tumor Cells for Remarkably Enhanced Solid Tumor Homing. Nano Letters, 2018, 18, 6164-6174.	9.1	111
448	Modulating Aptamer Specificity with pH-Responsive DNA Bonds. Journal of the American Chemical Society, 2018, 140, 13335-13339.	13.7	97
449	Cancer stem cells-emanated therapy resistance: Implications for liposomal drug delivery systems. Journal of Controlled Release, 2018, 288, 62-83.	9.9	101
450	Cell-based drug delivery systems for biomedical applications. Nano Research, 2018, 11, 5240-5257.	10.4	55

#	Article	IF	CITATIONS
451	Nanomedicines for the treatment of hematological malignancies. Journal of Controlled Release, 2018, 287, 194-215.	9.9	100
452	A new method for the determination of total and released docetaxel from docetaxel-entrapped core-crosslinked polymeric micelles (CriPec®) by LC–MS/MS and its clinical application in plasma and tissues in patients with various tumours. Journal of Pharmaceutical and Biomedical Analysis, 2018, 161, 168-174.	2.8	21
453	Phthalocyanine-based photosensitizer with tumor-pH-responsive properties for cancer theranostics. Journal of Materials Chemistry B, 2018, 6, 6080-6088.	5.8	20
454	Janus nanocarriers for magnetically targeted and hyperthermia-enhanced curcumin therapy of liver cancer. RSC Advances, 2018, 8, 30448-30454.	3.6	19
455	Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications. Biomaterials Research, 2018, 22, 22.	6.9	135
456	Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. Journal of Clinical Investigation, 2018, 128, 3341-3355.	8.2	406
457	Amplifying Nanoparticle Targeting Performance to Tumor via Diels–Alder Cycloaddition. Advanced Functional Materials, 2018, 28, 1707596.	14.9	22
458	Organic Nanomaterials: Liposomes, Albumin, Dendrimer, Polymeric Nanoparticles. Biological and Medical Physics Series, 2018, , 105-123.	0.4	5
459	Hierarchical Multiplexing Nanodroplets for Imaging-Guided Cancer Radiotherapy via DNA Damage Enhancement and Concomitant DNA Repair Prevention. ACS Nano, 2018, 12, 5684-5698.	14.6	83
460	Sequential Antifouling Surface for Efficient Modulation of the Nanoparticle–Cell Interactions in Proteinâ€Rich Environments. Advanced Therapeutics, 2018, 1, 1800013.	3.2	5
461	Advancements in Nanomedicine for Multiple Myeloma. Trends in Molecular Medicine, 2018, 24, 560-574.	6.7	23
462	Nanomaterial–microbe cross-talk: physicochemical principles and (patho)biological consequences. Chemical Society Reviews, 2018, 47, 5312-5337.	38.1	44
463	Fabrication of PEGylated Fe@Bi ₂ S ₃ nanocomposites for dual-mode imaging and synergistic thermoradiotherapy. Biomaterials Science, 2018, 6, 1892-1898.	5.4	34
464	Paclitaxel loaded vitamin E-TPGS nanoparticles for cancer therapy. Materials Science and Engineering C, 2018, 91, 868-880.	7. 3	82
465	TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nature Biomedical Engineering, 2018, 2, 578-588.	22.5	714
466	Receptor tyrosine kinase signaling in cancer radiotherapy and its targeting for tumor radiosensitization. International Journal of Radiation Biology, 2018, 94, 628-644.	1.8	15
467	Design and Development of Polysaccharide-Doxorubicin-Peptide Bioconjugates for Dual Synergistic Effects of Integrin-Targeted and Cell-Penetrating Peptides for Cancer Chemotherapy. Bioconjugate Chemistry, 2018, 29, 1973-2000.	3.6	54
468	Cancer immunotherapy making headway. Nature Materials, 2018, 17, 472-472.	27.5	39

#	Article	IF	CITATIONS
469	Dendritic cells in cancer immunotherapy. Nature Materials, 2018, 17, 474-475.	27.5	92
470	Adoptive T cell cancer therapy. Nature Materials, 2018, 17, 475-477.	27.5	17
471	Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy. Advanced Drug Delivery Reviews, 2018, 132, 16-32.	13.7	92
472	Self-stabilized silk sericin-based nanoparticles: In vivo biocompatibility and reduced doxorubicin-induced toxicity. Acta Biomaterialia, 2018, 74, 385-396.	8.3	42
473	De-esterified tragacanth-chitosan nano-hydrogel for methotrexate delivery; optimization of the formulation by Taguchi design. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 883-893.	2.8	23
474	Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy. International Journal of Pharmaceutics, 2018, 546, 215-225.	5.2	200
475	Drug-Abuse Nanotechnology: Opportunities and Challenges. ACS Chemical Neuroscience, 2018, 9, 2288-2298.	3.5	7
476	In Situ Template Polymerization to Prepare Liposomeâ€Coated PDMAEMA Nanogels with Controlled Size, High Stability, Low Cytotoxicity, and Responsive Drug Release for Intracellular DOX Release. Macromolecular Chemistry and Physics, 2018, 219, 1800071.	2.2	11
477	Microfluidics for Cancer Nanomedicine: From Fabrication to Evaluation. Small, 2018, 14, e1800360.	10.0	29
478	Rational Design of Polyphenol-Poloxamer Nanovesicles for Targeting Inflammatory Bowel Disease Therapy. Chemistry of Materials, 2018, 30, 4073-4080.	6.7	87
479	Novel SERS labels: Rational design, functional integration and biomedical applications. Coordination Chemistry Reviews, 2018, 371, 11-37.	18.8	112
480	DOX/ICG Coencapsulated Liposome-Coated Thermosensitive Nanogels for NIR-Triggered Simultaneous Drug Release and Photothermal Effect. ACS Biomaterials Science and Engineering, 2018, 4, 2424-2434.	5.2	83
481	Construction and synergistic anticancer efficacy of magnetic targeting cabbage-like Fe ₃ O ₄ @MoS ₂ @ZnO drug carriers. Journal of Materials Chemistry B, 2018, 6, 3792-3799.	5.8	20
482	Rational development of nanomedicines for molecular targeting in periodontal disease. Archives of Oral Biology, 2018, 93, 31-46.	1.8	9
483	Tuned Density of Anti-Tissue Factor Antibody Fragment onto siRNA-Loaded Polyion Complex Micelles for Optimizing Targetability into Pancreatic Cancer Cells. Biomacromolecules, 2018, 19, 2320-2329.	5.4	34
484	Topical Lyophilized Targeted Lipid Nanoparticles in the Restoration of Skin Barrier Function following Burn Wound. Molecular Therapy, 2018, 26, 2178-2188.	8.2	44
485	Hyperbaric Oxygen Potentiates Doxil Antitumor Efficacy by Promoting Tumor Penetration and Sensitizing Cancer Cells. Advanced Science, 2018, 5, 1700859.	11.2	54
486	Spherical Nucleic Acid Architecture Can Improve the Efficacy of Polycation-Mediated siRNA Delivery. Molecular Therapy - Nucleic Acids, 2018, 12, 207-219.	5.1	38

#	Article	IF	CITATIONS
487	Harnessing Tumor Microenvironment for Nanoparticleâ€Mediated Radiotherapy. Advanced Therapeutics, 2018, 1, 1800050.	3.2	33
488	Paclitaxel-Loaded Self-Assembled Lipid Nanoparticles as Targeted Drug Delivery Systems for the Treatment of Aggressive Ovarian Cancer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25174-25185.	8.0	102
489	Use of nano engineered approaches to overcome the stromal barrier in pancreatic cancer. Advanced Drug Delivery Reviews, 2018, 130, 50-57.	13.7	72
490	Evolution of Nanoparticle Protein Corona across the Blood–Brain Barrier. ACS Nano, 2018, 12, 7292-7300.	14.6	137
491	Tumor-selective catalytic nanosystem for activatable theranostics. Chemical Communications, 2018, 54, 8214-8217.	4.1	40
492	Beyond the Blood–Brain Barrier. , 2018, , 397-437.		6
493	Exogenous/Endogenousâ€Triggered Mesoporous Silica Cancer Nanomedicine. Advanced Healthcare Materials, 2018, 7, e1800268.	7.6	48
494	Nucleoside Analogue-Based Supramolecular Nanodrugs Driven by Molecular Recognition for Synergistic Cancer Therapy. Journal of the American Chemical Society, 2018, 140, 8797-8806.	13.7	95
495	Focused Ultrasound Enabled Transâ€Blood Brain Barrier Delivery of Gold Nanoclusters: Effect of Surface Charges and Quantification Using Positron Emission Tomography. Small, 2018, 14, e1703115.	10.0	29
496	Gold Nanoparticles Bearing a Tumor pH-Sensitive Cyclodextrin Cap. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24450-24458.	8.0	28
497	Potential of nanoparticles as drug delivery system for cancer treatment., 2018,, 431-468.		4
498	DNA-Functionalized Hollow Mesoporous Silica Nanoparticles with Dual Cargo Loading for Near-Infrared-Responsive Synergistic Chemo-Photothermal Treatment of Cancer Cells. ACS Applied Nano Materials, 2018, 1, 3486-3497.	5.0	44
499	Mesoporous Silica Nanoparticles for Targeted and Stimuliâ∈Responsive Delivery of Chemotherapeutics: A Review. Advanced Biology, 2018, 2, 1800020.	3.0	82
500	NIR Lightâ€Triggered Degradable MoTe ₂ Nanosheets for Combined Photothermal and Chemotherapy of Cancer. Advanced Functional Materials, 2018, 28, 1801139.	14.9	83
501	Synergized Multimodal Therapy for Safe and Effective Reversal of Cancer Multidrug Resistance Based on Lowâ€Level Photothermal and Photodynamic Effects. Small, 2018, 14, e1800785.	10.0	27
502	Advanced Optical Microscopy Techniques for the Investigation of Cell-Nanoparticle Interactions., 2018,, 219-236.		7
503	Electrospun composite cellulose acetate/iron oxide nanoparticles non-woven membranes for magnetic hyperthermia applications. Carbohydrate Polymers, 2018, 198, 9-16.	10.2	43
504	Pretargeting in nuclear imaging and radionuclide therapy: Improving efficacy of theranostics and nanomedicines. Biomaterials, 2018, 179, 209-245.	11.4	124

#	ARTICLE	IF	CITATIONS
505	Tumor-adapting and tumor-remodeling AuNR@dendrimer-assembly nanohybrids overcome impermeable multidrug-resistant cancer. Materials Horizons, 2018, 5, 1047-1057.	12.2	33
506	Branch-PCR constructed TP53 gene nanovector for potential cancer therapy. Chemical Communications, 2018, 54, 9687-9690.	4.1	16
507	Magnetic Drug Targeting: A Novel Treatment for Intramedullary Spinal Cord Tumors. Scientific Reports, 2018, 8, 11417.	3.3	60
508	Macrophage-Mediated Exocytosis of Elongated Nanoparticles Improves Hepatic Excretion and Cancer Phototherapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28450-28457.	8.0	22
509	Nanomedicines for Pediatric Cancers. ACS Nano, 2018, 12, 7482-7496.	14.6	60
510	Preface: A New Era of Nanoimmunology. Current Pharmaceutical Biotechnology, 2018, 19, 2-4.	1.6	0
511	Intraoperative Detection and Eradication of Residual Microtumors with Gap-Enhanced Raman Tags. ACS Nano, 2018, 12, 7974-7985.	14.6	85
512	Enhanced Permeability and Retention-like Extravasation of Nanoparticles from the Vasculature into Tuberculosis Granulomas in Zebrafish and Mouse Models. ACS Nano, 2018, 12, 8646-8661.	14.6	89
513	Significant Suppression of Non-small-cell Lung Cancer by Hydrophobic Poly(ester amide) Nanoparticles with High Docetaxel Loading. Frontiers in Pharmacology, 2018, 9, 118.	3.5	24
514	Polydopamine-Functionalized CA-(PCL-ran-PLA) Nanoparticles for Target Delivery of Docetaxel and Chemo-photothermal Therapy of Breast Cancer. Frontiers in Pharmacology, 2018, 9, 125.	3.5	31
515	Gadoliniumâ€Encapsulated Graphene Carbon Nanotheranostics for Imagingâ€Guided Photodynamic Therapy. Advanced Materials, 2018, 30, e1802748.	21.0	135
516	Considerations for the Human Health Implications of Nanotheranostics. , 2018, , 279-303.		3
517	Drug Delivery Nanosystems for the Localized Treatment of Glioblastoma Multiforme. Materials, 2018, 11, 779.	2.9	71
518	Cancer nanomedicine: mechanisms, obstacles and strategies. Nanomedicine, 2018, 13, 1639-1656.	3.3	38
519	Nanoimmunotherapy – cloaked defenders to breach the cancer fortress. Nanotechnology Reviews, 2018, 7, 317-340.	5.8	8
520	Toward Biomaterials for Enhancing Immune Checkpoint Blockade Therapy. Advanced Functional Materials, 2018, 28, 1802540.	14.9	92
521	Nanotechnology and Glycosaminoglycans: Paving the Way Forward for Ovarian Cancer Intervention. International Journal of Molecular Sciences, 2018, 19, 731.	4.1	5
522	Polylactide-tethered prodrugs in polymeric nanoparticles as reliable nanomedicines for the efficient eradication of patient-derived hepatocellular carcinoma. Theranostics, 2018, 8, 3949-3963.	10.0	57

#	Article	IF	Citations
523	A novel, chelator-free method for 64Cu labeling of dendrimers. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	7
524	Design of pH-sensitive methotrexate prodrug-targeted curcumin nanoparticles for efficient dual-drug delivery and combination cancer therapy. International Journal of Nanomedicine, 2018, Volume 13, 1381-1398.	6.7	50
525	Cytotoxic activity of greener synthesis of cerium oxide nanoparticles using carrageenan towards a WEHI 164 cancer cell line. Ceramics International, 2018, 44, 19570-19575.	4.8	47
526	Twoâ€Dimensional Antimoneneâ€Based Photonic Nanomedicine for Cancer Theranostics. Advanced Materials, 2018, 30, e1802061.	21.0	314
527	Current Trends and Challenges in the Clinical Translation of Nanoparticulate Nanomedicines: Pathways for Translational Development and Commercialization. Frontiers in Pharmacology, 2018, 9, 790.	3.5	586
528	Designing of the Anticancer Nanocomposite with Sustained Release Properties by Using Graphene Oxide Nanocarrier with Phenethyl Isothiocyanate as Anticancer Agent. Pharmaceutics, 2018, 10, 109.	4.5	26
529	Cancer hallmarks and malignancy features: Gateway for improved targeted drug delivery. Biotechnology Advances, 2018, 36, 1928-1945.	11.7	35
530	Dual-Responsive Core Crosslinking Glycopolymer-Drug Conjugates Nanoparticles for Precise Hepatocarcinoma Therapy. Frontiers in Pharmacology, 2018, 9, 663.	3.5	28
531	Crossâ€Linked Aptamer–Lipid Micelles for Excellent Stability and Specificity in Target ell Recognition. Angewandte Chemie - International Edition, 2018, 57, 11589-11593.	13.8	33
532	Multifunctional hybrid nanoparticles for theranostics * *All authors have contributed equally to this work, 2018, , 177-244.		2
533	The Emerging Role of Multifunctional Theranostic Materials in Cancer Nanomedicine., 2018, , 1-31.		8
534	Targeted Nanotheranostics for Selective Drug Delivery in Cancer. , 2018, , 245-277.		5
535	Nanoengineering of Soft Polymer Particles for Exploring Bio-Nano Interactions. , 2018, , 393-419.		1
536	Methotrexate-based amphiphilic prodrug nanoaggregates for co-administration of multiple therapeutics and synergistic cancer therapy. Acta Biomaterialia, 2018, 77, 228-239.	8.3	41
537	Co-delivery of curcumin and serratiopeptidase in HeLa and MCF-7 cells through nanoparticles show improved anti-cancer activity. Materials Science and Engineering C, 2018, 92, 673-684.	7.3	26
539	Recent Progress in the Design of Hypoxiaâ€Specific Nano Drug Delivery Systems for Cancer Therapy. Advanced Therapeutics, 2018, 1, 1800026.	3.2	44
540	Strategies to combine ROP with ATRP or RAFT polymerization for the synthesis of biodegradable polymeric nanoparticles for biomedical applications. Polymer Chemistry, 2018, 9, 4084-4099.	3.9	58
541	Development of a docetaxel micellar formulation using poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf targeted drug delivery. Drug Delivery, 2018, 25, 1362-1371.	f 50 67 Td 5.7	(glycol)‑p 17

#	Article	IF	CITATIONS
542	Image-Guided Cancer Nanomedicine. Journal of Imaging, 2018, 4, 18.	3.0	26
543	Detection of Intracellular Gold Nanoparticles: An Overview. Materials, 2018, 11, 882.	2.9	25
544	Mesoporous Silica Nanoparticles for Drug Delivery: Current Insights. Molecules, 2018, 23, 47.	3.8	338
545	A Modular Coassembly Approach to All-In-One Multifunctional Nanoplatform for Synergistic Codelivery of Doxorubicin and Curcumin. Nanomaterials, 2018, 8, 167.	4.1	27
546	Nanoparticle-Mediated Therapeutic Agent Delivery for Treating Metastatic Breast Cancerâ€"Challenges and Opportunities. Nanomaterials, 2018, 8, 361.	4.1	32
547	Site-Specific DBCO Modification of DEC205 Antibody for Polymer Conjugation. Polymers, 2018, 10, 141.	4.5	13
548	Small Meets Smaller: Effects of Nanomaterials on Microbial Biology, Pathology, and Ecology. ACS Nano, 2018, 12, 6351-6359.	14.6	66
549	Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomedicine and Pharmacotherapy, 2018, 106, 1098-1107.	5.6	1,221
550	Quantifying the Ligand-Coated Nanoparticle Delivery to Cancer Cells in Solid Tumors. ACS Nano, 2018, 12, 8423-8435.	14.6	444
551	Self-Assembly of Stimuli-Responsive Au–Pd Bimetallic Nanoflowers Based on Betulinic Acid Liposomes for Synergistic Chemo-Photothermal Cancer Therapy. ACS Biomaterials Science and Engineering, 2018, 4, 2911-2921.	5.2	29
552	A Novel Topâ€Down Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imagingâ€Guided Cancer Therapy. Advanced Materials, 2018, 30, e1803031.	21.0	318
553	Smart micelleplexes. , 2018, , 257-291.		6
554	Phototriggered targeting of nanocarriers for drug delivery. Nano Research, 2018, 11, 5424-5438.	10.4	40
555	Intrinsic, Cancer Cell-Selective Toxicity of Organic Photothermal Nanoagent: A Simple Formulation for Combined Photothermal Chemotherapy of Cancer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26028-26038.	8.0	19
556	Bioinspired pH- and Temperature-Responsive Injectable Adhesive Hydrogels with Polyplexes Promotes Skin Wound Healing. Biomacromolecules, 2018, 19, 3536-3548.	5.4	89
557	Construction of Small-Sized, Robust, and Reduction-Responsive Polypeptide Micelles for High Loading and Targeted Delivery of Chemotherapeutics. Biomacromolecules, 2018, 19, 3586-3593.	5.4	37
558	Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. International Journal of Nanomedicine, 2018, Volume 13, 2921-2942.	6.7	278
559	Multimodal Microscopy Distinguishes Extracellular Aggregation and Cellular Uptake of Singleâ€Walled Carbon Nanohorns. Chemistry - A European Journal, 2018, 24, 14162-14170.	3.3	7

#	Article	IF	CITATIONS
560	Bioengineered Macrophages Can Responsively Transform into Nanovesicles To Target Lung Metastasis. Nano Letters, 2018, 18, 4762-4770.	9.1	69
561	Engineering a Rugged Nanoscaffold To Enhance Plug-and-Display Vaccination. ACS Nano, 2018, 12, 8855-8866.	14.6	180
562	A biodegradable polyphosphoester-functionalized poly(disulfide) nanocarrier for reduction-triggered intracellular drug delivery. Journal of Materials Chemistry B, 2018, 6, 7263-7273.	5.8	24
563	The Local Atomic Structure of Colloidal Superparamagnetic Iron Oxide Nanoparticles for Theranostics in Oncology. Biomedicines, 2018, 6, 78.	3.2	11
564	Aminoâ€terminated polylactide micelles with an external poly(ethylene oxide) corona as carriers of drugâ€loaded anionic liposomes. Polymer International, 2018, 67, 1352-1358.	3.1	10
565	A review on core–shell structured unimolecular nanoparticles for biomedical applications. Advanced Drug Delivery Reviews, 2018, 130, 58-72.	13.7	63
566	Liposomesâ€Camouflaged Redoxâ€Responsive Nanogels to Resolve the Dilemma between Extracellular Stability and Intracellular Drug Release. Macromolecular Bioscience, 2018, 18, e1800049.	4.1	18
567	Dual-pH-sensitive mesoporous silica nanoparticle-based drug delivery system for tumor-triggered intracellular drug release. Journal of Materials Science, 2018, 53, 10653-10665.	3.7	28
568	Redox and pH Dual-Responsive Polymeric Micelles with Aggregation-Induced Emission Feature for Cellular Imaging and Chemotherapy. ACS Applied Materials & Empty Interfaces, 2018, 10, 18489-18498.	8.0	91
569	Y ₁ -receptor–ligand-functionalized ultrasmall upconversion nanoparticles for tumor-targeted trimodality imaging and photodynamic therapy with low toxicity. Nanoscale, 2018, 10, 17038-17052.	5.6	36
570	A new cancer immunotherapy via simultaneous DCâ€mobilization and DCâ€targeted IDO gene silencing using an immuneâ€stimulatory nanosystem. International Journal of Cancer, 2018, 143, 2039-2052.	5.1	27
571	NVP-BEZ235/Chlorin-e6 co-loaded nanoparticles ablate breast cancer by biochemical and photodynamic synergistic effects. Nano Research, 2018, 11, 4846-4858.	10.4	6
572	Mesoporous silica nanoparticles in nanomedicine applications. Journal of Materials Science: Materials in Medicine, 2018, 29, 65.	3.6	100
573	Multifunctionalized biocatalytic P22 nanoreactor for combinatory treatment of ER+ breast cancer. Journal of Nanobiotechnology, 2018, 16, 17.	9.1	40
574	Amplifying Apoptosis Homing Nanoplatform for Tumor Theranostics. Advanced Healthcare Materials, 2018, 7, e1800296.	7.6	9
575	Efficient siRNA delivery with non-cationic carriers. Nature Biomedical Engineering, 2018, 2, 275-276.	22.5	23
576	Integration of phospholipid-hyaluronic acid-methotrexate nanocarrier assembly and amphiphilic drug–drug conjugate for synergistic targeted delivery and combinational tumor therapy. Biomaterials Science, 2018, 6, 1818-1833.	5.4	29
577	Reversible glycosidic switch for secure delivery of molecular nanocargos. Nature Communications, 2018, 9, 1843.	12.8	16

#	Article	IF	CITATIONS
578	General synthesis of silica-based yolk/shell hybrid nanomaterials and in vivo tumor vasculature targeting. Nano Research, 2018, 11, 4890-4904.	10.4	28
579	Solubility and size of polymer nanoparticles. Polymer Chemistry, 2018, 9, 4566-4573.	3.9	16
580	Reduction-responsive diblock copolymer-modified gold nanorods for enhanced cellular uptake. RSC Advances, 2018, 8, 27546-27555.	3.6	6
581	An Intravascular Magnetic Catheter Enables the Retrieval of Nanoagents from the Bloodstream. Advanced Science, 2018, 5, 1800807.	11.2	37
582	Binding Characteristics of Anticancer Drug Doxorubicin with Two-Dimensional Graphene and Graphene Oxide: Insights from Density Functional Theory Calculations and Fluorescence Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 21031-21038.	3.1	41
583	Nanoformulations of anticancer FGFR inhibitors with improved therapeutic index. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2632-2643.	3.3	22
584	Impact of the hypoxic phenotype on the uptake and efflux of nanoparticles by human breast cancer cells. Scientific Reports, 2018, 8, 12318.	3.3	18
585	Improving the carrier stability and drug loading of unimolecular micelle-based nanotherapeutics for acid-activated drug delivery and enhanced antitumor therapy. Journal of Materials Chemistry B, 2018, 6, 5549-5561.	5.8	10
586	Ultrasmall gold nanosatellite-bearing transformable hybrid nanoparticles for deep tumor penetration. Acta Biomaterialia, 2018, 79, 294-305.	8.3	20
587	Therapeutic Potential of Biomineralizationâ€Based Engineering. Advanced Therapeutics, 2018, 1, 1800079.	3.2	18
588	Lightâ€Triggered Biomimetic Nanoerythrocyte for Tumorâ€Targeted Lung Metastatic Combination Therapy of Malignant Melanoma. Small, 2018, 14, e1801754.	10.0	89
589	Water-Soluble Isatoic Anhydrides: A Platform for RNA-SHAPE Analysis and Protein Bioconjugation. Bioconjugate Chemistry, 2018, 29, 3196-3202.	3.6	8
590	Acid Susceptible Ultrathin Mesoporous Silica Coated on Layered Double Hydroxide Nanoplates for pH Responsive Cancer Therapy. ACS Applied Bio Materials, 2018, 1, 928-935.	4.6	15
591	GSH-Activated Light-Up Near-Infrared Fluorescent Probe with High Affinity to $\hat{1}\pm\langle \text{sub}\rangle v\langle \text{sub}\rangle \hat{1}^2\langle \text{sub}\rangle 3\langle \text{sub}\rangle$ Integrin for Precise Early Tumor Identification. ACS Applied Materials & amp; Interfaces, 2018, 10, 30994-31007.	8.0	48
592	Shear rate dependent margination of sphere-like, oblate-like and prolate-like micro-particles within blood flow. Soft Matter, 2018, 14, 7401-7419.	2.7	8
593	Development and imaging of zinc oxide nanorods as a photosensitizer for the diagnosis and treatment of cancer using lasers. Laser Physics Letters, 2018, 15, 095604.	1.4	14
594	Thermo- and pH-dual responsive polymeric micelles with upper critical solution temperature behavior for photoacoustic imaging-guided synergistic chemo-photothermal therapy against subcutaneous and metastatic breast tumors. Theranostics, 2018, 8, 4097-4115.	10.0	76
595	Seeing, Targeting and Delivering with Upconverting Nanoparticles. Journal of the American Chemical Society, 2018, 140, 10923-10931.	13.7	110

#	Article	IF	CITATIONS
596	Fabrication of ultrasmall WS ₂ quantum dots-coated periodic mesoporous organosilica nanoparticles for intracellular drug delivery and synergistic chemo-photothermal therapy. OncoTargets and Therapy, 2018, Volume 11, 1949-1960.	2.0	25
597	Carbonâ€Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment. Advanced Healthcare Materials, 2018, 7, e1800525.	7.6	161
598	Molecular Selfâ€Assembly Constructed in Physiological Conditions for Cancer Diagnosis and Therapy. Advanced Therapeutics, 2018, 1, 1800067.	3.2	6
599	Crossâ€Linked Aptamer–Lipid Micelles for Excellent Stability and Specificity in Targetâ€Cell Recognition. Angewandte Chemie, 2018, 130, 11763-11767.	2.0	8
600	All-active antitumor micelles via triggered lipid peroxidation. Journal of Controlled Release, 2018, 286, 381-393.	9.9	36
601	Self-Assembled Minimalist Multifunctional Theranostic Nanoplatform for Magnetic Resonance Imaging-Guided Tumor Photodynamic Therapy. ACS Nano, 2018, 12, 8266-8276.	14.6	191
602	Dendrimer-based magnetic resonance imaging agents for brain cancer. Science China Materials, 2018, 61, 1420-1443.	6.3	9
603	Dual Chemodrug-Loaded Single-Walled Carbon Nanohorns for Multimodal Imaging-Guided Chemo-Photothermal Therapy of Tumors and Lung Metastases. Theranostics, 2018, 8, 1966-1984.	10.0	79
604	Self-Assembly of a Pure Photosensitizer as a Versatile Theragnostic Nanoplatform for Imaging-Guided Antitumor Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 30155-30162.	8.0	45
605	Clinical Applications of Carbon Nanomaterials in Diagnostics and Therapy. Advanced Materials, 2018, 30, e1802368.	21.0	149
606	Recombinant-fully-human-antibody decorated highly-stable far-red AlEdots for <i>in vivo</i> HER-2 receptor-targeted imaging. Chemical Communications, 2018, 54, 7314-7317.	4.1	12
607	Tumor pH and intracellular reduction responsive polypeptide nanomedicine with a sheddable PEG corona and a disulfide-cross-linked core. Polymer Chemistry, 2018, 9, 3488-3498.	3.9	21
608	Advances in treatment formulations for acute myeloid leukemia. Drug Discovery Today, 2018, 23, 1936-1949.	6.4	40
609	Supramolecular Polymer-Based Nanomedicine: High Therapeutic Performance and Negligible Long-Term Immunotoxicity. Journal of the American Chemical Society, 2018, 140, 8005-8019.	13.7	227
610	Co-delivery of Metformin and Paclitaxel Via Folate-Modified pH-Sensitive Micelles for Enhanced Anti-tumor Efficacy. AAPS PharmSciTech, 2018, 19, 2395-2406.	3.3	22
611	Photocaged prodrug under NIR light-triggering with dual-channel fluorescence: in vivo real-time tracking for precise drug delivery. Science China Chemistry, 2018, 61, 1293-1300.	8.2	59
612	Coadministration of iRGD with Multistage Responsive Nanoparticles Enhanced Tumor Targeting and Penetration Abilities for Breast Cancer Therapy. ACS Applied Materials & (10, 22571-22579).	8.0	99
613	pHâ€Responsive Nanoparticles for Controllable Curcumin Delivery: The Design of Polycation Core with Different Structures. Macromolecular Chemistry and Physics, 2018, 219, 1800062.	2.2	2

#	Article	IF	CITATIONS
614	Glutathione-Scavenging Poly(disulfide amide) Nanoparticles for the Effective Delivery of Pt(IV) Prodrugs and Reversal of Cisplatin Resistance. Nano Letters, 2018, 18, 4618-4625.	9.1	173
615	Ultrasound Triggered Conversion of Porphyrin/Camptothecin-Fluoroxyuridine Triad Microbubbles into Nanoparticles Overcomes Multidrug Resistance in Colorectal Cancer. ACS Nano, 2018, 12, 7312-7326.	14.6	115
616	Hierarchical nanocomposites of graphene oxide and PEGylated protoporphyrin as carriers to load doxorubicin hydrochloride for trimodal synergistic therapy. Journal of Materials Chemistry B, 2018, 6, 4687-4696.	5.8	37
617	Importance of Encapsulation Stability of Nanocarriers with High Drug Loading Capacity for Increasing in Vivo Therapeutic Efficacy. Biomacromolecules, 2018, 19, 3030-3039.	5.4	22
618	Stromal barriers to nanomedicine penetration in the pancreatic tumor microenvironment. Cancer Science, 2018, 109, 2085-2092.	3.9	70
619	Visual validation of the measurement of entrapment efficiency of drug nanocarriers. International Journal of Pharmaceutics, 2018, 547, 395-403.	5.2	55
620	Alleviating the Liver Toxicity of Chemotherapy via pH-Responsive Hepatoprotective Prodrug Micelles. ACS Applied Materials & Diterfaces, 2018, 10, 21836-21846.	8.0	39
621	Supramolecular Modular Approach toward Conveniently Constructing and Multifunctioning a pH/Redox Dual-Responsive Drug Delivery Nanoplatform for Improved Cancer Chemotherapy. ACS Applied Materials & Diterfaces, 2018, 10, 26473-26484.	8.0	34
622	Role of nanoparticles in bioimaging, diagnosis and treatment of cancer disorder., 2018,, 529-562.		7
623	Cargo-Free Nanomedicine with pH Sensitivity for Codelivery of DOX Conjugated Prodrug with SN38 To Synergistically Eradicate Breast Cancer Stem Cells. Molecular Pharmaceutics, 2018, 15, 3343-3355.	4.6	34
624	In Vivo Evaluation of Magnetic Targeting in Mice Colon Tumors with Ultra-Magnetic Liposomes Monitored by MRI. Molecular Imaging and Biology, 2019, 21, 269-278.	2.6	14
625	Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. Journal of Advanced Research, 2019, 15, 1-18.	9.5	674
626	Folate Ligand Orientation Optimized during Cell Membrane Mimetic Micelle Formation for Enhanced Tumor Cell Targeting. Langmuir, 2019, 35, 1257-1265.	3.5	15
627	Multimodality Imaging Agents with PET as the Fundamental Pillar. Angewandte Chemie - International Edition, 2019, 58, 2570-2579.	13.8	62
628	Bioconjugation with Maleimides: A Useful Tool for Chemical Biology. Chemistry - A European Journal, 2019, 25, 43-59.	3.3	319
629	Multimodale Kontrastmittel f $\tilde{A}^{1}\!\!/\!\!4$ r die kombinierte Positronenemissionstomographie. Angewandte Chemie, 2019, 131, 2592-2602.	2.0	8
630	Targeted and stimuli–responsive mesoporous silica nanoparticles for drug delivery and theranostic use. Journal of Biomedical Materials Research - Part A, 2019, 107, 2643-2666.	4.0	44
631	Anti-EGFR antibody conjugated thiol chitosan-layered gold nanoshells for dual-modal imaging-guided cancer combination therapy. Journal of Controlled Release, 2019, 311-312, 26-42.	9.9	55

#	Article	IF	CITATIONS
632	Photothermal Therapy Nanomaterials Boosting Transformation of Fe(III) into Fe(II) in Tumor Cells for Highly Improving Chemodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 31735-31742.	8.0	109
633	High Affinity of Chlorin e6 to Immunoglobulin G for Intraoperative Fluorescence Image-Guided Cancer Photodynamic and Checkpoint Blockade Therapy. ACS Nano, 2019, 13, 10242-10260.	14.6	78
634	O ₂ -Cu/ZIF-8@Ce6/ZIF-8@F127 Composite as a Tumor Microenvironment-Responsive Nanoplatform with Enhanced Photo-/Chemodynamic Antitumor Efficacy. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 31671-31680.	8.0	131
635	Antiadhesive Nanosomes Facilitate Targeting of the Lysosomal GlcNAc Salvage Pathway through Derailed Cancer Endocytosis. Angewandte Chemie, 2019, 131, 14655-14660.	2.0	2
636	Recent progress in drug delivery. Acta Pharmaceutica Sinica B, 2019, 9, 1145-1162.	12.0	529
637	Survey of Clinical Translation of Cancer Nanomedicinesâ€"Lessons Learned from Successes and Failures. Accounts of Chemical Research, 2019, 52, 2445-2461.	15.6	333
638	Role of selfâ€essembly conditions and amphiphilic balance on nanoparticle formation of PEGâ€PDLLA copolymers in aqueous environments. Journal of Polymer Science Part A, 2019, 57, 1801-1810.	2.3	20
639	Nanoparticle Interactions with the Tumor Microenvironment. Bioconjugate Chemistry, 2019, 30, 2247-2263.	3.6	66
640	Sustained reactive oxygen species generation from percarbamide nanomedicine via a mechanism of X-Ray-initiated free radical chain reactions. Journal of Biomaterials Applications, 2019, 34, 728-738.	2.4	2
641	MgO nanoparticles coated with polyethylene glycol as carrier for 2-Methoxyestradiol anticancer drug. PLoS ONE, 2019, 14, e0214900.	2.5	39
642	Which Nanobasics Should Be Taught in Medical Schools?. AMA Journal of Ethics, 2019, 21, E337-346.	0.7	3
643	Glutathione-Priming Nanoreactors Enable Fluorophore Core/Shell Transition for Precision Cancer Imaging. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33667-33675.	8.0	5
644	Engineering patient-specific cancer immunotherapies. Nature Biomedical Engineering, 2019, 3, 768-782.	22.5	123
645	Internalization Characterization of Si Nanorod with Camouflaged Cell Membrane Proteins Reveals ATXN2 as a Negative Regulator. Cells, 2019, 8, 931.	4.1	8
646	Kinetics and Mechanisms of Protein Adsorption and Conformational Change on Hematite Particles. Environmental Science & Environ	10.0	36
647	Cellular Targeting of Bispecific Antibody-Functionalized Poly(ethylene glycol) Capsules: Do Shape and Size Matter?. ACS Applied Materials & Size Matter?.	8.0	18
648	Dopamine Delivery via pHâ€Sensitive Nanoparticles for Tumor Blood Vessel Normalization and an Improved Effect of Cancer Chemotherapeutic Drugs. Advanced Healthcare Materials, 2019, 8, e1900283.	7.6	36
649	Stimuli-Responsive Polymer–Prodrug Hybrid Nanoplatform for Multistage siRNA Delivery and Combination Cancer Therapy. Nano Letters, 2019, 19, 5967-5974.	9.1	101

#	Article	IF	CITATIONS
650	2D Monoelemental Germanene Quantum Dots: Synthesis as Robust Photothermal Agents for Photonic Cancer Nanomedicine. Angewandte Chemie, 2019, 131, 13539-13544.	2.0	41
651	Antiadhesive Nanosomes Facilitate Targeting of the Lysosomal GlcNAc Salvage Pathway through Derailed Cancer Endocytosis. Angewandte Chemie - International Edition, 2019, 58, 14513-14518.	13.8	12
652	Codoping Enhanced Radioluminescence of Nanoscintillators for X-ray-Activated Synergistic Cancer Therapy and Prognosis Using Metabolomics. ACS Nano, 2019, 13, 10419-10433.	14.6	62
653	From perinuclear to intranuclear localization: A cell-penetrating peptide modification strategy to modulate cancer cell migration under mild laser irradiation and improve photothermal therapeutic performance. Biomaterials, 2019, 223, 119443.	11.4	55
654	Benzotriazine Di-Oxide Prodrugs for Exploiting Hypoxia and Low Extracellular pH in Tumors. Molecules, 2019, 24, 2524.	3.8	3
655	Quantitative Analysis of Different Cell Entry Routes of Actively Targeted Nanomedicines Using Imaging Flow Cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 843-853.	1.5	3
656	Evaluating Nanoparticles in Preclinical Research Using Microfluidic Systems. Micromachines, 2019, 10, 414.	2.9	25
657	Fractionated photothermal therapy in a murine tumor model: comparison with single dose. International Journal of Nanomedicine, 2019, Volume 14, 5369-5379.	6.7	18
658	Current Advancements in Addressing Key Challenges of Therapeutic Antibody Design, Manufacture, and Formulation. Antibodies, 2019, 8, 36.	2.5	48
659	Advances and Challenges of Nanoparticle-Based Macrophage Reprogramming for Cancer Immunotherapy. Biochemistry (Moscow), 2019, 84, 729-745.	1.5	8
660	Improving systemic circulation of paclitaxel nanocrystals by surface hybridization of DSPE-PEG2000. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110337.	5.0	22
662	Integrating nanomedicine into clinical radiotherapy regimens. Advanced Drug Delivery Reviews, 2019, 144, 35-56.	13.7	32
663	Effect of structure in ionised albumin based nanoparticle: Characterisation, Emodin interaction, and in vitro cytotoxicity. Materials Science and Engineering C, 2019, 103, 109813.	7.3	12
664	Growth-inhibitory effects of anthracycline-loaded bacterial magnetosomes against hepatic cancerin vitroandin vivo. Nanomedicine, 2019, 14, 1663-1680.	3.3	12
665	Aerosolization of Nanotherapeutics as a Newly Emerging Treatment Regimen for Peritoneal Carcinomatosis. Cancers, 2019, 11, 906.	3.7	18
666	Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery. ACS Nano, 2019, 13, 7410-7424.	14.6	243
667	Nanoclustered Cascaded Enzymes for Targeted Tumor Starvation and Deoxygenation-Activated Chemotherapy without Systemic Toxicity. ACS Nano, 2019, 13, 8890-8902.	14.6	111
668	Correlating Anticancer Drug Delivery Efficiency with Vascular Permeability of Renal Clearable Versus Nonâ€renal Clearable Nanocarriers. Angewandte Chemie, 2019, 131, 12204-12208.	2.0	2

#	Article	IF	Citations
669	Toward Personalized Cancer Treatment: From Diagnostics to Therapy Monitoring in Miniaturized Electrohydrodynamic Systems. Accounts of Chemical Research, 2019, 52, 2113-2123.	15.6	32
670	A tumor microenvironment model coupled with a mass spectrometry system to probe the metabolism of drug-loaded nanoparticles. Chemical Communications, 2019, 55, 10218-10221.	4.1	12
671	Seeing Better and Going Deeper in Cancer Nanotheranostics. International Journal of Molecular Sciences, 2019, 20, 3490.	4.1	12
672	Nanocatalytic Medicine. Advanced Materials, 2019, 31, e1901778.	21.0	396
673	Mitochondria-Specific Anticancer Drug Delivery Based on Reduction-Activated Polyprodrug for Enhancing the Therapeutic Effect of Breast Cancer Chemotherapy. ACS Applied Materials & Emp; Interfaces, 2019, 11, 29330-29340.	8.0	30
674	A neutral water-soluble mitochondria-targeting polymer. Chemical Communications, 2019, 55, 10015-10018.	4.1	27
675	Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence, 2019, 6, 23.	12.1	445
676	Rational Fabrication and Biomedical Application of Biomoleculeâ€Conjugated AlEgens through Click Reaction. Chinese Journal of Chemistry, 2019, 37, 1072-1082.	4.9	10
677	Nanomedicine and Drug Delivery Systems in Overcoming Resistance to Targeted Therapy. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 291-312.	0.1	0
678	Drug Resistance in Cancer and Role of Nanomedicine-Based Natural Products. , 2019, , 177-218.		0
679	Layerâ€byâ€Layer Assembly of Functional Nanoparticles for Hepatocellular Carcinoma Therapy. Advanced Functional Materials, 2019, 29, 1904246.	14.9	19
680	Precision Cancer Nanotherapy: Evolving Role of Multifunctional Nanoparticles for Cancer Active Targeting. Journal of Medicinal Chemistry, 2019, 62, 10475-10496.	6.4	110
681	Bioinspired lipoproteins-mediated photothermia remodels tumor stroma to improve cancer cell accessibility of second nanoparticles. Nature Communications, 2019, 10, 3322.	12.8	91
682	PEG-Derivatized Dual-Functional Nanomicelles for Improved Cancer Therapy. Frontiers in Pharmacology, 2019, 10, 808.	3.5	33
683	Emerging Twoâ€Dimensional Nanomaterials for Cancer Therapy. ChemPhysChem, 2019, 20, 2417-2433.	2.1	24
684	Magnetic Nanomaterials for Magnetically-Aided Drug Delivery and Hyperthermia. Applied Sciences (Switzerland), 2019, 9, 2927.	2.5	27
685	Recent advances in ruthenium and platinum based supramolecular coordination complexes for antitumor therapy. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110373.	5.0	21
686	On Command Drug Delivery via Cellâ€Conveyed Phototherapeutics. Small, 2019, 15, e1901442.	10.0	16

#	Article	IF	CITATIONS
687	Imaging modification of colon carcinoma cells exposed to lipid based nanovectors for drug delivery: a scanning electron microscopy investigation. RSC Advances, 2019, 9, 21810-21825.	3.6	11
688	Dual drug-paired polyprodrug nanotheranostics reverse multidrug resistant cancers <i>via</i> photothermal-cocktail chemotherapy. Journal of Materials Chemistry B, 2019, 7, 5306-5319.	5.8	20
689	Rational design and facile fabrication of biocompatible triple responsive dendrimeric nanocages for targeted drug delivery. Nanoscale, 2019, 11, 15091-15103.	5.6	28
690	<p>Synthesis and characterization of nanometer-sized liposomes for encapsulation and microRNA transfer to breast cancer cells</p> . International Journal of Nanomedicine, 2019, Volume 14, 5159-5173.	6.7	55
691	Highly Stable and Longâ€Circulating Metalâ€Organic Frameworks Nanoprobes for Sensitive Tumor Detection In Vivo. Advanced Healthcare Materials, 2019, 8, 1900761.	7.6	22
692	2D Monoelemental Germanene Quantum Dots: Synthesis as Robust Photothermal Agents for Photonic Cancer Nanomedicine. Angewandte Chemie - International Edition, 2019, 58, 13405-13410.	13.8	102
693	Boosting the Ferroptotic Antitumor Efficacy via Site-Specific Amplification of Tailored Lipid Peroxidation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 29655-29666.	8.0	68
694	High-efficiency fluorescent and magnetic multimodal probe for long-term monitoring and deep penetration imaging of tumors. Journal of Materials Chemistry B, 2019, 7, 5345-5351.	5.8	22
695	Ultrasound-mediated cavitation enhances the delivery of an EGFR-targeting liposomal formulation designed for chemo-radionuclide therapy. Theranostics, 2019, 9, 5595-5609.	10.0	37
696	Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. Advanced Materials, 2019, 31, e1902409.	21.0	173
697	Anticancer activity of polymeric nanoparticles containing linoleic acid-SN38 (LA-SN38) conjugate in a murine model of colorectal cancer. Colloids and Surfaces B: Biointerfaces, 2019, 181, 822-829.	5.0	27
698	Polyethylene Glycol Nanoparticles as Promising Tools for Anticancer Therapeutics. , 2019, , 205-231.		20
699	Dendrimer-Based Nanoparticulate Delivery System for Cancer Therapy., 2019,, 233-255.		13
700	Animal-Based Materials in the Formulation of Nanocarriers for Anticancer Therapeutics. , 2019 , , $319-341$.		3
701	Tracking chemical interactions of folic acid on gold surface by SERS spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117305.	3.9	13
702	Tunable Hydrophile–Lipophile Balance for Manipulating Structural Stability and Tumor Retention of Amphiphilic Nanoparticles. Advanced Materials, 2019, 31, e1901586.	21.0	76
703	Carrier-Enhanced Anticancer Efficacy of Sunitinib-Loaded Green Tea-Based Micellar Nanocomplex beyond Tumor-Targeted Delivery. ACS Nano, 2019, 13, 7591-7602.	14.6	67
704	Synergistic photothermal/photodynamic suppression of prostatic carcinoma by targeted biodegradable MnO ₂ nanosheets. Drug Delivery, 2019, 26, 661-672.	5.7	44

#	ARTICLE	IF	CITATIONS
705	<p>¹³¹I-labeled polyethylenimine-entrapped gold nanoparticles for targeted tumor SPECT/CT imaging and radionuclide therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 4367-4381.	6.7	26
706	National Cancer Institute Alliance for nanotechnology in cancer—Catalyzing research and translation toward novel cancer diagnostics and therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1570.	6.1	16
707	Dual-Responsive Micelles with Aggregation-Induced Emission Feature and Two-Photon Aborsption for Accurate Drug Delivery and Bioimaging. Bioconjugate Chemistry, 2019, 30, 2075-2087.	3. 6	24
708	Multifunctional Fe ₃ O ₄ @C-based nanoparticles coupling optical/MRI imaging and pH/photothermal controllable drug release as efficient anti-cancer drug delivery platforms. Nanotechnology, 2019, 30, 425102.	2.6	26
709	Selective targeting of tumor cells and tumor associated macrophages separately by twin-like core–shell nanoparticles for enhanced tumor-localized chemoimmunotherapy. Nanoscale, 2019, 11, 13934-13946.	5 . 6	71
710	Nanoparticle-Aided Characterization of Arterial Endothelial Architecture during Atherosclerosis Progression and Metabolic Therapy. ACS Nano, 2019, 13, 13759-13774.	14.6	70
711	Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nature Nanotechnology, 2019, 14, 799-809.	31.5	555
712	Response to Letter to the Editor: †Current Advances in Development of new Docetaxel Formulationsâ€. Expert Opinion on Drug Delivery, 2019, 16, 775-775.	5.0	1
713	Correlating Anticancer Drug Delivery Efficiency with Vascular Permeability of Renal Clearable Versus Nonâ€renal Clearable Nanocarriers. Angewandte Chemie - International Edition, 2019, 58, 12076-12080.	13.8	21
714	Size-Tunable Assemblies Based on Ferrocene-Containing DNA Polymers for Spatially Uniform Penetration. CheM, 2019, 5, 1775-1792.	11.7	78
715	pH-Labile Magnetic Nanocarriers for Intracellular Drug Delivery to Tumor Cells. ACS Omega, 2019, 4, 11728-11736.	3. 5	30
716	Adaptive Polymeric Assemblies for Applications in Biomimicry and Nanomedicine. Biomacromolecules, 2019, 20, 4053-4064.	5.4	21
717	Tumor Microenvironment Responsive Shape-Reversal Self-Targeting Virus-Inspired Nanodrug for Imaging-Guided Near-Infrared-II Photothermal Chemotherapy. ACS Nano, 2019, 13, 12912-12928.	14.6	118
718	Emerging Approaches of Cellâ€Based Nanosystems to Target Cancer Metastasis. Advanced Functional Materials, 2019, 29, 1903441.	14.9	41
719	Cancer Cell Membraneâ€Coated Nanoparticles for Personalized Therapy in Patientâ€Derived Xenograft Models. Advanced Functional Materials, 2019, 29, 1905671.	14.9	125
721	Effect of Cell Age on Uptake and Toxicity of Nanoparticles: The Overlooked Factor at the Nanobio Interface. ACS Applied Materials & Samp; Interfaces, 2019, 11, 39672-39687.	8.0	30
722	Multimodal Precision Imaging of Pulmonary Nanoparticle Delivery in Mice: Dynamics of Application, Spatial Distribution, and Dosimetry. Small, 2019, 15, e1904112.	10.0	21
723	Preclinical Evaluation and Clinical Translation of Magnetite-Based Nanomedicines. Journal of Drug Delivery Science and Technology, 2019, 54, 101282.	3.0	29

#	ARTICLE	IF	CITATIONS
724	Proline Isomerization-Regulated Tumor Microenvironment-Adaptable Self-Assembly of Peptides for Enhanced Therapeutic Efficacy. Nano Letters, 2019, 19, 7965-7976.	9.1	78
725	Development of a Physiologically-Based Mathematical Model for Quantifying Nanoparticle Distribution in Tumors., 2019, 2019, 2852-2855.		1
726	Discovery of a Novel Cabazitaxel Nanoparticle–Drug Conjugate (CRLX522) with Improved Pharmacokinetic Properties and Anticancer Effects Using a β-Cyclodextrin–PEG Copolymer Based Delivery Platform. Journal of Medicinal Chemistry, 2019, 62, 9541-9559.	6.4	7
727	Nanotheranostic Pluronic-Like Polymeric Micelles: Shedding Light into the Dark Shadows of Tumors. Molecular Pharmaceutics, 2019, 16, 4757-4774.	4.6	18
728	Transcytosis of Nanomedicine for Tumor Penetration. Nano Letters, 2019, 19, 8010-8020.	9.1	84
729	Characterization of Redox-Responsive LXR-Activating Nanoparticle Formulations in Primary Mouse Macrophages. Molecules, 2019, 24, 3751.	3.8	7
730	Gramâ€Negative Bacteria Targeting Mediated by Carbohydrateâ€"Carbohydrate Interactions Induced by Surfaceâ€Modified Nanoparticles. Advanced Functional Materials, 2019, 29, 1904216.	14.9	43
731	CD44â€Specific A6 Short Peptide Boosts Targetability and Anticancer Efficacy of Polymersomal Epirubicin to Orthotopic Human Multiple Myeloma. Advanced Materials, 2019, 31, e1904742.	21.0	49
732	Nearâ€Infrared Photoactivatable Semiconducting Polymer Nanoblockaders for Metastasisâ€Inhibited Combination Cancer Therapy. Advanced Materials, 2019, 31, e1905091.	21.0	157
733	Highly Biocompatible Functionalized Layerâ€byâ€Layer Ginger Lipid Nano Vectors Targeting Pâ€Selectin for Delivery of Doxorubicin to Treat Colon Cancer. Advanced Therapeutics, 2019, 2, 1900129.	3.2	17
734	Targeted Delivery of siRNA Lipoplexes to Cancer Cells Using Macrophage Transient Horizontal Gene Transfer. Advanced Science, 2019, 6, 1900582.	11.2	57
735	Smart H ₂ Sâ€Triggered/Therapeutic System (SHTS)â€Based Nanomedicine. Advanced Science, 2019, 6, 1901724.	11.2	55
736	A phase 0 study of the pharmacokinetics, biodistribution, and dosimetry of 188Re-liposome in patients with metastatic tumors. EJNMMI Research, 2019, 9, 46.	2.5	17
737	< P>A Feedback Loop Regulation Of LINCO1433 And YAP Promotes Malignant Behavior In Gastric Cancer Cells. OncoTargets and Therapy, 2019, Volume 12, 7949-7962.	2.0	6
738	Advances in nanomedicine for cancer starvation therapy. Theranostics, 2019, 9, 8026-8047.	10.0	151
740	Smart cancer nanomedicine. Nature Nanotechnology, 2019, 14, 1007-1017.	31.5	776
741	Gemcitabine Combination Nano Therapies for Pancreatic Cancer. Pharmaceutics, 2019, 11, 574.	4.5	58
742	Polymer-Mediated Penetration-Independent Cancer Therapy. Biomacromolecules, 2019, 20, 4258-4271.	5.4	38

#	Article	IF	CITATIONS
743	Tetraphenylsilane-Cored Star-Shaped Polymer Micelles with pH/Redox Dual Response and Active Targeting Function for Drug-Controlled Release. Biomacromolecules, 2019, 20, 4602-4610.	5.4	26
744	Nanomedicine: new hope for transplant paradigms lost?. Nanomedicine, 2019, 14, 2645-2649.	3.3	4
745	Misc. medical devices and technologies. Side Effects of Drugs Annual, 2019, , 573-615.	0.6	0
746	Dextran-Benzoporphyrin Derivative (BPD) Coated Superparamagnetic Iron Oxide Nanoparticle (SPION) Micelles for T ₂ -Weighted Magnetic Resonance Imaging and Photodynamic Therapy. Bioconjugate Chemistry, 2019, 30, 2974-2981.	3.6	35
747	Biodegradable Mesoporous Silica Achieved via Carbon Nanodots-Incorporated Framework Swelling for Debris-Mediated Photothermal Synergistic Immunotherapy. Nano Letters, 2019, 19, 8409-8417.	9.1	79
748	Controlled synthesis of a core-shell nanohybrid for effective multimodal image-guided combined photothermal/photodynamic therapy of tumors. NPG Asia Materials, 2019, 11, .	7.9	38
749	A concise review on cancer treatment methods and delivery systems. Journal of Drug Delivery Science and Technology, 2019, 54, 101350.	3.0	60
750	<p>Multifunctional Mesoporous Polydopamine With Hydrophobic Paclitaxel For Photoacoustic Imaging-Guided Chemo-Photothermal Synergistic Therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 8647-8663.	6.7	43
751	C60 Fullerene as an Effective Nanoplatform of Alkaloid Berberine Delivery into Leukemic Cells. Pharmaceutics, 2019, 11, 586.	4.5	29
752	Co-delivery of glycyrrhizin and doxorubicin by alginate nanogel particles attenuates the activation of macrophage and enhances the therapeutic efficacy for hepatocellular carcinoma. Theranostics, 2019, 9, 6239-6255.	10.0	59
753	Platelet-Mimicking Biotaxis Targeting Vasculature-Disrupted Tumors for Cascade Amplification of Hypoxia-Sensitive Therapy. ACS Nano, 2019, 13, 14230-14240.	14.6	60
754	Co-encapsulation of magnetic Fe ₃ O ₄ nanoparticles and doxorubicin into biocompatible PLGA-PEG nanocarriers for early detection and treatment of tumours. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 4211-4221.	2.8	19
755	Theranostic Nanomedicine for Malignant Gliomas. Frontiers in Bioengineering and Biotechnology, 2019, 7, 325.	4.1	33
756	Graphene-based drug delivery systems. , 2019, , 149-168.		10
758	Nanoparticles in the clinic: An update. Bioengineering and Translational Medicine, 2019, 4, e10143.	7.1	1,073
759	Surface Plasmon Resonance–Enhanced Photoacoustic Imaging and Photothermal Therapy of Endogenous H ₂ Sâ€Triggered Au@Cu ₂ O. Small, 2019, 15, e1903473.	10.0	65
760	Catalytically Selective Chemotherapy from Tumorâ€Metabolic Generated Lactic Acid. Small, 2019, 15, e1903746.	10.0	59
761	Responsively Aggregatable Sub-6 nm Nanochelators Induce Simultaneous Antiangiogenesis and Vascular Obstruction for Enhanced Tumor Vasculature Targeted Therapy. Nano Letters, 2019, 19, 7750-7759.	9.1	29

#	Article	IF	CITATIONS
762	Recent Development of Metal Nanoparticles for Angiogenesis Study and Their Therapeutic Applications. ACS Applied Bio Materials, 2019, 2, 5492-5511.	4.6	31
763	Cancer Nanomedicines Based on Synthetic Polypeptides. Biomacromolecules, 2019, 20, 4299-4311.	5.4	27
764	Scale-Up of the Manufacturing Process To Produce Docetaxel-Loaded mPEG- <i>b</i> -p(HPMA-Bz) Block Copolymer Micelles for Pharmaceutical Applications. Organic Process Research and Development, 2019, 23, 2707-2715.	2.7	9
765	Cysteine-rich Proteins for Drug Delivery and Diagnosis. Current Medicinal Chemistry, 2019, 26, 1377-1388.	2.4	7
766	Correlated Migration Invokes Higher Na ⁺ â€lon Conductivity in NaSICONâ€Type Solid Electrolytes. Advanced Energy Materials, 2019, 9, 1902373.	19.5	162
767	Selfâ€Destruction of Cancer Induced by Ag 2 S Amorphous Nanodots. Small, 2019, 15, 1902945.	10.0	10
768	Reduction-Responsive Polymer Prodrug Micelles with Enhanced Endosomal Escape Capability for Efficient Intracellular Translocation and Drug Release. ACS Applied Bio Materials, 2019, 2, 5099-5109.	4.6	14
769	Bacterial microcompartments: catalysis-enhancing metabolic modules for next generation metabolic and biomedical engineering. BMC Biology, 2019, 17, 79.	3.8	32
770	Cancer Nanotechnology: A New Revolution for Cancer Diagnosis and Therapy. Current Drug Metabolism, 2019, 20, 416-429.	1.2	220
771	H2O2/near-infrared light-responsive nanotheronostics for MRI-guided synergistic chemo/photothermal cancer therapy. Nanomedicine, 2019, 14, 2189-2207.	3.3	4
772	A Y1 receptor ligand synergized with a P-glycoprotein inhibitor improves the therapeutic efficacy of multidrug resistant breast cancer. Biomaterials Science, 2019, 7, 4748-4757.	5.4	15
773	<p>Janus particles: recent advances in the biomedical applications</p> . International Journal of Nanomedicine, 2019, Volume 14, 6749-6777.	6.7	54
774	Single-cell kinetics of siRNA-mediated mRNA degradation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102077.	3.3	6
775	Combinatorial photochemotherapy on liver cancer stem cells with organoplatinum(<scp>ii</scp>) metallacage-based nanoparticles. Journal of Materials Chemistry B, 2019, 7, 6476-6487.	5.8	27
776	Redox-Sensitive Polymer Micelles Based on CD44 and Folic Acid Receptor for Intracellular Drug Delivery and Drug Controlled Release in Cancer Therapy. ACS Applied Bio Materials, 2019, 2, 4222-4232.	4.6	7
777	Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chemical Society Reviews, 2019, 48, 5140-5176.	38.1	150
778	Real-time fluorescence imaging for visualization and drug uptake prediction during drug delivery by thermosensitive liposomes. International Journal of Hyperthermia, 2019, 36, 816-825.	2.5	23
779	<p>Cellular uptake, intracellular distribution and degradation of Her2-targeting silk nanospheres</p> . International Journal of Nanomedicine, 2019, Volume 14, 6855-6865.	6.7	17

#	Article	IF	CITATIONS
780	Poly(N,N-diethyl acrylamide)/functionalized graphene quantum dots hydrogels loaded with doxorubicin as a nano-drug carrier for metastatic lung cancer in mice. Materials Science and Engineering C, 2019, 105, 110094 .	7.3	45
781	Synthetic and biological identities of polymeric nanoparticles influencing the cellular delivery: An immunological link. Journal of Colloid and Interface Science, 2019, 556, 476-491.	9.4	18
782	Tumor pHâ€Responsive Albumin/Polyaniline Assemblies for Amplified Photoacoustic Imaging and Augmented Photothermal Therapy. Small, 2019, 15, e1902926.	10.0	88
783	Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. Journal of Controlled Release, 2019, 311-312, 301-318.	9.9	105
784	Polymeric Mixed Micelles: Improving the Anticancer Efficacy of Single-Copolymer Micelles. Critical Reviews in Therapeutic Drug Carrier Systems, 2019, 36, 1-58.	2.2	34
785	Controlling the Interaction of Nanoparticles with Cell Membranes by the Polymeric Tether. Langmuir, 2019, 35, 12851-12857.	3.5	5
786	Alternative and Injectable Preformed Albumin-Bound Anticancer Drug Delivery System for Anticancer and Antimetastasis Treatment. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42534-42548.	8.0	16
787	Size effect of mesoporous organosilica nanoparticles on tumor penetration and accumulation. Biomaterials Science, 2019, 7, 4790-4799.	5.4	27
788	Water-Soluble Fullerenol C60(OH)36 toward Effective Anti-Air Pollution Induced by Urban Particulate Matter in HaCaT Cell. International Journal of Molecular Sciences, 2019, 20, 4259.	4.1	13
789	Theranostic Nanostructures for Ovarian Cancer. Critical Reviews in Therapeutic Drug Carrier Systems, 2019, 36, 305-371.	2.2	5
790	Dual-targeting antitumor conjugates derived from platinum(IV) prodrugs and microtubule inhibitor CA-4 significantly exhibited potent ability to overcome cisplatin resistance. Bioorganic Chemistry, 2019, 92, 103236.	4.1	24
791	Tumor acidity and CD44 dual targeting hyaluronic acid-coated gold nanorods for combined chemo- and photothermal cancer therapy. Carbohydrate Polymers, 2019, 226, 115281.	10.2	43
792	Erythrocyte Membrane Cloaked Curcumin-Loaded Nanoparticles for Enhanced Chemotherapy. Pharmaceutics, 2019, 11, 429.	4.5	34
793	Fluorescent Silicon Nanorods-Based Nanotheranostic Agents for Multimodal Imaging-Guided Photothermal Therapy. Nano-Micro Letters, 2019, 11, 73.	27.0	29
794	Kidney-targeted rhein-loaded liponanoparticles for diabetic nephropathy therapy via size control and enhancement of renal cellular uptake. Theranostics, 2019, 9, 6191-6208.	10.0	62
795	HER2-Specific Reduction-Sensitive Immunopolymersomes with High Loading of Epirubicin for Targeted Treatment of Ovarian Tumor. Biomacromolecules, 2019, 20, 3855-3863.	5.4	13
796	Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience, 2019, 13, 961.	1.1	450
797	Targeted Delivery of Cisplatin-Derived Nanoprecursors via a Biomimetic Yeast Microcapsule for Tumor Therapy by the Oral Route. Theranostics, 2019, 9, 6568-6586.	10.0	35

#	Article	IF	CITATIONS
798	Gold Nanoparticle Aggregates Functionalized with Cyclic RGD Peptides for Targeting and Imaging of Colorectal Cancer Cells. ACS Applied Nano Materials, 2019, 2, 6436-6444.	5.0	35
799	Corona Composition Can Affect the Mechanisms Cells Use to Internalize Nanoparticles. ACS Nano, 2019, 13, 11107-11121.	14.6	205
800	HPMA-Based Nanoparticles for Fast, Bioorthogonal iEDDA Ligation. Biomacromolecules, 2019, 20, 3786-3797.	5.4	9
801	Sono-Polymerization of Poly(ethylene glycol)-Based Nanoparticles for Targeted Drug Delivery. ACS Macro Letters, 2019, 8, 1285-1290.	4.8	22
802	Developing Protein-Based Nanoparticles as Versatile Delivery Systems for Cancer Therapy and Imaging. Nanomaterials, 2019, 9, 1329.	4.1	44
803	Nanodelivery of Mycophenolate Mofetil to the Organ Improves Transplant Vasculopathy. ACS Nano, 2019, 13, 12393-12407.	14.6	21
804	pH-responsive stearic acid-O-carboxymethyl chitosan assemblies as carriers delivering small molecular drug for chemotherapy. Materials Science and Engineering C, 2019, 105, 110107.	7.3	20
805	Anticancer drug delivery to cancer cells using alkyl amine-functionalized nanodiamond supraparticles. Nanoscale Advances, 2019, 1, 3406-3412.	4.6	15
806	Nanotechnology based therapeutics for lung disease. Thorax, 2019, 74, 965-976.	5.6	64
807	Dual-functional Liposomes with Carbonic Anhydrase IX Antibody and BR2 Peptide Modification Effectively Improve Intracellular Delivery of Cantharidin to Treat Orthotopic Hepatocellular Carcinoma Mice. Molecules, 2019, 24, 3332.	3.8	12
808	Comparison of the effect of rhodium citrate-associated iron oxide nanoparticles on metastatic and non-metastatic breast cancer cells. Cancer Nanotechnology, 2019, 10, .	3.7	6
809	Drug Nanorod-Mediated Intracellular Delivery of microRNA-101 for Self-sensitization via Autophagy Inhibition. Nano-Micro Letters, 2019, 11, 82.	27.0	16
810	Biodegradable Porous Silicon Nanocontainers as an Effective Drug Carrier for Regulation of the Tumor Cell Death Pathways. ACS Biomaterials Science and Engineering, 2019, 5, 6063-6071.	5.2	13
811	Real-Time Label-Free Targeting Assessment and in Vitro Characterization of Curcumin-Loaded Poly-lactic- <i>co</i> -glycolic Acid Nanoparticles for Oral Colon Targeting. ACS Omega, 2019, 4, 16878-16890.	3.5	18
812	Nanobiomaterials Used in Cancer Therapy: An Up-To-Date Overview. Molecules, 2019, 24, 3547.	3.8	81
813	Polydopamine-Based "Four-in-One―Versatile Nanoplatforms for Targeted Dual Chemo and Photothermal Synergistic Cancer Therapy. Pharmaceutics, 2019, 11, 507.	4.5	36
814	Aptamer/photosensitizer hybridized mesoporous MnO2 based tumor cell activated ROS regulator for precise photodynamic therapy of breast cancer. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110536.	5.0	23
815	Ferritin drug carrier (FDC) for tumor targeting therapy. Journal of Controlled Release, 2019, 311-312, 288-300.	9.9	125

#	Article	IF	CITATIONS
816	Bioanalysis of Targeted Nanoparticles in Monkey Plasma via LC-MS/MS. Analytical Chemistry, 2019, 91, 13874-13882.	6.5	8
817	Co-targeting Bulk Tumor and CSCs in Clinically Translatable TNBC Patient-Derived Xenografts via Combination Nanotherapy. Molecular Cancer Therapeutics, 2019, 18, 1755-1764.	4.1	17
818	Selenoxide elimination manipulate the oxidative stress to improve the antitumor efficacy. Biomaterials, 2019, 225, 119514.	11.4	30
819	A unique multidrug nanomedicine made of squalenoyl-gemcitabine and alkyl-lysophospholipid edelfosine. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 165-173.	4.3	13
820	Nanoformulations for glioblastoma multiforme: a new hope for treatment. Future Medicinal Chemistry, 2019, 11, 2461-2482.	2.3	21
821	Albumin-bioinspired iridium oxide nanoplatform with high photothermal conversion efficiency for synergistic chemo-photothermal of osteosarcoma. Drug Delivery, 2019, 26, 918-927.	5 . 7	24
822	^{99m} Tc-Labeled Polyethylenimine-Entrapped Gold Nanoparticles with pH-Responsive Charge Conversion Property for Enhanced Dual Mode SPECT/CT Imaging of Cancer Cells. Langmuir, 2019, 35, 13405-13412.	3.5	19
823	DePEGylation strategies to increase cancer nanomedicine efficacy. Nanoscale Horizons, 2019, 4, 378-387.	8.0	74
824	A photoacoustic shockwave triggers the size shrinkage of nanoparticles to obviously improve tumor penetration and therapeutic efficacy. Nanoscale, 2019, 11, 1423-1436.	5.6	14
825	Achieving traceless ablation of solid tumors without recurrence by mild photothermal-chemotherapy of triple stimuli-responsive polymer–drug conjugate nanoparticles. Journal of Materials Chemistry B, 2019, 7, 415-432.	5.8	32
826	Carboplatin prodrug conjugated Fe ₃ O ₄ nanoparticles for magnetically targeted drug delivery in ovarian cancer cells. Journal of Materials Chemistry B, 2019, 7, 433-442.	5.8	25
827	Multifunctional sharp pH-responsive nanoparticles for targeted drug delivery and effective breast cancer therapy. Journal of Materials Chemistry B, 2019, 7, 576-585.	5.8	40
828	Combinatorial nanocarriers against drug resistance in hematological cancers: Opportunities and emerging strategies. Journal of Controlled Release, 2019, 296, 114-139.	9.9	36
829	Soft material nanoarchitectonics at interfaces: molecular assembly, nanomaterial synthesis, and life control. Molecular Systems Design and Engineering, 2019, 4, 49-64.	3.4	30
830	A strategy using mesoporous polymer nanospheres as nanocarriers of Bcl-2 siRNA towards breast cancer therapy. Journal of Materials Chemistry B, 2019, 7, 477-487.	5.8	14
831	A translational approach to assess the metabolomic impact of stabilized gold nanoparticles by NMR spectroscopy. Analyst, The, 2019, 144, 1265-1274.	3.5	12
832	Facile synthesis of aquo-cisplatin arsenite multidrug nanocomposites for overcoming drug resistance and efficient combination therapy. Biomaterials Science, 2019, 7, 262-271.	5.4	22
833	Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core–shell nanoparticles. Nanoscale, 2019, 11, 3164-3172.	5.6	49

#	Article	IF	CITATIONS
834	Nanomedicines for cancer therapy: current status, challenges and future prospects. Therapeutic Delivery, 2019, 10, 113-132.	2.2	102
835	Therapeutic Remodeling of the Tumor Microenvironment Enhances Nanoparticle Delivery. Advanced Science, 2019, 6, 1802070.	11.2	82
836	Microenvironmentâ€Induced In Situ Selfâ€Assembly of Polymer–Peptide Conjugates That Attack Solid Tumors Deeply. Angewandte Chemie - International Edition, 2019, 58, 4632-4637.	13.8	138
837	Multifunctional Polymeric Prodrug with Simultaneous Conjugating Camptothecin and Doxorubicin for pH/Reduction Dual-Responsive Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8740-8748.	8.0	52
838	Do biomedical engineers dream of graphene sheets?. Biomaterials Science, 2019, 7, 1228-1239.	5.4	10
839	Microenvironmentâ€Induced In Situ Selfâ€Assembly of Polymer–Peptide Conjugates That Attack Solid Tumors Deeply. Angewandte Chemie, 2019, 131, 4680-4685.	2.0	27
840	A hybrid nanomaterial with NIR-induced heat and associated hydroxyl radical generation for synergistic tumor therapy. Biomaterials, 2019, 199, 1-9.	11.4	40
841	Modulation of drug release by decoration with Pluronic F127 to improve anti-colon cancer activity of electrospun fibrous meshes. Materials Science and Engineering C, 2019, 99, 591-598.	7.3	8
842	Photoactivatable Prodrug of Doxazolidine Targeting Exosomes. Journal of Medicinal Chemistry, 2019, 62, 1959-1970.	6.4	12
843	Poly(amidoamine) Dendrimer-Coordinated Copper(II) Complexes as a Theranostic Nanoplatform for the Radiotherapy-Enhanced Magnetic Resonance Imaging and Chemotherapy of Tumors and Tumor Metastasis. Nano Letters, 2019, 19, 1216-1226.	9.1	88
844	Wheat straw extracted lignin in silver nanoparticles synthesis: Expanding its prophecy towards antineoplastic potency and hydrogen peroxide sensing ability. International Journal of Biological Macromolecules, 2019, 128, 391-400.	7.5	84
845	Enhanced Drug Delivery by Nanoscale Integration of a Nitric Oxide Donor To Induce Tumor Collagen Depletion. Nano Letters, 2019, 19, 997-1008.	9.1	161
846	Saponin-Based Near-Infrared Nanoparticles with Aggregation-Induced Emission Behavior: Enhancing Cell Compatibility and Permeability. ACS Applied Bio Materials, 2019, 2, 943-951.	4.6	20
847	Multifunctional Silicon–Carbon Nanohybrids Simultaneously Featuring Bright Fluorescence, High Antibacterial and Wound Healing Activity. Small, 2019, 15, e1803200.	10.0	25
848	Rational Design of Cancer Nanomedicine for Simultaneous Stealth Surface and Enhanced Cellular Uptake. ACS Nano, 2019, 13, 954-977.	14.6	156
849	Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases. Advanced Drug Delivery Reviews, 2019, 151-152, 130-151.	13.7	78
850	In vitro and in vivo evaluation of first-generation carbosilane arene Ru(II)-metallodendrimers in advanced prostate cancer. European Polymer Journal, 2019, 113, 229-235.	5.4	17
851	Targeting acidity in cancer and diabetes. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 273-280.	7.4	70

#	Article	IF	CITATIONS
852	Iron oxide nanoparticulate system as a cornerstone in the effective delivery of Tc-99Âm radionuclide: a potential molecular imaging probe for tumor diagnosis. DARU, Journal of Pharmaceutical Sciences, 2019, 27, 49-58.	2.0	17
853	2D Black Phosphorus–Based Biomedical Applications. Advanced Functional Materials, 2019, 29, 1808306.	14.9	438
854	Minimalist Design of a Stimuli-Responsive Spherical Nucleic Acid for Conditional Delivery of Oligonucleotide Therapeutics. ACS Applied Materials & Interfaces, 2019, 11, 13912-13920.	8.0	27
855	Au Nanobottles with Synthetically Tunable Overall and Opening Sizes for Chemo-Photothermal Combined Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5353-5363.	8.0	19
856	Graphene quantum dots-NaYF4:Yb,Er hybrid with significant enhancement of upconversion emission for fluorescent detection of carcinoembryonic antigen with exonuclease III-aided target recycling amplification. Sensors and Actuators B: Chemical, 2019, 285, 453-461.	7.8	16
857	Modular assembly of plasmonic core–satellite structures as highly brilliant SERS-encoded nanoparticles. Nanoscale Advances, 2019, 1, 122-131.	4.6	50
858	A tungsten nitride-based degradable nanoplatform for dual-modal image-guided combinatorial chemo-photothermal therapy of tumors. Nanoscale, 2019, 11, 2027-2036.	5.6	21
859	Logical design and application of prodrug platforms. Polymer Chemistry, 2019, 10, 306-324.	3.9	58
860	Rapid conjugation of nanoparticles, proteins and siRNAs to microbubbles by strain-promoted click chemistry for ultrasound imaging and drug delivery. Polymer Chemistry, 2019, 10, 705-717.	3.9	15
861	Stimuli-responsive multifunctional metal–organic framework nanoparticles for enhanced chemo-photothermal therapy. Journal of Materials Chemistry B, 2019, 7, 994-1004.	5.8	83
862	Naringenin-loaded nano-structured lipid carrier fortifies oxaliplatin-dependent apoptosis in HT-29 cell line. Process Biochemistry, 2019, 83, 168-175.	3.7	48
863	Enhanced anti-tumor efficacy of hyaluronic acid modified nanocomposites combined with sonochemotherapy against subcutaneous and metastatic breast tumors. Nanoscale, 2019, 11, 11470-11483.	5.6	42
864	Facile and Controllable Fabrication of Protein-Only Nanoparticles through Photo-Induced Crosslinking of Albumin and Their Application as DOX Carriers. Nanomaterials, 2019, 9, 797.	4.1	5
865	Folic Acid-Functionalized Black Phosphorus Quantum Dots for Targeted Chemo-Photothermal Combination Cancer Therapy. Pharmaceutics, 2019, 11, 242.	4.5	53
866	<p>A nano-sized blending system comprising identical triblock copolymers with different hydrophobicity for fabrication of an anticancer drug nanovehicle with high stability and solubilizing capacity</p> . International Journal of Nanomedicine, 2019, Volume 14, 3629-3644.	6.7	6
867	A nanodrug to combat cisplatin-resistance by protecting cisplatin with <i>p</i> -sulfonatocalix[4]arene and regulating glutathione <i>S</i> -transferases with loaded 5-fluorouracil. Chemical Communications, 2019, 55, 7199-7202.	4.1	16
868	Boosting phototherapeutic efficiency with single NIR laser-activated ultrasmall bismuth sulfide quantum dots. Chemical Engineering Journal, 2019, 375, 121941.	12.7	25
869	Self-assembling Collagen/Alginate hybrid hydrogels for combinatorial photothermal and immuno tumor therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 570-575.	4.7	85

#	Article	IF	CITATIONS
870	Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate) Biopolyester Based Nanoparticles as NVP-BEZ235 Delivery Vehicle for Tumor Targeting Therapy. Biomacromolecules, 2019, 20, 3313-3323.	5.4	8
871	Mussel-Derived, Cancer-Targeting Peptide as pH-Sensitive Prodrug Nanocarrier. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 23948-23956.	8.0	50
872	Selective RNA interference and gene silencing using reactive oxygen species-responsive lipid nanoparticles. Chemical Communications, 2019, 55, 8170-8173.	4.1	20
873	Co-delivery of paclitaxel and melittin by glycopeptide-modified lipodisks for synergistic anti-glioma therapy. Nanoscale, 2019, 11, 13069-13077.	5.6	28
874	Functional T cell activation by smart nanosystems for effective cancer immunotherapy. Nano Today, 2019, 27, 28-47.	11.9	34
875	Thermosensitive Nanogels with Cross-Linked Pd(II) lons for Improving Therapeutic Effects on Platinum-Resistant Cancers via Intratumoral Formation of Hydrogels. Chemistry of Materials, 2019, 31, 5089-5103.	6.7	24
876	Precision Nanomedicine Development Based on Specific Opsonization of Human Cancer Patient-Personalized Protein Coronas. Nano Letters, 2019, 19, 4692-4701.	9.1	87
877	MiRNA Delivery System Based on Stimuli-Responsive Gold Nanoparticle Aggregates for Multimodal Tumor Therapy. ACS Applied Bio Materials, 2019, 2, 2833-2839.	4.6	11
878	Transforming stealthy to sticky nanocarriers: a potential application for tumor therapy. Biomaterials Science, 2019, 7, 3581-3593.	5.4	12
879	Engineering Biomimetic Platesomes for pHâ€Responsive Drug Delivery and Enhanced Antitumor Activity. Advanced Materials, 2019, 31, e1900795.	21.0	148
880	Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharmaceutica Sinica B, 2019, 9, 1099-1112.	12.0	211
881	Mathematical modeling of the heterogeneous distributions of nanomedicines in solid tumors. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 153-164.	4.3	10
882	Biomedical Applications of Polymer/Layered Double Hydroxide Bionanocomposites., 2019,, 315-322.		2
883	Charge-convertible polymers for improved tumor targeting and enhanced therapy. Biomaterials, 2019, 217, 119299.	11.4	49
884	Evaluation of zeta potential of nanomaterials by electrophoretic light scattering: Fast field reversal versus Slow field reversal modes. Talanta, 2019, 205, 120062.	5.5	17
885	Encapsulating maytansinoid in pH-sensitive nanocarriers: The importance of using extremely potent cytotoxic agents and fast release for nanomedicine to achieve tumor elimination. Nano Research, 2019, 12, 1959-1966.	10.4	4
886	An injectable and tumor-specific responsive hydrogel with tissue-adhesive and nanomedicine-releasing abilities for precise locoregional chemotherapy. Acta Biomaterialia, 2019, 96, 123-136.	8.3	50
887	Nanomedicines for Reactive Oxygen Species Mediated Approach: An Emerging Paradigm for Cancer Treatment. Accounts of Chemical Research, 2019, 52, 1771-1782.	15.6	248

#	Article	IF	CITATIONS
888	A size-tunable and multi-responsive nanoplatform for deep tumor penetration and targeted combinatorial radio-/chemotherapy. Journal of Materials Chemistry B, 2019, 7, 4484-4498.	5.8	17
889	Layerâ€byâ€Layer Assembly: Recent Progress from Layered Assemblies to Layered Nanoarchitectonics. Chemistry - an Asian Journal, 2019, 14, 2553-2566.	3.3	113
890	Antioxidative nanomaterials and biomedical applications. Nano Today, 2019, 27, 146-177.	11.9	116
891	Quantitative and high drug loading of self-assembled prodrug with defined molecular structures for effective cancer therapy. Journal of Controlled Release, 2019, 307, 90-97.	9.9	10
892	Shape Effect of Nanoparticles on Tumor Penetration in Monolayers Versus Spheroids. Molecular Pharmaceutics, 2019, 16, 2902-2911.	4.6	30
893	Understanding the cellular uptake and biodistribution of a dual-targeting carrier based on redox-sensitive hyaluronic acid-ss-curcumin micelles for treating brain glioma. International Journal of Biological Macromolecules, 2019, 136, 143-153.	7.5	16
894	Anionic and Cationic Vitamin E-TPGS Mixed Polymeric Phospholipid Micellar Vehicles. Methods in Molecular Biology, 2019, 2000, 31-41.	0.9	4
895	Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Development Research, 2019, 80, 404-424.	2.9	131
896	Nanoparticle Characterization: What to Measure?. Advanced Materials, 2019, 31, e1901556.	21.0	216
897	Erythrocyte Membrane-Camouflaged IR780 and DTX Coloading Polymeric Nanoparticles for Imaging-Guided Cancer Photo–Chemo Combination Therapy. Molecular Pharmaceutics, 2019, 16, 3208-3220.	4.6	48
898	Surface-Enhanced Raman Spectroscopy in Cancer Diagnosis, Prognosis and Monitoring. Cancers, 2019, 11, 748.	3.7	71
899	Enhanced Tumor Penetration and Chemotherapy Efficiency by Covalent Self-Assembled Nanomicelle Responsive to Tumor Microenvironment. Biomacromolecules, 2019, 20, 2637-2648.	5.4	19
900	Red Blood Cells-Derived Vesicles for Delivery of Lipophilic Drug Camptothecin. ACS Applied Materials & Lipophilic Drug Camptothecin.	8.0	61
901	A two-photon fluorophore labeled multi-functional drug carrier for targeting cancer therapy, inflammation restraint and AIE active bioimaging. Journal of Materials Chemistry B, 2019, 7, 3894-3908.	5.8	5
902	The Application of Nucleic Acid Amplification Strategies in Theranostics. , 2019, , 289-305.		0
903	Towards more accurate bioimaging of drug nanocarriers: turning aggregation-caused quenching into a useful tool. Advanced Drug Delivery Reviews, 2019, 143, 206-225.	13.7	178
904	Innovation in nanomedicine and engineered nanomaterials for therapeutic purposes., 2019,, 235-262.		7
905	Precise Deciphering of Brain Vasculatures and Microscopic Tumors with Dual NIRâ€I Fluorescence and Photoacoustic Imaging. Advanced Materials, 2019, 31, e1902504.	21.0	181

#	Article	IF	Citations
906	Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and In Vivo biofate of nanomedicines. Advanced Drug Delivery Reviews, 2019, 143, 177-205.	13.7	118
907	Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines. Cancer Letters, 2019, 459, 192-203.	7.2	23
908	Cyclic Hydrazideâ€Functionalized Poly(ethylene oxide) Frameworks for the Synthesis of pHâ€Cleavable Drugâ€Carriers and Their Applications for the Stabilization of Gold Nanoparticles. Macromolecular Chemistry and Physics, 2019, 220, 1900075.	2.2	0
909	Spatiotemporal control of photothermal heating using pH sensitive near-infrared croconaine-based dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111936.	3.9	6
910	T cell immunotherapy enhanced by designer biomaterials. Biomaterials, 2019, 217, 119265.	11.4	40
911	Microfluidic-Assisted Engineering of Quasi-Monodisperse pH-Responsive Polymersomes toward Advanced Platforms for the Intracellular Delivery of Hydrophilic Therapeutics. Langmuir, 2019, 35, 8363-8372.	3.5	18
912	NIR-Responsive Polypeptide Nanocomposite Generates NO Gas, Mild Photothermia, and Chemotherapy to Reverse Multidrug-Resistant Cancer. Nano Letters, 2019, 19, 4362-4370.	9.1	122
913	A Multifunctional Biodegradable Nanocomposite for Cancer Theranostics. Advanced Science, 2019, 6, 1802001.	11.2	72
914	Monodispersed Copper(I)â€Based Nano Metal–Organic Framework as a Biodegradable Drug Carrier with Enhanced Photodynamic Therapy Efficacy. Advanced Science, 2019, 6, 1900848.	11.2	147
915	Dual Stable Nanomedicines Prepared by Cisplatin-Crosslinked Camptothecin Prodrug Micelles for Effective Drug Delivery. ACS Applied Materials & Effective Drug Delivery. ACS Applied Drug Delivery. ACS Applied Drug Delivery. ACS Applied Drug Delivery. ACS Applied Drug Drug Drug Delivery. ACS Applied Drug Drug Drug Drug Drug Drug Drug Drug	8.0	46
916	Combining Nanomedicine and Immunotherapy. Accounts of Chemical Research, 2019, 52, 1543-1554.	15.6	310
917	Supramolecular polymer nanocapsules by enzymatic covalent condensation: biocompatible and biodegradable drug-delivery systems for chemo-photothermal anticancer therapy. Polymer Chemistry, 2019, 10, 3566-3570.	3.9	10
918	<p>Comparison of cytocompatibility and anticancer properties of traditional and green chemistry-synthesized tellurium nanowires</p> . International Journal of Nanomedicine, 2019, Volume 14, 3155-3176.	6.7	16
919	Paclitaxel Magnetic Core–Shell Nanoparticles Based on Poly(lactic acid) Semitelechelic Novel Block Copolymers for Combined Hyperthermia and Chemotherapy Treatment of Cancer. Pharmaceutics, 2019, 11, 213.	4.5	19
920	Nanocarrier-Based Gene Therapy Imaging Strategies. , 2019, , 409-420.		0
921	Magnetic Nanostructure-Coated Thermoresponsive Hydrogel Nanoconstruct As a Smart Multimodal Theranostic Platform. ACS Biomaterials Science and Engineering, 2019, 5, 3049-3059.	5.2	17
922	Injectable, Biodegradable, Thermosensitive Nanoparticles-Aggregated Hydrogel with Tumor-Specific Targeting, Penetration, and Release for Efficient Postsurgical Prevention of Tumor Recurrence. ACS Applied Materials & Diterfaces, 2019, 11, 19700-19711.	8.0	55
923	"Locked―cancer cells are more sensitive to chemotherapy. Bioengineering and Translational Medicine, 2019, 4, e10130.	7.1	4

#	Article	IF	CITATIONS
924	Two-photon AIE probe conjugated theranostic nanoparticles for tumor bioimaging and pH-sensitive drug delivery. Nano Research, 2019, 12, 1703-1712.	10.4	25
925	Physalis Mottle Virus-like Nanoparticles for Targeted Cancer Imaging. ACS Applied Materials & Discrete Section 2019, 11, 18213-18223.	8.0	42
926	Interaction of Mitoxantrone-Loaded Cholesterol Modified Pullulan Nanoparticles with Human Serum Albumin and Effect on Drug Release. Journal of Nanomaterials, 2019, 2019, 1-13.	2.7	10
927	Epigenetics in cancer therapy and nanomedicine. Clinical Epigenetics, 2019, 11, 81.	4.1	147
928	Highâ€Resolution 3D NIRâ€II Photoacoustic Imaging of Cerebral and Tumor Vasculatures Using Conjugated Polymer Nanoparticles as Contrast Agent. Advanced Materials, 2019, 31, e1808355.	21.0	133
929	Light-Triggered PEGylation/dePEGylation of the Nanocarriers for Enhanced Tumor Penetration. Nano Letters, 2019, 19, 3671-3675.	9.1	92
930	Spatiotemporally Light-Activatable Platinum Nanocomplexes for Selective and Cooperative Cancer Therapy. ACS Nano, 2019, 13, 6647-6661.	14.6	46
931	Recent advances in gold nanoparticles for biomedical applications: from hybrid structures to multi-functionality. Journal of Materials Chemistry B, 2019, 7, 3480-3496.	5.8	115
932	CaCO3 as an Environmentally Friendly Renewable Material for Drug Delivery Systems: Uptake of HSA-CaCO3 Nanocrystals Conjugates in Cancer Cell Lines. Materials, 2019, 12, 1481.	2.9	18
933	Co-delivery of TRAIL and siHSP70 using hierarchically modular assembly formulations achieves enhanced TRAIL-resistant cancer therapy. Journal of Controlled Release, 2019, 304, 111-124.	9.9	20
934	Nanoscale Metal–Organic-Frameworks Coated by Biodegradable Organosilica for pH and Redox Dual Responsive Drug Release and High-Performance Anticancer Therapy. ACS Applied Materials & Distriction (Interfaces, 2019, 11, 20678-20688.	8.0	62
935	Non-Lamellar Lyotropic Liquid Crystalline Lipid Nanoparticles for the Next Generation of Nanomedicine. ACS Nano, 2019, 13, 6178-6206.	14.6	166
936	Highly Homogeneous Biotinylated Carbon Nanodots: Red-Emitting Nanoheaters as Theranostic Agents toward Precision Cancer Medicine. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19854-19866.	8.0	61
937	Peptide-modulated self-assembly as a versatile strategy for tumor supramolecular nanotheranostics. Theranostics, 2019, 9, 3249-3261.	10.0	60
938	Development and validation of a novel UPLC-ELSD method for the assessment of lipid composition of nanomedicine formulation. International Journal of Pharmaceutics, 2019, 566, 11-23.	5.2	16
940	Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials, 2019, 211, 1-13.	11.4	243
941	Polymersome nanoreactors with tumor pH-triggered selective membrane permeability for prodrug delivery, activation, and combined oxidation-chemotherapy. Journal of Controlled Release, 2019, 303, 209-222.	9.9	50
942	ITGA2 as a potential nanotherapeutic target for glioblastoma. Scientific Reports, 2019, 9, 6195.	3.3	42

#	Article	IF	CITATIONS
943	Tumor targeted micellar nanocarriers assembled from epipodophyllotoxin-based amphiphiles. Nanoscale, 2019, 11, 9756-9759.	5.6	14
944	Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioengineering, 2019, 3, 011502.	6.2	164
945	Preparation of Drug-Eluting Microspheres Based on Semi-Interpenetrating Polymer Network of Modified Chitosan and Poly(2-acrylamide-2-methylpropanesulfonic acid). Polymer Science - Series A, 2019, 61, 61-69.	1.0	4
947	PEGAylated graphene oxide/superparamagnetic nanocomposite as a high-efficiency loading nanocarrier for controlled delivery of methotrexate. Journal of Biotechnology, 2019, 298, 88-97.	3.8	29
948	Link between Low-Fouling and Stealth: A Whole Blood Biomolecular Corona and Cellular Association Analysis on Nanoengineered Particles. ACS Nano, 2019, 13, 4980-4991.	14.6	53
949	GRP78-targeted ferritin nanocaged ultra-high dose of doxorubicin for hepatocellular carcinoma therapy. Theranostics, 2019, 9, 2167-2182.	10.0	80
950	Immunological consequences of chemotherapy: Single drugs, combination therapies and nanoparticle-based treatments. Journal of Controlled Release, 2019, 305, 130-154.	9.9	40
951	Combinatorial Library of Light-Cleavable Lipidoid Nanoparticles for Intracellular Drug Delivery. ACS Biomaterials Science and Engineering, 2019, 5, 2391-2398.	5.2	11
952	Facing the future: challenges and opportunities in adoptive T cell therapy in cancer. Expert Opinion on Biological Therapy, 2019, 19, 811-827.	3.1	27
953	Tuning the Inâ€Vivo Transport of Anticancer Drugs Using Renalâ€Clearable Gold Nanoparticles. Angewandte Chemie - International Edition, 2019, 58, 8479-8483.	13.8	69
954	Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Advanced Drug Delivery Reviews, 2019, 143, 68-96.	13.7	561
955	Intestine-penetrating, pH-sensitive and double-layered nanoparticles for oral delivery of doxorubicin with reduced toxicity. Journal of Materials Chemistry B, 2019, 7, 3692-3703.	5.8	12
956	Condensing-enriched magnetic photonic barcodes on superhydrophobic surface for ultrasensitive multiple detection. Lab on A Chip, 2019, 19, 1783-1789.	6.0	15
957	Soft mesoporous organosilica nanorods with gold plasmonic core for significantly enhanced cellular uptake. Journal of Colloid and Interface Science, 2019, 550, 81-89.	9.4	7
958	Tuning the Inâ€Vivo Transport of Anticancer Drugs Using Renalâ€Clearable Gold Nanoparticles. Angewandte Chemie, 2019, 131, 8567-8571.	2.0	22
959	On-Demand Detaching Nanosystem for the Spatiotemporal Control of Cancer Theranostics. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16285-16295.	8.0	14
960	Tyrosine Kinase Inhibitor Gold Nanoconjugates for the Treatment of Non-Small Cell Lung Cancer. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16336-16346.	8.0	31
961	Multilayer nanoscale functionalization to treat disorders and enhance regeneration of bone tissue. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 19, 22-38.	3.3	18

#	Article	IF	CITATIONS
962	Radial extracorporeal shock wave promotes the enhanced permeability and retention effect to reinforce cancer nanothermotherapeutics. Science Bulletin, 2019, 64, 679-689.	9.0	11
963	Self-Assembling Peptide Artificial Enzyme as an Efficient Detection Prober and Inhibitor for Cancer Cells. ACS Applied Bio Materials, 2019, 2, 2185-2191.	4.6	13
964	Facial Control Intramolecular Charge Transfer of Quinoid Conjugated Polymers for Efficient in Vivo NIR-II Imaging. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16311-16319.	8.0	57
965	Cancer nanomedicine for combination cancer immunotherapy. Nature Reviews Materials, 2019, 4, 398-414.	48.7	658
966	Synthetic and living micropropellers for convection-enhanced nanoparticle transport. Science Advances, 2019, 5, eaav4803.	10.3	109
967	Polyethylenimine modified with 2,3-dimethylmaleic anhydride potentiates the antitumor efficacy of conventional chemotherapy. Materials Science and Engineering C, 2019, 102, 558-568.	7.3	9
968	Tracing Difference: In Vitro and in Vivo Antitumor Property Comparison of pH-Sensitive Biomimetic Phosphorylcholine Micelles with Insensitive Micelles. ACS Biomaterials Science and Engineering, 2019, 5, 2258-2270.	5.2	16
969	A journey through the emergence of nanomedicines with poly(alkylcyanoacrylate) based nanoparticles. Journal of Drug Targeting, 2019, 27, 502-524.	4.4	20
970	Dual complementary liposomes inhibit triple-negative breast tumor progression and metastasis. Science Advances, 2019, 5, eaav5010.	10.3	66
971	Biodegradable and pH-Responsive Acetalated Dextran (Ac-Dex) Nanoparticles for NIR Imaging and Controlled Delivery of a Platinum-Based Prodrug into Cancer Cells. Molecular Pharmaceutics, 2019, 16, 2083-2094.	4.6	27
972	An Extendable Star-Like Nanoplatform for Functional and Anatomical Imaging-Guided Photothermal Oncotherapy. ACS Nano, 2019, 13, 4379-4391.	14.6	65
973	Therapeutic Effect of Cabazitaxel and Blood-Brain Barrier opening in a Patient-Derived Glioblastoma Model. Nanotheranostics, 2019, 3, 103-112.	5.2	27
974	Phyto-fabrication of silver nanoparticles by Acacia nilotica leaves: Investigating their antineoplastic, free radical scavenging potential and application in H2O2 sensing. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99, 239-249.	5.3	57
975	cRGD-decorated biodegradable polytyrosine nanoparticles for robust encapsulation and targeted delivery of doxorubicin to colorectal cancer in vivo. Journal of Controlled Release, 2019, 301, 110-118.	9.9	75
976	Polyphosphoester-Based Nanocarrier for Combined Radio-Photothermal Therapy of Breast Cancer. ACS Biomaterials Science and Engineering, 2019, 5, 1868-1877.	5.2	9
977	Achieving Selective Targeting Using Engineered Nanomaterials. Series in Bioengineering, 2019, , 147-182.	0.6	2
978	Nanomaterials Derived From Phosphorus-Containing Polymers. , 2019, , 183-233.		4
979	UV/NIR-Light-Triggered Rapid and Reversible Color Switching for Rewritable Smart Fabrics. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13370-13379.	8.0	33

#	Article	IF	CITATIONS
980	A system for the synthesis of nanoparticles by laser ablation in liquid that is remotely controlled with PC or smartphone. Review of Scientific Instruments, 2019, 90, 033902.	1.3	42
981	Effects of D-α-tocopherol polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles on the absorption, pharmacokinetics, and pharmacodynamics of salinomycin sodium. Anti-Cancer Drugs, 2019, 30, 72-80.	1.4	1
982	<i>In Situ</i> Dendritic Cell Vaccine for Effective Cancer Immunotherapy. ACS Nano, 2019, 13, 3083-3094.	14.6	164
983	Zwitterionic pH-responsive hyaluronic acid polymer micelles for delivery of doxorubicin. Colloids and Surfaces B: Biointerfaces, 2019, 178, 412-420.	5.0	38
984	Clinical cancer nanomedicine. Nano Today, 2019, 25, 85-98.	11.9	324
985	Upconversion-mediated ZnFe ₂ O ₄ nanoplatform for NIR-enhanced chemodynamic and photodynamic therapy. Chemical Science, 2019, 10, 4259-4271.	7.4	155
986	Simultaneous T Cell Activation and Macrophage Polarization to Promote Potent Tumor Suppression by Iron Oxideâ€Embedded Largeâ€Pore Mesoporous Organosilica Core–Shell Nanospheres. Advanced Healthcare Materials, 2019, 8, e1900039.	7.6	26
987	Tumor selective uptake of drug-nanodiamond complexes improves therapeutic outcome in pancreatic cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 112-121.	3.3	31
988	Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging. Progress in Materials Science, 2019, 103, 484-508.	32.8	126
989	Transformable nanotherapeutics enabled by ICG: towards enhanced tumor penetration under NIR light irradiation. Nanoscale, 2019, 11, 6217-6227.	5.6	26
990	Theranostic Nanodots with Aggregation-Induced Emission Characteristic for Targeted and Image-Guided Photodynamic Therapy of Hepatocellular Carcinoma. Theranostics, 2019, 9, 1264-1279.	10.0	56
991	Mechanical cues modulate cellular uptake of nanoparticles in cancer via clathrin-mediated and caveolae-mediated endocytosis pathways. Nanomedicine, 2019, 14, 613-626.	3.3	17
992	A Logic-Gated Modular Nanovesicle Enables Programmable Drug Release for On-Demand Chemotherapy. Theranostics, 2019, 9, 1358-1368.	10.0	21
993	Highly Uniform Synthesis of Selenium Nanoparticles with EGFR Targeting and Tumor Microenvironment-Responsive Ability for Simultaneous Diagnosis and Therapy of Nasopharyngeal Carcinoma. ACS Applied Materials & Samp; Interfaces, 2019, 11, 11177-11193.	8.0	56
994	Dual-Responsive Size-Shrinking Nanocluster with Hierarchical Disassembly Capability for Improved Tumor Penetration and Therapeutic Efficacy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 11865-11875.	8.0	31
995	Causes, consequences, and therapy of tumors acidosis. Cancer and Metastasis Reviews, 2019, 38, 205-222.	5.9	200
996	Current status of nanoscale drug delivery systems for colorectal cancer liver metastasis. Biomedicine and Pharmacotherapy, 2019, 114, 108764.	5.6	35
997	Copper sulfide: An emerging adaptable nanoplatform in cancer theranostics. International Journal of Pharmaceutics, 2019, 562, 135-150.	5.2	55

#	ARTICLE	IF	CITATIONS
998	Polymer mediated transport of the Hsp90 inhibitor LB76, a polar cyclic peptide, produces an Hsp90 cellular phenotype. Chemical Communications, 2019, 55, 4515-4518.	4.1	5
999	Aminated Graphene Oxide as a Potential New Therapy for Colorectal Cancer. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-15.	4.0	35
1000	Intracellular Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14980-14985.	8.0	29
1001	An arsenic trioxide nanoparticle prodrug (ATONP) potentiates a therapeutic effect on an aggressive hepatocellular carcinoma model <i>via</i> enhancement of intratumoral arsenic accumulation and disturbance of the tumor microenvironment. Journal of Materials Chemistry B, 2019, 7, 3088-3099.	5.8	11
1002	Layered double hydroxide derived ultrathin 2D Ni-V mixed metal oxide as a robust peroxidase mimic. Chemical Engineering Journal, 2019, 369, 161-169.	12.7	33
1003	Thermodynamics and Biophysics of Biomedical Nanosystems. Series in Bioengineering, 2019, , .	0.6	6
1004	Photosensitive materials for constructing on-demanded drug-release systems., 2019,, 193-210.		2
1005	Tailoring Nanomaterials for Targeting Tumorâ€Associated Macrophages. Advanced Materials, 2019, 31, e1808303.	21.0	223
1006	NIRâ€Triggered Phototherapy and Immunotherapy via an Antigenâ€Capturing Nanoplatform for Metastatic Cancer Treatment. Advanced Science, 2019, 6, 1802157.	11.2	221
1007	Passive Targeting of Nanoparticles to Cancer. , 2019, , 125-143.		19
1008	Cancer targeting peptides. Cellular and Molecular Life Sciences, 2019, 76, 2171-2183.	5.4	34
1009	Evaluation of Antibacterial and Anticancer Potential of Polyaniline-Bimetal Nanocomposites Synthesized from Chemical Reduction Method. Journal of Cluster Science, 2019, 30, 715-726.	3.3	66
1011	Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology. Materials Science and Engineering C, 2019, 101, 596-613.	7.3	71
1012	Pursuing Specific Chemotherapy of Orthotopic Breast Cancer with Lung Metastasis from Docking Nanoparticles Driven by Bioinspired Exosomes. Nano Letters, 2019, 19, 3256-3266.	9.1	78
1013	Polysaccharide Nanoparticles Can Efficiently Modulate the Immune Response against an HIV Peptide Antigen. ACS Nano, 2019, 13, 4947-4959.	14.6	61
1014	Composition-Tunable Ultrasmall Manganese Ferrite Nanoparticles: Insights into their <i>In Vivo</i> Io T _{1 Insights into their <i< td=""> In Vivo Insights into their <i>Insights int</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i<></i<></i<></i<>}	10.0	32
1015	Rhamnolipid nanoparticles for in vivo drug delivery and photodynamic therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 19, 12-21.	3.3	35
1016	PEGylation-Dependent Metabolic Rewiring of Macrophages with Silk Fibroin Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14515-14525.	8.0	38

#	Article	IF	CITATIONS
1017	Secreted Protein Acidic and Rich in Cysteine Mediated Biomimetic Delivery of Methotrexate by Albumin-Based Nanomedicines for Rheumatoid Arthritis Therapy. ACS Nano, 2019, 13, 5036-5048.	14.6	122
1018	<p>Enzyme-responsive mesoporous silica nanoparticles for tumor cells and mitochondria multistage-targeted drug delivery</p> . International Journal of Nanomedicine, 2019, Volume 14, 2533-2542.	6.7	69
1019	Zinc-Doped Copper Oxide Nanocomposites Inhibit the Growth of Pancreatic Cancer by Inducing Autophagy Through AMPK/mTOR Pathway. Frontiers in Pharmacology, 2019, 10, 319.	3.5	16
1020	Multifunctional Magnetic Nanoplatform Eliminates Cancer Stem Cells via Inhibiting the Secretion of Extracellular Heat Shock Protein 90. Advanced Healthcare Materials, 2019, 8, e1900160.	7.6	13
1021	pH/redox dual-stimuli-responsive cross-linked polyphosphazene nanoparticles for multimodal imaging-guided chemo-photodynamic therapy. Nanoscale, 2019, 11, 9457-9467.	5.6	71
1022	Nanobuffering of pH-Responsive Polymers: A Known but Sometimes Overlooked Phenomenon and Its Biological Applications. ACS Nano, 2019, 13, 4876-4882.	14.6	77
1023	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	47.7	1,519
1024	Recent Advances in Nanotechnology for Breast Cancer Therapy. Nano LIFE, 2019, 09, 1940003.	0.9	5
1025	Functionalized Nanomaterial Assembling and Biosynthesis Using the Extremophile <i>Deinococcus radiodurans</i> for Multifunctional Applications. Small, 2019, 15, e1900600.	10.0	20
1026	<p>Lipid–polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives</p> . International Journal of Nanomedicine, 2019, Volume 14, 1937-1952.	6.7	284
1027	Recent Advances in Nanomedicine for Ischemic and Hemorrhagic Stroke. Stroke, 2019, 50, 1318-1324.	2.0	38
1028	Nanotechnologyâ€Mediated Drug Delivery for the Treatment of Obesity and Its Related Comorbidities. Advanced Healthcare Materials, 2019, 8, e1801184.	7.6	28
1029	Surface-engineered polyethyleneimine-modified liposomes as novel carrier of siRNA and chemotherapeutics for combination treatment of drug-resistant cancers. Drug Delivery, 2019, 26, 443-458.	5.7	40
1030	Heterogeneous growth of palladium nanocrystals on upconversion nanoparticles for multimodal imaging and photothermal therapy. Journal of Materials Chemistry B, 2019, 7, 3652-3660.	5.8	14
1031	Synergistic effects of hydrogen bonds and the hybridized excited state observed for high-efficiency, deep-blue fluorescent emitters with narrow emission in OLED applications. Journal of Materials Chemistry C, 2019, 7, 5461-5467.	5.5	51
1032	Targeted siRNA Nanoparticles for Mammary Carcinoma Therapy. Cancers, 2019, 11, 442.	3.7	12
1033	Linear Chimeric Triblock Molecules Selfâ€Assembled Micelles with Controllably Transformable Property to Enhance Tumor Retention for Chemoâ€Photodynamic Therapy of Breast Cancer. Advanced Functional Materials, 2019, 29, 1808462.	14.9	76
1034	Hollow mesoporous carbon modified with cRGD peptide nanoplatform for targeted drug delivery and chemo-photothermal therapy of prostatic carcinoma. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 386-395.	4.7	30

#	Article	IF	CITATIONS
1035	Synthesis and characterization of iron oxide nanoparticles/carboxymethyl cellulose core-shell nanohybrids for killing cancer cells in vitro. International Journal of Biological Macromolecules, 2019, 132, 677-691.	7.5	46
1036	Antiproliferative effects of new magnetic pH-responsive drug delivery system composed of Fe3O4, CaAl layered double hydroxide and levodopa on melanoma cancer cells. Materials Science and Engineering C, 2019, 101, 472-486.	7.3	33
1037	Targeted Therapeutic Genome Engineering: Opportunities and Bottlenecks in Medical Translation. ACS Symposium Series, 2019, , 1-34.	0.5	0
1038	Nanoparticles as Radiopharmaceutical Vectors. , 2019, , 181-203.		7
1039	Self-Assembling ELR-Based Nanoparticles as Smart Drug-Delivery Systems Modulating Cellular Growth via Akt. Biomacromolecules, 2019, 20, 1996-2007.	5.4	19
1040	Quick-Responsive Polymer-Based Thermosensitive Liposomes for Controlled Doxorubicin Release and Chemotherapy. ACS Biomaterials Science and Engineering, 2019, 5, 2316-2329.	5.2	19
1041	Mathematical modeling in cancer nanomedicine: a review. Biomedical Microdevices, 2019, 21, 40.	2.8	122
1042	A tissue chamber chip for assessing nanoparticle mobility in the extravascular space. Biomedical Microdevices, 2019, 21, 41.	2.8	5
1043	A Review on the Scope of Photothermal Therapy–Based Nanomedicines in Preclinical Models of Colorectal Cancer. Clinical Colorectal Cancer, 2019, 18, e200-e209.	2.3	61
1044	A reversible decomposition approach for the formation of injectable, excipient-free, self-assembling nanocrystals. Chemical Communications, 2019, 55, 3144-3147.	4.1	6
1045	Nanoparticle Therapy for Vascular Diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 635-646.	2.4	106
1046	A switchable NO-releasing nanomedicine for enhanced cancer therapy and inhibition of metastasis. Nanoscale, 2019, 11, 5474-5488.	5.6	57
1047	Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Advanced Healthcare Materials, 2019, 8, e1801320.	7.6	43
1048	Combination Therapies and Drug Delivery Platforms in Combating Pancreatic Cancer. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 682-694.	2.5	27
1049	Stimuli-responsive polymeric micelles for extracellular and intracellular drug delivery. , 2019, , 269-304.		5
1050	<p>A multifunctional-targeted nanoagent for dual-mode image-guided therapeutic effects on ovarian cancer cells</p> . International Journal of Nanomedicine, 2019, Volume 14, 753-769.	6.7	15
1051	Editorial: Nanoparticles in Cancer Therapy-Novel Concepts, Mechanisms, and Applications. Frontiers in Pharmacology, 2018, 9, 1552.	3.5	11
1052	Hyaluronic Acid–Based Activatable Nanomaterials for Stimuliâ€Responsive Imaging and Therapeutics: Beyond CD44â€Mediated Drug Delivery. Advanced Materials, 2019, 31, e1803549.	21.0	188

#	Article	IF	CITATIONS
1053	Artificial anaerobic cell dormancy for tumor gaseous microenvironment regulation therapy. Biomaterials, 2019, 200, 48-55.	11.4	10
1054	Sustained and controlled release of herbal medicines: The concept of synchronized release. International Journal of Pharmaceutics, 2019, 560, 116-125.	5.2	11
1055	Precise design of nanomedicines: perspectives for cancer treatment. National Science Review, 2019, 6, 1107-1110.	9.5	34
1056	Nanoparticle Binding to Urokinase Receptor on Cancer Cell Surface Triggers Nanoparticle Disintegration and Cargo Release. Theranostics, 2019, 9, 884-899.	10.0	23
1057	Enhancing the anti-cancer therapeutic efficacy by optimizing molecular weight of metal-free fully alternating semi-aromatic polyester as nano-drug carriers. Journal of Drug Delivery Science and Technology, 2019, 51, 101-114.	3.0	11
1058	Application of nanoparticle-based siRNA and CRISPR/Cas9 delivery systems in gene-targeted therapy. Nanomedicine, 2019, 14, 511-514.	3.3	14
1059	Advances in Therapeutic Implications of Inorganic Drug Delivery Nano-Platforms for Cancer. International Journal of Molecular Sciences, 2019, 20, 965.	4.1	54
1060	Targeted Drug Delivery and Image-Guided Therapy of Heterogeneous Ovarian Cancer Using HER2-Targeted Theranostic Nanoparticles. Theranostics, 2019, 9, 778-795.	10.0	82
1061	Smart Polymeric Nanocarriers for Drug Delivery. , 2019, , 439-479.		9
1062	Mapping Molecular Structure of Protein Locating on Nanoparticles with Limited Proteolysis. Analytical Chemistry, 2019, 91, 4204-4212.	6.5	10
1063	Bifunctional magnetopolymersomes of iron oxide nanoparticles and carboxymethylcellulose conjugated with doxorubicin for hyperthermo-chemotherapy of brain cancer cells. Biomaterials Science, 2019, 7, 2102-2122.	5.4	60
1064	Photocatalysis Enhancement for Programmable Killing of Hepatocellular Carcinoma through Self-Compensation Mechanisms Based on Black Phosphorus Quantum-Dot-Hybridized Nanocatalysts. ACS Applied Materials & Diterfaces, 2019, 11, 9804-9813.	8.0	63
1065	Graphene quantum dot assisted translocation of drugs into a cell membrane. Nanoscale, 2019, 11, 4503-4514.	5.6	56
1066	Reductively cleavable polymer-drug conjugates based on dendritic polyglycerol sulfate and monomethyl auristatin E as anticancer drugs. Journal of Controlled Release, 2019, 300, 13-21.	9.9	25
1067	Chondroitin sulfate-functionalized polymeric nanoparticles for colon cancer-targeted chemotherapy. Colloids and Surfaces B: Biointerfaces, 2019, 177, 399-406.	5.0	41
1068	Angiopoietin-1 accelerates restoration of endothelial cell barrier integrity from nanoparticle-induced leakiness. Nanotoxicology, 2019, 13, 682-700.	3.0	39
1069	Chlorotoxin peptide-functionalized polyethylenimine-entrapped gold nanoparticles for glioma SPECT/CT imaging and radionuclide therapy. Journal of Nanobiotechnology, 2019, 17, 30.	9.1	67
1070	Nanohybrids – cancer theranostics for tiny tumor clusters. Journal of Controlled Release, 2019, 299, 21-30.	9.9	10

#	Article	IF	Citations
1071	Nanotechnology in the diagnosis and treatment of lung cancer. , 2019, 198, 189-205.		106
1072	Bottlebrush-architectured poly(ethylene glycol) as an efficient vector for RNA interference in vivo. Science Advances, 2019, 5, eaav9322.	10.3	50
1073	Aptamer-functionalized liposomes for targeted cancer therapy. Cancer Letters, 2019, 448, 144-154.	7.2	113
1074	Ratiometric co-encapsulation and co-delivery of doxorubicin and paclitaxel by tumor-targeted lipodisks for combination therapy of breast cancer. International Journal of Pharmaceutics, 2019, 560, 191-204.	5.2	36
1075	Mechanochemical synthesis of nano–ciprofloxacin with enhanced antibacterial activity. Inorganic Chemistry Communication, 2019, 102, 66-69.	3.9	13
1076	Multi-scale approach for modeling stability, aggregation, and network formation of nanoparticles suspended in aqueous solutions. Nanoscale, 2019, 11, 3979-3992.	5 . 6	32
1077	Dectin-2-Targeted Antifungal Liposomes Exhibit Enhanced Efficacy. MSphere, 2019, 4, .	2.9	23
1078	Core–shell nanomaterials for infection and cancer therapy. , 2019, , 197-211.		0
1079	Targeting Integrins in Cancer Nanomedicine: Applications in Cancer Diagnosis and Therapy. Cancers, 2019, 11, 1783.	3.7	69
1080	Multiâ€Stimuliâ€Responsive Polymeric Prodrug for Enhanced Cancer Treatment. Macromolecular Bioscience, 2019, 19, e1900329.	4.1	16
1081	Silver Nanoparticles Induce Mitochondrial Protein Oxidation in Lung Cells Impacting Cell Cycle and Proliferation. Antioxidants, 2019, 8, 552.	5.1	45
1082	Nanofiber-based anticancer drug delivery platform. , 2019, , 11-36.		4
1083	Stimuli-responsive nano drug delivery systems for anticancer therapy., 2019, , 125-148.		3
1084	Interventional Nanotheranostics: Advancing Nanotechnology Applications with IR. Journal of Vascular and Interventional Radiology, 2019, 30, 1824-1829.e1.	0.5	2
1085	Erythrocyte leveraged chemotherapy (ELeCt): Nanoparticle assembly on erythrocyte surface to combat lung metastasis. Science Advances, 2019, 5, eaax9250.	10.3	100
1086	Evaluation of Turning-Sized Gold Nanoparticles on Cellular Adhesion by Golgi Disruption in Vitro and in Vivo. Nano Letters, 2019, 19, 8476-8487.	9.1	14
1087	Dendritic Cell-Activating Magnetic Nanoparticles Enable Early Prediction of Antitumor Response with Magnetic Resonance Imaging. ACS Nano, 2019, 13, 13884-13898.	14.6	66
1088	Nanoparticle transport phenomena in confined flows. Advances in Heat Transfer, 2019, 51, 55-129.	0.9	8

#	ARTICLE	IF	CITATIONS
1089	Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnology, 2019, 10 , .	3.7	306
1090	Smart injectable biogels based on hyaluronic acid bioconjugates finely substituted with poly(\hat{l}^2 -amino) Tj ETQq $1\ 1$	0.784314 5.4	rgBT /Ove
1091	Cancer nanomedicine: focus on recent developments and self-assembled peptide nanocarriers. Journal of Materials Chemistry B, 2019, 7, 7639-7655.	5.8	60
1092	Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes $\langle i \rangle$ p53 $\langle i \rangle$ -deficient cancers to mTOR inhibition. Science Translational Medicine, 2019, 11, .	12.4	177
1093	Development of Adamantane-Conjugated TLR7/8 Agonists for Supramolecular Delivery and Cancer Immunotherapy. Theranostics, 2019, 9, 8426-8436.	10.0	65
1094	Covalently assembled dopamine nanoparticle as an intrinsic photosensitizer and pH-responsive nanocarrier for potential application in anticancer therapy. Chemical Communications, 2019, 55, 15057-15060.	4.1	79
1095	Cell membrane based biomimetic nanocomposites for targeted therapy of drug resistant EGFR-mutated lung cancer. Nanoscale, 2019, 11, 19520-19528.	5.6	32
1096	Magnet-activatable nanoliposomes as intracellular bubble microreactors to enhance drug delivery efficacy and burst cancer cells. Nanoscale, 2019, 11, 18854-18865.	5.6	24
1097	Co-encapsulation of thymoquinone with docetaxel enhances the encapsulation efficiency into PEGylated liposomes and the chemosensitivity of MCF7 breast cancer cells to docetaxel. Heliyon, 2019, 5, e02919.	3.2	32
1098	Nanotheranostics., 2019,,.		8
1099	Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment. Nano Today, 2019, 29, 100795.	11.9	174
1100	Engineered nanomedicines with enhanced tumor penetration. Nano Today, 2019, 29, 100800.	11.9	317
1101	Photoimmunotherapy of Ovarian Cancer: A Unique Niche in the Management of Advanced Disease. Cancers, 2019, 11, 1887.	3.7	28
1102	Dually Active Targeting Nanomedicines Based on a Direct Conjugate of Two Purely Natural Ligands for Potent Chemotherapy of Ovarian Tumors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 46548-46557.	8.0	24
1103	Hierarchical Responsive Nanoplatform with Two-Photon Aggregation-Induced Emission Imaging for Efficient Cancer Theranostics. ACS Applied Materials & Efficient Cancer Theranostics. ACS Applied Materials & Efficient Cancer Theranostics.	8.0	14
1104	Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope. Cancers, 2019, 11, 1855.	3.7	135
1105	Pharmacokinetic/Pharmacodynamics Modeling of Drug-Loaded PLGA Nanoparticles Targeting Heterogeneously Vascularized Tumor Tissue. Pharmaceutical Research, 2019, 36, 185.	3.5	9
1106	Comprehensive insights into intracellular fate of WS ₂ nanosheets for enhanced photothermal therapeutic outcomes via exocytosis inhibition. Nanophotonics, 2019, 8, 2331-2346.	6.0	16

#	Article	IF	CITATIONS
1107	Two-photon AIE luminogen labeled multifunctional polymeric micelles for theranostics. Theranostics, 2019, 9, 6618-6630.	10.0	24
1108	Tailored Black Phosphorus for Erythrocyte Membrane Nanocloaking with Interleukin-1 <i>î±</i> siRNA and Paclitaxel for Targeted, Durable, and Mild Combination Cancer Therapy. Theranostics, 2019, 9, 6780-6796.	10.0	29
1109	Cancer Cell Membrane-Coated Nanoparticles for Cancer Management. Cancers, 2019, 11, 1836.	3.7	149
1110	Promotion of dispersion and anticancer efficacy of hydroxyapatite nanoparticles by the adsorption of fetal bovine serum. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	6
1111	Spatial and temporal control of chemical processes. Nature Reviews Chemistry, 2019, 3, 706-722.	30.2	66
1112	Metal-Phenolic Network-Coated Hyaluronic Acid Nanoparticles for pH-Responsive Drug Delivery. Pharmaceutics, 2019, 11, 636.	4.5	14
1113	Automated and Continuous Production of Polymeric Nanoparticles. Frontiers in Bioengineering and Biotechnology, 2019, 7, 423.	4.1	9
1114	Comparative Study of Antitumor Activity between Lipophilic Bismuth Nanoparticles (BisBAL NPs) and Chlorhexidine on Human Squamous Cell Carcinoma. Journal of Nanomaterials, 2019, 2019, 1-8.	2.7	4
1115	<p>Anti-Adhesive And Antiproliferative Synergistic Surface Modification Of Intraocular Lens For Reduced Posterior Capsular Opacification</p> . International Journal of Nanomedicine, 2019, Volume 14, 9047-9061.	6.7	48
1116	A polyprodrug-based nanoplatform for cisplatin prodrug delivery and combination cancer therapy. Chemical Communications, 2019, 55, 13987-13990.	4.1	14
1117	Polymer conjugated graphene-oxide nanoparticles impair nuclear DNA and Topoisomerase I in cancer. Nanoscale Advances, 2019, 1, 4965-4971.	4.6	8
1118	Encapsulation of echinomycin in cyclodextrin inclusion complexes into liposomes: <i>in vitro</i> anti-proliferative and anti-invasive activity in glioblastoma. RSC Advances, 2019, 9, 30976-30988.	3.6	35
1119	A novel drug–drug nanohybrid for the self-delivery of porphyrin and ⟨i⟩cis⟨ i⟩-platinum. RSC Advances, 2019, 9, 37003-37008.	3.6	3
1120	Active Nano-targeting of Macrophages. Current Pharmaceutical Design, 2019, 25, 1951-1961.	1.9	24
1121	Bombesin receptor-targeted liposomes for enhanced delivery to lung cancer cells. Beilstein Journal of Nanotechnology, 2019, 10, 2553-2562.	2.8	9
1122	The influence of physiological environment on the targeting effect of aptamer-guided gold nanoparticles. Nano Research, 2019, 12, 129-135.	10.4	20
1123	Functional Imaging with Nucleicâ€Acidâ€Based Sensors: Technology, Application and Future Healthcare Prospects. ChemBioChem, 2019, 20, 437-450.	2.6	13
1124	Towards feedback-controlled nanomedicines for smart, adaptive delivery. Experimental Biology and Medicine, 2019, 244, 283-293.	2.4	10

#	Article	IF	CITATIONS
1125	Metalâ€Organic Framework Mediated Multifunctional Nanoplatforms for Cancer Therapy. Advanced Therapeutics, 2019, 2, 1800100.	3.2	30
1126	Development of nanoparticulate systems with action in breast and ovarian cancer: nanotheragnostics. Journal of Drug Targeting, 2019, 27, 732-741.	4.4	15
1127	Biodegradable Ultrasmallâ€inâ€Nano Gold Architectures: Midâ€Period In Vivo Distribution and Excretion Assessment. Particle and Particle Systems Characterization, 2019, 36, 1800464.	2.3	39
1128	Co-delivery of RNAi and chemokine by polyarginine nanocapsules enables the modulation of myeloid-derived suppressor cells. Journal of Controlled Release, 2019, 295, 60-73.	9.9	36
1129	Molecular theranostic based on esterase-mediated drug activation for hepatocellular carcinoma. Dyes and Pigments, 2019, 163, 628-633.	3.7	18
1130	Targeting 3D Bladder Cancer Spheroids with Urease-Powered Nanomotors. ACS Nano, 2019, 13, 429-439.	14.6	182
1131	Dual-Targeting Nanoparticles: Codelivery of Curcumin and 5-Fluorouracil for Synergistic Treatment of Hepatocarcinoma. Journal of Pharmaceutical Sciences, 2019, 108, 1284-1295.	3.3	53
1132	The application of nitric oxide delivery in nanoparticle-based tumor targeting drug delivery and treatment. Asian Journal of Pharmaceutical Sciences, 2019, 14, 380-390.	9.1	43
1133	Near-infrared AlEgens as transformers to enhance tumor treatment efficacy with controllable self-assembled redox-responsive carrier-free nanodrug. Biomaterials, 2019, 193, 12-21.	11.4	71
1134	Investigation of the antitumor activity and toxicity of long-circulating and fusogenic liposomes co-encapsulating paclitaxel and doxorubicin in a murine breast cancer animal model. Biomedicine and Pharmacotherapy, 2019, 109, 1728-1739.	5.6	42
1135	Photothermally Enhanced Chemotherapy Delivered by Graphene Oxide-Based Multiresponsive Nanogels. ACS Applied Bio Materials, 2019, 2, 330-338.	4.6	8
1136	Core–Satellite Nanomedicines for <i>in Vivo</i> Real-Time Monitoring of Enzyme-Activatable Drug Release by Fluorescence and Photoacoustic Dual-Modal Imaging. ACS Nano, 2019, 13, 176-186.	14.6	67
1137	Biologically Inspired and Chemically Derived Methods for Glucoseâ€Responsive Insulin Therapy. Advanced Healthcare Materials, 2019, 8, e1801466.	7.6	53
1138	¹¹¹ In-Labeled Glycoprotein Nonmetastatic b (GPNMB) Targeted Gemini Surfactant-Based Nanoparticles against Melanoma: In Vitro Characterization and in Vivo Evaluation in Melanoma Mouse Xenograft Model. Molecular Pharmaceutics, 2019, 16, 542-551.	4.6	7
1139	Revival of a potent therapeutic maytansinoid agent using a strategy that combines covalent drug conjugation with sequential nanoparticle assembly. International Journal of Pharmaceutics, 2019, 556, 159-171.	5 . 2	8
1140	Hypoxia-tropic Protein Nanocages for Modulation of Tumor- and Chemotherapy-Associated Hypoxia. ACS Nano, 2019, 13, 236-247.	14.6	64
1141	Polymeric Nanomaterials., 2019,, 557-653.		22
1142	Functional Nanomaterials Optimized to Circumvent Tumor Immunological Tolerance. Advanced Functional Materials, 2019, 29, 1806087.	14.9	21

#	Article	IF	Citations
1143	Biogenic (⟨i⟩R⟨ i⟩)â€(+)â€Lipoic Acid Only Constructed Crossâ€Linked Vesicles with Synergistic Anticancer Potency. Advanced Functional Materials, 2019, 29, 1806567.	14.9	46
1144	What is the impact of surface modifications and particle size on commercial titanium dioxide particle samples? – A review of in vivo pulmonary and oral toxicity studies – Revised 11-6-2018. Toxicology Letters, 2019, 302, 42-59.	0.8	35
1145	Glutathione-Responsive Prodrug Nanoparticles for Effective Drug Delivery and Cancer Therapy. ACS Nano, 2019, 13, 357-370.	14.6	204
1146	Emerging Technologies for the Diagnosis and Treatment of Pancreatic Cancer., 2019, , 313-327.		1
1148	Delivery of Cancer Nanotherapeutics. Bioanalysis, 2019, , 163-205.	0.1	2
1149	Drug loading augmentation in polymeric nanoparticles using a coaxial turbulent jet mixer: Yong investigator perspective. Journal of Colloid and Interface Science, 2019, 538, 45-50.	9.4	12
1150	Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials, 2019, 192, 292-308.	11.4	289
1151	Enzymeâ€Instructed Supramolecular Selfâ€Assembly with Anticancer Activity. Advanced Materials, 2019, 31, e1804814.	21.0	7 5
1152	Effect of the Folate Ligand Density on the Targeting Property of Folatedâ€Conjugated Polymeric Nanoparticles. Macromolecular Bioscience, 2019, 19, 1800348.	4.1	12
1153	Nanocarriers for drug delivery applications. Environmental Chemistry Letters, 2019, 17, 849-865.	16.2	204
1154	Hybrid Nanostructures in Targeted Drug Delivery. , 2019, , 139-158.		11
1155	Strengths and Limitations of Translating the Hybrid Nanostructures to the Clinic., 2019,, 229-254.		3
1156	SPIONs embedded in polyamino acid nanogels to synergistically treat tumor microenvironment and breast cancer cells. International Journal of Pharmaceutics, 2019, 555, 207-219.	5.2	15
1157	Nanotheranostics for Cancer Applications. Bioanalysis, 2019, , .	0.1	3
1158	DOX/ICG-carrying \hat{I}^3 -PGA-g-PLGA-based polymeric nanoassemblies for acid-triggered rapid DOX release combined with NIR-activated photothermal effect. European Polymer Journal, 2019, 110, 283-292.	5.4	19
1159	Recent Advances in Cell Membrane–Camouflaged Nanoparticles for Cancer Phototherapy. Small, 2019, 15, e1804105.	10.0	327
1160	Sulforaphane-conjugated selenium nanoparticles: towards a synergistic anticancer effect. Nanotechnology, 2019, 30, 065101.	2.6	19
1161	Poly(d,l-lactide-co-glycolide) Nanoparticles as Delivery Platforms for TLR7/8 Agonist-Based Cancer Vaccine. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 715-724.	2.5	38

#	Article	IF	CITATIONS
1162	Therapeutic Opportunities in Neuroblastoma Using Nanotechnology. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 625-635.	2.5	16
1163	A self-illuminating nanoparticle for inflammation imaging and cancer therapy. Science Advances, 2019, 5, eaat2953.	10.3	153
1164	Detailed Morphological Characterization of Nanocrystalline Active Ingredients in Solid Oral Dosage Forms Using Atomic Force Microscopy. AAPS PharmSciTech, 2019, 20, 70.	3.3	1
1165	Proactively Reducing Antiâ€Drug Antibodies via Immunomodulatory Bioconjugation. Angewandte Chemie, 2019, 131, 2455-2458.	2.0	0
1166	Communication Engineering Meets Medical Science: The Advanced Targeted Nanomedical Solution. Nanomedicine and Nanotoxicology, 2019, , 1-17.	0.2	1
1167	Enzyme-responsive multifunctional peptide coating of gold nanorods improves tumor targeting and photothermal therapy efficacy. Acta Biomaterialia, 2019, 86, 363-372.	8.3	62
1168	Safety and photochemotherapeutic application of poly(\hat{l}^3 -glutamic acid)-based biopolymeric nanoparticle. Acta Pharmaceutica Sinica B, 2019, 9, 565-574.	12.0	17
1169	Cascade enzymes within self-assembled hybrid nanogel mimicked neutrophil lysosomes for singlet oxygen elevated cancer therapy. Nature Communications, 2019, 10, 240.	12.8	143
1170	Polyester Nanoparticle Encapsulation Mitigates Paclitaxel-Induced Peripheral Neuropathy. ACS Chemical Neuroscience, 2019, 10, 1801-1812.	3.5	8
1171	Drug-Loaded Biocompatible Nanocarriers Embedded in Poloxamer 407 Hydrogels as Therapeutic Formulations. Medicines (Basel, Switzerland), 2019, 6, 7.	1.4	47
1172	Assemblies of Peptideâ€Cytotoxin Conjugates for Tumorâ€Homing Chemotherapy. Advanced Functional Materials, 2019, 29, 1807446.	14.9	44
1173	Biosensor for Point-of-Care Analysis of Immunoglobulins in Urine by Metal Enhanced Fluorescence from Gold Nanoparticles. ACS Applied Materials & Enhanced Fluorescence, 2019, 11, 3753-3762.	8.0	44
1174	Natural payload delivery of the doxorubicin anticancer drug from boron nitride oxide nanosheets. Applied Surface Science, 2019, 475, 666-675.	6.1	42
1175	Evaluation of Pyrrolobenzodiazepine-Loaded Nanoparticles: A Targeted Drug Delivery Approach. Journal of Pharmaceutical Sciences, 2019, 108, 1590-1597.	3.3	3
1176	Starburst Diblock Polyprodrugs: Reduction-Responsive Unimolecular Micelles with High Drug Loading and Robust Micellar Stability for Programmed Delivery of Anticancer Drugs. Biomacromolecules, 2019, 20, 1190-1202.	5.4	44
1177	Nuts and Bolts: Microfluidics for the Production of Biomaterials. Advanced Materials Technologies, 2019, 4, 1800611.	5.8	14
1178	Proactively Reducing Antiâ€Drug Antibodies via Immunomodulatory Bioconjugation. Angewandte Chemie - International Edition, 2019, 58, 2433-2436.	13.8	10
1179	Merging metal organic framework with hollow organosilica nanoparticles as a versatile nanoplatform for cancer theranostics. Acta Biomaterialia, 2019, 86, 406-415.	8.3	59

#	Article	IF	CITATIONS
1180	Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorganic Chemistry, 2019, 85, 325-336.	4.1	115
1181	Dual-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug delivery. Journal of Colloid and Interface Science, 2019, 540, 66-77.	9.4	29
1182	In Vivo Photoacoustic/Single-Photon Emission Computed Tomography Imaging for Dynamic Monitoring of Aggregation-Enhanced Photothermal Nanoagents. Analytical Chemistry, 2019, 91, 2128-2134.	6.5	23
1183	Functionalization of AuMSS nanorods towards more effective cancer therapies. Nano Research, 2019, 12, 719-732.	10.4	17
1184	Dual-Targeted Controlled Delivery Based on Folic Acid Modified Pectin-Based Nanoparticles for Combination Therapy of Liver Cancer. ACS Sustainable Chemistry and Engineering, 2019, 7, 3614-3623.	6.7	33
1185	Targeting the mTOR Signaling Pathway Utilizing Nanoparticles: A Critical Overview. Cancers, 2019, 11, 82.	3.7	34
1186	Recent Development of pH-Responsive Polymers for Cancer Nanomedicine. Molecules, 2019, 24, 4.	3.8	157
1187	Emerging transporter-targeted nanoparticulate drug delivery systems. Acta Pharmaceutica Sinica B, 2019, 9, 49-58.	12.0	51
1188	Application of zirconium MOFs in drug delivery and biomedicine. Coordination Chemistry Reviews, 2019, 380, 230-259.	18.8	470
1189	Designed inorganic porous nanovector with controlled release and MRI features for safe administration of doxorubicin. International Journal of Pharmaceutics, 2019, 554, 327-336.	5.2	12
1190	Following nanomedicine activation with magnetic resonance imaging: why, how, and what's next?. Current Opinion in Biotechnology, 2019, 58, 9-18.	6.6	11
1191	Nanotechnology in Targeted Drug Delivery and Therapeutics. , 2019, , 357-409.		17
1192	Molecular bionics – engineering biomaterials at the molecular level using biological principles. Biomaterials, 2019, 192, 26-50.	11.4	35
1193	On-demand generation of heat and free radicals for dual cancer therapy using thermal initiator- and gold nanorod-embedded PLGA nanocomplexes. Journal of Industrial and Engineering Chemistry, 2019, 69, 405-413.	5.8	13
1194	Multiplex Three-Dimensional Mapping of Macromolecular Drug Distribution in the Tumor Microenvironment. Molecular Cancer Therapeutics, 2019, 18, 213-226.	4.1	33
1195	Nanoparticles as Delivery Systems in Cancer Therapy. , 2019, , 257-295.		16
1196	Improved Efficacy and Reduced Toxicity Using a Custom-Designed Irinotecan-Delivering Silicasome for Orthotopic Colon Cancer. ACS Nano, 2019, 13, 38-53.	14.6	87
1197	Polymer–drug conjugate therapeutics: advances, insights and prospects. Nature Reviews Drug Discovery, 2019, 18, 273-294.	46.4	579

#	Article	IF	CITATIONS
1198	Cabazitaxel-loaded Poly(2-ethylbutyl cyanoacrylate) nanoparticles improve treatment efficacy in a patient derived breast cancer xenograft. Journal of Controlled Release, 2019, 293, 183-192.	9.9	38
1199	Enhancing solid tumor therapy with sequential delivery of dexamethasone and docetaxel engineered in a single carrier to overcome stromal resistance to drug delivery. Journal of Controlled Release, 2019, 294, 1-16.	9.9	47
1200	Metal Drugs and the Anticancer Immune Response. Chemical Reviews, 2019, 119, 1519-1624.	47.7	237
1201	Synthesis and evaluation of the antiproliferative efficacy of BRM270 phytocomposite nanoparticles against human hepatoma cancer cell lines. Materials Science and Engineering C, 2019, 97, 166-176.	7.3	7
1202	Exploiting Nanomaterialâ€Mediated Autophagy for Cancer Therapy. Small Methods, 2019, 3, 1800365.	8.6	25
1203	Water-soluble withaferin A polymer prodrugs via a drug-functionalized RAFT CTA approach. European Polymer Journal, 2019, 110, 313-318.	5.4	7
1204	Redox Responsive Polymersomes for Enhanced Doxorubicin Delivery. ACS Biomaterials Science and Engineering, 2019, 5, 70-80.	5.2	25
1205	Using the  dispersion-retention-formulation method' to estimate clinical and preclinical dosage limits for interstitial nanomedicines or agents. Journal of Magnetism and Magnetic Materials, 2019, 473, 74-78.	2.3	4
1206	Porous Silicon Nanoparticles for Applications in Nano-medicine. , 2019, , 211-226.		1
1207	Tumor-microenvironment controlled nanomicelles with AIE property for boosting cancer therapy and apoptosis monitoring. Biomaterials, 2019, 188, 96-106.	11.4	48
1208	Smart pH-responsive nanoparticles in a model tumor microenvironment for enhanced cellular uptake. Journal of Materials Science, 2019, 54, 1692-1702.	3.7	14
1209	Morphologies and functionalities of polymeric nanocarriers as chemical tools for drug delivery: A review. Journal of King Saud University - Science, 2019, 31, 398-411.	3.5	85
1210	Fabrication of \hat{l}^2 -cyclodextrin and sialic acid copolymer by single pot reaction to site specific drug delivery. Arabian Journal of Chemistry, 2020, 13, 1397-1405.	4.9	13
1211	Hybrid Titanium Oxide/Polymer Amphiphilic Nanomaterials with Controlled Size for Drug Encapsulation and Delivery. Advanced Functional Materials, 2020, 30, 1806146.	14.9	14
1212	Branched and Dendritic Polymer Architectures: Functional Nanomaterials for Therapeutic Delivery. Advanced Functional Materials, 2020, 30, 1901001.	14.9	109
1213	Nanoinformatics and biomolecular nanomodeling: a novel move en route for effective cancer treatment. Environmental Science and Pollution Research, 2020, 27, 19127-19141.	5.3	10
1214	CD44-Targeted Multifunctional Nanomedicines Based on a Single-Component Hyaluronic Acid Conjugate with All-Natural Precursors: Construction and Treatment of Metastatic Breast Tumors <i>in Vivo</i> . Biomacromolecules, 2020, 21, 104-113.	5.4	23
1215	Clinical applications of nanomedicine in cancer therapy. Drug Discovery Today, 2020, 25, 107-125.	6.4	74

#	Article	IF	CITATIONS
1216	Light-driven formation of gold/tryptophan nanoparticles. Applied Nanoscience (Switzerland), 2020, 10, 2827-2833.	3.1	5
1217	Advances in mathematical models of the active targeting of tumor cells by functional nanoparticles. Computer Methods and Programs in Biomedicine, 2020, 184, 105106.	4.7	14
1218	Mitochondria-targeting supra-carbon dots: Enhanced photothermal therapy selective to cancer cells and their hyperthermia molecular actions. Carbon, 2020, 156, 558-567.	10.3	65
1219	Advanced nanoscale carrier-based approaches to overcome biopharmaceutical issues associated with anticancer drug †Etoposide'. Materials Science and Engineering C, 2020, 106, 110275.	7.3	35
1220	Targeting peptide-decorated biomimetic lipoproteins improve deep penetration and cancer cells accessibility in solid tumor. Acta Pharmaceutica Sinica B, 2020, 10, 529-545.	12.0	29
1221	Progress on Modulating Tumorâ€Associated Macrophages with Biomaterials. Advanced Materials, 2020, 32, e1902007.	21.0	116
1222	Tuning the size, shape and structure of RNA nanoparticles for favorable cancer targeting and immunostimulation. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1582.	6.1	32
1223	Facile synthesis of yolk-shell structured Fe3O4@C-Au nanoparticles for thermotherapic application. Materials Letters, 2020, 258, 126809.	2.6	7
1224	One pot preparation of polyurethaneâ€based GSHâ€responsive coreâ€shell nanogels for controlled drug delivery. Journal of Applied Polymer Science, 2020, 137, 48473.	2.6	6
1225	Near-infrared light-triggered degradable hyaluronic acid hydrogel for on-demand drug release and combined chemo-photodynamic therapy. Carbohydrate Polymers, 2020, 229, 115394.	10.2	55
1226	Physicalâ€, chemicalâ€, and biologicalâ€responsive nanomedicine for cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1581.	6.1	44
1227	Immunological Consequences of Nanoparticleâ€Mediated Antitumor Photoimmunotherapy. Advanced Therapeutics, 2020, 3, 1900101.	3.2	13
1228	2D Layered Double Hydroxide Nanoparticles: Recent Progress toward Preclinical/Clinical Nanomedicine. Small Methods, 2020, 4, 1900343.	8.6	100
1229	Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine. Advanced Materials, 2020, 32, e1901989.	21.0	187
1230	Potentiating the anti-cancer profile of tamoxifen-loaded graphene using deep eutectic solvents as functionalizing agents. Applied Nanoscience (Switzerland), 2020, 10, 293-304.	3.1	18
1231	Upconversion luminescence nanomaterials: A versatile platform for imaging, sensing, and therapy. Talanta, 2020, 208, 120157.	5.5	58
1232	Biomimetic nanoparticle technology for cardiovascular disease detection and treatment. Nanoscale Horizons, 2020, 5, 25-42.	8.0	80
1233	Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. Journal of Cellular Physiology, 2020, 235, 1962-1972.	4.1	244

#	Article	IF	CITATIONS
1234	Multifunctional nanoplatforms for subcellular delivery of drugs in cancer therapy. Progress in Materials Science, 2020, 107, 100599.	32.8	138
1235	Highâ€Performance Quinolineâ€Malononitrile Core as a Building Block for the Diversityâ€Oriented Synthesis of AlEgens. Angewandte Chemie, 2020, 132, 9896-9909.	2.0	15
1236	Overcoming efflux transporter-mediated resistance in cancer by using nanomedicines. , 2020, , 337-369.		2
1237	Programming DNA Nanoassembly for Enhanced Photodynamic Therapy. Angewandte Chemie, 2020, 132, 1913-1921.	2.0	14
1238	Metal-free semi-aromatic polyester as nanodrug carrier: A novel tumor targeting drug delivery vehicle for potential clinical application. Materials Science and Engineering C, 2020, 107, 110285.	7.3	22
1239	Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia. Biomaterials, 2020, 228, 119578.	11.4	157
1240	Modulating the tumor microenvironment with new therapeutic nanoparticles: A promising paradigm for tumor treatment. Medicinal Research Reviews, 2020, 40, 1084-1102.	10.5	26
1241	Nanoparticles for multimodal antivascular therapeutics: Dual drug release, photothermal and photodynamic therapy. Acta Biomaterialia, 2020, 101, 459-468.	8.3	53
1242	Passion fruit-like exosome-PMA/Au-BSA@Ce6 nanovehicles for real-time fluorescence imaging and enhanced targeted photodynamic therapy with deep penetration and superior retention behavior in tumor. Biomaterials, 2020, 230, 119606.	11.4	106
1243	Programming DNA Nanoassembly for Enhanced Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 1897-1905.	13.8	99
1244	RNA Nanotechnology-Mediated Cancer Immunotherapy. Theranostics, 2020, 10, 281-299.	10.0	100
1245	Thulium Laserâ€Assisted Versus Conventional Laparoscopic Partial Nephrectomy for the Small Renal Mass. Lasers in Surgery and Medicine, 2020, 52, 402-407.	2.1	10
1246	Critical considerations for targeting colorectal liver metastases with nanotechnology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1588.	6.1	14
1247	Soft and Condensed Nanoparticles and Nanoformulations for Cancer Drug Delivery and Repurpose. Advanced Therapeutics, 2020, 3, 1900102.	3.2	21
1248	Nanoparticles in dermatologic surgery. Journal of the American Academy of Dermatology, 2020, 83, 1144-1149.	1.2	7
1249	Targeted and Reduction-Sensitive Cross-Linked PLGA Nanotherapeutics for Safer and Enhanced Chemotherapy of Malignant Melanoma. ACS Biomaterials Science and Engineering, 2020, 6, 2621-2629.	5.2	6
1250	A Redoxâ€Triggered Bispecific Supramolecular Nanomedicine Based on Peptide Selfâ€Assembly for Highâ€Efficacy and Lowâ€Toxic Cancer Therapy. Advanced Functional Materials, 2020, 30, 1904969.	14.9	37
1251	Stromal Modulation and Treatment of Metastatic Pancreatic Cancer with Local Intraperitoneal Triple miRNA/siRNA Nanotherapy. ACS Nano, 2020, 14, 255-271.	14.6	100

#	Article	IF	CITATIONS
1252	Facile Fabrication of Redoxâ€Responsive Covalent Organic Framework Nanocarriers for Efficiently Loading and Delivering Doxorubicin. Macromolecular Rapid Communications, 2020, 41, e1900570.	3.9	64
1253	Ferroptosis-driven nanotherapeutics for cancer treatment. Journal of Controlled Release, 2020, 319, 322-332.	9.9	130
1254	Galactoxyloglucan Endowed Biogenic Nanoimmunobiotics Arrests Microbial Growth and Elicits Antitumor Immunity. ACS Applied Bio Materials, 2020, 3, 801-814.	4.6	7
1255	A bottlebrush-architectured dextran polyprodrug as an acidity-responsive vector for enhanced chemotherapy efficiency. Biomaterials Science, 2020, 8, 473-484.	5.4	29
1256	Catalytic chemistry of iron-free Fenton nanocatalysts for versatile radical nanotherapeutics. Materials Horizons, 2020, 7, 317-337.	12.2	71
1257	Photo/thermo-responsive and size-switchable nanoparticles for chemo-photothermal therapy against orthotopic breast cancer. Nanoscale Advances, 2020, 2, 210-213.	4.6	10
1258	Superparamagnetic nanoparticles for biomedical applications. Journal of Materials Chemistry B, 2020, 8, 354-367.	5.8	135
1259	Leveraging a polycationic polymer to direct tunable loading of an anticancer agent and photosensitizer with opposite charges for chemo–photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 1235-1244.	5.8	16
1260	Host-guest fabrication of dual-responsive hyaluronic acid/mesoporous silica nanoparticle based drug delivery system for targeted cancer therapy. International Journal of Biological Macromolecules, 2020, 146, 363-373.	7.5	38
1261	Cell-Membrane-Based Biomimetic Systems with Bioorthogonal Functionalities. Accounts of Chemical Research, 2020, 53, 276-287.	15.6	59
1263	Biological response and cytotoxicity induced by lipid nanocapsules. Journal of Nanobiotechnology, 2020, 18, 5.	9.1	26
1264	A multi-functional drug delivery system based on polyphenols for efficient tumor inhibition and metastasis prevention. Biomaterials Science, 2020, 8, 702-711.	5.4	31
1265	Co-delivery of dual chemo-drugs with precisely controlled, high drug loading polymeric micelles for synergistic anti-cancer therapy. Biomaterials Science, 2020, 8, 949-959.	5.4	39
1266	A neutrophil membrane-functionalized black phosphorus riding inflammatory signal for positive feedback and multimode cancer therapy. Materials Horizons, 2020, 7, 574-585.	12.2	43
1267	MnO ₂ @Ce6-loaded mesenchymal stem cells as an "oxygen-laden guided-missile―for the enhanced photodynamic therapy on lung cancer. Nanoscale, 2020, 12, 3090-3102.	5.6	50
1268	Molecular recognition with soft biomaterials. Soft Matter, 2020, 16, 856-869.	2.7	21
1269	Recent advances in cancer bioimaging using a rationally designed Raman reporter in combination with plasmonic gold. Journal of Materials Chemistry B, 2020, 8, 186-198.	5.8	27
1270	Active Targeting of Dendritic Polyglycerols for Diagnostic Cancer Imaging. Small, 2020, 16, e1905013.	10.0	19

#	Article	IF	Citations
1271	Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors. Biomaterials, 2020, 232, 119745.	11.4	46
1272	Trimethylammonium modification of a polymer-coated monolith column for rapid and simultaneous analysis of nanomedicines. Journal of Chromatography A, 2020, 1617, 460826.	3.7	2
1273	Nanoparticles for "two color―19F magnetic resonance imaging: Towards combined imaging of biodistribution and degradation. Journal of Colloid and Interface Science, 2020, 565, 278-287.	9.4	22
1274	Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: An up-to-date review. Journal of Controlled Release, 2020, 319, 135-156.	9.9	160
1275	Recent trends in cell membrane-cloaked nanoparticles for therapeutic applications. Methods, 2020, 177, 2-14.	3.8	56
1276	Tale of Two Magnets: An Advanced Magnetic Targeting System. ACS Nano, 2020, 14, 7-11.	14.6	37
1277	The novel platinum(IV) prodrug with self-assembly property and structure-transformable character against triple-negative breast cancer. Biomaterials, 2020, 232, 119751.	11.4	26
1278	pH-sensitive, dynamic graft polymer micelles via simple synthesis for enhanced chemotherapeutic efficacy. Journal of Biomaterials Applications, 2020, 34, 1059-1070.	2.4	3
1279	Highâ€Performance Quinolineâ€Malononitrile Core as a Building Block for the Diversityâ€Oriented Synthesis of AlEgens. Angewandte Chemie - International Edition, 2020, 59, 9812-9825.	13.8	134
1280	Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Materials Today Bio, 2020, 5, 100035.	5. 5	167
1281	Organic Small Molecule Based Photothermal Agents with Molecular Rotors for Malignant Breast Cancer Therapy. Advanced Functional Materials, 2020, 30, 1907093.	14.9	84
1282	A glance over doxorubicin based-nanotherapeutics: From proof-of-concept studies to solutions in the market. Journal of Controlled Release, 2020, 317, 347-374.	9.9	53
1283	Modelâ€Based Nanoengineered Pharmacokinetics of Ironâ€Doped Copper Oxide for Nanomedical Applications. Angewandte Chemie, 2020, 132, 1844-1852.	2.0	9
1284	Redox-responsive polyprodrug nanoparticles for targeted siRNA delivery and synergistic liver cancer therapy. Biomaterials, 2020, 234, 119760.	11.4	89
1285	Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochemistry and Photobiology, 2020, 96, 232-259.	2.5	55
1286	Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo. Journal of Controlled Release, 2020, 319, 407-415.	9.9	74
1287	Metal-organic frameworks nanoswitch: Toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference. Nano Research, 2020, 13, 238-245.	10.4	42
1288	A magnetism/laser-auxiliary cascaded drug delivery to pulmonary carcinoma. Acta Pharmaceutica Sinica B, 2020, 10, 1549-1562.	12.0	5

#	Article	IF	CITATIONS
1289	Cell engineering: Biophysical regulation of the nucleus. Biomaterials, 2020, 234, 119743.	11.4	39
1290	A Metal–Polyphenolâ€Coordinated Nanomedicine for Synergistic Cascade Cancer Chemotherapy and Chemodynamic Therapy. Advanced Materials, 2020, 32, e1906024.	21.0	300
1291	Recent advances on smallâ€molecule nanomedicines for cancer treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1607.	6.1	14
1292	Preparation of curcumin-poly (allyl amine) hydrochloride based nanocapsules: Piperine in nanocapsules accelerates encapsulation and release of curcumin and effectiveness against colon cancer cells. Materials Science and Engineering C, 2020, 109, 110550.	7.3	44
1293	Nanoparticle Conjugation of Ginsenoside Rg3 Inhibits Hepatocellular Carcinoma Development and Metastasis. Small, 2020, 16, e1905233.	10.0	72
1294	pH-Driven Targeting Nanoprobe with Dual-Responsive Drug Release for Persistent Luminescence Imaging and Chemotherapy of Tumor. Analytical Chemistry, 2020, 92, 1179-1188.	6.5	39
1295	A short review on chemical properties, stability and nano-technological advances for curcumin delivery. Expert Opinion on Drug Delivery, 2020, 17, 61-75.	5 . O	54
1296	Engineering a Nanostructured Nucleolin-Binding Peptide for Intracellular Drug Delivery in Triple-Negative Breast Cancer Stem Cells. ACS Applied Materials & Interfaces, 2020, 12, 5381-5388.	8.0	15
1297	Length effect of stimuli-responsive block copolymer prodrug filomicelles on drug delivery efficiency. Journal of Controlled Release, 2020, 318, 67-77.	9.9	31
1298	Growth of Metastatic Triple-Negative Breast Cancer Is Inhibited by Deep Tumor-Penetrating and Slow Tumor-Clearing Chemotherapy: The Case of Tumor-Adhering Liposomes with Interstitial Drug Release. Molecular Pharmaceutics, 2020, 17, 118-131.	4.6	15
1299	<i>Trans</i> -Cyclooctene-Functionalized PeptoBrushes with Improved Reaction Kinetics of the Tetrazine Ligation for Pretargeted Nuclear Imaging. ACS Nano, 2020, 14, 568-584.	14.6	50
1300	Bone-Seeking Albumin-Nanomedicine for In Vivo Imaging and Therapeutic Monitoring. ACS Biomaterials Science and Engineering, 2020, 6, 647-653.	5.2	9
1301	Imaging-assisted anticancer nanotherapy. Theranostics, 2020, 10, 956-967.	10.0	40
1302	Supramolecular Engineering of Molecular Inhibitors in an Adaptive Cytotoxic Nanoparticle for Synergistic Cancer Therapy. ACS Applied Materials & Synergistic Cancer Therapy.	8.0	15
1303	Aptamer-Functionalized DNA Origami for Targeted Codelivery of Antisense Oligonucleotides and Doxorubicin to Enhance Therapy in Drug-Resistant Cancer Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 400-409.	8.0	99
1304	Stimuli-responsive polymeric prodrug-based nanomedicine delivering nifuroxazide and doxorubicin against primary breast cancer and pulmonary metastasis. Journal of Controlled Release, 2020, 318, 124-135.	9.9	79
1305	Red blood cell membrane-enveloped O ₂ self-supplementing biomimetic nanoparticles for tumor imaging-guided enhanced sonodynamic therapy. Theranostics, 2020, 10, 867-879.	10.0	117
1306	High-resolution 3D visualization of nanomedicine distribution in tumors. Theranostics, 2020, 10, 880-897.	10.0	13

#	Article	IF	CITATIONS
1307	Modelâ€Based Nanoengineered Pharmacokinetics of Ironâ€Doped Copper Oxide for Nanomedical Applications. Angewandte Chemie - International Edition, 2020, 59, 1828-1836.	13.8	35
1308	Amplification of tumor antigen presentation by NLGplatin to improve chemoimmunotherapy. International Journal of Pharmaceutics, 2020, 573, 118736.	5.2	9
1309	Multistage-Targeted Gold/Mesoporous Silica Nanocomposite Hydrogel as In Situ Injectable Drug Release System for Chemophotothermal Synergistic Cancer Therapy. ACS Applied Bio Materials, 2020, 3, 421-431.	4.6	26
1310	Ultrasound nanotheranostics in fighting cancer: Advances and prospects. Cancer Letters, 2020, 470, 204-219.	7.2	63
1311	Multivalent Aptamer-modified DNA Origami as Drug Delivery System for Targeted Cancer Therapy. Chemical Research in Chinese Universities, 2020, 36, 254-260.	2.6	23
1312	Engineering gold nanoparticles for photothermal therapy, surgery, and imaging. , 2020, , 175-193.		8
1313	Matrix Metalloproteinase-sensitive Multistage Nanogels Promote Drug Transport in 3D Tumor Model. Theranostics, 2020, 10, 91-108.	10.0	29
1314	Challenges and future of chemical assisted heavy oil recovery processes. Advances in Colloid and Interface Science, 2020, 275, 102081.	14.7	77
1315	Chemically Modified Natural Polymer-Based Theranostic Nanomedicines: Are They the Golden Gate toward a <i>de Novo</i> Clinical Approach against Cancer?. ACS Biomaterials Science and Engineering, 2020, 6, 134-166.	5.2	32
1316	Protein Nanoparticles Formed by Self-assembly of Human Serum Albumin with a Fatty Acid Arm. Chemistry Letters, 2020, 49, 103-106.	1.3	3
1317	Saikosaponin D loaded macrophage membrane-biomimetic nanoparticles target angiogenic signaling for breast cancer therapy. Applied Materials Today, 2020, 18, 100505.	4.3	45
1318	Self-assembling poly(ethylene glycol)-block-polylactide-cabazitaxel conjugate nanoparticles for anticancer therapy with high efficacy and low in vivo toxicity. International Journal of Pharmaceutics, 2020, 574, 118879.	5.2	23
1319	What does the future hold for chemotherapy with the use of lipid-based nanocarriers?. Future Oncology, 2020, 16, 81-84.	2.4	6
1320	Plant Viruses and Bacteriophage-Based Reagents for Diagnosis and Therapy. Annual Review of Virology, 2020, 7, 559-587.	6.7	25
1321	Polymeric Nanoscale Drug Carriers Mediate the Delivery of Methotrexate for Developing Therapeutic Interventions Against Cancer and Rheumatoid Arthritis. Frontiers in Oncology, 2020, 10, 1734.	2.8	14
1322	Squalenoylated Nanoparticle Pro-Drugs of Adjuvant Antitumor $11\hat{1}\pm$ -Hydroxyecdysteroid 2,3-Acetonides Act as Cytoprotective Agents Against Doxorubicin and Paclitaxel. Frontiers in Pharmacology, 2020, 11, 552088.	3.5	3
1323	Active Transportation of Liposome Enhances Tumor Accumulation, Penetration, and Therapeutic Efficacy. Small, 2020, 16, e2004172.	10.0	89
1324	<p>Novel T7-Modified pH-Responsive Targeted Nanosystem for Co-Delivery of Docetaxel and Curcumin in the Treatment of Esophageal Cancer</p> . International Journal of Nanomedicine, 2020, Volume 15, 7745-7762.	6.7	15

#	Article	IF	Citations
1325	DNA Nanostructures and DNAâ€Functionalized Nanoparticles for Cancer Theranostics. Advanced Science, 2020, 7, 2001669.	11.2	47
1326	Clinical Applications of Tumor-targeted Systems. , 2020, , 437-456.		1
1327	Multifunctional peptides for tumor therapy. Advanced Drug Delivery Reviews, 2020, 160, 36-51.	13.7	40
1328	Ferroptosis: An emerging therapeutic opportunity for cancer. Genes and Diseases, 2022, 9, 334-346.	3.4	41
1329	Green Synthesis of Nanoparticles: Applications and Prospects. , 2020, , .		4
1330	Efficient delivery of BRD4 inhibitor by glutathione-sensitive nanoparticle to suppress gallbladder cancer through inhibiting NF-κB signaling. Applied Materials Today, 2020, 21, 100849.	4.3	6
1331	Biodegradable Inorganic Nanostructured Biomaterials for Drug Delivery. Advanced Materials Interfaces, 2020, 7, 2000819.	3.7	66
1332	Intercellular delivery of bioorthogonal chemical receptors for enhanced tumor targeting and penetration. Biomaterials, 2020, 259, 120298.	11.4	38
1333	Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. Journal of Controlled Release, 2020, 328, 59-77.	9.9	72
1334	Computer Modeling of Drug Delivery with Thermosensitive Liposomes in a Realistic Three-Dimensional Geometry., 2020, 2020, 5021-5024.		0
1335	An implantable blood clot–based immune niche for enhanced cancer vaccination. Science Advances, 2020, 6, .	10.3	66
1336	Cellular senescence in cancer: from mechanisms to detection. Molecular Oncology, 2021, 15, 2634-2671.	4.6	78
1337	Nanomedicine strategies to target coronavirus. Nano Today, 2020, 35, 100961.	11.9	48
1338	Effects of Polymer 3D Architecture, Size, and Chemistry on Biological Transport and Drug Delivery In Vitro and in Orthotopic Triple Negative Breast Cancer Models. Advanced Healthcare Materials, 2020, 9, 2000892.	7.6	17
1339	Mesoporous Silica Nanoparticles as Theranostic Antitumoral Nanomedicines. Pharmaceutics, 2020, 12, 957.	4.5	29
1340	Interrogation of Folic Acid-Functionalized Nanomedicines: The Regulatory Roles of Plasma Proteins Reexamined. ACS Nano, 2020, 14, 14779-14789.	14.6	63
1341	Nanoparticle-Based Chemotherapy Formulations for Head and Neck Cancer: A Systematic Review and Perspectives. Nanomaterials, 2020, 10, 1938.	4.1	8
1342	Multifunctional Synthetic Protein Nanoparticles via Reactive Electrojetting. Macromolecular Rapid Communications, 2020, 41, e2000425.	3.9	14

#	Article	IF	CITATIONS
1343	New insights on the role of autophagy in the pathogenesis and treatment of melanoma. Molecular Biology Reports, 2020, 47, 9021-9032.	2.3	22
1344	Folate-Targeted Cholesterol-Grafted Lipo-Polymeric Nanoparticles for Chemotherapeutic Agent Delivery. AAPS PharmSciTech, 2020, 21, 280.	3.3	17
1345	Photosensitizer-stabilized self-assembling nanoparticles potentiate chemo/photodynamic efficacy of patient-derived melanoma. Journal of Controlled Release, 2020, 328, 325-338.	9.9	31
1346	Clinical failure of nanoparticles in cancer: mimicking nature's solutions. Nanomedicine, 2020, 15, 2311-2324.	3.3	16
1347	Novel Polymeric Hybrid Nanocarrier for Curcumin and Survivin shRNA Co-delivery Augments Tumor Penetration and Promotes Synergistic Tumor Suppression. Frontiers in Chemistry, 2020, 8, 762.	3.6	8
1348	Biomineralization: An Opportunity and Challenge of Nanoparticle Drug Delivery Systems for Cancer Therapy. Advanced Healthcare Materials, 2020, 9, e2001117.	7.6	45
1349	Tumorâ€Targeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity. Advanced Materials, 2020, 32, e2002197.	21.0	78
1350	Lapatinib-loaded acidity-triggered charge switchable polycarbonate-doxorubicin conjugate micelles for synergistic breast cancer chemotherapy. Acta Biomaterialia, 2020, 118, 182-195.	8.3	24
1351	Plasmonic modulation of gold nanotheranostics for targeted NIR-II photothermal-augmented immunotherapy. Nano Today, 2020, 35, 100987.	11.9	55
1352	Benzylguanidine and Galactose Double-Conjugated Chitosan Nanoparticles with Reduction Responsiveness for Targeted Delivery of Doxorubicin to CXCR 4 Positive Tumors. Bioconjugate Chemistry, 2020, 31, 2446-2455.	3.6	12
1354	Brave new world revisited: Focus on nanomedicine. Biochemical and Biophysical Research Communications, 2020, 533, 36-49.	2.1	18
1355	Perspectives of photodynamic therapy in biotechnology. Journal of Photochemistry and Photobiology B: Biology, 2020, 213, 112051.	3.8	12
1356	Aptamer-Mediated Nanotheranostics for Cancer Treatment: A Review. ACS Applied Nano Materials, 2020, 3, 9542-9559.	5.0	30
1357	Cell Membrane Coated Particles. Advanced Biology, 2020, 4, e2000174.	3.0	18
1358	Peptide-guided resiquimod-loaded lignin nanoparticles convert tumor-associated macrophages from M2 to M1 phenotype for enhanced chemotherapy. Acta Biomaterialia, 2021, 133, 231-243.	8.3	72
1359	Structurally simple redox polymersomes for doxorubicin delivery. European Polymer Journal, 2020, 137, 109952.	5.4	9
1360	Nano-therapeutics for modulating the tumour microenvironment: Design, development, and clinical translation. Journal of Controlled Release, 2020, 327, 512-532.	9.9	40
1361	Investigating the EPR effect of nanomedicines in human renal tumors via ex vivo perfusion strategy. Nano Today, 2020, 35, 100970.	11.9	86

#	Article	IF	CITATIONS
1362	Inorganic nanoparticles in clinical trials and translations. Nano Today, 2020, 35, 100972.	11.9	138
1363	Cancer Nanomedicines in an Evolving Oncology Landscape. Trends in Pharmacological Sciences, 2020, 41, 730-742.	8.7	32
1364	Tumor-Activated and Metal–Organic Framework Assisted Self-Assembly of Organic Photosensitizers. ACS Nano, 2020, 14, 13056-13068.	14.6	38
1365	What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right. ACS Nano, 2020, 14, 12281-12290.	14.6	140
1366	Carbon nanotube embedded cyclodextrin polymer derived injectable nanocarrier: A multiple faceted platform for stimulation of multi-drug resistance reversal. Carbohydrate Polymers, 2020, 247, 116751.	10.2	39
1367	Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nature Communications, 2020, 11, 3662.	12.8	175
1368	Anti-proliferative effects of diterpenoids from <i>Sagittaria trifolia</i> L. tubers on colon cancer cells by targeting the NF-κB pathway. Food and Function, 2020, 11, 7717-7726.	4.6	4
1369	Hierarchical integration of degradable mesoporous silica nanoreservoirs and supramolecular dendrimer complex as a general-purpose tumor-targeted biomimetic nanoplatform for gene/small-molecule anticancer drug co-delivery. Nanoscale, 2020, 12, 16102-16112.	5.6	27
1370	Magnetically active pNIPAM nanosystems as temperature-sensitive biocompatible structures for controlled drug delivery. Artificial Cells, Nanomedicine and Biotechnology, 2020, 48, 1022-1035.	2.8	23
1371	<p>Novel Nanocomplexes Targeting STAT3 Demonstrate Promising Anti-Ovarian Cancer Effects in vivo</p> . OncoTargets and Therapy, 2020, Volume 13, 5069-5082.	2.0	6
1372	Photosensitizer-Doped and Plasma Membrane-Responsive Liposomes for Nuclear Drug Delivery and Multidrug Resistance Reversal. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36882-36894.	8.0	39
1373	Bone-Targeting Prodrug Mesoporous Silica-Based Nanoreactor with Reactive Oxygen Species Burst for Enhanced Chemotherapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 34630-34642.	8.0	24
1374	Monodisperse Hollow MnO ₂ with Biodegradability for Efficient Targeted Drug Delivery. ACS Biomaterials Science and Engineering, 2020, 6, 4985-4992.	5.2	28
1375	99mTc-gallic-gold nanoparticles as a new imaging platform for tumor targeting. Applied Radiation and Isotopes, 2020, 164, 109269.	1.5	21
1376	An exosome-like programmable-bioactivating paclitaxel prodrug nanoplatform for enhanced breast cancer metastasis inhibition. Biomaterials, 2020, 257, 120224.	11.4	87
1377	Fabrication of hypoxia-responsive and uperconversion nanoparticles-modified RBC micro-vehicles for oxygen delivery and chemotherapy enhancement. Biomaterials Science, 2020, 8, 4595-4602.	5.4	17
1378	Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics, 2020, 10, 8996-9031.	10.0	518
1379	Controlled drug delivery with nanoassemblies of redox-responsive prodrug and polyprodrug amphiphiles. Journal of Controlled Release, 2020, 326, 276-296.	9.9	52

#	Article	IF	Citations
1380	Nanobiophotonics and fluorescence nanoscopy in 2020., 2020, , 113-162.		2
1381	NIR multiphoton ablation of cancer cells, fluorescence quenching and cellular uptake of dansyl-glutathione-coated gold nanoparticles. Scientific Reports, 2020, 10, 11380.	3.3	11
1382	Biocompatible Polymer Nanocomposites Integrating Magnetic Polyoxomolybdates for Enhanced MRI and Onâ€Site Activated Photothermal Properties. Macromolecular Rapid Communications, 2020, 41, 2000468.	3.9	13
1383	Preparation, Biosafety, and Cytotoxicity Studies of a Newly Tumor-Microenvironment-Responsive Biodegradable Mesoporous Silica Nanosystem Based on Multimodal and Synergistic Treatment. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14.	4.0	3
1384	Cancer Cell Membrane Technology for Cancer Therapy. ChemNanoMat, 2020, 6, 1712-1729.	2.8	5
1385	Multimode Imaging-Guided Photothermal/Chemodynamic Synergistic Therapy Nanoagent with a Tumor Microenvironment Responded Effect. ACS Applied Materials & Interfaces, 2020, 12, 52479-52491.	8.0	54
1386	Lenalidomide (LENA) Hybrid Gold Complex Nanoparticles: Synthesis, Physicochemical Evaluation, and Perspectives in Nanomedicine. ACS Omega, 2020, 5, 28483-28492.	3 . 5	5
1387	Intravesical <i>In Situ</i> Immunostimulatory Gel for Triple Therapy of Bladder Cancer. ACS Applied Materials & Samp; Interfaces, 2020, 12, 54367-54377.	8.0	45
1388	Fibroblast activation protein- \hat{l} ±-adaptive micelles deliver anti-cancer drugs and reprogram stroma fibrosis. Nanoscale, 2020, 12, 23756-23767.	5.6	13
1389	Just dose it. Nature Materials, 2020, 19, 1257-1258.	27.5	8
1390	<p>Endocytosis and Organelle Targeting of Nanomedicines in Cancer Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 9447-9467.	6.7	51
1391	Autophagy inhibitior autophagy-related 7 small interfering RNA and doxorubicin dual-loaded nanostructured lipid carrier to combat multidrug resistance. Journal of Materials Research, 2020, 35, 3136-3143.	2.6	3
1392	Meloxicam encapsulated nanostructured colloidal selfâ€assembly for evaluating antitumor and antiâ€inflammatory efficacy in 3D printed scaffolds. Journal of Biomedical Materials Research - Part A, 2021, 109, 1441-1456.	4.0	12
1393	Current Progresses and Challenges of Immunotherapy in Triple-Negative Breast Cancer. Cancers, 2020, 12, 3529.	3.7	60
1394	Versatile Types of Polysaccharide-Based Drug Delivery Systems: From Strategic Design to Cancer Therapy. International Journal of Molecular Sciences, 2020, 21, 9159.	4.1	55
1395	Polymeric Nanoparticle-Based Vaccine Adjuvants and Delivery Vehicles. Current Topics in Microbiology and Immunology, 2020, 433, 29-76.	1.1	12
1396	Exosome-based immunotherapy: a promising approach for cancer treatment. Molecular Cancer, 2020, 19, 160.	19.2	241
1397	Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Frontiers in Molecular Biosciences, 2020, 7, 587997.	3.5	274

#	Article	IF	CITATIONS
1398	Biocatalytic Hybrid Films Self-Assembled from Carbohydrate Block Copolymers and Polysaccharides for Enzyme Prodrug Therapy. ACS Applied Bio Materials, 2020, 3, 8865-8871.	4.6	3
1399	Extracellular Vesicles as Drug Delivery Systems in Cancer. Pharmaceutics, 2020, 12, 1146.	4.5	26
1400	<p>Up-Conversion Luminescent Nanoparticles for Molecular Imaging, Cancer Diagnosis and Treatment</p> . International Journal of Nanomedicine, 2020, Volume 15, 9431-9445.	6.7	19
1401	Self-Assembling Supramolecular Dendrimers for Biomedical Applications: Lessons Learned from Poly(amidoamine) Dendrimers. Accounts of Chemical Research, 2020, 53, 2936-2949.	15.6	69
1402	Aptamer-Functionalized Nanoparticles in Targeted Delivery and Cancer Therapy. International Journal of Molecular Sciences, 2020, 21, 9123.	4.1	91
1403	Tumor Targeted Multifunctional Magnetic Nanobubbles for MR/US Dual Imaging and Focused Ultrasound Triggered Drug Delivery. Frontiers in Bioengineering and Biotechnology, 2020, 8, 586874.	4.1	11
1404	Inorganic hybrid nanoparticles in cancer theranostics: understanding their combinations for better clinical translation. Materials Today Chemistry, 2020, 18, 100381.	3.5	24
1405	Integrative Analysis of HNF1B mRNA in Human Cancers Based on Data Mining. International Journal of Medical Sciences, 2020, 17, 2895-2904.	2.5	5
1406	Precise design strategies of nanomedicine for improving cancer therapeutic efficacy using subcellular targeting. Signal Transduction and Targeted Therapy, 2020, 5, 262.	17.1	73
1407	The toxicity performance of pH-responsive doxorubicin nanocarrier with different drug loading strategy. Materials Today Communications, 2020, 25, 101634.	1.9	1
1408	Bioengineered Human Serum Albumin Fusion Protein as Target/Enzyme/pH Three-Stage Propulsive Drug Vehicle for Tumor Therapy. ACS Nano, 2020, 14, 17405-17418.	14.6	31
1409	A bionic shuttle carrying multi-modular particles and holding tumor-tropic features. Materials Science and Engineering C, 2020, 117, 111338.	7.3	5
1410	Modulation of the lifespan of <i>C. elegans</i> by the controlled release of nitric oxide. Chemical Science, 2020, 11, 8785-8792.	7.4	5
1411	On/off switchable epicatechin-based ultra-sensitive MRI-visible nanotheranostics – see it and treat it. Biomaterials Science, 2020, 8, 5210-5218.	5.4	3
1412	A synergistic optical strategy for enhanced deep-tumor penetration and therapy in the second near-infrared window. Materials Horizons, 2020, 7, 2929-2935.	12.2	33
1413	Chemistry of Advanced Nanomedicines in Cancer Cell Metabolism Regulation. Advanced Science, 2020, 7, 2001388.	11.2	20
1414	Targeted poly(ethylene glycol) nanoparticles for photodynamic therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125394.	4.7	6
1415	Study on different particle sizes of DOX-loaded mixed micelles for cancer therapy. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111303.	5.0	22

#	Article	IF	CITATIONS
1416	Nanotechnology in reproduction: Vitamin E nanoemulsions for reducing oxidative stress in sperm cells. Free Radical Biology and Medicine, 2020, 160, 47-56.	2.9	20
1417	Triple stimuli-responsive supramolecular nanoassembly with mitochondrial targetability for chemophotothermal therapy. Journal of Controlled Release, 2020, 327, 35-49.	9.9	19
1418	Physical Properties of Nanoparticles That Result in Improved Cancer Targeting. Journal of Oncology, 2020, 2020, 1-16.	1.3	135
1419	Nanoencapsulation of triterpene $3\hat{l}^2$, $6\hat{l}^2$, $16\hat{l}^2$ -trihydroxylup-20(29)-ene from Combretum leprosum as strategy to improve its cytotoxicity against cancer cell lines. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127469.	2.2	3
1420	Biodegradable pH-responsive amorphous calcium carbonate nanoparticles as immunoadjuvants for multimodal imaging and enhanced photoimmunotherapy. Journal of Materials Chemistry B, 2020, 8, 8261-8270.	5.8	22
1421	The highly cross-linked poly($\hat{l}\mu$ -caprolactone) as biodegradable implants for prostate cancer treatment-part I: Synthesis and inÂvivo degradation. Polymer Degradation and Stability, 2020, 180, 109307.	5.8	1
1422	Current trends, achievements, and prospects of smart nanodevices in the global pharma market. , 2020, , 351-393.		0
1423	A tumor-microenvironment fully responsive nano-platform for MRI-guided photodynamic and photothermal synergistic therapy. Journal of Materials Chemistry B, 2020, 8, 8271-8281.	5 . 8	32
1424	Understanding the relevance of protein corona in nanoparticle-based therapeutics and diagnostics. RSC Advances, 2020, 10, 27161-27172.	3.6	18
1425	Overview of tumor environment responsive nano-drug delivery systems in tumor immunotherapy. IOP Conference Series: Earth and Environmental Science, 2020, 512, 012096.	0.3	1
1426	Synthesis and Antiproliferative Activity of New N-Acylhydrazone Derivatives Containing Benzothiazole and Indole Based Moiety. Pharmaceutical Chemistry Journal, 2020, 54, 345-352.	0.8	14
1427	A Mitochondrionâ€Localized Twoâ€Photon Photosensitizer Generating Carbon Radicals Against Hypoxic Tumors. Angewandte Chemie - International Edition, 2020, 59, 20697-20703.	13.8	99
1428	A Mitochondrion‣ocalized Twoâ€Photon Photosensitizer Generating Carbon Radicals Against Hypoxic Tumors. Angewandte Chemie, 2020, 132, 20878-20884.	2.0	16
1429	Cu-In-S/ZnS@carboxymethylcellulose supramolecular structures: Fluorescent nanoarchitectures for targeted-theranostics of cancer cells. Carbohydrate Polymers, 2020, 247, 116703.	10.2	15
1430	Head-to-head comparative pharmacokinetic and biodistribution (PK/BD) study of two dexamethasone prodrug nanomedicines on lupus-prone NZB/WF1 mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102266.	3.3	4
1431	Small Morph Nanoparticles for Deep Tumor Penetration via Caveolae-Mediated Transcytosis. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38499-38511.	8.0	28
1432	Plasma polymerized nanoparticles effectively deliver dual siRNA and drug therapy in vivo. Scientific Reports, 2020, 10, 12836.	3.3	18
1433	Mirror siRNAs loading for dual delivery of doxorubicin and autophagy regulation siRNA for multidrug reversing chemotherapy. Biomedicine and Pharmacotherapy, 2020, 130, 110490.	5.6	8

#	Article	IF	CITATIONS
1434	Graphene oxide and reduced graphene oxide: Efficient cargo platforms for cancer theranostics. Journal of Drug Delivery Science and Technology, 2020, 60, 101974.	3.0	31
1435	The MUDENG Augmentation: A Genesis in Anti-Cancer Therapy?. International Journal of Molecular Sciences, 2020, 21, 5583.	4.1	6
1436	Nanomedicine Revisited: Next Generation Therapies for Brain Cancer. Advanced Therapeutics, 2020, 3, 2000118.	3.2	14
1437	Nanoparticles (NPs)â€Meditated LncRNA AFAP1â€AS1 Silencing to Block Wnt/ <i>β</i> i>â€Catenin Signaling Pathway for Synergistic Reversal of Radioresistance and Effective Cancer Radiotherapy. Advanced Science, 2020, 7, 2000915.	11.2	62
1438	Potentiated cytosolic drug delivery and photonic hyperthermia by 2D free-standing silicene nanosheets for tumor nanomedicine. Nanoscale, 2020, 12, 17931-17946.	5.6	20
1439	Electrostatic Conjugation of Nanoparticle Surfaces with Functional Peptide Motifs. Bioconjugate Chemistry, 2020, 31, 2211-2219.	3.6	21
1440	An effective vaginal gel to deliver CRISPR/Cas9 system encapsulated in poly (\hat{l}^2 -amino ester) nanoparticles for vaginal gene therapy. EBioMedicine, 2020, 58, 102897.	6.1	15
1441	Docetaxel-loaded block copolymer micelles labeled with 188Re for combined radiochemotherapy. Journal of Drug Delivery Science and Technology, 2020, 60, 101898.	3.0	3
1442	Systematic Study of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles. ACS Applied Materials & Stabilized Stabilized by Polymer Amphiphiles. ACS Applied Materials & Stabilized Stabilized Stabilized By Polymer Amphiphiles. ACS Applied Materials & Stabilized Stab	8.0	23
1443	Self-Assembled Organic Nanomaterials for Drug Delivery, Bioimaging, and Cancer Therapy. ACS Biomaterials Science and Engineering, 2020, 6, 4816-4833.	5.2	66
1444	The progress and perspective of nanoparticle-enabled tumor metastasis treatment. Acta Pharmaceutica Sinica B, 2020, 10, 2037-2053.	12.0	119
1445	Facile synthesis of biocompatible L-cysteine-modified MoS2 nanospheres with high photothermal conversion efficiency for photothermal therapy of tumor. Materials Science and Engineering C, 2020, 117, 111371.	7.3	36
1446	Advancements in nanotechnology for the diagnosis and treatment of multiple myeloma. Biomaterials Science, 2020, 8, 4692-4711.	5.4	9
1447	Luminescence Imaging of Acute Liver Injury by Biodegradable and Biocompatible Nanoprobes. ACS Nano, 2020, 14, 11083-11099.	14.6	37
1448	A Cost-Effective Approach for Non-Persistent Gold Nano-Architectures Production. Nanomaterials, 2020, 10, 1600.	4.1	11
1449	Encapsulation of Docetaxel into Diblock Polymeric Polymersome as a Nanodrug. ChemistrySelect, 2020, 5, 8924-8928.	1.5	3
1450	Navigating 2D Monoelemental Materials (Xenes) for Cancer Nanomedicine. Matter, 2020, 3, 12-13.	10.0	10
1451	Application of gelatin nanoconjugates as potential internal stimuli-responsive platforms for cancer drug delivery. Journal of Molecular Liquids, 2020, 318, 114053.	4.9	20

#	Article	IF	CITATIONS
1452	Cellular―and Subcellularâ€Targeted Delivery Using a Simple Allâ€inâ€One Polymeric Nanoassembly. Angewandte Chemie - International Edition, 2020, 59, 23466-23470.	13.8	35
1453	Comparison of the uptake mechanisms of zwitterionic and negatively charged liposomes by HeLa cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 30, 102300.	3.3	21
1454	Nearly free surface silanols are the critical molecular moieties that initiate the toxicity of silica particles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27836-27846.	7.1	76
1455	Preparation of parenteral nanocrystal suspensions of etoposide from the excipient free dry state of the drug to enhance in vivo antitumoral properties. Scientific Reports, 2020, 10, 18059.	3.3	21
1456	Enhanced In Vitro Magnetic Cell Targeting of Doxorubicin-Loaded Magnetic Liposomes for Localized Cancer Therapy. Nanomaterials, 2020, 10, 2104.	4.1	11
1457	Nanoplatform-based cascade engineering for cancer therapy. Chemical Society Reviews, 2020, 49, 9057-9094.	38.1	109
1458	Recent advances in drug delivery systems for enhancing drug penetration into tumors. Drug Delivery, 2020, 27, 1474-1490.	5.7	71
1459	Robust and smart polypeptide-based nanomedicines for targeted tumor therapy. Advanced Drug Delivery Reviews, 2020, 160, 199-211.	13.7	52
1460	Localized nanotheranostics: recent developments in cancer nanomedicine. Materials Today Advances, 2020, 8, 100087.	5.2	21
1461	Target-oriented delivery of self-assembled immunosuppressant cocktails prolongs allogeneic orthotopic liver transplant survival. Journal of Controlled Release, 2020, 328, 237-250.	9.9	29
1462	Progress, challenges, and future of nanomedicine. Nano Today, 2020, 35, 101008.	11.9	135
1463	Resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms, predictive factors, and future perspectives. Biomarker Research, 2020, 8, 35.	6.8	122
1464	An Overview of Antibody Conjugated Polymeric Nanoparticles for Breast Cancer Therapy. Pharmaceutics, 2020, 12, 802.	4. 5	62
1465	Adenineâ€Functionalized Supramolecular Micelles for Selective Cancer Chemotherapy. Macromolecular Bioscience, 2020, 20, e2000233.	4.1	3
1466	Cytokine-induced killer cells-assisted tumor-targeting delivery of Her-2 monoclonal antibody-conjugated gold nanostars with NIR photosensitizer for enhanced therapy of cancer. Journal of Materials Chemistry B, 2020, 8, 8368-8382.	5.8	29
1467	Developments of Smart Drug-Delivery Systems Based on Magnetic Molecularly Imprinted Polymers for Targeted Cancer Therapy: A Short Review. Pharmaceutics, 2020, 12, 831.	4.5	53
1468	Cellular―and Subcellularâ€Targeted Delivery Using a Simple All―nâ€One Polymeric Nanoassembly. Angewandte Chemie, 2020, 132, 23672-23676.	2.0	6
1469	3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution. Nano Research, 2020, 13, 3241-3247.	10.4	4

#	ARTICLE	IF	CITATIONS
1470	cGAS-STING pathway in cancer biotherapy. Molecular Cancer, 2020, 19, 136.	19.2	125
1471	Single-Walled Carbon Nanohorns as Promising Nanotube-Derived Delivery Systems to Treat Cancer. Pharmaceutics, 2020, 12, 850.	4.5	29
1472	A Smart Nanoparticle-Laden and Remote-Controlled Self-Destructive Macrophage for Enhanced Chemo/Chemodynamic Synergistic Therapy. ACS Nano, 2020, 14, 13894-13904.	14.6	83
1473	<p>A pH-Sensitive Prodrug Nanocarrier Based on Diosgenin for Doxorubicin Delivery to Efficiently Inhibit Tumor Metastasis</p> . International Journal of Nanomedicine, 2020, Volume 15, 6545-6560.	6.7	10
1474	IC ₅₀ Evaluation of Platinum Nanocatalysts for Cancer Treatment in Fibroblast, HeLa, and DU-145 Cell Lines. ACS Omega, 2020, 5, 25381-25389.	3 . 5	14
1475	Exploiting nanoscale cooperativity for precision medicine. Advanced Drug Delivery Reviews, 2020, 158, 63-72.	13.7	17
1476	A hyaluronic acid/cyclodextrin based injectable hydrogel for local doxorubicin delivery to solid tumors. International Journal of Pharmaceutics, 2020, 589, 119879.	5.2	39
1477	A highly atom-economical bioactive nanocarrier for synergistically enhanced antitumor with reduced liver injury. New Journal of Chemistry, 2020, 44, 16741-16751.	2.8	3
1478	Peptide-based combination nanoformulations for cancer therapy. Nanomedicine, 2020, 15, 2201-2217.	3.3	21
1479	Tumor Microenvironment Cascade-Responsive Nanodrug with Self-Targeting Activation and ROS Regeneration for Synergistic Oxidation-Chemotherapy. Nano-Micro Letters, 2020, 12, 182.	27.0	38
1480	Linear versus Branched Peptide with Same Amino Acid Sequence for Legumainâ€Targeting in Macrophages: Targeting Efficiency and Bioimaging Potential. ChemistrySelect, 2020, 5, 9911-9919.	1.5	2
1481	Nanomedicine-based tumor photothermal therapy synergized immunotherapy. Biomaterials Science, 2020, 8, 5241-5259.	5.4	109
1482	Bio-orthogonal triazolinedione (TAD) crosslinked protein nanocapsules affect protein adsorption and cell interaction. Polymer Chemistry, 2020, 11, 3821-3830.	3.9	9
1483	Antibody Conjugation of Nanoparticles as Therapeutics for Breast Cancer Treatment. International Journal of Molecular Sciences, 2020, 21, 6018.	4.1	52
1484	Palladium-based nanomaterials for cancer imaging and therapy. Theranostics, 2020, 10, 10057-10074.	10.0	58
1485	Vascular and extracellular matrix remodeling by physical approaches to improve drug delivery at the tumor site. Expert Opinion on Drug Delivery, 2020, 17, 1703-1726.	5.0	16
1486	100th Anniversary of Macromolecular Science Viewpoint: Biological Stimuli-Sensitive Polymer Prodrugs and Nanoparticles for Tumor-Specific Drug Delivery. ACS Macro Letters, 2020, 9, 1292-1302.	4.8	31
1487	Nanoparticles in the Biological Context: Surface Morphology and Protein Corona Formation. Small, 2020, 16, e2002162.	10.0	60

#	Article	lF	CITATIONS
1488	<i>In Vivo</i> Real-Time Pharmaceutical Evaluations of Near-Infrared II Fluorescent Nanomedicine Bound Polyethylene Glycol Ligands for Tumor Photothermal Ablation. ACS Nano, 2020, 14, 13681-13690.	14.6	38
1489	Smart stimuli-responsive biopolymeric nanomedicines for targeted therapy of solid tumors. Nanomedicine, 2020, 15, 2171-2200.	3.3	29
1490	Controlling the Biological Fate of Micellar Nanoparticles: Balancing Stealth and Targeting. ACS Nano, 2020, 14, 13739-13753.	14.6	30
1491	Establishment of Facile Nanomedicine Construction Methodology to Comprehensively Overcome Hurdles across Tumorâ€5pecific Nanoâ€Delivery. Advanced Functional Materials, 2020, 30, 2002239.	14.9	13
1492	Protein-Coated Aryl Modified Gold Nanoparticles for Cellular Uptake Study by Osteosarcoma Cancer Cells. Langmuir, 2020, 36, 11765-11775.	3.5	26
1493	Pharmacophore hybridisation and nanoscale assembly to discover self-delivering lysosomotropic new-chemical entities for cancer therapy. Nature Communications, 2020, 11, 4615.	12.8	27
1494	Opto-acoustic synergistic irradiation for vaporization of natural melanin-cored nanodroplets at safe energy levels and efficient sono-chemo-photothermal cancer therapy. Theranostics, 2020, 10, 10448-10465.	10.0	17
1495	Nanobodies as versatile tools: A focus on targeted tumor therapy, tumor imaging and diagnostics. Human Antibodies, 2020, 28, 259-272.	1.5	6
1496	Emetineâ€Loaded Black Phosphorus Hydrogel Sensitizes Tumor to Photothermal Therapy through Inhibition of Stress Granule Formation. Advanced Functional Materials, 2020, 30, 2003891.	14.9	34
1497	GLUT1â€Targeting and GSHâ€Responsive DOX/L61 Nanodrug Particles for Enhancing MDR Breast Cancer Therapy. Particle and Particle Systems Characterization, 2020, 37, 2000165.	2.3	7
1498	Applications and Limitations of Dendrimers in Biomedicine. Molecules, 2020, 25, 3982.	3.8	192
1499	Near-Infrared-Absorbing Conjugated Polymer Nanoparticles Loaded with Doxorubicin for Combinatorial Photothermal-Chemotherapy of Cancer. ACS Applied Polymer Materials, 2020, 2, 4180-4187.	4.4	12
1500	Tackling TAMs for Cancer Immunotherapy: It's Nano Time. Trends in Pharmacological Sciences, 2020, 41, 701-714.	8.7	60
1501	Lipid/Hyaluronic Acid–Coated Doxorubicin-Fe3O4 as a Dual-Targeting Nanoparticle for Enhanced Cancer Therapy. AAPS PharmSciTech, 2020, 21, 235.	3.3	16
1502	Tumorâ€Activated Sizeâ€Enlargeable Bioinspired Lipoproteins Access Cancer Cells in Tumor to Elicit Antiâ€Tumor Immune Responses. Advanced Materials, 2020, 32, e2002380.	21.0	43
1503	Systematic spectroscopic investigation of structural changes and corona formation of bovine serum albumin over magneto-fluorescent nanoparticles. Dalton Transactions, 2020, 49, 12380-12389.	3.3	8
1504	Insights into Nanomedicine for Immunotherapeutics in Squamous Cell Carcinoma of the head and neck. International Journal of Biological Sciences, 2020, 16, 2506-2517.	6.4	9
1505	Effect of Nanoparticle Composition, Size, Shape, and Stiffness on Penetration Across the Blood–Brain Barrier. ACS Biomaterials Science and Engineering, 2020, 6, 4916-4928.	5.2	90

#	Article	IF	CITATIONS
1506	Nanoparticles Loaded with Wnt and YAP/Mevalonate Inhibitors in Combination with Paclitaxel Stop the Growth of TNBC Patientâ€Derived Xenografts and Diminish Tumorigenesis. Advanced Therapeutics, 2020, 3, 2000123.	3.2	1
1507	Recent advance in near-infrared/ultrasound-sensitive 2D-nanomaterials for cancer therapeutics. Science China Materials, 2020, 63, 2397-2428.	6.3	56
1508	Retooling Cancer Nanotherapeutics' Entry into Tumors to Alleviate Tumoral Hypoxia. Small, 2020, 16, e2003000.	10.0	36
1509	Selective targeting of cancer signaling pathways with nanomedicines: challenges and progress. Future Oncology, 2020, 16, 2959-2979.	2.4	22
1510	Magnesium in Combinatorial With Valproic Acid Suppressed the Proliferation and Migration of Human Bladder Cancer Cells. Frontiers in Oncology, 2020, 10, 589112.	2.8	11
1511	Novel peptide-directed liposomes for targeted combination therapy of breast tumors. Materials Advances, 2020, 1, 3483-3495.	5.4	2
1512	Tumor Microenvironment-Stimuli Responsive Nanoparticles for Anticancer Therapy. Frontiers in Molecular Biosciences, 2020, 7, 610533.	3.5	60
1513	Multifaceted Functions of Platelets in Cancer: From Tumorigenesis to Liquid Biopsy Tool and Drug Delivery System. International Journal of Molecular Sciences, 2020, 21, 9585.	4.1	32
1514	<p>Polydopamine Nanoparticles Camouflaged by Stem Cell Membranes for Synergistic Chemo-Photothermal Therapy of Malignant Bone Tumors</p> . International Journal of Nanomedicine, 2020, Volume 15, 10183-10197.	6.7	36
1515	Disentangling Biomolecular Corona Interactions With Cell Receptors and Implications for Targeting of Nanomedicines. Frontiers in Bioengineering and Biotechnology, 2020, 8, 599454.	4.1	15
1516	In vitro Targetability Validation of Peptide-Functionalized Mesoporous Silica Nanoparticles in the Presence of Serum Proteins. Frontiers in Chemistry, 2020, 8, 603616.	3.6	2
1517	The biological role of metabolic reprogramming in pancreatic cancer. MedComm, 2020, 1, 302-310.	7.2	10
1518	Size-transformable antigen-presenting cell–mimicking nanovesicles potentiate effective cancer immunotherapy. Science Advances, 2020, 6, .	10.3	53
1519	Non-Coding RNAs as Mediators of Epigenetic Changes in Malignancies. Cancers, 2020, 12, 3657.	3.7	64
1520	Liposome-Based Drug Delivery Systems in Cancer Immunotherapy. Pharmaceutics, 2020, 12, 1054.	4.5	77
1521	Growing tool-kit of photosensitizers for clinical and non-clinical applications. Journal of Materials Chemistry B, 2020, 8, 10897-10940.	5.8	14
1522	Tumor-mesoporous silica nanoparticle interactions following intraperitoneal delivery for targeting peritoneal metastasis. Journal of Controlled Release, 2020, 328, 846-858.	9.9	15
1523	Trisulfide bond–mediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity. Science Advances, 2020, 6, .	10.3	147

#	Article	IF	Citations
1524	Engineering microrobots for targeted cancer therapies from a medical perspective. Nature Communications, 2020, 11, 5618.	12.8	220
1525	GSH-responsive SN38 dimer-loaded shape-transformable nanoparticles with iRGD for enhancing chemo-photodynamic therapy. Acta Pharmaceutica Sinica B, 2020, 10, 2348-2361.	12.0	61
1526	Current trends in the development of HPMA-based block copolymeric nanoparticles for their application in drug delivery. European Polymer Journal, 2020, 139, 110018.	5 . 4	16
1527	Polypeptide Nanoparticles with pH-Sheddable PEGylation for Improved Drug Delivery. Langmuir, 2020, 36, 13656-13662.	3 . 5	13
1528	Current advances in the nano-delivery of celastrol for treating inflammation-associated diseases. Journal of Materials Chemistry B, 2020, 8, 10954-10965.	5.8	22
1529	Enhanced antitumor effects of follicle-stimulating hormone receptor-mediated hexokinase-2 depletion on ovarian cancer mediated by a shift in glucose metabolism. Journal of Nanobiotechnology, 2020, 18, 161.	9.1	23
1530	Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer. Advanced Science, 2020, 7, 2003584.	11.2	49
1531	Nanocarrierâ€Mediated Cytosolic Delivery of Biopharmaceuticals. Advanced Functional Materials, 2020, 30, 1910566.	14.9	99
1532	Research progress in endogenous H ₂ Sâ€activatable nanoplatforms for cancer theranostics. View, 2020, 1, e15.	5. 3	13
1533	pH/GSH-Dual-Sensitive Hollow Mesoporous Silica Nanoparticle-Based Drug Delivery System for Targeted Cancer Therapy. ACS Biomaterials Science and Engineering, 2020, 6, 3375-3387.	5.2	52
1534	Disulfiram-gold-nanorod integrate for effective tumor targeting and photothermal-chemical synergistic therapy. Biomaterials Science, 2020, 8, 3310-3319.	5 . 4	14
1535	Fluorescence imaging-guided multifunctional liposomes for tumor-specific phototherapy for laryngeal carcinoma. Biomaterials Science, 2020, 8, 3443-3453.	5.4	17
1536	Biomaterials to Neuroprotect the Stroke Brain: A Large Opportunity for Narrow Time Windows. Cells, 2020, 9, 1074.	4.1	32
1537	Host–guest interaction based supramolecular photodynamic therapy systems: a promising candidate in the battle against cancer. Chemical Communications, 2020, 56, 5865-5876.	4.1	36
1538	Polymeric Nanoparticles Integrated from Discrete Organoplatinum(II) Metallacycle by Stepwise Post-assembly Polymerization for Synergistic Cancer Therapy. Chemistry of Materials, 2020, 32, 4564-4573.	6.7	34
1539	<p>Surface Engineering of Metal–Organic Framework as pH-/NIR-Responsive Nanocarrier for Imaging-Guided Chemo-Photothermal Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 3235-3250.	6.7	24
1540	Sulfoxideâ€Containing Polymerâ€Coated Nanoparticles Demonstrate Minimal Protein Fouling and Improved Blood Circulation. Advanced Science, 2020, 7, 2000406.	11.2	43
1541	Carry-On Nitric-Oxide Luggage for Enhanced Chemotherapeutic Efficacy. Nano Letters, 2020, 20, 5275-5283.	9.1	23

#	Article	IF	CITATIONS
1542	Shape Matters: Comprehensive Analysis of Star-Shaped Lipid Nanoparticles. Frontiers in Pharmacology, 2020, 11, 539.	3 . 5	14
1543	Nanobowl-Supported Liposomes Improve Drug Loading and Delivery. Nano Letters, 2020, 20, 4177-4187.	9.1	81
1544	Protein and mRNA Delivery Enabled by Cholesterylâ€Based Biodegradable Lipidoid Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 14957-14964.	13.8	44
1545	Sustainable Agriculture Reviews 43. Sustainable Agriculture Reviews, 2020, , .	1.1	2
1546	Targeting CD4 ⁺ Cells with Anti-CD4 Conjugated Mertansine-Loaded Nanogels. Biomacromolecules, 2020, 21, 2473-2481.	5.4	17
1547	Synthesis of SERS-encoded nanotags: From single nanoparticles to highly brilliant complex core-satellite structures. Journal of Physics: Conference Series, 2020, 1461, 012127.	0.4	0
1548	Recent Advances of pHâ€Induced Chargeâ€Convertible Polymerâ€Mediated Inorganic Nanoparticles for Biomedical Applications. Macromolecular Rapid Communications, 2020, 41, e2000106.	3.9	25
1549	Delivery of RNAi-Based Therapeutics for Bone Regeneration. Current Osteoporosis Reports, 2020, 18, 312-324.	3.6	17
1550	Oxygen Self-Sufficient Core–Shell Metal–Organic Framework-Based Smart Nanoplatform for Enhanced Synergistic Chemotherapy and Photodynamic Therapy. ACS Applied Materials & District Science (1978) ACS Applied Materials	8.0	70
1551	A novel long-acting azathioprine polyhydroxyalkanoate nanoparticle enhances treatment efficacy for systemic lupus erythematosus with reduced side effects. Nanoscale, 2020, 12, 10799-10808.	5.6	33
1552	Morphology tunable and acid-sensitive dextran–doxorubicin conjugate assemblies for targeted cancer therapy. Journal of Materials Chemistry B, 2020, 8, 6898-6904.	5.8	18
1553	Facile preparation of pH/reduction dual-stimuli responsive dextran nanogel as environment-sensitive carrier of doxorubicin. Polymer, 2020, 200, 122585.	3.8	38
1554	iRGD-targeted hybrid nanoparticles reverses multi-drug resistant to effectively combat liver cancer. Journal of Drug Targeting, 2020, 28, 1063-1070.	4.4	2
1555	Supramolecular Polysaccharide Nanotheranostics that Inhibit Cancer Cells Growth and Monitor Targeted Therapy Response. Nanotheranostics, 2020, 4, 156-172.	5.2	7
1556	Germanene-Based Theranostic Materials for Surgical Adjuvant Treatment: Inhibiting Tumor Recurrence and Wound Infection. Matter, 2020, 3, 127-144.	10.0	190
1557	<p>Synergistic Effects of Physicochemical Parameters on Bio-Fabrication of Mint Silver Nanoparticles: Structural Evaluation and Action Against HCT116 Colon Cancer Cells</p> . International Journal of Nanomedicine, 2020, Volume 15, 3621-3637.	6.7	45
1558	Hexokinase II-Derived Cell-Penetrating Peptide Mediates Delivery of MicroRNA Mimic for Cancer-Selective Cytotoxicity. Biochemistry, 2020, 59, 2259-2273.	2.5	13
1559	Graphene-based multifunctional nanosystems for simultaneous detection and treatment of breast cancer. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111104.	5.0	42

#	Article	IF	CITATIONS
1560	Self-assembly of pentapeptides into morphology-adaptable nanomedicines for enhanced combinatorial chemo-photodynamic therapy. Nano Today, 2020, 33, 100878.	11.9	45
1561	Self-assembled amphiphile-based nanoparticles for the inhibition of hepatocellular carcinoma metastasis via ICAM-1 mediated cell adhesion. Acta Biomaterialia, 2020, 111, 373-385.	8.3	7
1562	Near-infrared photocontrolled therapeutic release via upconversion nanocomposites. Journal of Controlled Release, 2020, 324, 104-123.	9.9	28
1563	pH-sensitive bromelain nanoparticles by ortho ester crosslinkage for enhanced doxorubicin penetration in solid tumor. Materials Science and Engineering C, 2020, 113, 111004.	7.3	33
1564	Effective intracellular delivery of bevacizumab <i>via</i> PEGylated polymeric nanoparticles targeting the CD44v6 receptor in colon cancer cells. Biomaterials Science, 2020, 8, 3720-3729.	5.4	24
1565	Theoretical study of ciprofloxacin antibiotic trapping on graphene or boron nitride oxide nanoflakes. Journal of Molecular Modeling, 2020, 26, 135.	1.8	12
1566	Electrostatic driven transport enhances penetration of positively charged peptide surfaces through tumor extracellular matrix. Acta Biomaterialia, 2020, 113, 240-251.	8.3	15
1567	Nanocomposites of gold nanoparticles with pregabalin: The future anti-seizure drug. Arabian Journal of Chemistry, 2020, 13, 6267-6273.	4.9	8
1568	Copper sulphide based heterogeneous nanoplatforms for multimodal therapy and imaging of cancer: Recent advances and toxicological perspectives. Coordination Chemistry Reviews, 2020, 419, 213356.	18.8	39
1569	Investigation of the in vivo integrity of polymeric micelles via large Stokes shift fluorophore-based FRET. Journal of Controlled Release, 2020, 324, 47-54.	9.9	24
1570	Supramolecular Drug–Drug Complex Vesicles Enable Sequential Drug Release for Enhanced Combination Therapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27940-27950.	8.0	21
1571	Knockdown of Amphiregulin Triggers Doxorubicin-Induced Autophagic and Apoptotic Death by Regulating Endoplasmic Reticulum Stress in Glioblastoma Cells. Journal of Molecular Neuroscience, 2020, 70, 1461-1470.	2.3	3
1572	Simulation study of the effects of interstitial fluid pressure and blood flow velocity on transvascular transport of nanoparticles in tumor microenvironment. Computer Methods and Programs in Biomedicine, 2020, 193, 105493.	4.7	19
1573	Cellular microparticles for tumor targeting delivery: from bench to bedside. Chemical Communications, 2020, 56, 6171-6188.	4.1	11
1574	Protein and mRNA Delivery Enabled by Cholesterylâ€Based Biodegradable Lipidoid Nanoparticles. Angewandte Chemie, 2020, 132, 15067-15074.	2.0	15
1575	Engineered biomaterials for cancer immunotherapy. MedComm, 2020, 1, 35-46.	7.2	52
1576	Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy. Biomaterials, 2020, 254, 120142.	11.4	173
1577	Novel, Self-Distinguished, Dual Stimulus-Responsive Therapeutic Nanoplatform for Intracellular On-Demand Drug Release. Molecular Pharmaceutics, 2020, 17, 2435-2450.	4.6	8

#	ARTICLE	IF	CITATIONS
1578	Nanomedicine-based immunotherapy for central nervous system disorders. Acta Pharmacologica Sinica, 2020, 41, 936-953.	6.1	38
1579	Biological applications of water-soluble polypeptides with ordered secondary structures. Journal of Materials Chemistry B, 2020, 8, 6530-6547.	5 . 8	37
1580	Nanostructures based on vanadium disulfide growing on UCNPs: simple synthesis, dual-mode imaging, and photothermal therapy. Journal of Materials Chemistry B, 2020, 8, 5883-5891.	5.8	10
1581	Separable Microneedles for Synergistic Chemo-Photothermal Therapy against Superficial Skin Tumors. ACS Biomaterials Science and Engineering, 2020, 6, 4116-4125.	5.2	50
1582	Transforming platelets into microrobots. Science Robotics, 2020, 5, .	17.6	3
1583	Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics, 2020, 10, 6278-6309.	10.0	213
1584	Versatile Nanoplatforms with enhanced Photodynamic Therapy: Designs and Applications. Theranostics, 2020, 10, 7287-7318.	10.0	58
1585	Piezocatalytic Tumor Therapy by Ultrasoundâ€Triggered and BaTiO ₃ â€Mediated Piezoelectricity. Advanced Materials, 2020, 32, e2001976.	21.0	320
1586	Self-Assembled Supramolecular Micelles with pH-Responsive Properties for More Effective Cancer Chemotherapy. ACS Biomaterials Science and Engineering, 2020, 6, 4096-4105.	5.2	9
1587	A Nanomedicine Fabricated from Gold Nanoparticlesâ€Decorated Metal–Organic Framework for Cascade Chemo/Chemodynamic Cancer Therapy. Advanced Science, 2020, 7, 2001060.	11.2	150
1588	MoS2@C nanosphere as near infrared / pH dual response platform for chemical photothermal combination treatment. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111054.	5.0	16
1589	Metal organic framework coated MnO2 nanosheets delivering doxorubicin and self-activated DNAzyme for chemo-gene combinatorial treatment of cancer. International Journal of Pharmaceutics, 2020, 585, 119513.	5.2	36
1590	Dual or multiple drug loaded nanoparticles to target breast cancer stem cells. RSC Advances, 2020, 10, 19089-19105.	3.6	34
1591	pH and singlet oxygen dual-responsive GEM prodrug micelles for efficient combination therapy of chemotherapy and photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 5645-5654.	5.8	16
1592	Selective Autophagy Pathway of Nanoparticles and Nanodrugs: Drug Delivery and Pathophysiological Effects. Advanced Therapeutics, 2020, 3, 2000085.	3.2	6
1593	Ring opening polymerization of \hat{l} ±-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chemical Society Reviews, 2020, 49, 4737-4834.	38.1	178
1594	Progress in the therapeutic applications of polymer-decorated black phosphorus and black phosphorus analog nanomaterials in biomedicine. Journal of Materials Chemistry B, 2020, 8, 7076-7120.	5.8	34
1595	Parallel evolution of polymer chemistry and immunology: Integrating mechanistic biology with materials design. Advanced Drug Delivery Reviews, 2020, 156, 65-79.	13.7	15

#	Article	IF	CITATIONS
1596	Tailored Functionalized Magnetic Nanoparticles to Target Breast Cancer Cells Including Cancer Stem-Like Cells. Cancers, 2020, 12, 1397.	3.7	13
1597	Engineering nanoparticles to tackle tumor barriers. Journal of Materials Chemistry B, 2020, 8, 6686-6696.	5.8	10
1598	Self-recognizing and stimulus-responsive carrier-free metal-coordinated nanotheranostics for magnetic resonance/photoacoustic/fluorescence imaging-guided synergistic photo-chemotherapy. Journal of Materials Chemistry B, 2020, 8, 5667-5681.	5.8	28
1599	The influence of structural gradients in large pore organosilica materials on the capabilities for hosting cellular communities. RSC Advances, 2020, 10, 17327-17335.	3.6	3
1600	Biomimetic Gemcitabine–Lipid Prodrug Nanoparticles for Pancreatic Cancer. ChemPlusChem, 2020, 85, 1283-1291.	2.8	12
1601	Cancer nanomedicine meets immunotherapy: opportunities and challenges. Acta Pharmacologica Sinica, 2020, 41, 954-958.	6.1	33
1602	Near infrared fluorogenic probe as a prodrug model for evaluating cargo release by nanoemulsions. Journal of Materials Chemistry B, 2020, 8, 5938-5944.	5.8	7
1603	Smart Gold Nanostructures for Light Mediated Cancer Theranostics: Combining Optical Diagnostics with Photothermal Therapy. Advanced Science, 2020, 7, 1903441.	11.2	117
1604	Chemo-Photothermal Combination Cancer Therapy with ROS Scavenging, Extracellular Matrix Depletion, and Tumor Immune Activation by Telmisartan and Diselenide-Paclitaxel Prodrug Loaded Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31292-31308.	8.0	33
1605	Supramolecular magnetonanohybrids for multimodal targeted therapy of triple-negative breast cancer cells. Journal of Materials Chemistry B, 2020, 8, 7166-7188.	5.8	26
1606	Hypoxiaâ€Induced Proâ€Protein Therapy Assisted by a Selfâ€Catalyzed Nanozymogen. Angewandte Chemie - International Edition, 2020, 59, 22544-22553.	13.8	45
1607	Theranostic lyotropic liquid crystalline nanostructures for selective breast cancer imaging and therapy. Acta Biomaterialia, 2020, 113, 522-540.	8.3	27
1608	Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art. Pharmaceutics, 2020, 12, 510.	4.5	35
1609	Drug-internalized bacterial swimmers for magnetically manipulable tumor-targeted drug delivery. Nanoscale, 2020, 12, 13513-13522.	5.6	11
1610	Mesoporous Silica Nanoparticles for Co-Delivery of Drugs and Nucleic Acids in Oncology: A Review. Pharmaceutics, 2020, 12, 526.	4.5	65
1611	Controlled functionalization of carbon nanodots for targeted intracellular production of reactive oxygen species. Nanoscale Horizons, 2020, 5, 1240-1249.	8.0	36
1612	Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment. Advanced Drug Delivery Reviews, 2020, 158, 73-90.	13.7	83
1613	Hypoxiaâ€Induced Proâ€Protein Therapy Assisted by a Selfâ€Catalyzed Nanozymogen. Angewandte Chemie, 2020, 132, 22733-22742.	2.0	7

#	Article	IF	Citations
1614	Nanoparticles. , 2020, , 453-483.		5
1615	Challenges in nanomedicine clinical translation. Drug Delivery and Translational Research, 2020, 10, 721-725.	5.8	140
1616	Physicochemical Characterization of Oleanolic Acid–Human Serum Albumin Complexes for Pharmaceutical and Biosensing Applications. Langmuir, 2020, 36, 3611-3623.	3.5	10
1617	Killing cancer cells by rupturing their lysosomes. Nature Nanotechnology, 2020, 15, 252-253.	31.5	33
1618	pH-sensitive magnetic drug delivery system via layer-by-layer self-assembly of CS/PEG and its controlled release of DOX. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1057-1070.	3.5	12
1619	Biomaterial-based strategies to prime dendritic cell-mediated anti-cancer immune responses. International Materials Reviews, 2020, 65, 445-462.	19.3	16
1620	Tumor-mediated shape-transformable nanogels with pH/redox/enzymatic-sensitivity for anticancer therapy. Journal of Materials Chemistry B, 2020, 8, 3801-3813.	5.8	16
1621	<p>Sorafenib-Loaded Nanoparticles Based on Biodegradable Dendritic Polymers for Enhanced Therapy of Hepatocellular Carcinoma</p> . International Journal of Nanomedicine, 2020, Volume 15, 1469-1480.	6.7	19
1622	Rac1 activates non-oxidative pentose phosphate pathway to induce chemoresistance of breast cancer. Nature Communications, 2020, 11, 1456.	12.8	91
1623	Decoding the Role of Interleukin-30 in the Crosstalk between Cancer and Myeloid Cells. Cells, 2020, 9, 615.	4.1	11
1624	Electroactive poly (p-phenylene sulfide)/r-graphene oxide/chitosan as a novel potential candidate for tissue engineering. International Journal of Biological Macromolecules, 2020, 154, 18-24.	7.5	51
1625	α ₃ β ₁ Integrin-Targeting Polymersomal Docetaxel as an Advanced Nanotherapeutic for Nonsmall Cell Lung Cancer Treatment. ACS Applied Materials & Interfaces, 2020, 12, 14905-14913.	8.0	26
1626	Full-Process Radiosensitization Based on Nanoscale Metal–Organic Frameworks. ACS Nano, 2020, 14, 3032-3040.	14.6	70
1627	Tumorâ€Specific Chemotherapy by Nanomedicineâ€Enabled Differential Stress Sensitization. Angewandte Chemie - International Edition, 2020, 59, 9693-9701.	13.8	85
1628	Copperâ€Enriched Prussian Blue Nanomedicine for In Situ Disulfiram Toxification and Photothermal Antitumor Amplification. Advanced Materials, 2020, 32, e2000542.	21.0	112
1629	Application of Paclitaxel-loaded EGFR Peptide-conjugated Magnetic Polymeric Liposomes for Liver Cancer Therapy. Current Medical Science, 2020, 40, 145-154.	1.8	27
1630	Selfâ€Assembling Proteins for Design of Anticancer Nanodrugs. Chemistry - an Asian Journal, 2020, 15, 1405-1419.	3.3	14
1631	Dendritic cell vaccine for the effective immunotherapy of breast cancer. Biomedicine and Pharmacotherapy, 2020, 126, 110046.	5.6	26

#	Article	IF	CITATIONS
1632	Emerging graphitic carbon nitride-based materials for biomedical applications. Progress in Materials Science, 2020, 112, 100666.	32.8	197
1633	Engineered pH-Responsive Mesoporous Carbon Nanoparticles for Drug Delivery. ACS Applied Materials & amp; Interfaces, 2020, 12, 14946-14957.	8.0	59
1634	Premature Drug Release from Polyethylene Glycol (PEG)-Coated Liposomal Doxorubicin <i>via</i> Formation of the Membrane Attack Complex. ACS Nano, 2020, 14, 7808-7822.	14.6	65
1635	Targeted and modular architectural polymers employing bioorthogonal chemistry for quantitative therapeutic delivery. Chemical Science, 2020, 11, 3268-3280.	7.4	22
1636	Construction of a novel "ball-and-rod―MSNs-pp-PEG system: a promising antitumor drug delivery system with a particle size switchable function. Chemical Communications, 2020, 56, 4785-4788.	4.1	8
1637	Biodegradable MnFe-hydroxide nanocapsules to enable multi-therapeutics delivery and hypoxia-modulated tumor treatment. Journal of Materials Chemistry B, 2020, 8, 3929-3938.	5. 8	10
1638	Rationally assembled albumin/indocyanine green nanocomplex for enhanced tumor imaging to guide photothermal therapy. Journal of Nanobiotechnology, 2020, 18, 49.	9.1	54
1639	Yolk-shell nanovesicles endow glutathione-responsive concurrent drug release and T1 MRI activation for cancer theranostics. Biomaterials, 2020, 244, 119979.	11.4	40
1640	Synthesis of CaCO3-Based Nanomedicine for Enhanced Sonodynamic Therapy via Amplification of Tumor Oxidative Stress. CheM, 2020, 6, 1391-1407.	11.7	199
1641	Tumor-Targeting Polycaprolactone Nanoparticles with Codelivery of Paclitaxel and IR780 for Combinational Therapy of Drug-Resistant Ovarian Cancer. ACS Biomaterials Science and Engineering, 2020, 6, 2175-2185.	5. 2	44
1642	Delivery of siRNA to Ewing Sarcoma Tumor Xenografted on Mice, Using Hydrogenated Detonation Nanodiamonds: Treatment Efficacy and Tissue Distribution. Nanomaterials, 2020, 10, 553.	4.1	20
1643	Nanoparticle corona artefacts derived from specimen preparation of particle suspensions. Scientific Reports, 2020, 10, 5278.	3.3	6
1644	Gold nanoparticle-conjugated nanomedicine: design, construction, and structure–efficacy relationship studies. Journal of Materials Chemistry B, 2020, 8, 4813-4830.	5.8	35
1645	Efficient synergistic combination effect of Quercetin with Curcumin on breast cancer cell apoptosis through their loading into Apo ferritin cavity. Colloids and Surfaces B: Biointerfaces, 2020, 191, 110982.	5.0	51
1646	Dynamic core crosslinked camptothecin prodrug micelles with reduction sensitivity and boronic acid-mediated enhanced endocytosis: An intelligent tumor-targeted delivery nanoplatform. International Journal of Pharmaceutics, 2020, 580, 119250.	5.2	16
1647	Therapeutic Delivery of Polymeric Tadpole Nanostructures with High Selectivity to Triple Negative Breast Cancer Cells. Biomacromolecules, 2020, 21, 4457-4468.	5.4	14
1648	Diffusion of Nanoparticles with Activated Hopping in Crowded Polymer Solutions. Nano Letters, 2020, 20, 3895-3904.	9.1	34
1649	Estimating Tumor Vascular Permeability of Nanoparticles Using an Accessible Diffusive Flux Model. ACS Biomaterials Science and Engineering, 2020, 6, 2879-2892.	5.2	7

#	Article	IF	Citations
1650	Enhancing the Anticancer Activity and Selectivity of Goniothalamin Using pH-Sensitive Acetalated Dextran (Ac-Dex) Nanoparticles: A Promising Platform for Delivery of Natural Compounds. ACS Biomaterials Science and Engineering, 2020, 6, 2929-2942.	5.2	17
1651	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	5.9	117
1652	Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 2020, 10, 4557-4588.	10.0	334
1653	Designing Stimuliâ€Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment. Advanced Materials, 2020, 32, e2000055.	21.0	143
1654	Aptamer-Equipped Protamine Nanomedicine for Precision Lymphoma Therapy. Cancers, 2020, 12, 780.	3.7	16
1655	Theoretical Studies of MoS ₂ and Phosphorene Drug Delivery for Antituberculosis Drugs. Journal of Physical Chemistry C, 2020, 124, 8279-8287.	3.1	17
1656	Renal-clearable hyaluronic acid functionalized NaGdF ₄ nanodots with enhanced tumor accumulation. RSC Advances, 2020, 10, 13872-13878.	3.6	4
1657	Electrophoretic deposition of spherical carbon nanoobjectsâ€"A comparison of different biocompatible surfaces. Medical Devices & Sensors, 2020, 3, e10075.	2.7	2
1658	Red blood cell membrane-coated upconversion nanoparticles for pretargeted multimodality imaging of triple-negative breast cancer. Biomaterials Science, 2020, 8, 1802-1814.	5.4	71
1659	Surface chemistry governs the sub-organ transfer, clearance and toxicity of functional gold nanoparticles in the liver and kidney. Journal of Nanobiotechnology, 2020, 18, 45.	9.1	59
1660	Tumorâ€Specific Chemotherapy by Nanomedicineâ€Enabled Differential Stress Sensitization. Angewandte Chemie, 2020, 132, 9780-9788.	2.0	13
1661	Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels. Beilstein Journal of Nanotechnology, 2020, 11, 296-309.	2.8	3
1662	Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine. Beilstein Journal of Nanotechnology, 2020, 11, 338-353.	2.8	80
1663	The potential of micelleplexes as a therapeutic strategy for osteosarcoma disease. 3 Biotech, 2020, 10, 147.	2.2	12
1664	pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Communications Biology, 2020, 3, 95.	4.4	163
1665	Charge-conversional polyethylenimine-entrapped gold nanoparticles with 131I-labeling for enhanced dual mode SPECT/CT imaging and radiotherapy of tumors. Biomaterials Science, 2020, 8, 3956-3965.	5.4	9
1666	Nanoparticles in Colorectal Cancer Therapy: Latest In Vivo Assays, Clinical Trials, and Patents. AAPS PharmSciTech, 2020, 21, 178.	3.3	33
1667	pH and Redox Dual-Sensitive Covalent Organic Framework Nanocarriers to Resolve the Dilemma Between Extracellular Drug Loading and Intracellular Drug Release. Frontiers in Chemistry, 2020, 8, 488.	3.6	18

#	Article	IF	CITATIONS
1668	Liposome-Embedding Silicon Microparticle for Oxaliplatin Delivery in Tumor Chemotherapy. Pharmaceutics, 2020, 12, 559.	4.5	23
1669	Nanotechnologies for enhancing cancer immunotherapy. Nano Research, 2020, 13, 2595-2616.	10.4	22
1670	Multifunctional Nanomodulators Regulate Multiple Pathways To Enhance Antitumor Immunity. ACS Applied Bio Materials, 2020, 3, 4635-4642.	4.6	15
1671	Synthetic CXCR4 Antagonistic Peptide Assembling with Nanoscaled Micelles Combat Acute Myeloid Leukemia. Small, 2020, 16, 2001890.	10.0	15
1672	Biomimetic hybrid membrane-based nanoplatforms: synthesis, properties and biomedical applications. Nanoscale Horizons, 2020, 5, 1293-1302.	8.0	59
1673	Soft Mesoporous Organosilica Nanoplatforms Improve Blood Circulation, Tumor Accumulation/Penetration, and Photodynamic Efficacy. Nano-Micro Letters, 2020, 12, 137.	27.0	18
1674	Efficient uptake and retention of iron oxide-based nanoparticles in HeLa cells leads to an effective intracellular delivery of doxorubicin. Scientific Reports, 2020, 10, 10530.	3.3	37
1675	Quantum Leap from Gold and Silver to Aluminum Nanoplasmonics for Enhanced Biomedical Applications. Applied Sciences (Switzerland), 2020, 10, 4210.	2.5	14
1676	Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today, 2020, 34, 100914.	11.9	125
1677	Cell–biomaterial interactions: the role of ligand functionalization. , 2020, , 139-173.		1
1678	Curcumin-loaded PEGylated mesoporous silica nanoparticles for effective photodynamic therapy. RSC Advances, 2020, 10, 24624-24630.	3.6	39
1679	Properties, Extraction Methods, and Delivery Systems for Curcumin as a Natural Source of Beneficial Health Effects. Medicina (Lithuania), 2020, 56, 336.	2.0	55
1680	Dual-pH Sensitive Charge-Reversal Drug Delivery System for Highly Precise and Penetrative Chemotherapy. Pharmaceutical Research, 2020, 37, 134.	3.5	11
1681	Dimerization-induced self-assembly of a redox-responsive prodrug into nanoparticles for improved therapeutic index. Acta Biomaterialia, 2020, 113, 464-477.	8.3	31
1682	Micelleplex-based nucleic acid therapeutics: From targeted stimuli-responsiveness to nanotoxicity and regulation. European Journal of Pharmaceutical Sciences, 2020, 153, 105461.	4.0	15
1683	Far-reaching advances in the role of carbon nanotubes in cancer therapy. Life Sciences, 2020, 257, 118059.	4.3	26
1684	Nanomedicine in Non-Small Cell Lung Cancer: From Conventional Treatments to Immunotherapy. Cancers, 2020, 12, 1609.	3.7	27
1685	Intraductal Therapy in Breast Cancer: Current Status and Future Prospective. Journal of Mammary Gland Biology and Neoplasia, 2020, 25, 133-143.	2.7	8

#	Article	IF	CITATIONS
1686	Polyphosphoestered Nanomedicines with Tunable Surface Hydrophilicity for Cancer Drug Delivery. ACS Applied Materials & Delivery.	8.0	10
1687	Ultralong-Circulating and Self-Targeting "Watson–Crick A = T―Inspired Supramolecular Nanotheranostics for NIR-II Imaging-Guided Photochemotherapy. ACS Applied Materials & Interfaces, 2020, 12, 32477-32492.	8.0	11
1688	Zinc Oxide Nanocrystals and High-Energy Shock Waves: A New Synergy for the Treatment of Cancer Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 577.	4.1	30
1689	Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles. Scientific Reports, 2020, 10, 11292.	3.3	160
1690	Nanoparticles-encapsulated polymeric microneedles for transdermal drug delivery. Journal of Controlled Release, 2020, 325, 163-175.	9.9	75
1691	Preparation of Strong Antioxidative, Therapeutic Nanoparticles Based on Amino Acid-Induced Ultrafast Assembly of Tea Polyphenols. ACS Applied Materials & Samp; Interfaces, 2020, 12, 33550-33563.	8.0	76
1692	Engineering blood exosomes for tumor-targeting efficient gene/chemo combination therapy. Theranostics, 2020, 10, 7889-7905.	10.0	100
1693	Injectable in Situ Forming Hydrogels of Thermosensitive Polypyrrole Nanoplatforms for Precisely Synergistic Photothermo-Chemotherapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7995-8005.	8.0	7 3
1694	Cell-Based Nanoparticles Delivery Systems for Targeted Cancer Therapy: Lessons from Anti-Angiogenesis Treatments. Molecules, 2020, 25, 715.	3.8	52
1695	Two-Dimensional Nanosheet-Based Photonic Nanomedicine for Combined Gene and Photothermal Therapy. Frontiers in Pharmacology, 2019, 10, 1573.	3.5	20
1696	Emerging Standards and Analytical Science for Nanoenabled Medical Products. Annual Review of Analytical Chemistry, 2020, 13, 431-452.	5.4	11
1697	Reprogramming Tumor Associated Macrophages toward M1 Phenotypes with Nanomedicine for Anticancer Immunotherapy. Advanced Therapeutics, 2020, 3, 1900181.	3.2	31
1698	<p>Pulmonary-Affinity Paclitaxel Polymer Micelles in Response to Biological Functions of Ambroxol Enhance Therapeutic Effect on Lung Cancer</p> . International Journal of Nanomedicine, 2020, Volume 15, 779-793.	6.7	17
1699	Size-Selected Graphene Oxide Loaded with Photosensitizer (TMPyP) for Targeting Photodynamic Therapy In Vitro. Processes, 2020, 8, 251.	2.8	6
1700	Phenylboronic acid-functionalized unimolecular micelles based on a star polyphosphoester random copolymer for tumor-targeted drug delivery. Polymer Chemistry, 2020, 11, 2252-2261.	3.9	11
1701	Erythrocyte-mimicking paclitaxel nanoparticles for improving biodistributions of hydrophobic drugs to enhance antitumor efficacy. Drug Delivery, 2020, 27, 387-399.	5.7	16
1702	Nanomaterials innovation as an enabler for effective cancer interventions. Biomaterials, 2020, 242, 119926.	11.4	33
1703	Novel elvitegravir nanoformulation for drug delivery across the blood-brain barrier to achieve HIV-1 suppression in the CNS macrophages. Scientific Reports, 2020, 10, 3835.	3.3	53

#	Article	IF	CITATIONS
1704	Core/Shell PEGS/HA Hybrid Nanoparticle Via Micelle-Coordinated Mineralization for Tumor-Specific Therapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12109-12119.	8.0	29
1705	<i>In situ</i> one-step synthesis of polymer-functionalized palladium nanoparticles: an efficient anticancer agent against breast cancer. Dalton Transactions, 2020, 49, 3510-3518.	3.3	23
1706	Janus Magneticâ€Plasmonic Nanoparticles for Magnetically Guided and Thermally Activated Cancer Therapy. Small, 2020, 16, e1904960.	10.0	84
1707	Dendronizedâ€Polymer Disturbing Cells' Stress Protection by Targeting Metabolism Leads to Tumor Vulnerability. Advanced Materials, 2020, 32, e1907490.	21.0	80
1708	Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Advances in Colloid and Interface Science, 2020, 278, 102125.	14.7	106
1709	A lysosome specific, acidic-pH activated, near-infrared Bodipy fluorescent probe for noninvasive, long-term, in vivo tumor imaging. Materials Science and Engineering C, 2020, 111, 110762.	7.3	17
1710	Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics. Nano Today, 2020, 32, 100851.	11.9	249
1711	Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach. ACS Nano, 2020, 14, 3075-3095.	14.6	157
1712	Surface modified cellulose nanomaterials: a source of non-spherical nanoparticles for drug delivery. Materials Horizons, 2020, 7, 1727-1758.	12.2	80
1713	Tumor extracellular pH-sensitive polymeric nanocarrier-grafted platinum(iv) prodrugs for improved intracellular delivery and cytosolic reductive-triggered release. Polymer Chemistry, 2020, 11, 2212-2221.	3.9	7
1714	Bioinspired pyrimidine-containing cationic polymers as effective nanocarriers for DNA and protein delivery. Journal of Materials Chemistry B, 2020, 8, 2275-2285.	5.8	7
1715	How subtle differences in polymer molecular weight affect doxorubicin-loaded PLGA nanoparticles degradation and drug release. Journal of Microencapsulation, 2020, 37, 283-295.	2.8	23
1716	Pluronic micelles with suppressing doxorubicin efflux and detoxification for efficiently reversing breast cancer resistance. European Journal of Pharmaceutical Sciences, 2020, 146, 105275.	4.0	32
1717	In vivo pharmacokinetics, transfer and clearance study of graphene oxide by La/Ce dual elemental labelling method. NanoImpact, 2020, 17, 100213.	4.5	15
1718	One-step 18F-fluorination of smart positron emission tomography tracer for sensing furin activity in tumors. Nuclear Medicine and Biology, 2020, 82-83, 72-79.	0.6	10
1719	Nanotherapeutics for Immuno-Oncology: A Crossroad for New Paradigms. Trends in Cancer, 2020, 6, 288-298.	7.4	27
1720	Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer. Journal of Controlled Release, 2020, 321, 589-601.	9.9	135
1721	Facile One Pot Greener Synthesis of Sophorolipid Capped Gold Nanoparticles and its Antimicrobial Activity having Special Efficacy Against Gram Negative Vibrio cholerae. Scientific Reports, 2020, 10, 1463.	3.3	39

#	Article	IF	CITATIONS
1722	Impacts of Intralipid on Nanodrug Abraxane Therapy and on the Innate Immune System. Scientific Reports, 2020, 10, 2838.	3.3	6
1723	Recent advances of nanomedicines for liver cancer therapy. Journal of Materials Chemistry B, 2020, 8, 3747-3771.	5.8	37
1724	<p>Celastrol Self-Stabilized Nanoparticles for Effective Treatment of Melanoma</p> . International Journal of Nanomedicine, 2020, Volume 15, 1205-1214.	6.7	14
1725	Interactions Between Tumor Biology and Targeted Nanoplatforms for Imaging Applications. Advanced Functional Materials, 2020, 30, 1910402.	14.9	28
1726	Regulation of cancerâ€immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1612.	6.1	33
1728	Bioorthogonal-targeted 1064Ânm excitation theranostic nanoplatform for precise NIR-IIa fluorescence imaging guided efficient NIR-II photothermal therapy. Biomaterials, 2020, 243, 119934.	11.4	119
1729	Stealth Polydopamine-Based Nanoparticles with Red Blood Cell Membrane for the Chemo-Photothermal Therapy of Cancer. ACS Applied Bio Materials, 2020, 3, 2350-2359.	4.6	26
1730	Enhanced Delivery of Rituximab Into Brain and Lymph Nodes Using Timed-Release Nanocapsules in Non-Human Primates. Frontiers in Immunology, 2019, 10, 3132.	4.8	16
1731	Lightâ€Triggered Cancer Cell Specific Targeting and Liposomal Drug Delivery in a Zebrafish Xenograft Model. Advanced Healthcare Materials, 2020, 9, e1901489.	7.6	27
1732	Noncationic Material Design for Nucleic Acid Delivery. Advanced Therapeutics, 2020, 3, 1900206.	3.2	32
1733	Novel \hat{l}^2 -1,3- <scp>d</scp> -glucan porous microcapsule enveloped folate-functionalized liposomes as a Trojan horse for facilitated oral tumor-targeted co-delivery of chemotherapeutic drugs and quantum dots. Journal of Materials Chemistry B, 2020, 8, 2307-2320.	5.8	21
1734	Nanophytomedicine Based Novel Therapeutic Strategies in Liver Cancer. Current Topics in Medicinal Chemistry, 2020, 20, 1999-2024.	2.1	8
1735	Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy. Journal of Controlled Release, 2020, 321, 222-235.	9.9	72
1736	Synthesis, mechanisms of action, and toxicity of novel aminophosphonates derivatives conjugated irinotecan inÂvitro and inÂvivo as potent antitumor agents. European Journal of Medicinal Chemistry, 2020, 189, 112067.	5.5	15
1737	Fate of GdF3 nanoparticles-loaded PEGylated carbon capsules inside mice model: a step toward clinical application. Nanotoxicology, 2020, 14, 577-594.	3.0	10
1738	Decreased nonspecific adhesivity, receptor-targeted therapeutic nanoparticles for primary and metastatic breast cancer. Science Advances, 2020, 6, eaax3931.	10.3	50
1739	Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer. Science Advances, 2020, 6, eaax5032.	10.3	160
1740	The enhanced permeability and retention effect based nanomedicine at the site of injury. Nano Research, 2020, 13, 564-569.	10.4	46

#	Article	IF	CITATIONS
1741	Bioinspired Membrane-Disruptive Macromolecules as Drug-Free Therapeutics. ACS Applied Bio Materials, 2020, 3, 1267-1275.	4.6	13
1742	Size-Tunable Strategies for a Tumor Targeted Drug Delivery System. ACS Central Science, 2020, 6, 100-116.	11.3	281
1743	Emerging nanomedicine-based strategies for preventing metastasis of pancreatic cancer. Journal of Controlled Release, 2020, 320, 105-111.	9.9	27
1744	Enzyme-Triggered Release of the Antisense Octaarginine-PNA Conjugate from Phospholipase A2 Sensitive Liposomes. ACS Applied Bio Materials, 2020, 3, 1018-1025.	4.6	13
1745	The Role of Magnetic Nanoparticles in Cancer Nanotheranostics. Materials, 2020, 13, 266.	2.9	48
1746	Doxorubicin Loading on Functional Graphene as a Promising Nanocarrier Using Ternary Deep Eutectic Solvent Systems. ACS Omega, 2020, 5, 1656-1668.	3.5	41
1747	Prediction of protein corona on nanomaterials by machine learning using novel descriptors. NanoImpact, 2020, 17, 100207.	4.5	62
1748	Nanomedicine and Immunotherapy: A Step Further towards Precision Medicine for Glioblastoma. Molecules, 2020, 25, 490.	3.8	31
1749	Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy. Acta Biomaterialia, 2020, 105, 1-14.	8.3	124
1750	<p>Prostate Cancer Cellular Uptake of Ternary Titanate Nanotubes/CuFe₂O₄/Zn-Fe Mixed Metal Oxides Nanocomposite</p> . International Journal of Nanomedicine, 2020, Volume 15, 619-631.	6.7	5
1751	Challenges of moving theranostic nanomedicine into the clinic. Nanomedicine, 2020, 15, 111-114.	3.3	66
1752	Surface-modified GVs as nanosized contrast agents for molecular ultrasound imaging of tumor. Biomaterials, 2020, 236, 119803.	11.4	33
1753	Enhancing cancer immunotherapy with nanomedicine. Nature Reviews Immunology, 2020, 20, 321-334.	22.7	506
1754	Intratumoral delivery of CCL25 enhances immunotherapy against triple-negative breast cancer by recruiting CCR9 ⁺ T cells. Science Advances, 2020, 6, eaax4690.	10.3	51
1755	Intelligent Nanoarchitectonics for Selfâ€Assembling Systems. Advanced Intelligent Systems, 2020, 2, 1900157.	6.1	14
1756	Targeted camptothecin delivery via silicon nanoparticles reduces breast cancer metastasis. Biomaterials, 2020, 240, 119791.	11.4	7 3
1757	Selfâ€Assembled/Drugâ€Composed Nanomedicine for Synergistic Photonic Hyperthermia and Targeted Therapy of Breast Cancer by Inhibiting ERK, AKT, and STAT3 Signaling Cascades. Advanced Functional Materials, 2020, 30, 1908907.	14.9	11
1758	Organic Nanocarriers for Delivery and Targeting of Therapeutic Agents for Cancer Treatment. Advanced Therapeutics, 2020, 3, 1900136.	3.2	23

#	Article	IF	CITATIONS
1759	Nanoparticles for biomedical applications: exploring and exploiting molecular interactions at the nano-bio interface. Materials Today Advances, 2020, 5, 100036.	5.2	60
1760	MRI Enhancement and Tumor Targeted Drug Delivery Using Zn ²⁺ -Doped Fe ₃ O ₄ Core/Mesoporous Silica Shell Nanocomposites. ACS Applied Bio Materials, 2020, 3, 1690-1697.	4.6	27
1761	Size and charge dual-transformable mesoporous nanoassemblies for enhanced drug delivery and tumor penetration. Chemical Science, 2020, 11, 2819-2827.	7.4	66
1762	Modular protein–DNA hybrid nanostructures as a drug delivery platform. Nanoscale, 2020, 12, 4975-4981.	5.6	13
1763	Membrane Fluidity as a New Means to Selectively Target Cancer Cells with Fusogenic Lipid Carriers. Langmuir, 2020, 36, 5134-5144.	3.5	33
1764	2D Covalent Organic Frameworks for Biomedical Applications. Advanced Functional Materials, 2020, 30, 2002046.	14.9	172
1765	An Adjustable pHâ€Responsive Drug Delivery System Based on Selfâ€Assembly Polypeptideâ€Modified Mesoporous Silica. Macromolecular Bioscience, 2020, 20, e2000034.	4.1	19
1766	Mechanistic investigation of cellular internalization routes of polymeric particles on breast cancer cells: relevance for drug delivery applications. Applied Nanoscience (Switzerland), 2020, 10, 2239-2254.	3.1	2
1767	Quality by design (QbD) approach in processing polymeric nanoparticles loading anticancer drugs by high pressure homogenizer. Heliyon, 2020, 6, e03846.	3.2	38
1768	Real time ultrasound molecular imaging of prostate cancer with PSMA-targeted nanobubbles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 28, 102213.	3.3	41
1769	<i>In vitro</i> spectroscopic investigation of groove binding interaction of Fe ₃ O ₄ @CaAl-LDH@L-Dopa with calf thymus DNA. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 1020-1035.	1,1	7
1770	Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO ₃ nanoformulation triggers ferroptosis in target tumor cells. Science Advances, 2020, 6, eaax1346.	10.3	200
1771	Multi-stimuli responsive polymeric prodrug micelles for combined chemotherapy and photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 5267-5279.	5.8	35
1772	Polysaccharide-Based Biomaterials for Protein Delivery. Medicine in Drug Discovery, 2020, 7, 100031.	4.5	22
1773	Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy. Journal of Materials Chemistry B, 2020, 8, 6765-6781.	5.8	112
1774	Zwitterionic Polysulfamide Drug Nanogels with Microwave Augmented Tumor Accumulation and Onâ€Demand Drug Release for Enhanced Cancer Therapy. Advanced Functional Materials, 2020, 30, 2001832.	14.9	39
1775	Realizing Cancer Precision Medicine by Integrating Systems Biology and Nanomaterial Engineering. Advanced Materials, 2020, 32, e1906783.	21.0	21
1776	Developing New Cancer Nanomedicines by Repurposing Old Drugs. Angewandte Chemie, 2020, 132, 22013-22022.	2.0	0

#	Article	IF	CITATIONS
1777	Developing New Cancer Nanomedicines by Repurposing Old Drugs. Angewandte Chemie - International Edition, 2020, 59, 21829-21838.	13.8	38
1778	Emerging carrierâ€free nanosystems based on molecular selfâ€assembly of pure drugs for cancer therapy. Medicinal Research Reviews, 2020, 40, 1754-1775.	10.5	74
1779	Polymeric Nanoparticles with Neglectable Protein Corona. Small, 2020, 16, e1907574.	10.0	95
1780	Nanotechnology for cancer screening and diagnosis: from innovations to clinical applications. , 2020, , 261-289.		3
1781	Dual-engineered, "Trojanized―macrophages bio-modally eradicate tumors through biologically and photothermally deconstructing cancer cells in an on-demand, NIR-commanded, self-explosive manner. Biomaterials, 2020, 250, 120021.	11.4	14
1782	Renal clearable nanocarriers: Overcoming the physiological barriers for precise drug delivery and clearance. Journal of Controlled Release, 2020, 322, 64-80.	9.9	37
1783	Extracellular vesicles for tumor targeting delivery based on five features principle. Journal of Controlled Release, 2020, 322, 555-565.	9.9	68
1784	Reprogramming Tumor Microenvironment with Photothermal Therapy. Bioconjugate Chemistry, 2020, 31, 1268-1278.	3.6	66
1785	Advances in living cell-based anticancer therapeutics. Biomaterials Science, 2020, 8, 2344-2365.	5.4	22
1786	A tumour mRNA-triggered nanoassembly for enhanced fluorescence imaging-guided photodynamic therapy. Nanoscale, 2020, 12, 8727-8731.	5.6	15
1787	Cancer associated fibroblasts: role in breast cancer and potential as therapeutic targets. Expert Opinion on Therapeutic Targets, 2020, 24, 559-572.	3.4	42
1788	Alteration of the Mitochondrial Effects of Ceria Nanoparticles by Gold: An Approach for the Mitochondrial Modulation of Cells Based on Nanomedicine. Nanomaterials, 2020, 10, 744.	4.1	9
1789	Spinning up quantum defects in 2D materials. Nature Materials, 2020, 19, 487-489.	27.5	18
1790	A nanoparticle's pathway into tumours. Nature Materials, 2020, 19, 486-487.	27.5	117
1791	Active transcytosis and new opportunities for cancer nanomedicine. Nature Materials, 2020, 19, 478-480.	27.5	128
1792	Intratumoral Comparison of Nanoparticle Entrapped Docetaxel (CPC634) with Conventional Docetaxel in Patients with Solid Tumors. Clinical Cancer Research, 2020, 26, 3537-3545.	7.0	36
1793	Dual Pseudo and Chemical Crosslinked Polymer Micelles for Effective Paclitaxel Delivery and Release. ACS Applied Bio Materials, 2020, 3, 2455-2465.	4.6	4
1794	<p>The Pimpled Gold Nanosphere: A Superior Candidate for Plasmonic Photothermal Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 2903-2920.	6.7	19

#	Article	IF	CITATIONS
1795	Iron Oxide Nanoparticle-Induced Autophagic Flux Is Regulated by Interplay between p53-mTOR Axis and Bcl-2 Signaling in Hepatic Cells. Cells, 2020, 9, 1015.	4.1	25
1796	Biphenyl Wrinkled Mesoporous Silica Nanoparticles for pH-Responsive Doxorubicin Drug Delivery. Materials, 2020, 13, 1998.	2.9	21
1797	Big impact of nanoparticles: analysis of the most cited nanopharmaceuticals and nanonutraceuticals research. Current Research in Biotechnology, 2020, 2, 53-63.	3.7	63
1798	<p>Targeted Prodrug-Based Self-Assembled Nanoparticles for Cancer Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 2921-2933.	6.7	14
1799	A6 Peptide-Tagged Core-Disulfide-Cross-Linked Micelles for Targeted Delivery of Proteasome Inhibitor Carfilzomib to Multiple Myeloma In Vivo. Biomacromolecules, 2020, 21, 2049-2059.	5.4	23
1800	Prodrugâ€Based Versatile Nanomedicine for Enhancing Cancer Immunotherapy by Increasing Immunogenic Cell Death. Small, 2020, 16, e2000214.	10.0	73
1801	Nano Codelivery of Oxaliplatin and Folinic Acid Achieves Synergistic Chemo-Immunotherapy with 5-Fluorouracil for Colorectal Cancer and Liver Metastasis. ACS Nano, 2020, 14, 5075-5089.	14.6	144
1802	Integrated prodrug micelles with two-photon bioimaging and pH-triggered drug delivery for cancer theranostics. International Journal of Energy Production and Management, 2020, 7, 171-180.	3.7	13
1803	Mannoside-Modified Branched Gold Nanoparticles for Photothermal Therapy to MDA-MB-231 Cells. Molecules, 2020, 25, 1853.	3.8	19
1804	βâ€Sitosterolâ€assisted silver nanoparticles activates Nrf2 and triggers mitochondrial apoptosis via oxidative stress in human hepatocellular cancer cell line. Journal of Biomedical Materials Research - Part A, 2020, 108, 1899-1908.	4.0	91
1805	Selective Control of Cell Activity with Hydrophilic Polymerâ€Covered Cationic Nanoparticles. Macromolecular Bioscience, 2020, 20, e2000049.	4.1	2
1806	Enhanced nanoparticle accumulation by tumor-acidity-activatable release of sildenafil to induce vasodilation. Biomaterials Science, 2020, 8, 3052-3062.	5.4	19
1807	Shape Anisotropic Iron Oxide-Based Magnetic Nanoparticles: Synthesis and Biomedical Applications. International Journal of Molecular Sciences, 2020, 21, 2455.	4.1	96
1808	Harnessing the Formation of Natural Killer–Tumor Cell Immunological Synapses for Enhanced Therapeutic Effect in Solid Tumors. Advanced Materials, 2020, 32, e2000020.	21.0	29
1809	Biodegradable Microalgaeâ€Based Carriers for Targeted Delivery and Imagingâ€Guided Therapy toward Lung Metastasis of Breast Cancer. Small, 2020, 16, e2000819.	10.0	58
1810	In situ assembly of magnetic nanocrystals/graphene oxide nanosheets on tumor cells enables efficient cancer therapy. Nano Research, 2020, 13, 1133-1140.	10.4	12
1811	Evolution from small molecule to nano-drug delivery systems: An emerging approach for cancer therapy of ursolic acid. Asian Journal of Pharmaceutical Sciences, 2020, 15, 685-700.	9.1	36
1812	Dual stimuli-responsive ursolic acid-embedded nanophytoliposome for targeted antitumor therapy. International Journal of Pharmaceutics, 2020, 582, 119330.	5.2	21

#	Article	IF	CITATIONS
1813	Squalenoyl-gemcitabine/edelfosine nanoassemblies: Anticancer activity in pediatric cancer cells and pharmacokinetic profile in mice. International Journal of Pharmaceutics, 2020, 582, 119345.	5.2	8
1814	Recent Advances in Nanomaterials with Inherent Optical and Magnetic Properties for Bioimaging and Imaging-Guided Nucleic Acid Therapy. Bioconjugate Chemistry, 2020, 31, 1234-1246.	3. 6	12
1815	<i>In Vitro</i> Blood–Brain Barrier Permeability and Cytotoxicity of an Atorvastatin-Loaded Nanoformulation Against Glioblastoma in 2D and 3D Models. Molecular Pharmaceutics, 2020, 17, 1835-1847.	4.6	25
1816	Therapeutic Potential of Targeted Nanoparticles and Perspective on Nanotherapies. ACS Medicinal Chemistry Letters, 2020, 11, 1069-1073.	2.8	49
1817	Enzyme-Triggered Transcytosis of Dendrimer–Drug Conjugate for Deep Penetration into Pancreatic Tumors. ACS Nano, 2020, 14, 4890-4904.	14.6	134
1818	Overview of the application of inorganic nanomaterials in cancer photothermal therapy. Biomaterials Science, 2020, 8, 2990-3020.	5.4	208
1819	A biodegradable CO ₂ -based polymeric antitumor nanodrug <i>via</i> and solvent-free miniemulsion preparation. Biomaterials Science, 2020, 8, 2234-2244.	5.4	7
1820	Galactoâ€conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell, 2020, 19, e13142.	6.7	131
1821	Virus-mimicking nanocarriers for the intracellular delivery of therapeutic biomolecules. Nanomedicine, 2020, 15, 1163-1165.	3.3	3
1822	Nanoparticles Modified with Cell-Penetrating Peptides: Conjugation Mechanisms, Physicochemical Properties, and Application in Cancer Diagnosis and Therapy. International Journal of Molecular Sciences, 2020, 21, 2536.	4.1	120
1823	Synthesis and Characterization of Naringenin-Loaded Chitosan-Dextran Sulfate Nanocarrier. Journal of Pharmaceutical Innovation, 2021, 16, 269-278.	2.4	12
1824	Stimuli-responsive dual drugs-conjugated polydopamine nanoparticles for the combination photothermal-cocktail chemotherapy. Chinese Chemical Letters, 2021, 32, 561-564.	9.0	21
1825	Nanomedicine for the Treatment of Rheumatoid Arthritis. Molecular Pharmaceutics, 2021, 18, 539-549.	4.6	33
1826	PEI fluorination reduces toxicity and promotes liver-targeted siRNA delivery. Drug Delivery and Translational Research, 2021, 11, 255-260.	5.8	46
1827	Nanomedicine for Acute Brain Injuries: Insight from Decades of Cancer Nanomedicine. Molecular Pharmaceutics, 2021, 18, 522-538.	4.6	11
1828	Designing sub-20Ânm self-assembled nanocarriers for small molecule delivery: Interplay among structural geometry, assembly energetics, and cargo release kinetics. Journal of Controlled Release, 2021, 329, 538-551.	9.9	9
1829	Engineering in Medicine To Address the Challenge of Cancer Drug Resistance: From Micro- and Nanotechnologies to Computational and Mathematical Modeling. Chemical Reviews, 2021, 121, 3352-3389.	47.7	41
1830	Strategies of porous network quinolone polymers: A comprehensive evaluation of their biological activity. Dyes and Pigments, 2021, 184, 108809.	3.7	5

#	Article	IF	CITATIONS
1831	Tumor microenvironment-activated therapeutic peptide-conjugated prodrug nanoparticles for enhanced tumor penetration and local T cell activation in the tumor microenvironment. Acta Biomaterialia, 2021, 119, 337-348.	8.3	31
1832	Bioresponsive prodrug nanogel-based polycondensate strategy deepens tumor penetration and potentiates oxidative stress. Chemical Engineering Journal, 2021, 420, 127657.	12.7	35
1833	Biomineralization-inspired dasatinib nanodrug with sequential infiltration for effective solid tumor treatment. Biomaterials, 2021, 267, 120481.	11.4	16
1834	Molecularly Imprinted Polymer Nanoparticles: An Emerging Versatile Platform for Cancer Therapy. Angewandte Chemie - International Edition, 2021, 60, 3858-3869.	13.8	113
1835	Intracellular RNA and nuclear DNA-dual-targeted tumor therapy via upconversion nanoplatforms with UCL/MR dual-mode bioimaging. Chemical Engineering Journal, 2021, 405, 126606.	12.7	14
1836	Cholic Acid-Functionalized Mesoporous Silica Nanoparticles Loaded With Ruthenium Pro-drug Delivery to Cervical Cancer Therapy. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 311-318.	3.7	5
1837	Apoptotic Effect and Anticancer Activity of Biosynthesized Silver Nanoparticles from Marine Algae Chaetomorpha linum Extract Against Human Colon Cancer Cell HCT-116. Biological Trace Element Research, 2021, 199, 1812-1822.	3.5	78
1838	In situ formation of metal organic framework onto gold nanorods/mesoporous silica with functional integration for targeted theranostics. Chemical Engineering Journal, 2021, 403, 126432.	12.7	40
1839	Functional metal–organic framework-based nanocarriers for accurate magnetic resonance imaging and effective eradication of breast tumor and lung metastasis. Journal of Colloid and Interface Science, 2021, 581, 31-43.	9.4	43
1840	Tumor Microenvironmentâ€Activatable Nanoenzymes for Mechanical Remodeling of Extracellular Matrix and Enhanced Tumor Chemotherapy. Advanced Functional Materials, 2021, 31, 2007544.	14.9	28
1841	Recent Progress in the Development of Multifunctional Nanoplatform for Precise Tumor Phototherapy. Advanced Healthcare Materials, 2021, 10, e2001207.	7.6	53
1842	Clinical Translation of Selfâ€Assembled Cancer Nanomedicines. Advanced Therapeutics, 2021, 4, .	3.2	34
1843	Challenges in nonparenteral nanomedicine therapy. , 2021, , 27-54.		1
1844	Diseases and conditions that impact maternal and fetal health and the potential for nanomedicine therapies. Advanced Drug Delivery Reviews, 2021, 170, 425-438.	13.7	16
1845	6-Aminocaproic acid as a linker to improve near-infrared fluorescence imaging and photothermal cancer therapy of PEGylated indocyanine green. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111372.	5.0	23
1846	Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. Journal of Controlled Release, 2021, 329, 624-644.	9.9	66
1847	Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. Journal of Controlled Release, 2021, 329, 676-695.	9.9	111
1848	Palladium Nanocrystalsâ€Engineered Metal–Organic Frameworks for Enhanced Tumor Inhibition by Synergistic Hydrogen/Photodynamic Therapy. Advanced Functional Materials, 2021, 31, 2006853.	14.9	49

#	Article	IF	CITATIONS
1849	A New Class of NIRâ€II Gold Nanoclusterâ€Based Protein Biolabels for Inâ€Vivo Tumorâ€Targeted Imaging. Angewandte Chemie, 2021, 133, 1326-1332.	2.0	14
1850	Rapid visualizing and pathological grading of bladder tumor tissues by simple nanodiagnostics. Biomaterials, 2021, 264, 120434.	11.4	22
1851	Intercalative DNA binding, protein binding, antibacterial activities and cytotoxicity studies of a mononuclear copper(II) complex. Inorganica Chimica Acta, 2021, 514, 119961.	2.4	17
1852	Advances on erythrocyte-mimicking nanovehicles to overcome barriers in biological microenvironments. Advanced Drug Delivery Reviews, 2021, 170, 312-339.	13.7	35
1853	Î electron-stabilized polymeric micelles potentiate docetaxel therapy in advanced-stage gastrointestinal cancer. Biomaterials, 2021, 266, 120432.	11.4	31
1854	Hypoxia-degradable zwitterionic phosphorylcholine drug nanogel for enhanced drug delivery to glioblastoma. Chemical Engineering Journal, 2021, 408, 127359.	12.7	28
1855	Serum protein-based nanoparticles for cancer diagnosis and treatment. Journal of Controlled Release, 2021, 329, 997-1022.	9.9	89
1856	Tumor-targeted nanoparticles improve the therapeutic index of BCL2 and MCL1 dual inhibition. Blood, 2021, 137, 2057-2069.	1.4	17
1857	A review of recent advances in nanodiamond-mediated drug delivery in cancer. Expert Opinion on Drug Delivery, 2021, 18, 369-382.	5.0	44
1858	Microfluidic fabrication of berberine-loaded nanoparticles for cancer treatment applications. Journal of Drug Delivery Science and Technology, 2021, 61, 102134.	3.0	11
1859	Nanoparticle-delivered miriplatin ultrasmall dots suppress triple negative breast cancer lung metastasis by targeting circulating tumor cells. Journal of Controlled Release, 2021, 329, 833-846.	9.9	13
1860	Exploiting mesoporous silica nanoparticles as versatile drug carriers for several routes of administration. Microporous and Mesoporous Materials, 2021, 312, 110774.	4.4	40
1861	Bioengineering of nano metal-organic frameworks for cancer immunotherapy. Nano Research, 2021, 14, 1244-1259.	10.4	37
1862	Stimuliâ€Responsive Iron Oxide Nanotheranostics: A Versatile and Powerful Approach for Cancer Therapy. Advanced Healthcare Materials, 2021, 10, e2001044.	7.6	27
1863	Macrophage imaging and subset analysis using single-cell RNA sequencing. Nanotheranostics, 2021, 5, 36-56.	5.2	5
1864	A quantitative view on multivalent nanomedicine targeting. Advanced Drug Delivery Reviews, 2021, 169, 1-21.	13.7	52
1865	Recent advances in systemic and local delivery of ginsenosides using nanoparticles and nanofibers. Chinese Journal of Chemical Engineering, 2021, 30, 291-300.	3.5	7
1866	Pure redox-sensitive paclitaxel–maleimide prodrug nanoparticles: Endogenous albumin-induced size switching and improved antitumor efficiency. Acta Pharmaceutica Sinica B, 2021, 11, 2048-2058.	12.0	22

#	Article	IF	CITATIONS
1868	Clinical applications of nanomedicines in lung cancer treatment. Acta Biomaterialia, 2021, 121, 134-142.	8.3	42
1869	Green Synthesis of Silver Nanoparticles Using Nymphae odorata Extract Incorporated Films and Antimicrobial Activity. Journal of Polymers and the Environment, 2021, 29, 1412-1423.	5.0	32
1870	Synthesis and characterization of PLGA-PEG-PLGA based thermosensitive polyurethane micelles for potential drug delivery. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 613-634.	3.5	11
1871	A sulfur dioxide polymer prodrug showing combined effect with doxorubicin in combating subcutaneous and metastatic melanoma. Bioactive Materials, 2021, 6, 1365-1374.	15.6	29
1872	Near-infrared-responsive functional nanomaterials: the first domino of combined tumor therapy. Nano Today, 2021, 36, 100963.	11.9	30
1873	Self-targeting visualizable hyaluronate nanogel for synchronized intracellular release of doxorubicin and cisplatin in combating multidrug-resistant breast cancer. Nano Research, 2021, 14, 846-857.	10.4	117
1874	Development of thermosensitive resiquimod-loaded liposomes for enhanced cancer immunotherapy. Journal of Controlled Release, 2021, 330, 1080-1094.	9.9	32
1875	Impact of particle size and pH on protein corona formation of solid lipid nanoparticles: A proof-of-concept study. Acta Pharmaceutica Sinica B, 2021, 11, 1030-1046.	12.0	48
1876	Nanoscale platform for delivery of active IRINOX to combat pancreatic cancer. Journal of Controlled Release, 2021, 330, 1229-1243.	9.9	8
1877	Poly(anhydride-ester) gemcitabine: Synthesis and particle engineering of a high payload hydrolysable polymeric drug for cancer therapy. Journal of Controlled Release, 2021, 330, 1178-1190.	9.9	11
1878	Regulation of redox balance using a biocompatible nanoplatform enhances phototherapy efficacy and suppresses tumor metastasis. Chemical Science, 2021, 12, 148-157.	7.4	46
1879	Strategies for Delivering Nanoparticles across Tumor Blood Vessels. Advanced Functional Materials, 2021, 31, 2007363.	14.9	46
1880	Nano–Bio Interactions in Cancer: From Therapeutics Delivery to Early Detection. Accounts of Chemical Research, 2021, 54, 291-301.	15.6	95
1881	Targeting Approaches Using Polymeric Nanocarriers. , 2021, , 393-421.		1
1882	Polyphenol-cisplatin complexation forming core-shell nanoparticles with improved tumor accumulation and dual-responsive drug release for enhanced cancer chemotherapy. Journal of Controlled Release, 2021, 330, 992-1003.	9.9	24
1883	Manipulating dynamic tumor vessel permeability to enhance polymeric micelle accumulation. Journal of Controlled Release, 2021, 329, 63-75.	9.9	9
1884	pH-sensitive multi-drug liposomes targeting folate receptor \hat{l}^2 for efficient treatment of non-small cell lung cancer. Journal of Controlled Release, 2021, 330, 1-14.	9.9	53
1885	In vivo self-assembled nanomedicine. Nano Today, 2021, 36, 101036.	11.9	47

#	Article	IF	CITATIONS
1886	Supramolecular engineering of polymeric nanodrugs for antitumor chemotherapy. Chemical Engineering Journal, 2021, 416, 127968.	12.7	8
1887	Gain an advantage from both sides: Smart size-shrinkable drug delivery nanosystems for high accumulation and deep penetration. Nano Today, 2021, 36, 101038.	11.9	54
1888	Advanced nitric oxide donors: chemical structure of NO drugs, NO nanomedicines and biomedical applications. Nanoscale, 2021, 13, 444-459.	5.6	83
1889	Tumor acidity-responsive carrier-free nanodrugs based on targeting activation <i>via</i> ICG-templated assembly for NIR-II imaging-guided photothermal–chemotherapy. Biomaterials Science, 2021, 9, 1008-1019.	5.4	11
1890	Expanding the nanotherapeutic toolbox for non-small-cell lung cancer. Annals of Oncology, 2021, 32, 9-11.	1.2	8
1891	Tumor-permeated bioinspired theranostic nanovehicle remodels tumor immunosuppression for cancer therapy. Biomaterials, 2021, 269, 120609.	11.4	23
1892	Polymers and inorganic nanoparticles: A winning combination towards assembled nanostructures for cancer imaging and therapy. Nano Today, 2021, 36, 101046.	11.9	66
1893	Challenges and opportunities in the delivery of cancer therapeutics: update on recent progress. Therapeutic Delivery, 2021, 12, 55-76.	2.2	42
1894	Shape matters: Morphologically biomimetic particles for improved drug delivery. Chemical Engineering Journal, 2021, 410, 127849.	12.7	23
1895	Imaging Beyond Seeing: Early Prognosis of Cancer Treatment. Small Methods, 2021, 5, e2001025.	8.6	14
1896	Water-Soluble Single-Chain Polymeric Nanoparticles for Highly Selective Cancer Chemotherapy. ACS Applied Polymer Materials, 2021, 3, 474-484.	4.4	18
1897	Nanomaterialâ€mediated platinum drugâ€based combinatorial cancer therapy. View, 2021, 2, 20200030.	5.3	28
1898	Molecularly Engineered Hierarchical Nanodisc from Antiparallel Jâ€stacked BODIPY Conjugates: Application to Theranostics with Mutually Beneficial Properties. Advanced Functional Materials, 2021, 31, 2008406.	14.9	20
1899	Enhanced lymphatic delivery of nanomicelles encapsulating CXCR4-recognizing peptide and doxorubicin for the treatment of breast cancer. International Journal of Pharmaceutics, 2021, 594, 120183.	5.2	8
1900	Au doped poly-thionine and poly-m-Cresol purple: Synthesis and their application in simultaneously electrochemical detection of two lung cancer markers CEA and CYFRA21-1. Talanta, 2021, 224, 121816.	5.5	39
1901	Supramolecular coordination complexes as diagnostic and therapeutic agents. Current Opinion in Chemical Biology, 2021, 61, 19-31.	6.1	24
1902	Remotely Activated Nanoparticles for Anticancer Therapy. Nano-Micro Letters, 2021, 13, 11.	27.0	34
1903	Hybrid Grapheneâ€Gold Nanoparticleâ€Based Nucleic Acid Conjugates for Cancerâ€Specific Multimodal Imaging and Combined Therapeutics. Advanced Functional Materials, 2021, 31, 2006918.	14.9	55

#	Article	IF	CITATIONS
1904	Supramolecularly enabled pH- triggered drug action at tumor microenvironment potentiates nanomedicine efficacy against glioblastoma. Biomaterials, 2021, 267, 120463.	11.4	36
1905	Inhaled cytotoxic chemotherapy: clinical challenges, recent developments, and future prospects. Expert Opinion on Drug Delivery, 2021, 18, 333-354.	5.0	17
1906	Dualâ€peptide functionalized nanoparticles for therapeutic use. Peptide Science, 2021, 113, e24205.	1.8	3
1907	Functional gadolinium-based nanoscale systems for cancer theranostics. Journal of Controlled Release, 2021, 329, 482-512.	9.9	21
1908	Advances in Magnetic Nanoparticleâ€Mediated Cancer Immuneâ€Theranostics. Advanced Healthcare Materials, 2021, 10, e2001451.	7.6	59
1909	Comparing nanoparticle polymeric micellar paclitaxel and solvent-based paclitaxel as first-line treatment of advanced non-small-cell lung cancer: an open-label, randomized, multicenter, phase III trial. Annals of Oncology, 2021, 32, 85-96.	1.2	37
1910	Candesartan treatment enhances liposome penetration and anti-tumor effect via depletion of tumor stroma and normalization of tumor vessel. Drug Delivery and Translational Research, 2021, 11, 1186-1197.	5.8	4
1911	Multiâ€Responsive Bottlebrushâ€Like Unimolecules Selfâ€Assembled Nanoâ€Riceball for Synergistic Sonoâ€Chemotherapy. Small Methods, 2021, 5, e2000416.	8.6	47
1912	Molecularly Imprinted Polymer Nanoparticles: An Emerging Versatile Platform for Cancer Therapy. Angewandte Chemie, 2021, 133, 3902-3913.	2.0	9
1913	Recent progress on molecularly near-infrared fluorescent probes for chemotherapy and phototherapy. Coordination Chemistry Reviews, 2021, 427, 213556.	18.8	120
1914	Fluorescence-Based and Fluorescent Label-Free Characterization of Polymer Nanoparticle Decorated T Cells. Biomacromolecules, 2021, 22, 190-200.	5.4	20
1915	A New Class of NIRâ€II Gold Nanoclusterâ€Based Protein Biolabels for Inâ€Vivo Tumorâ€Targeted Imaging. Angewandte Chemie - International Edition, 2021, 60, 1306-1312.	13.8	155
1916	Challenges in the development of nanoparticleâ€based imaging agents: Characterization and biology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1665.	6.1	23
1917	Targeting integrins for cancer management using nanotherapeutic approaches: Recent advances and challenges. Seminars in Cancer Biology, 2021, 69, 325-336.	9.6	38
1918	Implications of nanotechnology for the treatment of cancer: Recent advances. Seminars in Cancer Biology, 2021, 69, 190-199.	9.6	50
1919	Nanomedicine as a putative approach for active targeting of hepatocellular carcinoma. Seminars in Cancer Biology, 2021, 69, 91-99.	9.6	33
1920	Nanomedicine in treatment of breast cancer – A challenge to conventional therapy. Seminars in Cancer Biology, 2021, 69, 279-292.	9.6	59
1921	Reversing the systemic biotoxicity of nanomaterials by downregulating ROS-related signaling pathways in the multi-organs of Zebrafish embryos. Materials Chemistry Frontiers, 2021, 5, 4231-4243.	5.9	6

#	Article	IF	CITATIONS
1922	Fate and Effects of Engineered Nanomaterials in Agricultural Systems. Nanotechnology in the Life Sciences, 2021, , 269-292.	0.6	0
1923	Controlling the semi-permeability of protein nanocapsules influences the cellular response to macromolecular payloads. Journal of Materials Chemistry B, 2021, 9, 8389-8398.	5.8	4
1924	Cross-linked ($\langle i \rangle R \langle i \rangle$)-(+)-lipoic acid nanoparticles with prodrug loading for synergistic cancer therapy. Journal of Materials Chemistry B, 2021, 9, 1583-1591.	5.8	7
1925	Nanoparticle-Mediated Adsorption of Pollutants: A Way Forward to Mitigation of Environmental Pollution. Microorganisms for Sustainability, 2021, , 317-348.	0.7	1
1926	Ni(<scp>ii</scp>), Cu(<scp>ii</scp>) and Zn(<scp>ii</scp>) complexes with the 1-trifluoroethoxyl-2,9,10-trimethoxy-7-oxoaporphine ligand simultaneously target microtubules and mitochondria for cancer therapy. Inorganic Chemistry Frontiers, 2021, 8, 2225-2247.	6.0	23
1927	Introduction and Brief History. , 2021, , 1-22.		0
1928	Nanostructures and innovative delivery systems for overcoming cancer resistance., 2021,, 185-201.		0
1929	Raman spectroscopy/SERS based immunoassays for cancer diagnostics. , 2021, , 107-124.		1
1930	Acid-Responsive Adamantane-Cored Amphiphilic Block Polymers as Platforms for Drug Delivery. Nanomaterials, 2021, 11, 188.	4.1	4
1931	Obstructions in Nanoparticles Conveyance, Nano-Drug Retention, and EPR Effect in Cancer Therapies. Advances in Medical Diagnosis, Treatment, and Care, 2021, , 669-704.	0.1	1
1932	A flowerlike FePt/MnO ₂ /GOx-based cascade nanoreactor with sustainable O ₂ supply for synergistic starvation-chemodynamic anticancer therapy. Journal of Materials Chemistry B, 2021, 9, 8480-8490.	5.8	18
1933	Enhanced anti-metastatic therapy with down-regulation of heparinase expression by ROS-responsive micellar nanoparticles. Nanoscale, 2021, 13, 15267-15277.	5. 6	5
1934	Nanotechnology lights up the antitumor potency by combining chemotherapy with siRNA. Journal of Materials Chemistry B, 2021, 9, 7302-7317.	5.8	7
1935	Triple-responsive targeted hybrid liposomes with high MRI performance for tumor diagnosis and therapy. Materials Chemistry Frontiers, 2021, 5, 6226-6243.	5.9	5
1936	Hyaluronic acid modified covalent organic polymers for efficient targeted and oxygen-evolved phototherapy. Journal of Nanobiotechnology, 2021, 19, 4.	9.1	13
1937	Macrophage-mediated tumor homing of hyaluronic acid nanogels loaded with polypyrrole and anticancer drug for targeted combinational photothermo-chemotherapy. Theranostics, 2021, 11, 7057-7071.	10.0	30
1938	Magnetic resonance colonography with intestine-absorbable nanoparticle contrast agents in evaluation of colorectal inflammation. European Radiology, 2021, 31, 4615-4624.	4.5	3
1939	Nanoparticles for Cancer Therapy. , 2021, , 1-45.		0

#	ARTICLE	IF	CITATIONS
1940	A zwitterionic polypeptide nanocomposite with unique NIR-I/II photoacoustic imaging for NIR-I/II cancer photothermal therapy. Journal of Materials Chemistry B, 2021, 9, 5484-5491.	5.8	10
1941	Regulatory, safety, and toxicological concerns of nanomaterials with their manufacturing issues. , 2021, , 93-115.		0
1942	Ferroptosis in cancer therapeutics: a materials chemistry perspective. Journal of Materials Chemistry B, 2021, 9, 8906-8936.	5.8	23
1943	Externally triggered smart drug delivery system encapsulating idarubicin shows superior kinetics and enhances tumoral drug uptake and response. Theranostics, 2021, 11, 5700-5712.	10.0	16
1944	Hydrogen Sulfide Dual-Activated NIR-II Photoacoustic Probes for Accurate Imaging and Efficient Photothermal Therapy of Colon Cancer. ACS Applied Bio Materials, 2021, 4, 974-983.	4.6	18
1945	Lanthanide–Cyclen–Camptothecin Nanocomposites for Cancer Theranostics Guided by Near-Infrared and Magnetic Resonance Imaging. ACS Applied Nano Materials, 2021, 4, 271-278.	5.0	12
1946	Development of Non-Porous Silica Nanoparticles towards Cancer Photo-Theranostics. Biomedicines, 2021, 9, 73.	3.2	33
1947	Membrane engineering of cell membrane biomimetic nanoparticles for nanoscale therapeutics. Clinical and Translational Medicine, 2021, 11, e292.	4.0	47
1948	Supramolecular cancer nanotheranostics. Chemical Society Reviews, 2021, 50, 2839-2891.	38.1	257
1949	Smart stimuli-responsive nanocarriers for the cancer therapy – nanomedicine. Nanotechnology Reviews, 2021, 10, 933-953.	5.8	22
1950	Supramolecular Assembled Programmable Nanomedicine As In Situ Cancer Vaccine for Cancer Immunotherapy. Advanced Materials, 2021, 33, e2007293.	21.0	106
1951	Oxidovanadium(IV/V) complexes bound with a ONS donor backbone: The search for therapeutic versatility in one class of compounds. Applied Organometallic Chemistry, 2021, 35, e6148.	3.5	1
1952	Biohybrid Nanosystems for Cancer Treatment: Merging the Best of Two Worlds. Advances in Experimental Medicine and Biology, 2021, 1295, 135-162.	1.6	0
1953	Tandem molecular self-assembly for selective lung cancer therapy with an increase in efficiency by two orders of magnitude. Nanoscale, 2021, 13, 10891-10897.	5.6	7
1954	Nano-pharmacokinetics preclinical to clinical translation. , 2021, , 273-288.		2
1955	Nanoparticles Targeting Receptors on Breast Cancer for Efficient Delivery of Chemotherapeutics. Biomedicines, 2021, 9, 114.	3.2	44
1956	Nitroreductase-responsive polymeric micelles based on 4-nitrobenzyl and AIE moieties for intracellular doxorubicin release. Polymer Chemistry, 2021, 12, 2618-2626.	3.9	14
1957	An injectable and biodegradable nano-photothermal DNA hydrogel enhances penetration and efficacy of tumor therapy. Biomaterials Science, 2021, 9, 4904-4921.	5.4	29

#	Article	IF	CITATIONS
1958	Design and optimisation of dendrimer-conjugated Bcl-2/xL inhibitor, AZD0466, with improved therapeutic index for cancer therapy. Communications Biology, 2021, 4, 112.	4.4	63
1959	Nanotechnology for cancer drug design, delivery, and theranostics applications. , 2021, , 1-26.		2
1960	Mathematical Modeling and Simulations for Developing Nanoparticle-Based Cancer Drug Delivery Systems: A Review. Current Pathobiology Reports, 2021, 9, 1-8.	3.4	24
1961	Requirements and properties of biomaterials for biomedical applications., 2021,, 195-226.		0
1962	Effect of stroma on the behavior of temoporfin-loaded lipid nanovesicles inside the stroma-rich head and neck carcinoma spheroids. Journal of Nanobiotechnology, 2021, 19, 3.	9.1	18
1963	Multifunctional theranostic nanomedicine for photoacoustic imaging-guided combination tumor treatment., 2021,, 67-90.		1
1964	A tumor microenvironment (TME)-responsive nanoplatform for systemic saporin delivery and effective breast cancer therapy. Chemical Communications, 2021, 57, 2563-2566.	4.1	9
1965	Surface peptide functionalization of zeolitic imidazolate framework-8 for autonomous homing and enhanced delivery of chemotherapeutic agent to lung tumor cells. Dalton Transactions, 2021, 50, 2375-2386.	3.3	6
1966	Nanotechnology for Diagnosis, Imaging, and Treatment of Head and Neck Cancer., 2021,, 63-120.		1
1967	Global Trend in Research and Development of CDK4/6 Inhibitors for Clinical Cancer Therapy: A Bibliometric Analysis. Journal of Cancer, 2021, 12, 3539-3547.	2.5	4
1968	Hydroxyethyl starch based smart nanomedicine. RSC Advances, 2021, 11, 3226-3240.	3.6	30
1969	Epigenetic Regulation and Nonepigenetic Mechanisms of Ferroptosis Drive Emerging Nanotherapeutics in Tumor. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-14.	4.0	4
1970	Cancer nanomedicine., 2021,, 537-566.		0
1971	Regulatory perspectives of nanomedicines for cancer treatment. , 2021, , 29-49.		0
1972	Protein corona-guided tumor targeting therapy <i>via</i> the surface modulation of low molecular weight PEG. Nanoscale, 2021, 13, 5883-5891.	5.6	15
1973	EPR effect and its implications in passive targeting of nanocarriers to tumors. , 2021, , 31-40.		1
1974	Nanomaterials for T-cell cancer immunotherapy. Nature Nanotechnology, 2021, 16, 25-36.	31.5	191
1975	Organic fluorescent nanoparticles with NIR-II emission for bioimaging and therapy. Biomedical Materials (Bristol), 2021, 16, 022001.	3.3	23

#	Article	IF	CITATIONS
1976	Cancer-Targeted Controlled Delivery of Chemotherapeutic Anthracycline Derivatives Using Apoferritin Nanocage Carriers. International Journal of Molecular Sciences, 2021, 22, 1362.	4.1	8
1977	Organic nanocarriers for targeted delivery of anticancer agents., 2021,, 467-497.		1
1978	Tuning Nanosiliceous Framework for Enhanced Cancer Theranostic Applications. Advanced Therapeutics, 2021, 4, 2000218.	3.2	10
1979	Targeting the "Sweet Side―of Tumor with Glycan-Binding Molecules Conjugated-Nanoparticles: Implications in Cancer Therapy and Diagnosis. Nanomaterials, 2021, 11, 289.	4.1	18
1980	â€~Golden' exosomes as delivery vehicles to target tumors and overcome intratumoral barriers: <i>in vivo</i> tracking in a model for head and neck cancer. Biomaterials Science, 2021, 9, 2103-2114.	5.4	29
1981	Theranostic Activity of Nitric Oxide-Releasing Carbon Quantum Dots. Bioconjugate Chemistry, 2021, 32, 367-375.	3.6	13
1982	Hydrogen sulfide-activatable prodrug-backboned block copolymer micelles for delivery of chemotherapeutics. Polymer Chemistry, 2021, 12, 4167-4174.	3.9	9
1983	Emerging strategies based on nanomaterials for ionizing radiation-optimized drug treatment of cancer. Nanoscale, 2021, 13, 13943-13961.	5.6	7
1985	A pure molecular drug hydrogel for post-surgical cancer treatment. Biomaterials, 2021, 265, 120403.	11.4	28
1986	Rational design of aqueous conjugated polymer nanoparticles as potential theranostic agents of breast cancer. Materials Chemistry Frontiers, 2021, 5, 4950-4962.	5.9	7
1987	A directed co-assembly of herbal small molecules into carrier-free nanodrugs for enhanced synergistic antitumor efficacy. Journal of Materials Chemistry B, 2021, 9, 1040-1048.	5.8	17
1988	Exploring biomarkers and diagnostics system for cancer management. , 2021, , 35-41.		1
1989	Strategies and applications of covalent organic frameworks as promising nanoplatforms in cancer therapy. Journal of Materials Chemistry B, 2021, 9, 3450-3483.	5.8	36
1990	Recent applications and strategies in nanotechnology for lung diseases. Nano Research, 2021, 14, 2067-2089.	10.4	49
1991	Good laboratory practice and current good manufacturing practice requirements in the development of cancer nanomedicines., 2021,, 341-352.		0
1992	Formulation and biological stability of nanomedicines in cancer treatment., 2021,, 277-289.		5
1993	The facile formation of hierarchical mesoporous silica nanocarriers for tumor-selective multimodal theranostics. Biomaterials Science, 2021, 9, 5237-5246.	5.4	8
1994	Effect of XlogP and hansen solubility parameters on the prediction of small molecule modified docetaxel, doxorubicin and irinotecan conjugates forming stable nanoparticles. Drug Delivery, 2021, 28, 1603-1615.	5.7	1

#	Article	IF	CITATIONS
1995	CC Chemokine Receptor 2-Targeting Copper Nanoparticles for Positron Emission Tomography-Guided Delivery of Gemcitabine for Pancreatic Ductal Adenocarcinoma. ACS Nano, 2021, 15, 1186-1198.	14.6	32
1996	Biologically-derived nanoparticles for chemo-ferroptosis combination therapy. Materials Chemistry Frontiers, 2021, 5, 3813-3822.	5.9	5
1997	Combination Chemoâ€lmmunotherapy for Pancreatic Cancer Using the Immunogenic Effects of an Irinotecan Silicasome Nanocarrier Plus Antiâ€PDâ€1. Advanced Science, 2021, 8, 2002147.	11.2	59
1998	Hydrophilic polymer driven crystallization self-assembly: an inflammatory multi-drug combination nanosystem against Alzheimer's disease. Journal of Materials Chemistry B, 2021, 9, 8272-8288.	5.8	6
1999	Calcium phosphate engineered photosynthetic microalgae to combat hypoxic-tumor by <i>in-situ</i> modulating hypoxia and cascade radio-phototherapy. Theranostics, 2021, 11, 3580-3594.	10.0	33
2000	Biodegradable freestanding rare-earth nanosheets promote multimodal imaging and delivers CRISPR–Cas9 plasmid against tumor. Chemical Communications, 2021, 57, 9386-9389.	4.1	1
2001	Advances in Reformed Erythrocytes as Drug Deliver System. Hans Journal of Nanotechnology, 2021, 11, 36-42.	0.0	0
2002	Targeted brain tumor imaging by using discrete biopolymer-coated nanodiamonds across the blood–brain barrier. Nanoscale, 2021, 13, 3184-3193.	5.6	8
2003	Engineered Multifunctional Nano―and Biological Materials for Cancer Immunotherapy. Advanced Healthcare Materials, 2021, 10, e2001680.	7.6	17
2004	In Vitro Assays for Nanoparticleâ€"Cancer Cell Interaction Studies. Advances in Experimental Medicine and Biology, 2021, 1295, 223-242.	1.6	1
2005	Functional Nucleicâ€Acidâ€Decorated Spherical Nanoparticles: Preparation Strategies and Current Applications in Cancer Therapy. Small Science, 2021, 1, 2000056.	9.9	15
2006	Reduction-Responsive Chemo-Capsule-Based Prodrug Nanogel for Synergistic Treatment of Tumor Chemotherapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8940-8951.	8.0	35
2007	Investigating the crucial roles of aliphatic tails in disulfide bond-linked docetaxel prodrug nanoassemblies. Asian Journal of Pharmaceutical Sciences, 2021, 16, 643-652.	9.1	14
2008	Anticancer Molecular Mechanism of Protocatechuic Acid Loaded on Folate Coated Functionalized Graphene Oxide Nanocomposite Delivery System in Human Hepatocellular Carcinoma. Materials, 2021, 14, 817.	2.9	18
2010	Highly stable organic photothermal agent based on near-infrared-II fluorophores for tumor treatment. Journal of Nanobiotechnology, 2021, 19, 37.	9.1	30
2011	Construction of Poly(amidoamine) Dendrimer/Carbon Dot Nanohybrids for Biomedical Applications. Macromolecular Bioscience, 2021, 21, e2100007.	4.1	13
2012	PGMD/curcumin nanoparticles for the treatment of breast cancer. Scientific Reports, 2021, 11, 3824.	3.3	54
2013	Tumorâ€Activated Photosensitization and Size Transformation of Nanodrugs. Advanced Functional Materials, 2021, 31, 2010241.	14.9	44

#	Article	IF	Citations
2014	Small changes in the length of diselenide bond-containing linkages exert great influences on the antitumor activity of docetaxel homodimeric prodrug nanoassemblies. Asian Journal of Pharmaceutical Sciences, 2021, 16, 337-349.	9.1	26
2015	Nexus between in silico and in vivo models to enhance clinical translation of nanomedicine. Nano Today, 2021, 36, 101057.	11.9	58
2016	Fabrication of a pH-Responsive 5-FU@MSN-SA Nanoplatform for Anti-Tumor Activity. Nano, 2021, 16, 2150035.	1.0	3
2017	Non-Coding RNAs: The "Dark Side Matter―of the CLL Universe. Pharmaceuticals, 2021, 14, 168.	3.8	2
2018	pH neutralization of textile industry wastewater for effective recycling. Pigment and Resin Technology, 2022, 51, 80-90.	0.9	0
2019	Applications of Micro/Nanotechnology in Ultrasound-based Drug Delivery and Therapy for Tumor. Current Medicinal Chemistry, 2021, 28, 525-547.	2.4	17
2020	Designing Mesoporous Silica Nanoparticles to Overcome Biological Barriers by Incorporating Targeting and Endosomal Escape. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9656-9666.	8.0	39
2021	Optimized Combination of Photodynamic Therapy and Chemotherapy Using Gelatin Nanoparticles Containing Tirapazamine and Pheophorbide a. ACS Applied Materials & Interfaces, 2021, 13, 10812-10821.	8.0	32
2022	Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems. Drug Delivery and Translational Research, 2021, 11, 345-352.	5.8	45
2023	Smart Nanocarriers for Targeted Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 546-557.	1.7	3
2024	Endostatin Genetically Engineered Placental Mesenchymal Stromal Cells Carrying Doxorubicin-Loaded Mesoporous Silica Nanoparticles for Combined Chemo- and Antiangiogenic Therapy. Pharmaceutics, 2021, 13, 244.	4.5	3
2025	Multifunctional Liquid Crystal Nanoparticles for Cancer Therapy. Current Nanomaterials, 2021, 6, 4-16.	0.4	10
2026	Coherent Raman Scattering Microscopy in Oncology Pharmacokinetic Research. Frontiers in Pharmacology, 2021, 12, 630167.	3.5	5
2027	Pathological environment directed in situ peptidic supramolecular assemblies for nanomedicines. Biomedical Materials (Bristol), 2021, 16, 022011.	3.3	6
2028	Lubrication Performances of Carbon-Doped MoSe2 Nanoparticles and Their Biocompatibility Characterization In Vitro. Frontiers in Chemistry, 2020, 8, 580151.	3.6	6
2029	Teaching new tricks to old dogs: A review of drug repositioning of disulfiram for cancer nanomedicine. View, 2021, 2, 20200127.	5.3	14
2030	Depolymerization of hyaluronan using PEGylated human recombinant hyaluronidase promotes nanoparticle tumor penetration. Nanomedicine, 2021, 16, 275-292.	3.3	5
2031	A Supramolecular Strategy to Engineering a Non-photobleaching and Near-Infrared Absorbing Nano-J-Aggregate for Efficient Photothermal Therapy. ACS Nano, 2021, 15, 5032-5042.	14.6	71

#	Article	IF	CITATIONS
2032	Catalytic Nanomaterials toward Atomic Levels for Biomedical Applications: From Metal Clusters to Single-Atom Catalysts. ACS Nano, 2021, 15, 2005-2037.	14.6	148
2033	Design of Polymeric Carriers for Intracellular Peptide Delivery in Oncology Applications. Chemical Reviews, 2021, 121, 11653-11698.	47.7	51
2034	Nanomedicine Interventions in Clinical Trials for the Treatment of Metastatic Breast Cancer. Applied Sciences (Switzerland), 2021, 11, 1624.	2.5	5
2035	Improved cancer phototheranostic efficacy of hydrophobic IR780 via parenteral route by association with tetrahedral nanostructured DNA. Journal of Controlled Release, 2021, 330, 483-492.	9.9	32
2036	Emerging Nanomedicineâ€Enabled/Enhanced Nanodynamic Therapies beyond Traditional Photodynamics. Advanced Materials, 2021, 33, e2005062.	21.0	117
2037	Co-Delivery of Paclitaxel and siRNA with pH-Responsive Polymeric Micelles for Synergistic Cancer Therapy. Journal of Biomedical Nanotechnology, 2021, 17, 322-329.	1.1	9
2038	Targeted drug delivery strategies for precision medicines. Nature Reviews Materials, 2021, 6, 351-370.	48.7	388
2039	Immune Cell Membraneâ€Coated Biomimetic Nanoparticles for Targeted Cancer Therapy. Small, 2021, 17, e2006484.	10.0	216
2040	Shape Transformable Strategies for Drug Delivery. Advanced Functional Materials, 2021, 31, 2009765.	14.9	57
2041	Recent advances in cancer photo-theranostics: the synergistic combination of transition metal complexes and gold nanostructures. SN Applied Sciences, 2021, 3, 1.	2.9	6
2042	Albumin-binding prodrugs via reversible iminoboronate forming nanoparticles for cancer drug delivery. Journal of Controlled Release, 2021, 330, 362-371.	9.9	31
2043	Nanoâ€Oncologicals: A Tortoise Trail Reaching New Avenues. Advanced Functional Materials, 2021, 31, 2009860.	14.9	13
2044	Cancerâ€associatedâ€plateletâ€inspired nanomedicines for cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1702.	6.1	20
2045	Recent Advances in Nanotechnology for the Treatment of Melanoma. Molecules, 2021, 26, 785.	3.8	42
2046	Biogenesis of silver nanoparticles to treat cancer, diabetes, and microbial infections: a mechanistic overview. Applied Microbiology and Biotechnology, 2021, 105, 2261-2275.	3.6	56
2047	HPMA Copolymer-Based Nanomedicines in Controlled Drug Delivery. Journal of Personalized Medicine, 2021, 11, 115.	2.5	40
2048	Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Frontiers in Pharmacology, 2021, 12, 601626.	3.5	257
2049	Precise Depletion of Tumor Seed and Growing Soil with Shrinkable Nanocarrier for Potentiated Cancer Chemoimmunotherapy. ACS Nano, 2021, 15, 4636-4646.	14.6	27

#	ARTICLE	IF	CITATIONS
2050	Mechanism of cellular uptake and cytotoxicity of paclitaxel loaded lipid nanocapsules in breast cancer cells. International Journal of Pharmaceutics, 2021, 597, 120217.	5.2	23
2051	Research progress of response strategies based on tumor microenvironment in drug delivery systems. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	5
2052	Exploring the transformability of polymer-lipid hybrid nanoparticles and nanomaterial-biology interplay to facilitate tumor penetration, cellular uptake and intracellular targeting of anticancer drugs. Expert Opinion on Drug Delivery, 2021, 18, 1-14.	5.0	10
2053	Synergy of Immunostimulatory Genetherapy with Immune Checkpoint Blockade Motivates Immune Response to Eliminate Cancer. Advanced Functional Materials, 2021, 31, 2100715.	14.9	23
2054	NIR photosensitizers activated by \hat{I}^3 -glutamyl transpeptidase for precise tumor fluorescence imaging and photodynamic therapy. Science China Chemistry, 2021, 64, 808-816.	8.2	43
2055	Nanomedicine-driven molecular targeting, drug delivery, and therapeutic approaches to cancer chemoresistance. Drug Discovery Today, 2021, 26, 724-739.	6.4	25
2056	Nanotechnology advances in pathogen- and host-targeted antiviral delivery: multipronged therapeutic intervention for pandemic control. Drug Delivery and Translational Research, 2021, 11, 1420-1437.	5.8	18
2057	Controllable Release Mode Based on ATP Hydrolysis-Fueled Supra-Amphiphile Assembly. ACS Applied Bio Materials, 2021, 4, 3532-3538.	4.6	2
2058	Engineering molecular self-assembly of theranostic nanoprobes for dual-modal imaging-guided precise chemotherapy. Science China Chemistry, 2021, 64, 2045-2052.	8.2	10
2059	In depth characterisation of the biomolecular coronas of polymer coated inorganic nanoparticles with differential centrifugal sedimentation. Scientific Reports, 2021, 11, 6443.	3.3	14
2060	Multiscale Synchrotron-Based Imaging Analysis for the Transfer of PEGylated Gold Nanoparticles In Vivo. ACS Biomaterials Science and Engineering, 2021, 7, 1462-1474.	5.2	5
2061	Gut Microbiota: Influence on Carcinogenesis and Modulation Strategies by Drug Delivery Systems to Improve Cancer Therapy. Advanced Science, 2021, 8, 2003542.	11.2	26
2062	Host-guest inclusion for enhancing anticancer activity of pemetrexed against lung carcinoma and decreasing cytotoxicity to normal cells. Chinese Chemical Letters, 2021, 32, 3034-3038.	9.0	17
2063	Polyprodrug with glutathione depletion and cascade drug activation for multi-drug resistance reversal. Biomaterials, 2021, 270, 120649.	11.4	47
2064	Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Molecular Cancer, 2021, 20, 55.	19.2	57
2065	Cyclotriphosphazene-Based Star Copolymers as Structurally Tunable Nanocarriers with Programmable Biodegradability. Macromolecules, 2021, 54, 3139-3157.	4.8	11
2066	A Highâ€Resolution Ternary Model Demonstrates How PEGylated 2D Nanomaterial Stimulates Integrin ⟨i⟩α⟨ i⟩⟨sub⟩⟨i⟩l²⟨ i⟩⟨sub⟩8⟨ sub⟩ on Cell Membrane. Advanced Science, 2021, 8, e2004506.	11.2	6
2067	Cancer Cell Membrane Camouflaged Mesoporous Silica Nanoparticles Combined with Immune Checkpoint Blockade for Regulating Tumor Microenvironment and Enhancing Antitumor Therapy. International Journal of Nanomedicine, 2021, Volume 16, 2107-2121.	6.7	30

#	ARTICLE	IF	CITATIONS
2068	Lightâ€Controlled Nanosystem with Sizeâ€Flexibility Improves Targeted Retention for Tumor Suppression. Advanced Functional Materials, 2021, 31, 2101262.	14.9	21
2069	pH-Sensitive Nanoparticles Composed Solely of Membrane-Disruptive Macromolecules for Treating Pancreatic Cancer. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12824-12835.	8.0	23
2070	Platelet-Membrane-Coated Nanoparticles Enable Vascular Disrupting Agent Combining Anti-Angiogenic Drug for Improved Tumor Vessel Impairment. Nano Letters, 2021, 21, 2588-2595.	9.1	77
2071	Renal clearable nanoparticles: An expanding horizon for improving biomedical imaging and cancer therapy. Materials Today Communications, 2021, 26, 102064.	1.9	24
2072	NO-releasing polypeptide nanocomposites reverse cancer multidrug resistance via triple therapies. Acta Biomaterialia, 2021, 123, 335-345.	8.3	48
2073	A Near-Infrared Laser-Triggered Size-Shrinkable Nanosystem with In Situ Drug Release for Deep Tumor Penetration. ACS Applied Materials & Drug Release for Deep Tumor Penetration. ACS Applied Materials & Drug Release for Deep Tumor Penetration. ACS Applied Materials & Drug Release for Deep Tumor Penetration. ACS Applied Materials & Drug Release for Deep Tumor Penetration.	8.0	20
2074	Natural products based nanoformulations for cancer treatment: current evolution in Indian research. Biomedical Materials (Bristol), 2021, 16, 044101.	3.3	8
2075	Advanced Nanotechnology for Enhancing Immune Checkpoint Blockade Therapy. Nanomaterials, 2021, 11, 661.	4.1	23
2076	Nanoplatforms for Sepsis Management: Rapid Detection/Warning, Pathogen Elimination and Restoring Immune Homeostasis. Nano-Micro Letters, 2021, 13, 88.	27.0	10
2077	Exploiting the acquired vulnerability of cisplatin-resistant tumors with a hypoxia-amplifying DNA repairâ€"inhibiting (HYDRI) nanomedicine. Science Advances, 2021, 7, .	10.3	50
2078	NIR-laser-triggered gadolinium-doped carbon dots for magnetic resonance imaging, drug delivery and combined photothermal chemotherapy for triple negative breast cancer. Journal of Nanobiotechnology, 2021, 19, 64.	9.1	46
2079	Design of BET Inhibitor Bottlebrush Prodrugs with Superior Efficacy and Devoid of Systemic Toxicities. Journal of the American Chemical Society, 2021, 143, 4714-4724.	13.7	18
2080	[18F]-C-SNAT4: an improved caspase-3-sensitive nanoaggregation PET tracer for imaging of tumor responses to chemo- and immunotherapies. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3386-3399.	6.4	13
2081	Design and Challenges of Sonodynamic Therapy System for Cancer Theranostics: From Equipment to Sensitizers. Advanced Science, 2021, 8, 2002178.	11.2	125
2082	Cancer Cell–Membrane Biomimetic Boron Nitride Nanospheres for Targeted Cancer Therapy. International Journal of Nanomedicine, 2021, Volume 16, 2123-2136.	6.7	14
2083	Entropy-Driven Quick Loading of Functional Proteins in Nanohydrogels for Highly Efficient Tumor Targeting Therapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12888-12898.	8.0	5
2084	Quantitative evaluation of cellular internalization of polymeric nanoparticles within laryngeal cancer cells and immune cells for enhanced drug delivery. Nanoscale Research Letters, 2021, 16, 40.	5.7	7
2086	Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. International Journal of Nanomedicine, 2021, Volume 16, 1681-1706.	6.7	168

#	Article	lF	CITATIONS
2087	High drug loading and pH-responsive nanomedicines driven by dynamic boronate covalent chemistry for potent cancer immunotherapy. Nano Research, 2021, 14, 3913-3920.	10.4	11
2088	Matrix Metalloproteinaseâ€9â€Responsive Surface Chargeâ€Reversible Nanocarrier to Enhance Endocytosis as Efficient Targeted Delivery System for Cancer Diagnosis and Therapy. Advanced Healthcare Materials, 2021, 10, e2002143.	7.6	13
2089	Review of a new bone tumor therapy strategy based on bifunctional biomaterials. Bone Research, 2021, 9, 18.	11.4	125
2090	Insights into colloidal nanoparticle-protein corona interactions for nanomedicine applications. Advances in Colloid and Interface Science, 2021, 289, 102366.	14.7	34
2091	Nanotechnology for modern medicine: next step towards clinical translation. Journal of Internal Medicine, 2021, 290, 486-498.	6.0	88
2092	Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Advanced Drug Delivery Reviews, 2021, 170, 142-199.	13.7	80
2093	Tissue-Resident and Recruited Macrophages in Primary Tumor and Metastatic Microenvironments: Potential Targets in Cancer Therapy. Cells, 2021, 10, 960.	4.1	33
2094	A new type of glutathione-responsive anti-osteosarcoma prodrug nanoparticles. Materials Technology, 2022, 37, 953-961.	3.0	3
2095	Tuning the Dispersion of Hydrophilic and Hydrophobic Nanoparticles by Proteins. Chemistry Letters, 2021, 50, 1378-1381.	1.3	2
2096	Biodistribution of Poly(alkyl cyanoacrylate) Nanoparticles in Mice and Effect on Tumor Infiltration of Macrophages into a Patient-Derived Breast Cancer Xenograft. Nanomaterials, 2021, 11, 1140.	4.1	7
2097	Quantitative imaging of intracellular nanoparticle exposure enables prediction of nanotherapeutic efficacy. Nature Communications, 2021, 12, 2385.	12.8	25
2098	Nanotechnology and pancreatic cancer management: State of the art and further perspectives. World Journal of Gastrointestinal Oncology, 2021, 13, 231-237.	2.0	22
2099	Reduction-Responsive and Multidrug Deliverable Albumin Nanoparticles: An Antitumor Drug to Abraxane against Human Pancreatic Tumor-Bearing Mice. ACS Applied Bio Materials, 2021, 4, 4302-4309.	4.6	9
2100	iRGD‣iposomes Enhance Tumor Delivery and Therapeutic Efficacy of Antisense Oligonucleotide Drugs against Primary Prostate Cancer and Bone Metastasis. Advanced Functional Materials, 2021, 31, 2100478.	14.9	32
2101	Temozolomide: An Updated Overview of Resistance Mechanisms, Nanotechnology Advances and Clinical Applications. Current Neuropharmacology, 2021, 19, 513-537.	2.9	40
2102	Exosomes: Powerful weapon for cancer nano-immunoengineering. Biochemical Pharmacology, 2021, 186, 114487.	4.4	20
2103	Understanding and advancement in gold nanoparticle targeted photothermal therapy of cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188532.	7.4	75
2104	Targeting pan-essential genes in cancer: Challenges and opportunities. Cancer Cell, 2021, 39, 466-479.	16.8	88

#	Article	IF	CITATIONS
2105	Separation, Characterization, and Analysis of Environmental Nano- and Microparticles: State-of-the-Art Methods and Approaches. Journal of Analytical Chemistry, 2021, 76, 413-429.	0.9	8
2106	Editorial of Special Issue "The Biological Fate of Drug Nanocarriers― Acta Pharmaceutica Sinica B, 2021, 11, 850-851.	12.0	9
2107	The synergistic strategies for the <scp>immunoâ€oncotherapy</scp> with photothermal nanoagents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1717.	6.1	9
2108	Persistent luminescence nanoparticles for cancer theranostics application. Journal of Nanobiotechnology, 2021, 19, 113.	9.1	50
2109	Preparation of Gelatin/Polycaprolactone Electrospun Fibers Loaded with Cis-Platinum and Their Potential Application for the Treatment of Prostate Cancer. Journal of Nanomaterials, 2021, 2021, 1-7.	2.7	3
2110	Hyaluronic acid prodrug micelles for tumour therapy. Journal of Drug Targeting, 2022, 30, 22-30.	4.4	3
2111	Hierarchical responsive micelle facilitates intratumoral penetration by acid-activated positive charge surface and size contraction. Biomaterials, 2021, 271, 120741.	11.4	14
2112	Designer Anticancer Nanoprodrugs with Selfâ€Toxification Activity Realized by Acidâ€triggered Biodegradation and Inâ€Situ Fragment Complexation. Angewandte Chemie, 2021, 133, 11605-11614.	2.0	3
2113	Ferrite Nanoparticles-Based Reactive Oxygen Species-Mediated Cancer Therapy. Frontiers in Chemistry, 2021, 9, 651053.	3.6	20
2114	Supramolecular metal-based nanoparticles for drug delivery and cancer therapy. Current Opinion in Chemical Biology, 2021, 61, 143-153.	6.1	38
2115	Designer Anticancer Nanoprodrugs with Selfâ€∓oxification Activity Realized by Acidâ€triggered Biodegradation and Inâ€Situ Fragment Complexation. Angewandte Chemie - International Edition, 2021, 60, 11504-11513.	13.8	8
2116	Polymeric Nanoreactors as Emerging Nanoplatforms for Cancer Precise Nanomedicine. Macromolecular Bioscience, 2021, 21, 2000424.	4.1	7
2117	Mild Magnetic Hyperthermia-Activated Innate Immunity for Liver Cancer Therapy. Journal of the American Chemical Society, 2021, 143, 8116-8128.	13.7	87
2118	Non-Polymeric Nanogels as Versatile Nanocarriers: Intracellular Transport of the Photosensitizers Rose Bengal and Hypericin for Photodynamic Therapy. ACS Applied Bio Materials, 2021, 4, 3658-3669.	4.6	7
2119	Cancer immunotherapies revisited: state of the art of conventional treatments and next-generation nanomedicines. Cancer Gene Therapy, 2021, 28, 935-946.	4.6	10
2120	Endogenous Stimuliâ€Activatable Nanomedicine for Immune Theranostics for Cancer. Advanced Functional Materials, 2021, 31, 2100386.	14.9	36
2121	Smart transformable nanomedicines for cancer therapy. Biomaterials, 2021, 271, 120737.	11.4	64
2122	Biomimetic Nanotheranostics Camouflaged with Cancer Cell Membranes Integrating Persistent Oxygen Supply and Homotypic Targeting for Hypoxic Tumor Elimination. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 19710-19725.	8.0	28

#	Article	IF	CITATIONS
2123	Mixed-monolayer functionalized gold nanoparticles for cancer treatment: Atomistic molecular dynamics simulations study. BioSystems, 2021, 202, 104354.	2.0	11
2124	Polypeptides–Drug Conjugates for Anticancer Therapy. Advanced Healthcare Materials, 2021, 10, e2001974.	7.6	39
2125	Amelioration of Pterostilbene Antiproliferative, Proapoptotic, and Oxidant Potentials in Human Breast Cancer MCF7 Cells Using Zein Nanocomposites. International Journal of Nanomedicine, 2021, Volume 16, 3059-3071.	6.7	5
2126	Biomaterialsâ€Based Delivery of Therapeutic Antibodies for Cancer Therapy. Advanced Healthcare Materials, 2021, 10, e2002139.	7.6	21
2127	Reprogramming Cancer Stem-like Cells with Nanoforskolin Enhances the Efficacy of Paclitaxel in Targeting Breast Cancer. ACS Applied Bio Materials, 2021, 4, 3670-3685.	4.6	15
2128	Recent Advancements of Specific Functionalized Surfaces of Magnetic Nano- and Microparticles as a Theranostics Source in Biomedicine. ACS Biomaterials Science and Engineering, 2021, 7, 1914-1932.	5. 2	9
2129	Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today, 2021, 37, 101073.	11.9	182
2130	MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomaterials Science and Engineering, 2021, 7, 1900-1913.	5.2	84
2131	Enhanced tumour penetration and prolonged circulation in blood of polyzwitterion–drug conjugates with cell-membrane affinity. Nature Biomedical Engineering, 2021, 5, 1019-1037.	22.5	148
2132	Cancer Nanopharmaceuticals: Physicochemical Characterization and In Vitro/In Vivo Applications. Cancers, 2021, 13, 1896.	3.7	15
2133	Effect of physicochemical properties on inÂvivo fate of nanoparticle-based cancer immunotherapies. Acta Pharmaceutica Sinica B, 2021, 11, 886-902.	12.0	42
2134	Antioxidant and C5a-blocking strategy for hepatic ischemia–reperfusion injury repair. Journal of Nanobiotechnology, 2021, 19, 107.	9.1	13
2135	Repurposing of camptothecin: An esterase-activatable prodrug delivered by a self-emulsifying formulation that improves efficacy in colorectal cancer. International Journal of Pharmaceutics, 2021, 599, 120399.	5.2	8
2136	Facile preparation of pH/redox dual-responsive biodegradable polyphosphazene prodrugs for effective cancer chemotherapy. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111573.	5.0	18
2137	Bioengineered Dualâ€Targeting Protein Nanocage for Stereoscopical Loading of Synergistic Hydrophilic/Hydrophobic Drugs to Enhance Anticancer Efficacy. Advanced Functional Materials, 2021, 31, 2102004.	14.9	18
2138	Traceable Nanocluster–Prodrug Conjugate for Chemo-photodynamic Combinatorial Therapy of Non-small Cell Lung Cancer. ACS Applied Bio Materials, 2021, 4, 3232-3245.	4.6	17
2139	Advanced nanomedicine and cancer: Challenges and opportunities in clinical translation. International Journal of Pharmaceutics, 2021, 599, 120438.	5.2	56
2140	Mesoporous silica nanoparticles as a versatile nanocarrier for cancer treatment: A review. Journal of Molecular Liquids, 2021, 328, 115417.	4.9	34

#	Article	IF	CITATIONS
2141	Supramolecular Nanofibrils Formed by Coassembly of Clinically Approved Drugs for Tumor Photothermal Immunotherapy. Advanced Materials, 2021, 33, e2100595.	21.0	105
2142	Synergistic Antitumor Activity of Gramicidin/Lipophilic Bismuth Nanoparticles (BisBAL NPs) on Human Cervical Tumor Cells. Frontiers in Nanotechnology, 2021, 3, .	4.8	1
2143	Apoferritin/Vandetanib Association Is Long-Term Stable But Does Not Improve Pharmacological Properties of Vandetanib. International Journal of Molecular Sciences, 2021, 22, 4250.	4.1	5
2144	Cloaking mesoporous silica nanoparticles with phenylboronic acid-conjugated human serum albumin-co-polydopamine films for targeted drug delivery. Journal of Drug Delivery Science and Technology, 2021, 62, 102392.	3.0	3
2145	Enhanced siRNA Delivery and Selective Apoptosis Induction in H1299 Cancer Cells by Layer-by-Layer-Assembled Se Nanocomplexes: Toward More Efficient Cancer Therapy. Frontiers in Molecular Biosciences, 2021, 8, 639184.	3.5	13
2147	Nanomedicine in cancer therapy: promises and hurdles of polymeric nanoparticles. Exploration of Medicine, 0, , .	1.5	4
2148	Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opinion on Drug Delivery, 2021, 18, 1261-1290.	5.0	69
2149	Multifunctional biomolecule nanostructures for cancer therapy. Nature Reviews Materials, 2021, 6, 766-783.	48.7	224
2150	Recent progress on charge-reversal polymeric nanocarriers for cancer treatments. Biomedical Materials (Bristol), 2021, 16, 042010.	3.3	14
2151	Enhanced Antitumor Efficacy through an "AND gate―Reactive Oxygenâ€5peciesâ€Dependent pHâ€Respons Nanomedicine Approach. Advanced Healthcare Materials, 2021, 10, e2100304.	ive 7.6	9
2152	Bioresponsive immune-booster-based prodrug nanogel for cancer immunotherapy. Acta Pharmaceutica Sinica B, 2022, 12, 451-466.	12.0	66
2153	Mesoporous silica nanoparticle: Heralding a brighter future in cancer nanomedicine. Microporous and Mesoporous Materials, 2021, 319, 110967.	4.4	23
2154	Nanodiamonds and their potential applications in breast cancer therapy: a narrative review. Drug Delivery and Translational Research, 2022, 12, 1017-1028.	5.8	7
2155	ROS-responsive liposomes with NIR light-triggered doxorubicin release for combinatorial therapy of breast cancer. Journal of Nanobiotechnology, 2021, 19, 134.	9.1	41
2156	Synthesis strategies and biomedical applications for doped inorganic semiconductor nanocrystals. Cell Reports Physical Science, 2021, 2, 100436.	5.6	14
2157	Pilot-Scale Optimization of the Solvent Exchange Production and Lyophilization Processing of PEG–PLA Block Copolymer-Encapsulated CaWO ₄ Radioluminescent Nanoparticles for Theranostic Applications. Industrial & Description of the Processing Chemistry Research, 2021, 60, 7081-7096.	3.7	2
2158	Multi-Smart and Scalable Bioligands-Free Nanomedical Platform for Intratumorally Targeted Tambjamine Delivery, a Difficult to Administrate Highly Cytotoxic Drug. Biomedicines, 2021, 9, 508.	3.2	6
2159	Nano―and Microscale Drug Delivery Approaches for Therapeutic Immunomodulation. ChemNanoMat, 2021, 7, 773-788.	2.8	5

#	Article	IF	CITATIONS
2160	Multistage signal-interactive nanoparticles improve tumor targeting through efficient nanoparticle-cell communications. Cell Reports, 2021, 35, 109131.	6.4	6
2161	Targeted antitumor comparison study between dopamine self-polymerization and traditional synthesis for nanoparticle surface modification in drug delivery. Nanotechnology, 2021, 32, 305102.	2.6	1
2162	Marriage of Virusâ€Mimic Surface Topology and Microbubbleâ€Assisted Ultrasound for Enhanced Intratumor Accumulation and Improved Cancer Theranostics. Advanced Science, 2021, 8, 2004670.	11.2	13
2163	Sonopermeation Enhances Uptake and Therapeutic Effect of Free and Encapsulated Cabazitaxel. Ultrasound in Medicine and Biology, 2021, 47, 1319-1333.	1.5	23
2164	Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine—Specific Cancer Targeting with Undetectable Toxicity. Chemical Reviews, 2021, 121, 7398-7467.	47.7	45
2165	Dendrimers based cancer nanotheranostics: An overview. International Journal of Pharmaceutics, 2021, 600, 120485.	5. 2	32
2166	Atherosclerosis: Conventional intake of cardiovascular drugs versus delivery using nanotechnology – A new chance for causative therapy?. Journal of Controlled Release, 2021, 333, 536-559.	9.9	18
2167	Nanomaterials for cancer therapy: current progress and perspectives. Journal of Hematology and Oncology, 2021, 14, 85.	17.0	456
2168	MicroRNA Therapeutics in Cancer: Current Advances and Challenges. Cancers, 2021, 13, 2680.	3.7	82
2169	Engineering heterogeneity of precision nanoparticles for biomedical delivery and therapy. View, 2021, 2, 20200067.	5. 3	29
2170	Current Status of Brain Tumor in the Kingdom of Saudi Arabia and Application of Nanobiotechnology for Its Treatment: A Comprehensive Review. Life, 2021, 11, 421.	2.4	6
2171	Co-encapsulation of tertinoin and resveratrol by solid lipid nanocarrier (SLN) improves mice inÂvitro matured oocyte/ morula-compact stage embryo development. Theriogenology, 2021, 171, 1-13.	2.1	4
2172	Photo-responsive prodrug nanoparticles for efficient cytoplasmic delivery and synergistic photodynamic-chemotherapy of metastatic triple-negative breast cancer. Acta Biomaterialia, 2021, 126, 421-432.	8.3	14
2173	Low-dose X-ray enhanced tumor accumulation of theranostic nanoparticles for high-performance bimodal imaging-guided photothermal therapy. Journal of Nanobiotechnology, 2021, 19, 155.	9.1	10
2174	Gum polysaccharide/nanometal hybrid biocomposites in cancer diagnosis and therapy. Biotechnology Advances, 2021, 48, 107711.	11.7	26
2175	Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. International Journal of Biological Macromolecules, 2021, 178, 193-228.	7. 5	51
2176	A polymeric micellar drug delivery system developed through a design of Experiment approach improves pancreatic tumor accumulation of calcipotriol and paclitaxel. International Journal of Pharmaceutics, 2021, 601, 120523.	5.2	6
2177	Nanoparticle-based approaches to target the lymphatic system for antitumor treatment. Cellular and Molecular Life Sciences, 2021, 78, 5139-5161.	5.4	17

#	Article	IF	CITATIONS
2178	Theranostic Mesoporous Silica Nanoparticles Loaded With a Curcumin-Naphthoquinone Conjugate for Potential Cancer Intervention. Frontiers in Molecular Biosciences, 2021, 8, 670792.	3.5	17
2179	Encapsulation and Release of Doxorubicin from TiO2 Nanotubes: Experiment, Density Functional Theory Calculations, and Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2021, 125, 5549-5558.	2.6	7
2180	From Design to Clinic: Engineered Nanobiomaterials for Immune Normalization Therapy of Cancer. Advanced Materials, 2021, 33, e2008094.	21.0	60
2181	Optimized semisolid self-nanoemulsifying system based on glyceryl behenate: A potential nanoplatform for enhancing antitumor activity of raloxifene hydrochloride in MCF-7 human breast cancer cells. International Journal of Pharmaceutics, 2021, 600, 120493.	5.2	27
2182	Curcumin-Loaded Nanoparticles Impair the Pro-Tumor Activity of Acid-Stressed MSC in an In Vitro Model of Osteosarcoma. International Journal of Molecular Sciences, 2021, 22, 5760.	4.1	15
2183	Advances in Nanodelivery of Green Tea Catechins to Enhance the Anticancer Activity. Molecules, 2021, 26, 3301.	3.8	22
2184	GSH-sensitive polymeric prodrug: Synthesis and loading with photosensitizers as nanoscale chemo-photodynamic anti-cancer nanomedicine. Acta Pharmaceutica Sinica B, 2022, 12, 424-436.	12.0	72
2185	Synthesis and properties of pH sensitive carboxymethylated hydroxypropyl chitosan nanocarriers for delivery of doxorubicin. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 600-609.	2.2	3
2186	Surfactant Assisted Rapid-Release Liposomal Strategies Enhance the Antitumor Efficiency of Bufalin Derivative and Reduce Cardiotoxicity. International Journal of Nanomedicine, 2021, Volume 16, 3581-3598.	6.7	8
2187	Recent Advances in Metalâ€Phenolic Networks for Cancer Theranostics. Small, 2021, 17, e2100314.	10.0	66
2188	Drug Release Studies of SCâ€514 PLGA Nanoparticles. FASEB Journal, 2021, 35, .	0.5	0
2189	Liposomal Nanomedicine: Applications for Drug Delivery in Cancer Therapy. Nanoscale Research Letters, 2021, 16, 95.	5.7	106
2190	Lymph Node Delivery Strategy Enables the Activation of Cytotoxic T Lymphocytes and Natural Killer Cells to Augment Cancer Immunotherapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 22213-22224.	8.0	18
2191	Tuning Microbial Activity via Programmatic Alteration of Cell/Substrate Interfaces. Advanced Materials, 2021, 33, e2004655.	21.0	6
2192	Can the Shape of Nanoparticles Enable the Targeting to Cancer Cells over Healthy Cells?. Advanced Functional Materials, 2021, 31, 2007880.	14.9	20
2193	A brief overview about the use of different bioactive liposome-based drug delivery systems in Peritoneal Dialysis and some other diseases. Nano Express, 2021, 2, 022006.	2.4	2
2194	Anisotropic transition metal–based nanomaterials for biomedical applications. View, 2021, 2, 20200154.	5.3	19
2195	Tumor microenvironment remodeling-based penetration strategies to amplify nanodrug accessibility to tumor parenchyma. Advanced Drug Delivery Reviews, 2021, 172, 80-103.	13.7	50

#	Article	IF	CITATIONS
2196	Delivery of siHIFâ€1α to Reconstruct Tumor Normoxic Microenvironment for Effective Chemotherapeutic and Photodynamic Anticancer Treatments. Small, 2021, 17, e2100609.	10.0	13
2197	Antiangiogenesis Combined with Inhibition of the Hypoxia Pathway Facilitates Low-Dose, X-ray-Induced Photodynamic Therapy. ACS Nano, 2021, 15, 11112-11125.	14.6	16
2198	Light- and Melanin Nanoparticle-Induced Cytotoxicity in Metastatic Cancer Cells. Pharmaceutics, 2021, 13, 965.	4.5	6
2199	Enhanced Cryoprotective Effect of Melatonin and Resveratrol by Coencapsulation: Improved <i>In Vitro</i> Development of Vitrified-Warmed Mouse Germinal Vesicle Oocytes. Biopreservation and Biobanking, 2021, 19, 184-193.	1.0	10
2200	Sugar-originated carbon nanodots selectively damage the tumor and enhance the sensitivity of chemotherapy. Nano Today, 2021, 38, 101200.	11.9	10
2201	Biomineralization inspired synthesis of CaCO3-based DDS for pH-responsive release of anticancer drug. Materials Today Communications, 2021, 27, 102256.	1.9	9
2202	Great enhancement on two-photon photoluminescence imaging contrast of Au nanoparticles via double-pulse femtosecond laser excitation with controlled phase differences. Optics Express, 2021, 29, 22855-22867.	3.4	0
2203	New advances in gated materials of mesoporous silica for drug controlled release. Chinese Chemical Letters, 2021, 32, 3696-3704.	9.0	59
2204	Recent Progress in Lipid Nanoparticles for Cancer Theranostics: Opportunity and Challenges. Pharmaceutics, 2021, 13, 840.	4.5	36
2205	Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology. PLoS ONE, 2021, 16, e0251821.	2.5	21
2206	Fabrication of cisplatin-loaded polydopamine nanoparticles via supramolecular self-assembly for photoacoustic imaging guided chemo-photothermal cancer therapy. Applied Materials Today, 2021, 23, 101019.	4.3	22
2207	Magnetically Actuated Active Deep Tumor Penetration of Deformable Large Nanocarriers for Enhanced Cancer Therapy. Advanced Functional Materials, 2021, 31, 2103655.	14.9	25
2208	A systematic study of novel drug delivery mechanisms and treatment strategies for pancreatic cancer. Journal of Drug Delivery Science and Technology, 2021, 63, 102539.	3.0	9
2209	Tripleâ€Layered Metalâ€Organic Framework Hybrid for Tandem Responseâ€Driven Enhanced Chemotherapy. Chemistry - an Asian Journal, 2021, 16, 2068-2074.	3.3	4
2210	Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review. Part II: Nanoacoustics for biomedical imaging and therapy. Sensors and Actuators A: Physical, 2021, 332, 112925.	4.1	7
2211	Nanomaterials and their composite scaffolds for photothermal therapy and tissue engineering applications. Science and Technology of Advanced Materials, 2021, 22, 404-428.	6.1	32
2212	ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine. Coordination Chemistry Reviews, 2021, 437, 213828.	18.8	80
2213	Symphony of nanomaterials and immunotherapy based on the cancer–immunity cycle. Acta Pharmaceutica Sinica B, 2022, 12, 107-134.	12.0	70

#	Article	IF	Citations
2214	Augmentation of anti-proliferative, pro-apoptotic and oxidant profiles induced by piceatannol in human breast carcinoma MCF-7 cells using zein nanostructures. Biomedicine and Pharmacotherapy, 2021, 138, 111409.	5.6	13
2215	Biodegradable and Peroxidaseâ€Mimetic Boron Oxynitride Nanozyme for Breast Cancer Therapy. Advanced Science, 2021, 8, e2101184.	11.2	27
2216	Optimal control of cytotoxic and antiangiogenic therapies on prostate cancer growth. Mathematical Models and Methods in Applied Sciences, 2021, 31, 1419-1468.	3.3	22
2217	Bacteria compete with hematite nanoparticles during their uptake by the ciliate Tetrahymena thermophila. Journal of Hazardous Materials, 2021, 411, 125098.	12.4	2
2218	Tumor cell membrane-based peptide delivery system targeting the tumor microenvironment for cancer immunotherapy and diagnosis. Acta Biomaterialia, 2021, 127, 266-275.	8.3	47
2219	The Importance of Apparent pKa in the Development of Nanoparticles Encapsulating siRNA and mRNA. Trends in Pharmacological Sciences, 2021, 42, 448-460.	8.7	76
2220	Subâ€50 nm Supramolecular Nanohybrids with Active Targeting Corona for Imageâ€Guided Solid Tumor Treatment and Metastasis Inhibition. Advanced Functional Materials, 2021, 31, 2103272.	14.9	7
2221	Stimuli-Responsive and Highly Penetrable Nanoparticles as a Multifunctional Nanoplatform for Boosting Nonsmall Cell Lung Cancer siRNA Therapy. ACS Biomaterials Science and Engineering, 2021, 7, 3141-3155.	5. 2	11
2222	Iron-doxorubicin prodrug loaded liposome nanogenerator programs multimodal ferroptosis for efficient cancer therapy. Asian Journal of Pharmaceutical Sciences, 2021, 16, 784-793.	9.1	24
2223	Lung Cancer Oncotherapy through Novel Modalities: Gas Plasma and Nanoparticle Technologies. , 0, , .		2
2224	Mimicking Pathogens to Augment the Potency of Liposomal Cancer Vaccines. Pharmaceutics, 2021, 13, 954.	4.5	7
2225	Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. Journal of Personalized Medicine, 2021, 11, 571.	2.5	199
2227	Starvation-Sensitized and Oxygenation-Promoted Tumor Sonodynamic Therapy by a Cascade Enzymatic Approach. Research, 2021, 2021, 9769867.	5.7	11
2228	Comparative study of multifunctional properties of synthesised ZnO and MgO NPs for textiles applications. Pigment and Resin Technology, 2022, 51, 301-308.	0.9	4
2229	Self-Activating Therapeutic Nanoparticle: A Targeted Tumor Therapy Using Reactive Oxygen Species Self-Generation and Switch-on Drug Release. ACS Applied Materials & Samp; Interfaces, 2021, 13, 30359-30372.	8.0	13
2230	Human Cancer Cell Membrane-Cloaked Fe ₃ O ₄ Nanocubes for Homologous Targeting Improvement. Journal of Physical Chemistry B, 2021, 125, 7417-7426.	2.6	14
2231	Photodynamic creation of artificial tumor microenvironments to collectively facilitate hypoxia-activated chemotherapy delivered by coagulation-targeting liposomes. Chemical Engineering Journal, 2021, 414, 128731.	12.7	18
2232	Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS Journal, 2022, 289, 4251-4303.	4.7	39

#	Article	IF	CITATIONS
2233	Role of epigenetics in carcinogenesis: Recent advancements in anticancer therapy. Seminars in Cancer Biology, 2022, 83, 441-451.	9.6	18
2234	Low-Molecular-Weight Poly(ethylenimine) Nanogels Loaded with Ultrasmall Iron Oxide Nanoparticles for <i>T</i> ₁ -Weighted MR Imaging-Guided Gene Therapy of Sarcoma. ACS Applied Materials & Loaden & Loa	8.0	25
2235	Perspectives in Breast and Ovarian Cancer Chemotherapy by Nanomedicine Approach: Nanoformulations in Clinical Research. Current Medicinal Chemistry, 2021, 28, 3271-3286.	2.4	10
2236	Unsaturated fatty acid-tuned assembly of photosensitizers for enhanced photodynamic therapy via lipid peroxidation. Journal of Controlled Release, 2021, 334, 213-223.	9.9	11
2237	Nanomedicine in Oncocardiology: Contribution and Perspectives of Preclinical Studies. Frontiers in Cardiovascular Medicine, 2021, 8, 690533.	2.4	4
2238	Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 707319.	4.1	53
2239	Oral lipid nanomedicines: Current status and future perspectives in cancer treatment. Advanced Drug Delivery Reviews, 2021, 173, 238-251.	13.7	32
2240	Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today, 2021, 38, 101119.	11.9	135
2241	NIR-Triggered Blasting Nanovesicles for Targeted Multimodal Image-Guided Synergistic Cancer Photothermal and Chemotherapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 35376-35388.	8.0	17
2242	Singlet Oxygen-Responsive Polymeric Nanomedicine for Light-Controlled Drug Release and Image-Guided Photodynamic–Chemo Combination Therapy. ACS Applied Materials & Diterfaces, 2021, 13, 33905-33914.	8.0	11
2243	Efficient preâ€'treatment for pancreatic cancer using chloroquineâ€'loaded nanoparticles targeting pancreatic stellate cells. Oncology Letters, 2021, 22, 633.	1.8	13
2244	Preparation of carbon dotsâ€based nanoparticles and their research of bioimaging and targeted antitumor therapy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 220-228.	3.4	3
2245	Antibody-activated trans-endothelial delivery of mesoporous organosilica nanomedicine augments tumor extravasation and anti-cancer immunotherapy. Bioactive Materials, 2021, 6, 2158-2172.	15.6	12
2246	Nanocarriers Used in Drug Delivery to Enhance Immune System in Cancer Therapy. Pharmaceutics, 2021, 13, 1167.	4.5	25
2247	The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomaterialia, 2021, 129, 57-72.	8.3	95
2248	Chitosan Nanovaccines as Efficient Carrier Adjuvant System for IL-12 with Enhanced Protection Against HBV. International Journal of Nanomedicine, 2021, Volume 16, 4913-4928.	6.7	13
2249	Effect of Protein Corona on the Drug Delivery of Carbogenic Nanodots and Their Mapping by Fluorescence Lifetime Imaging Microscopy. ACS Applied Bio Materials, 2021, 4, 5776-5785.	4.6	1
2250	Zebrafish Models for the Safety and Therapeutic Testing of Nanoparticles with a Focus on Macrophages. Nanomaterials, 2021, 11, 1784.	4.1	15

#	Article	IF	Citations
2251	Graphene Nanoflake Antibody Conjugates for Multimodal Imaging of Tumors. Advanced NanoBiomed Research, 2021, 1, 2100009.	3.6	2
2252	Phenolic molecules constructed nanomedicine for innovative cancer treatment. Coordination Chemistry Reviews, 2021, 439, 213912.	18.8	15
2253	A permeable on-chip microvasculature for assessing the transport of macromolecules and polymeric nanoconstructs. Journal of Colloid and Interface Science, 2021, 594, 409-423.	9.4	6
2254	Drug transport kinetics of intravascular triggered drug delivery systems. Communications Biology, 2021, 4, 920.	4.4	26
2255	Near-infrared light triggered multi-hit therapeutic nanosystem for tumor specific photothermal effect amplified signal pathway regulation and ferroptosis. Bioactive Materials, 2022, 9, 63-76.	15.6	18
2256	Double‣ock Nanomedicines Enable Tumorâ€Microenvironmentâ€Responsive Selective Antitumor Therapy. Advanced Functional Materials, 2021, 31, 2009157.	14.9	14
2257	Obstacles and opportunities in a forward vision for cancer nanomedicine. Nature Materials, 2021, 20, 1469-1479.	27.5	206
2258	Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles. Cancer Nanotechnology, 2021, 12, .	3.7	39
2259	Non-covalent modification of low-molecular quinones into iron-based nanoreactors enabling self-sustaining Fenton reaction-mediated chemo-dynamic therapy and resisting macrophage uptake. Journal of Molecular Liquids, 2021, 334, 116061.	4.9	0
2260	Electromagnetic Fieldâ€Programmed Magnetic Vortex Nanodelivery System for Efficacious Cancer Therapy. Advanced Science, 2021, 8, e2100950.	11.2	22
2261	A Self-Assembling Amphiphilic Peptide Dendrimer-Based Drug Delivery System for Cancer Therapy. Pharmaceutics, 2021, 13, 1092.	4.5	14
2262	Efficient Protein Transfection by Swarms of Chemically Powered Plasmonic Virus-Sized Nanorobots. ACS Nano, 2021, 15, 12899-12910.	14.6	16
2263	Responsive Polymeric Nanoparticles for Biofilm-infection Control. Chinese Journal of Polymer Science (English Edition), 0 , 1 .	3.8	13
2264	Photoacoustic and magnetic resonance imaging-based gene and photothermal therapy using mesoporous nanoagents. Bioactive Materials, 2022, 9, 157-167.	15.6	15
2265	Sulfonamide-Functionalized Polymeric Nanoparticles For Enhanced In Vivo Colorectal Cancer Therapy. Current Drug Delivery, 2021, 18, .	1.6	0
2266	Obstacles impeding the development of nanocarriers for anticancer drugs. Nanomedicine, 2021, 16, 1447-1450.	3.3	0
2267	Magnetic nanoparticles for cancer theranostics: Advances and prospects. Journal of Controlled Release, 2021, 335, 437-448.	9.9	87
2268	A Bionanozyme with Ultrahigh Activity Enables Spatiotemporally Controlled Reactive Oxygen Species Generation for Cancer Therapy. Advanced Functional Materials, 2021, 31, 2104100.	14.9	18

#	Article	IF	CITATIONS
2269	Mitochondria-targeted mesoporous silica nanoparticles noncovalently modified with triphenylphosphonium cation: Physicochemical characteristics, cytotoxicity and intracellular uptake. International Journal of Pharmaceutics, 2021, 604, 120776.	5.2	7
2270	Long Non-Coding RNAs in the Tumor Immune Microenvironment: Biological Properties and Therapeutic Potential. Frontiers in Immunology, 2021, 12, 697083.	4.8	33
2271	Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications. Frontiers in Oncology, 2021, 11, 654428.	2.8	24
2272	Investigation of squalene-doxorubicin distribution and interactions within single cancer cell using Raman microspectroscopy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 35, 102404.	3.3	9
2273	Optimizing cisplatin delivery to triple-negative breast cancer through novel EGFR aptamer-conjugated polymeric nanovectors. Journal of Experimental and Clinical Cancer Research, 2021, 40, 239.	8.6	47
2274	Sonodynamic Treatment Induces Selective Killing of Cancer Cells in an In Vitro Co-Culture Model. Cancers, 2021, 13, 3852.	3.7	11
2275	Nanoliposomal Delivery of MicroRNA-203 Suppresses Migration of Triple-Negative Breast Cancer through Distinct Target Suppression. Non-coding RNA, 2021, 7, 45.	2.6	7
2276	Co-Adjuvant Nanoparticles for Radiotherapy Treatments of Oncological Diseases. Applied Sciences (Switzerland), 2021, 11, 7073.	2.5	17
2277	Tumor-Specific ONOO [–] Nanogenerator for Improved Drug Delivery and Enhanced Chemotherapy of Tumor. ACS Nano, 2021, 15, 11514-11525.	14.6	28
2278	Editorial: Bioengineered Nanoparticles in Cancer Therapy. Frontiers in Molecular Biosciences, 2021, 8, 706277.	3.5	2
2279	Novel insights into the pathogenesis and treatment of NRAS mutant melanoma. Expert Review of Precision Medicine and Drug Development, 2021, 6, 281-294.	0.7	4
2280	A chitosan/mesoporous silica nanoparticle-based anticancer drug delivery system with a "tumor-triggered targeting―property. International Journal of Biological Macromolecules, 2021, 183, 2017-2029.	7.5	23
2281	Polymer-free hydrogel made of lipid nanocapsules, as a local drug delivery platform. Materials Science and Engineering C, 2021, 126, 112188.	7.3	13
2282	Plasmonâ€Driven Catalytic Chemotherapy Augments Cancer Immunotherapy through Induction of Immunogenic Cell Death and Blockage of IDO Pathway. Advanced Materials, 2021, 33, e2102188.	21.0	59
2283	Application of M1 macrophage as a live vector in delivering nanoparticles for in vivo photothermal treatment. Journal of Advanced Research, 2021, 31, 155-163.	9.5	9
2284	Erythrocyte membrane bioengineered nanoprobes via indocyanine green-directed assembly for single NIR laser-induced efficient photodynamic/photothermal theranostics. Journal of Controlled Release, 2021, 335, 345-358.	9.9	39
2285	Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Delivery and Translational Research, 2022, 12, 500-525.	5.8	92
2286	Dual Enzyme Mimics Based on Metal–Ligand Crossâ€Linking Strategy for Accelerating Ascorbate Oxidation and Enhancing Tumor Therapy. Advanced Functional Materials, 2021, 31, 2103581.	14.9	37

#	Article	IF	Citations
2287	Bioinspired Microenvironment Responsive Nanoprodrug as an Efficient Hydrophobic Drug Self-Delivery System for Cancer Therapy. ACS Applied Materials & Self-Delivery System for Cancer Therapy. ACS Applied Materials & Self-Delivery System for Cancer Therapy. ACS Applied Materials & Self-Delivery System for Cancer Therapy. ACS Applied Materials & Self-Delivery System for Cancer Therapy. ACS Applied Materials & Self-Delivery System for Cancer Therapy. ACS Applied Materials & Self-Delivery System for Cancer Therapy. ACS Applied Materials & Self-Delivery System for Cancer Therapy. ACS Applied Materials & Self-Delivery System for Cancer Therapy. ACS Applied Materials & Self-Delivery System for Cancer Therapy. ACS Applied Materials & Self-Delivery System for Cancer Therapy.	8.0	8
2288	Cyanine-5-Driven Behaviours of Hyperbranched Polymers Designed for Therapeutic Delivery Are Cell-Type Specific and Correlated with Polar Lipid Distribution in Membranes. Nanomaterials, 2021, 11, 1745.	4.1	1
2289	Advances in Biosensors and Diagnostic Technologies Using Nanostructures and Nanomaterials. Advanced Functional Materials, 2021, 31, 2104126.	14.9	77
2290	TPGS–Galactose-Modified Polydopamine Co-delivery Nanoparticles of Nitric Oxide Donor and Doxorubicin for Targeted Chemo–Photothermal Therapy against Drug-Resistant Hepatocellular Carcinoma. ACS Applied Materials & Drug-Resistant Hepatocellular Carcinoma. ACS Applied Materials & Drug-Resistant Hepatocellular Carcinoma.	8.0	38
2291	From molecules to nanovectors: Current state of the art and applications of photosensitizers in photodynamic therapy. International Journal of Pharmaceutics, 2021, 604, 120763.	5.2	24
2292	Precise editing of FGFR3-TACC3 fusion genes with CRISPR-Cas13a in glioblastoma. Molecular Therapy, 2021, 29, 3305-3318.	8.2	9
2293	Surface functionalization of nanomaterials by aryl diazonium salts for biomedical sciences. Advances in Colloid and Interface Science, 2021, 294, 102479.	14.7	20
2294	Smallâ€Molecule Prodrug Nanoassemblies: An Emerging Nanoplatform for Anticancer Drug Delivery. Small, 2021, 17, e2101460.	10.0	87
2295	Antitumor Activity of Nanoparticles Loaded with PHT-427, a Novel AKT/PDK1 Inhibitor, for the Treatment of Head and Neck Squamous Cell Carcinoma. Pharmaceutics, 2021, 13, 1242.	4.5	4
2296	Intrinsic bioactivity of black phosphorus nanomaterials on mitotic centrosome destabilization through suppression of PLK1 kinase. Nature Nanotechnology, 2021, 16, 1150-1160.	31.5	62
2297	Functionalized Graphene Platforms for Anticancer Drug Delivery. International Journal of Nanomedicine, 2021, Volume 16, 5955-5980.	6.7	39
2298	Gold-Bipyramid-Based Nanothernostics: FRET-Mediated Protein-Specific Sialylation Visualization and Oxygen-Augmenting Phototherapy against Hypoxic Tumor. Analytical Chemistry, 2021, 93, 12103-12115.	6.5	11
2299	Antitumor efficiency of the natural alkaloid berberine complexed with C60 fullerene in Lewis lung carcinoma in vitro and in vivo. Cancer Nanotechnology, 2021, 12, .	3.7	10
2300	Bio-acceptable 0D and 1D ZnO nanostructures for cancer diagnostics and treatment. Materials Today, 2021, 50, 533-569.	14.2	95
2301	Rationally integrating peptide-induced targeting and multimodal therapies in a dual-shell theranostic platform for orthotopic metastatic spinal tumors. Biomaterials, 2021, 275, 120917.	11.4	20
2302	Smart Modification on Magnetic Nanoparticles Dramatically Enhances Their Therapeutic Properties. Cancers, 2021, 13, 4095.	3.7	13
2303	Challenges of Current Anticancer Treatment Approaches with Focus on Liposomal Drug Delivery Systems. Pharmaceuticals, 2021, 14, 835.	3.8	29
2304	Targeting acute myeloid leukemia cells by CD33 receptor-specific MoS2-based nanoconjugates. Biomedical Materials (Bristol), 2021, 16, 055009.	3.3	1

#	Article	IF	CITATIONS
2305	Role of multidrug resistance-associated proteins in cancer therapeutics: past, present, and future perspectives. Environmental Science and Pollution Research, 2021, 28, 49447-49466.	5.3	29
2306	Recent trends in biodegradable polyester nanomaterials for cancer therapy. Materials Science and Engineering C, 2021, 127, 112198.	7.3	37
2307	Artificial tumor microenvironment regulated by first hemorrhage for enhanced tumor targeting and then occlusion for synergistic bioactivation of hypoxia-sensitive platesomes. Acta Pharmaceutica Sinica B, 2022, 12, 1487-1499.	12.0	11
2308	Safe and efficient 2D molybdenum disulfide platform for cooperative imaging-guided photothermal-selective chemotherapy: A preclinical study. Journal of Advanced Research, 2022, 37, 255-266.	9.5	45
2309	Fabrication of template-synthesized uniform gel nanorods for responsive drug delivery applications. MRS Communications, 0 , 1 .	1.8	1
2310	Imaging Strategy that Achieves Ultrahigh Contrast by Utilizing Differential Esterase Activity in Organs: Application in Early Detection of Pancreatic Cancer. ACS Nano, 2021, 15, 17348-17360.	14.6	21
2311	MiRNAs and Cancer: Key Link in Diagnosis and Therapy. Genes, 2021, 12, 1289.	2.4	44
2312	Strategies for Browning Agent Delivery. Pharmaceutical Research, 2021, 38, 1327-1334.	3.5	8
2313	Nanotechnology in Tumor Biomarker Detection: The Potential of Liganded Nanoclusters as Nonlinear Optical Contrast Agents for Molecular Diagnostics of Cancer. Cancers, 2021, 13, 4206.	3.7	27
2314	Advanced Computational Methodologies Used in the Discovery of New Natural Anticancer Compounds. Frontiers in Pharmacology, 2021, 12, 702611.	3.5	33
2315	An iron oxide nanoparticle-based transdermal nanoplatform for dual-modal imaging-guided chemo-photothermal therapy of superficial tumors. Acta Biomaterialia, 2021, 130, 473-484.	8.3	15
2316	Challenges towards Targeted Drug Delivery in Cancer Nanomedicines. Processes, 2021, 9, 1527.	2.8	36
2317	Dendrimeric nanosystem consistently circumvents heterogeneous drug response and resistance in pancreatic cancer. Exploration, 2021, 1, 21-34.	11.0	64
2318	Synthesis and Properties of Targeted Radioisotope Carriers Based on Poly(Acrylic Acid) Nanogels. Pharmaceutics, 2021, 13, 1240.	4.5	8
2319	Retinoic Acid-Loaded Dendritic Polyglycerol-Conjugated Gold Nanostars for Targeted Photothermal Therapy in Breast Cancer Stem Cells. ACS Nano, 2021, 15, 15069-15084.	14.6	55
2320	Perfluorocarbon nanomaterials for photodynamic therapy. Current Opinion in Colloid and Interface Science, 2021, 54, 101454.	7.4	23
2321	Theranostic Heterodimeric Prodrug with Dualâ€Channel Fluorescence Turnâ€On and Dualâ€Prodrug Activation for Synergistic Cancer Therapy. Advanced Healthcare Materials, 2021, 10, e2101144.	7.6	8
2322	Redox-Responsive Mesoporous Silica Nanoparticles for Cancer Treatment: Recent Updates. Nanomaterials, 2021, 11, 2222.	4.1	20

#	Article	IF	CITATIONS
2323	Lipophilic Conjugates of Drugs: A Tool to Improve Drug Pharmacokinetic and Therapeutic Profiles. Pharmaceutical Research, 2021, 38, 1497-1518.	3.5	14
2324	Advances in the application of nanotechnology in reducing cardiotoxicity induced by cancer chemotherapy. Seminars in Cancer Biology, 2022, 86, 929-942.	9.6	14
2325	Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation. Biomaterials, 2021, 275, 120910.	11.4	37
2326	Liposomes: An Emerging Approach for the Treatment of Cancer. Current Pharmaceutical Design, 2021, 27, 2398-2414.	1.9	2
2327	Improved Anti-Triple Negative Breast Cancer Effects of Docetaxel by RGD-Modified Lipid-Core Micelles. International Journal of Nanomedicine, 2021, Volume 16, 5265-5279.	6.7	17
2328	Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Coâ€assembly with Camptothecin Prodrug. Angewandte Chemie - International Edition, 2021, 60, 21033-21039.	13.8	22
2329	Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Coâ€assembly with Camptothecin Prodrug. Angewandte Chemie, 2021, 133, 21201-21207.	2.0	2
2330	mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nature Reviews Drug Discovery, 2021, 20, 817-838.	46.4	577
2331	Sphingomyelin nanosystems loaded with uroguanylin and etoposide for treating metastatic colorectal cancer. Scientific Reports, 2021, 11, 17213.	3.3	14
2332	Magnetoâ€Endosomalytic Therapy for Cancer. Advanced Healthcare Materials, 2022, 11, e2101010.	7.6	6
2333	Domino Reaction Encoded Heterogeneous Colloidal Microswarm with Onâ€Demand Morphological Adaptability. Advanced Materials, 2021, 33, e2100070.	21.0	64
2334	Silver Nanoparticles Derived by ArtemisiaÂarborescens Reveal Anticancer and Apoptosis-Inducing Effects. International Journal of Molecular Sciences, 2021, 22, 8621.	4.1	11
2335	Colloidally Stabilized DSPE-PEG-Glucose/Calcium Phosphate Hybrid Nanocomposites for Enhanced Photodynamic Cancer Therapy via Complementary Mitochondrial Ca ²⁺ Overload and Autophagy Inhibition. ACS Applied Materials & Description of the Autophagy Inhibition. ACS Applied Materials & Description of the Autophagy Inhibition. ACS Applied Materials & Description of the Autophagy Inhibition.	8.0	26
2336	Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles Enable a Stable Non-Spilling Loading of T Cells and Their Magnetic Accumulation. Cancers, 2021, 13, 4143.	3.7	11
2337	ATP-responsive near-infrared fluorescence MOF nanoprobe for the controlled release of anticancer drug. Mikrochimica Acta, 2021, 188, 287.	5.0	10
2338	Emerging nanomedicine-based therapeutics for hematogenous metastatic cascade inhibition: Interfering with the crosstalk between "seed and soilâ€. Acta Pharmaceutica Sinica B, 2021, 11, 2286-2305.	12.0	8
2340	Semiconducting Polymer Nanoparticles as Activatable Nanomedicines for Combinational Phototherapy. ACS Applied Polymer Materials, 2021, 3, 4375-4389.	4.4	28
2341	Daratumumab Immunopolymersomeâ€Enabled Safe and CD38â€Targeted Chemotherapy and Depletion of Multiple Myeloma. Advanced Materials, 2021, 33, e2007787.	21.0	25

#	Article	IF	CITATIONS
2342	Versatile gadolinium(III)-phthalocyaninate photoagent for MR/PA imaging-guided parallel photocavitation and photodynamic oxidation at single-laser irradiation. Biomaterials, 2021, 275, 120993.	11.4	10
2343	Targeting the tumor microenvironment with amphiphilic near-infrared cyanine nanoparticles for potentiated photothermal immunotherapy. Biomaterials, 2021, 275, 120926.	11.4	31
2344	Application of green synthesized silver nanoparticles in cancer treatment—a critical review. Materials Research Express, 2021, 8, 092001.	1.6	42
2345	Advancement in design of nanostructured lipid carriers for cancer targeting and theranostic application. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129936.	2.4	22
2346	Emerging biocompatible nanoplatforms for the potential application in diagnosis and therapy of deep tumors. View, 2022, 3, 20200174.	5. 3	30
2347	A Dualâ€Nanozymeâ€Catalyzed Cascade Reactor for Enhanced Photodynamic Oncotherapy against Tumor Hypoxia. Advanced Healthcare Materials, 2021, 10, e2101049.	7.6	36
2348	Cancer immunotherapy: Classification, therapeutic mechanisms, and nanomaterial-based synergistic therapy. Applied Materials Today, 2021, 24, 101149.	4.3	7
2349	Novel nanomedicines to overcome cancer multidrug resistance. Drug Resistance Updates, 2021, 58, 100777.	14.4	93
2350	Janus metallic mesoporous silica nanoparticles: Unique structures for cancer theranostics. Current Opinion in Biomedical Engineering, 2021, 19, 100294.	3.4	8
2351	Stimuli-responsive graphene oxide and methotrexate-loaded magnetic nanoparticles for breast cancer-targeted therapy. Nanomedicine, 2021, 16, 2155-2174.	3.3	14
2352	Decoration of Squalenoylâ€Gemcitabine Nanoparticles with Squalenylâ€Hydroxybisphosphonate for the Treatment of Bone Tumors. ChemMedChem, 2021, 16, 3730-3738.	3.2	5
2353	Modulating tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors: A TAM-pting approach., 2022, 231, 107986.		30
2354	Mitochondria-targeted nanoparticles (mitoNANO): An emerging therapeutic shortcut for cancer. Biomaterials and Biosystems, 2021, 3, 100023.	2.2	22
2355	Polymeric nanomedicines targeting hematological malignancies. Journal of Controlled Release, 2021, 337, 571-588.	9.9	15
2356	Current Trends and Challenges in Pharmacoeconomic Aspects of Nanocarriers as Drug Delivery Systems for Cancer Treatment. International Journal of Nanomedicine, 2021, Volume 16, 6593-6644.	6.7	26
2357	Dextran-polylactide micelles loaded with doxorubicin and DiR for image-guided chemo-photothermal tumor therapy. International Journal of Biological Macromolecules, 2021, 187, 296-308.	7.5	9
2358	Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. Polymer, 2021, 230, 124024.	3.8	21
2359	Application of lanthanide-doped upconversion nanoparticles for cancer treatment: a review. Nanomedicine, 2021, 16, 2207-2242.	3.3	15

#	ARTICLE	IF	Citations
2360	Cargo loading within ferritin nanocages in preparation for tumor-targeted delivery. Nature Protocols, 2021, 16, 4878-4896.	12.0	43
2361	Allâ€inâ€One Nanomedicine: Multifunctional Singleâ€Component Nanoparticles for Cancer Theranostics. Small, 2021, 17, e2103072.	10.0	57
2362	Modulation of Colorectal Tumor Behavior via lncRNA TP53TG1-Lipidic Nanosystem. Pharmaceutics, 2021, 13, 1507.	4.5	4
2363	Core-Shell Structured Theranotics. Nano LIFE, 0, , 2141004.	0.9	2
2364	Combining gene therapy with other therapeutic strategies and imaging agents for cancer theranostics. International Journal of Pharmaceutics, 2021, 606, 120905.	5 . 2	5
2365	Therapeutic roles of mesenchymal stem cell-derived extracellular vesicles in cancer. Journal of Hematology and Oncology, 2021, 14, 136.	17.0	131
2366	Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches. Journal of Controlled Release, 2021, 337, 27-58.	9.9	44
2367	Protein Corona Inhibits Endosomal Escape of Functionalized DNA Nanostructures in Living Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 46375-46390.	8.0	20
2368	Considerations for the delivery of STING ligands in cancer immunotherapy. Journal of Controlled Release, 2021, 339, 235-247.	9.9	18
2369	Smart nanocarriers as therapeutic platforms for bladder cancer. Nano Research, 2022, 15, 2157-2176.	10.4	7
2370	Nanomedicine-based strategies to target and modulate the tumor microenvironment. Trends in Cancer, 2021, 7, 847-862.	7.4	36
2371	Dendronized hyaluronic acid-docetaxel conjugate as a stimuli-responsive nano-agent for breast cancer therapy. Carbohydrate Polymers, 2021, 267, 118160.	10.2	29
2372	Chitosan-based nanoparticle co-delivery of docetaxel and curcumin ameliorates anti-tumor chemoimmunotherapy in lung cancer. Carbohydrate Polymers, 2021, 268, 118237.	10.2	63
2373	"Petal-like―size-tunable gold wrapped immunoliposome to enhance tumor deep penetration for multimodal guided two-step strategy. Journal of Nanobiotechnology, 2021, 19, 293.	9.1	8
2374	Nanoparticles Targeting Innate Immune Cells in Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 10009.	4.1	14
2375	Nano-Drug Design Based on the Physiological Properties of Glutathione. Molecules, 2021, 26, 5567.	3.8	14
2376	Engineering Nanorobots for Tumorâ€Targeting Drug Delivery: From Dynamic Control to Stimuliâ€Responsive Strategy. ChemBioChem, 2021, 22, 3369-3380.	2.6	10
2377	Biodegradable cascade nanocatalysts enable tumor-microenvironment remodeling for controllable CO release and targeted/synergistic cancer nanotherapy. Biomaterials, 2021, 276, 121001.	11.4	35

#	ARTICLE	IF	CITATIONS
2378	Gold Compounds and the Anticancer Immune Response. Frontiers in Pharmacology, 2021, 12, 739481.	3.5	7
2379	Nanotechnologies for the delivery of biologicals: Historical perspective and current landscape. Advanced Drug Delivery Reviews, 2021, 176, 113899.	13.7	33
2380	A Novel Water-Soluble C60 Fullerene-Based Nano-Platform Enhances Efficiency of Anticancer Chemotherapy. , 2022, , 59-93.		0
2381	Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coordination Chemistry Reviews, 2021, 442, 213949.	18.8	31
2382	Bispecific prodrug nanoparticles circumventing multiple immune resistance mechanisms for promoting cancer immunotherapy. Acta Pharmaceutica Sinica B, 2022, 12, 2695-2709.	12.0	31
2383	Jâ€Aggregationâ€Driven Supramolecular Assembly of Dyeâ€Conjugated Block Polymers: From Morphological Tailoring to Anticancer Applications. Advanced Functional Materials, 2021, 31, 2105189.	14.9	10
2384	Self-Assembling Peptide Dendron Nanoparticles with High Stability and a Multimodal Antimicrobial Mechanism of Action. ACS Nano, 2021, 15, 15824-15840.	14.6	54
2385	Design and Optimization of the Circulatory Cell-Driven Drug Delivery Platform. Stem Cells International, 2021, 2021, 1-21.	2.5	2
2386	Ciprofibrate-Loaded Nanoparticles Prepared by Nanoprecipitation: Synthesis, Characterization, and Drug Release. Polymers, 2021, 13, 3158.	4.5	2
2387	Amphiphilic Diketopyrrolopyrrole Derivatives for Efficient Near-Infrared Fluorescence Imaging and Photothermal Therapy. ACS Omega, 2021, 6, 26575-26582.	3 . 5	8
2388	Carbon dots as a new class of nanomedicines: Opportunities and challenges. Coordination Chemistry Reviews, 2021, 442, 214010.	18.8	158
2389	Application of molecular docking in elaborating molecular mechanisms and interactions of supramolecular cyclodextrin. Carbohydrate Polymers, 2022, 276, 118644.	10.2	52
2390	Smart Shockwave Responsive Titania-Based Nanoparticles for Cancer Treatment. Pharmaceutics, 2021, 13, 1423.	4.5	10
2391	Pharmacodynamic Studies of Fluorescent Diamond Carriers of Doxorubicin in Liver Cancer Cells and Colorectal Cancer Organoids. Nanotechnology, Science and Applications, 2021, Volume 14, 139-159.	4.6	2
2392	Recent Advances in Repurposing Disulfiram and Disulfiram Derivatives as Copper-Dependent Anticancer Agents. Frontiers in Molecular Biosciences, 2021, 8, 741316.	3.5	59
2393	Construction polyprodrugs by click-reactions and metal-coordination: pH-responsive release for magnetic resonance imaging guided chemotherapy. Chemical Engineering Journal, 2021, 422, 130108.	12.7	5
2394	Hyperbaric oxygen regulates tumor microenvironment and boosts commercialized nanomedicine delivery for potent eradication of cancer stem-like cells. Nano Today, 2021, 40, 101248.	11.9	34
2395	Nanobiotechnology-assisted therapies to manage brain cancer in personalized manner. Journal of Controlled Release, 2021, 338, 224-243.	9.9	38

#	Article	IF	CITATIONS
2396	Impact of macroporous silica nanoparticles at sub-50nm on bio-behaviors and biosafety in drug-resistant cancer models. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111912.	5.0	5
2397	Protonated 2D carbon nitride sensitized with Ce6 as a smart metal-free nanoplatform for boosted acute multimodal photo-sono tumor inactivation and long-term cancer immunotherapy. Chemical Engineering Journal, 2021, 422, 130089.	12.7	29
2398	Mesoporous silica nanoparticles for pulmonary drug delivery. Advanced Drug Delivery Reviews, 2021, 177, 113953.	13.7	64
2399	Rationally designed drug delivery systems for the local treatment of resected glioblastoma. Advanced Drug Delivery Reviews, 2021, 177, 113951.	13.7	41
2400	Folic acid-doxorubicin polymeric nanocapsules: A promising formulation for the treatment of triple-negative breast cancer. European Journal of Pharmaceutical Sciences, 2021, 165, 105943.	4.0	7
2401	Engineering glutathione-responsive near-infrared polymeric prodrug system for fluorescence imaging in tumor therapy. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111966.	5.0	5
2402	An insight into aptamer engineered dendrimer for cancer therapy. European Polymer Journal, 2021, 159, 110746.	5.4	47
2403	Anisamide-modified dual-responsive drug delivery system with MRI capacity for cancer targeting therapy. Journal of Molecular Liquids, 2021, 340, 116889.	4.9	6
2404	Dendrimer-decorated nanogels: Efficient nanocarriers for biodistribution in vivo and chemotherapy of ovarian carcinoma. Bioactive Materials, 2021, 6, 3244-3253.	15.6	46
2405	Quantitative comparison of different fluorescent dye-loaded nanoparticles. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111923.	5.0	7
2406	Dual-locking nanoprobe based on hemicyanine for orthogonal stimuli-triggered precise cancer imaging and therapy. Journal of Controlled Release, 2021, 338, 307-315.	9.9	7
2407	Gold nanorods conjugated with biocompatible zwitterionic polypeptide for combined chemo-photothermal therapy of cervical cancer. Colloids and Surfaces B: Biointerfaces, 2021, 207, 112014.	5.0	19
2408	Ultra pH-sensitive nanocarrier based on Fe2O3/chitosan/montmorillonite for quercetin delivery. International Journal of Biological Macromolecules, 2021, 191, 738-745.	7.5	53
2409	Current trends and future perspectives of nanomedicine for the management of colon cancer. European Journal of Pharmacology, 2021, 910, 174464.	3.5	32
2410	Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Advanced Drug Delivery Reviews, 2021, 178, 113964.	13.7	71
2411	Tailored theranostic nanoparticles cause efficient ferroptosis in head and neck squamous cell carcinoma through a reactive oxygen species "butterfly effect― Chemical Engineering Journal, 2021, 423, 130083.	12.7	18
2412	Biodegradable iron-doped ZIF-8 based nanotherapeutic system with synergistic chemodynamic/photothermal/chemo-therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127388.	4.7	14
2413	Non-viral vector mediated CKb11 with folic acid modification regulates macrophage polarization and DC maturation to elicit immune response against cancer. Bioactive Materials, 2021, 6, 3678-3691.	15.6	13

#	Article	IF	CITATIONS
2414	Augment the efficacy of eradicating metastatic lesions and tumor proliferation in breast cancer by honokiol-loaded pH-sensitive targeted lipid nanoparticles. Colloids and Surfaces B: Biointerfaces, 2021, 207, 112008.	5.0	9
2415	pH-sensitive and tumor-targeting nanogels based on ortho ester-modified PEG for improving the in vivo anti-tumor efficiency of doxorubicin. Colloids and Surfaces B: Biointerfaces, 2021, 207, 112024.	5.0	10
2416	Triapine/Ce6-loaded and lactose-decorated nanomicelles provide an effective chemo-photodynamic therapy for hepatocellular carcinoma through a reactive oxygen species-boosting and ferroptosis-inducing mechanism. Chemical Engineering Journal, 2021, 425, 131543.	12.7	21
2417	Surface modified and rituximab functionalized PAMAM G4 nanoparticle for targeted imatinib delivery to leukemia cells: In vitro studies. Process Biochemistry, 2021, 111, 221-229.	3.7	19
2418	Advances in the Application of Liposomal Nanosystems in Anticancer Therapy. Current Stem Cell Research and Therapy, 2021, 16, 14-22.	1.3	5
2419	pH and charge reversal-driven nanoplatform for efficient delivery of therapeutics. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112106.	5.0	3
2420	A dual-sensitive poly(amino acid)/hollow mesoporous silica nanoparticle-based anticancer drug delivery system with a rapid charge-reversal property. Journal of Drug Delivery Science and Technology, 2021, 66, 102817.	3.0	4
2421	Bioinspired metal–organic frameworks mediated efficient delivery of siRNA for cancer therapy. Chemical Engineering Journal, 2021, 426, 131926.	12.7	33
2422	Facile synthesis of Mn doped TiO2 rhombic nanocomposites for enhanced T1-Magnetic resonance imaging and photodynamic therapy. Materials Research Bulletin, 2021, 144, 111481.	5.2	16
2423	Potential applications of nanomedicine for treating Parkinson's disease. Journal of Drug Delivery Science and Technology, 2021, 66, 102793.	3.0	7
2424	Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification. Bioactive Materials, 2022, 8, 220-240.	15.6	84
2425	Hyaluronic acid-modified manganese dioxide-enveloped hollow copper sulfide nanoparticles as a multifunctional system for the co-delivery of chemotherapeutic drugs and photosensitizers for efficient synergistic antitumor treatments. Journal of Colloid and Interface Science, 2022, 605, 296-310.	9.4	31
2426	Targeting cancer-associated fibroblasts in immunotherapy. , 2022, , 163-209.		2
2427	Proof of concept for dual anticancer effects by a novel nanomaterial-mediated cancer cell killing and nano-radiosensitization. Chemical Engineering Journal, 2022, 429, 132328.	12.7	16
2428	Implantable and long-lasting drug delivery systems for cancer treatment., 2022,, 129-162.		2
2429	Delivery strategies for STING agonists. , 2022, , 333-357.		0
2430	Co-delivery of 5-fluorouracil and miRNA-34a mimics by host-guest self-assembly nanocarriers for efficacious targeted therapy in colorectal cancer patient-derived tumor xenografts. Theranostics, 2021, 11, 2475-2489.	10.0	22
2431	Nanoparticle-based theranostics in cancer. , 2021, , 1-24.		0

#	Article	IF	CITATIONS
2432	Engineering of stealth (maghemite/PLGA)/chitosan (core/shell)/shell nanocomposites with potential applications for combined MRI and hyperthermia against cancer. Journal of Materials Chemistry B, 2021, 9, 4963-4980.	5.8	15
2433	Untargeted Large Volume Hyperthermia Reduces Tumor Drug Uptake From Thermosensitive Liposomes. IEEE Open Journal of Engineering in Medicine and Biology, 2021, 2, 187-197.	2.3	8
2434	"Fishing―nano–bio interactions at the key biological barriers. Nanoscale, 2021, 13, 5954-5964.	5.6	6
2435	Skillfully collaborating chemosynthesis with GOx-enabled tumor survival microenvironment deteriorating strategy for amplified chemotherapy and enhanced tumor ablation. Biomaterials Science, 2021, 9, 1855-1871.	5.4	8
2436	External and Internal Stimuli-Responsive Metallic Nanotherapeutics for Enhanced Anticancer Therapy. Frontiers in Molecular Biosciences, 2020, 7, 597634.	3.5	43
2437	Nanoparticles in analytical laser and plasma spectroscopy – a review of recent developments in methodology and applications. Journal of Analytical Atomic Spectrometry, 2021, 36, 1826-1872.	3.0	20
2438	Recent progress on nanomedicine-induced ferroptosis for cancer therapy. Biomaterials Science, 2021, 9, 5092-5115.	5.4	38
2439	Boosting Nanomedicine Efficacy with Hyperbaric Oxygen Therapy. Advances in Experimental Medicine and Biology, 2021, 1295, 77-95.	1.6	11
2440	When metal–organic framework mediated smart drug delivery meets gastrointestinal cancers. Journal of Materials Chemistry B, 2021, 9, 3967-3982.	5.8	22
2441	A Review for Antimicrobial Peptides with Anticancer Properties: Re-purposing of Potential Anticancer Agents. BIO Integration, $2021, 1, \dots$	1.3	17
2442	ROS-responsive organosilica nanocarrier for the targeted delivery of metformin against cancer with the synergistic effect of hypoglycemia. Journal of Materials Chemistry B, 2021, 9, 6044-6055.	5.8	11
2443	Challenges and Opportunities of Nanomedicines in Clinical Translation. BIO Integration, 2021, 2, .	1.3	99
2444	Nanocarriers in novel drug delivery system. , 2021, , 421-437.		1
2445	Synergistically enhanced multienzyme catalytic nanoconjugates for efficient cancer therapy. Journal of Materials Chemistry B, 2021, 9, 5877-5886.	5.8	18
2446	Conventional Nanosized Drug Delivery Systems for Cancer Applications. Advances in Experimental Medicine and Biology, 2021, 1295, 3-27.	1.6	6
2447	Nanocarriers for the Diagnosis and Treatment of Cancer. Nanomedicine and Nanotoxicology, 2021, , 223-252.	0.2	0
2448	RGD-expressed bacterial membrane-derived nanovesicles enhance cancer therapy <i>via</i> multiple tumorous targeting. Theranostics, 2021, 11, 3301-3316.	10.0	28
2449	A tumor-cell biomimetic nanoplatform embedding biological enzymes for enhanced metabolic therapy. Chemical Communications, 2021, 57, 9398-9401.	4.1	5

#	Article	IF	CITATIONS
2450	Utilization of Bio-Imaging in Cancer Studies. Advances in Medical Diagnosis, Treatment, and Care, 2021, ,534-540.	0.1	1
2451	Design and enhanced gene silencing activity of spherical 2′-fluoroarabinose nucleic acids (FANA-SNAs). Chemical Science, 2021, 12, 2993-3003.	7.4	15
2452	Size-Dependent Penetration of Gold Nanoprobes into Fixed Cells. ACS Omega, 2021, 6, 3791-3799.	3.5	4
2453	Enzyme-responsive micellar JQ1 induces enhanced BET protein inhibition and immunotherapy of malignant tumors. Biomaterials Science, 2021, 9, 6915-6926.	5.4	13
2454	Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chemical Society Reviews, 2021, 50, 6013-6041.	38.1	342
2455	How stereochemistry of lipid components can affect lipid organization and the route of liposome internalization into cells. Nanoscale, 2021, 13, 11976-11993.	5.6	8
2456	Advances of smart nano-drug delivery systems in osteosarcoma treatment. Journal of Materials Chemistry B, 2021, 9, 5439-5450.	5.8	20
2457	Nanoparticles and bioorthogonal chemistry joining forces for improved biomedical applications. Nanoscale Advances, 2021, 3, 1261-1292.	4.6	24
2458	Photo-triggered nucleus targeting for cancer drug delivery. Nano Research, 2021, 14, 2630-2636.	10.4	16
2459	Recent advances in nanotherapeutics for the treatment of burn wounds. Burns and Trauma, 2021, 9, tkab026.	4.9	24
2460	3D printing of functional microrobots. Chemical Society Reviews, 2021, 50, 2794-2838.	38.1	178
2461	A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein Journal of Nanotechnology, 2021, 12, 102-136.	2.8	84
2462	Stimuli-responsive polydopamine-based smart materials. Chemical Society Reviews, 2021, 50, 8319-8343.	38.1	262
2463	Constructing a passive targeting and long retention therapeutic nanoplatform based on water-soluble, non-toxic and highly-stable core–shell poly(amino acid) nanocomplexes. Biomaterials Science, 2021, 9, 7065-7075.	5.4	5
2464	Biomimetic, Hypoxiaâ€Responsive Nanoparticles Overcome Residual Chemoresistant Leukemic Cells with Coâ€Targeting of Therapyâ€Induced Bone Marrow Niches. Advanced Functional Materials, 2020, 30, 2000309.	14.9	29
2465	Metal–Organic Framework Assisted and Tumor Microenvironment Modulated Synergistic Imageâ€Guided Photoâ€Chemo Therapy. Advanced Functional Materials, 2020, 30, 2002431.	14.9	67
2466	Biocompatible Iron–Boron Nanoparticles Designed for Neutron Capture Therapy Guided by Magnetic Resonance Imaging. Advanced Healthcare Materials, 2021, 10, e2001632.	7.6	24
2467	A Nanostrategy for Efficient Imagingâ€Guided Antitumor Therapy through a Stimuliâ€Responsive Branched Polymeric Prodrug. Advanced Science, 2020, 7, 1903243.	11.2	165

#	Article	IF	CITATIONS
2468	Engineering Protein Venoms as Selfâ€Assembling CXCR4â€Targeted Cytotoxic Nanoparticles. Particle and Particle Systems Characterization, 2020, 37, 2000040.	2.3	9
2469	Protein Corona: Impact of Lymph Versus Blood in a Complex In Vitro Environment. Small, 2017, 13, 1700409.	10.0	32
2470	Nanotechnology's application in Type 1 diabetes. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1645.	6.1	7
2471	Nanomaterials in Medicine. , 2017, , 67-89.		2
2472	Excretion and Clearance. Biological and Medical Physics Series, 2018, , 347-368.	0.4	4
2473	Using Integrated Cancer-on-Chip Platforms to Emulate and Probe Various Cancer Models. , 2019, , 151-204.		2
2474	Antibody-Targeted Nanoparticles for Cancer Treatment. , 2020, , 35-65.		3
2475	Cystine proportion regulates fate of polypeptide nanogel as nanocarrier for chemotherapeutics. Science China Chemistry, 2021, 64, 293-301.	8.2	56
2476	The current perspectives of nanoparticles in cellular and organ-specific drug targeting in biological system. , 2018, , 105-154.		2
2477	Membrane-core nanoparticles for cancer nanomedicine. Advanced Drug Delivery Reviews, 2020, 156, 23-39.	13.7	53
2478	Nucleic acid nanotechnology for cancer treatment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188377.	7.4	31
2479	Albumin coated trimethyl chitosan-based targeting delivery platform for photothermal/chemo-synergistic cancer therapy. Carbohydrate Polymers, 2020, 241, 116335.	10.2	19
2480	RBC membrane camouflaged boron nitride nanospheres for enhanced biocompatible performance. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110964.	5.0	17
2481	Mechanistic insights into the pH-dependent membrane peptide ATRAM. Journal of Controlled Release, 2019, 298, 142-153.	9.9	22
2482	Steric Shielding of cRGD-Functionalized Nanoparticles from Premature Exposition to Off-Target Endothelial Cells under a Physiological Flow. ACS Applied Bio Materials, 2021, 4, 640-650.	4.6	9
2483	Targeted Polymeric Nanoparticles for Drug Delivery to Hypoxic, Triple-Negative Breast Tumors. ACS Applied Bio Materials, 2021, 4, 1450-1460.	4.6	29
2484	Polyphenol Nanoparticles from Commonly Consumed Tea for Scavenging Free Radicals, Stabilizing Pickering Emulsions, and Inhibiting Cancer Cells. ACS Applied Nano Materials, 2021, 4, 652-665.	5.0	26
2485	Sequential Treatment of Bioresponsive Nanoparticles Elicits Antiangiogenesis and Apoptosis and Synergizes with a CD40 Agonist for Antitumor Immunity. ACS Nano, 2021, 15, 765-780.	14.6	22

#	Article	IF	CITATIONS
2486	Chemo-physical Strategies to Advance the <i>in Vivo</i> Functionality of Targeted Nanomedicine: The Next Generation. Journal of the American Chemical Society, 2021, 143, 538-559.	13.7	148
2487	Nanomedicine-mediated alteration of the pharmacokinetic profile of small molecule cancer immunotherapeutics. Acta Pharmacologica Sinica, 2020, 41, 881-894.	6.1	19
2488	Light-responsive Drug Delivery Systems. Biomaterials Science Series, 2018, , 163-191.	0.2	1
2489	Influence of nanomedicine mechanical properties on tumor targeting delivery. Chemical Society Reviews, 2020, 49, 2273-2290.	38.1	123
2490	Molecular and nanoengineering approaches towards activatable cancer immunotherapy. Chemical Society Reviews, 2020, 49, 4234-4253.	38.1	228
2491	Probing the interaction of silver nanoparticles with tau protein and neuroblastoma cell line as nervous system models. Journal of Biomolecular Structure and Dynamics, 2018, 36, 4057-4071.	3.5	25
2492	Investigation of magnetically driven passage of magnetic nanoparticles through eye tissues for magnetic drug targeting. Nanotechnology, 2020, 31, 495101.	2.6	14
2495	Efficient blockade of locally reciprocated tumor-macrophage signaling using a TAM-avid nanotherapy. Science Advances, 2020, 6, eaaz8521.	10.3	22
2496	A pH-Induced Reversible Assembly System with Resveratrol-Controllable Loading and Release for Enhanced Tumor-Targeting Chemotherapy. Nanoscale Research Letters, 2019, 14, 305.	5.7	11
2497	High density lipoprotein mimicking nanoparticles for atherosclerosis. Nano Convergence, 2020, 7, 6.	12.1	30
2498	Controlled release of targeted chemotherapeutic drug dabrafenib for melanoma cancers monitored using surface-enhanced Raman scattering (SERS) spectroscopy. Mediterranean Journal of Chemistry, 2018, 7, 18-27.	0.7	9
2499	Magnetic hybrid materials interact with biological matrices. ChemistrySelect, 2022, 7, 1443-1500.	1.5	1
2500	A review of the current understanding of nanoparticles protein corona composition. Medicine and Pharmacy Reports, 2020, 93, 342-350.	0.4	12
2501	Development, in vitro biocompatibility, and antitumor efficacy of acetic acid-modified Cordyceps sinensis polysaccharide nanoparticle drug delivery system. Brazilian Journal of Pharmaceutical Sciences, 0, 56, .	1.2	1
2502	Bridging the divide: preclinical research discrepancies between triple-negative breast cancer cell lines and patient tumors. Oncotarget, 2017, 8, 113269-113281.	1.8	44
2503	<p>Co-Delivery of Docetaxel and Salinomycin to Target Both Breast Cancer Cells and Stem Cells by PLGA/TPGS Nanoparticles</p> . International Journal of Nanomedicine, 2019, Volume 14, 9199-9216.	6.7	60
2504	Recent Progresses in Organic-Inorganic Nano Technological Platforms for Cancer Therapeutics. Current Medicinal Chemistry, 2020, 27, 6015-6056.	2.4	10
2505	Peptide-Conjugated Nanoparticles as Targeted Anti-angiogenesis Therapeutic and Diagnostic in Cancer. Current Medicinal Chemistry, 2019, 26, 5664-5683.	2.4	11

#	Article	IF	CITATIONS
2506	Nanoparticles in Combating Cancer: Opportunities and Limitations: A Brief Review. Current Medicinal Chemistry, 2020, 28, 346-359.	2.4	38
2507	Tumor in 3D: In Vitro Complex Cellular Models to Improve Nanodrugs Cancer Therapy. Current Medicinal Chemistry, 2020, 27, 7234-7255.	2.4	7
2508	Microfluidic-Based Platform for the Evaluation of Nanomaterial-Mediated Drug Delivery: From High-Throughput Screening to Dynamic Monitoring. Current Pharmaceutical Design, 2019, 25, 2953-2968.	1.9	4
2509	Strategies for Conjugation of Biomolecules to Nanoparticles as Tumor Targeting Agents. Current Pharmaceutical Design, 2019, 25, 3917-3926.	1.9	14
2510	Surface-Engineered Cancer Nanomedicine: Rational Design and Recent Progress. Current Pharmaceutical Design, 2020, 26, 1181-1190.	1.9	35
2511	Trends in Nanotechnology for in vivo Cancer Diagnosis: Products and Patents. Current Pharmaceutical Design, 2020, 26, 2167-2181.	1.9	2
2512	Novel Strategies for Targeting Prostate Cancer. Current Drug Delivery, 2019, 16, 712-727.	1.6	19
2513	Drug Delivery Based on Nanotechnology for Target Bone Disease. Current Drug Delivery, 2019, 16, 782-792.	1.6	9
2514	Cancer Nanotechnology-An Excursion on Drug Delivery Systems. Anti-Cancer Agents in Medicinal Chemistry, 2019, 18, 2078-2092.	1.7	10
2515	Formulation and Characterization of Gefitinib-loaded Polymeric Nanoparticles Using Box-Behnken Design. Current Nanomedicine, 2019, 9, 46-60.	0.6	4
2516	Copper-64 labeled nanoparticles for positron emission tomography imaging: a review of the recent literature. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2020, 64, 346-355.	0.7	6
2517	<i>In vitro</i> evaluation of anticancer activity of sodium hyaluronate-titanium dioxide bionanocomposite. Current Issues in Pharmacy and Medical Sciences, 2019, 32, 99-103.	0.4	5
2518	Precision nanomedicine in atherosclerosis therapy: how far are we from reality?. Precision Nanomedicine, 2018, 2, 230-244.	0.8	3
2519	Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 351.	3.7	45
2520	Environmental Impact of Nanoparticles' Application as an Emerging Technology: A Review. Materials, 2021, 14, 166.	2.9	85
2521	Nutritional and Pharmaceutical Applications of Nanotechnology: Trends and Advances. International Journal of Pharmacology, 2017, 13, 340-350.	0.3	13
2522	Nanodrugs used in cancer therapy. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2019, 163, 122-131.	0.6	31
2523	A microfluidic approach for sequential assembly of siRNA polyplexes with a defined structure-activity relationship. , 0, 1, e1.		5

#	Article	IF	CITATIONS
2524	Engineering of HN3 increases the tumor targeting specificity of exosomes and upgrade the anti-tumor effect of sorafenib on HuH-7 cells. PeerJ, 2020, 8, e9524.	2.0	6
2525	Emerging Metal-Organic Framework Nanomaterials for Cancer Theranostics. Nanotechnology in the Life Sciences, 2021, , 231-274.	0.6	1
2526	Nano-oncology: Clinical Application for Cancer Therapy and Future Perspectives. Nanotechnology in the Life Sciences, 2021, , 49-95.	0.6	0
2527	Targeted delivery and stimulus-responsive release of anticancer drugs for efficient chemotherapy. Drug Delivery, 2021, 28, 2218-2228.	5.7	5
2528	Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics. Chemical Society Reviews, 2021, 50, 12883-12896.	38.1	108
2529	Cancer-Targeted Nanotheranostics: Recent Advances and Future Perspectives. Nanotechnology in the Life Sciences, 2021, , 97-115.	0.6	4
2530	Multiparametric nanoparticle-induced toxicity readouts with single cell resolution in HepG2 multicellular tumour spheroids. Nanoscale, 2021, 13, 17615-17628.	5.6	5
2531	A multifunctional nano-delivery system enhances the chemo- <i>co</i> -phototherapy of tumor multidrug resistance <i>via</i> mitochondrial-targeting and inhibiting P-glycoprotein-mediated efflux. Journal of Materials Chemistry B, 2021, 9, 9174-9182.	5.8	14
2532	Hierarchical nanoclusters with programmed disassembly for mitochondria-targeted tumor therapy with MR imaging. Biomaterials Science, 2021, 9, 8189-8201.	5.4	7
2533	Polyamino acid calcified nanohybrids induce immunogenic cell death for augmented chemotherapy and chemo-photodynamic synergistic therapy. Theranostics, 2021, 11, 9652-9666.	10.0	15
2534	Preparation of a PEGylated liposome that co-encapsulates <scp>l</scp> -arginine and doxorubicin to achieve a synergistic anticancer effect. RSC Advances, 2021, 11, 34101-34106.	3.6	7
2535	ZnS@BSA Nanoclusters Potentiate Efficacy of Cancer Immunotherapy. Advanced Materials, 2021, 33, e2104037.	21.0	89
2536	Nanoprotein Interaction Atlas Reveals the Transport Pathway of Gold Nanoparticles across Epithelium and Its Association with Wnt/β-Catenin Signaling. ACS Nano, 2021, 15, 17977-17997.	14.6	19
2537	Hydrogen Sulfide-Responsive Bicontinuous Nanospheres. Biomacromolecules, 2021, 22, 4770-4782.	5.4	1
2538	Functionalized Nanoparticles Targeting Tumor-Associated Macrophages as Cancer Therapy. Pharmaceutics, 2021, 13, 1670.	4.5	28
2539	Tumor Diagnosis and Therapy Mediated by Metal Phosphorusâ€Based Nanomaterials. Advanced Materials, 2021, 33, e2103936.	21.0	31
2540	RNAi-Based Approaches for Pancreatic Cancer Therapy. Pharmaceutics, 2021, 13, 1638.	4.5	10
2541	Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Advanced Drug Delivery Reviews, 2021, 179, 114004.	13.7	55

#	Article	IF	CITATIONS
2542	Synthesis of silver nanoparticles by plant extract, incorporated into alginate films and their characterizations. Chemical Papers, 2022, 76, 1031-1043.	2.2	3
2543	Polymeric Nanoparticles for Mitochondria Targeting Mediated Robust Cancer Therapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 755727.	4.1	12
2544	Role of Nanomedicines in Cancer Immunotherapy. International Journal for Research in Applied Science and Engineering Technology, 2021, 9, 832-834.	0.1	0
2545	Gold nanoparticles and obese adipose tissue microenvironment in cancer treatment. Cancer Letters, 2022, 525, 1-8.	7.2	13
2546	Preparation and Characterization of Chitosan and Inclusive Compound-Layered Gold Nanocarrier to Improve the Antiproliferation Effect of Tamoxifen Citrate in Colorectal Adenocarcinoma (Caco-2) and Breast Cancer (MCF-7) Cells. Turkish Journal of Pharmaceutical Sciences, 2022, 19, 391-399.	1.4	3
2547	Antitumor Activity of \hat{l}_{\pm} -Linolenic Acid-Paclitaxel Conjugate Nanoparticles: In vitro and in vivo. International Journal of Nanomedicine, 2021, Volume 16, 7269-7281.	6.7	6
2548	Recent Advances in Combined Photothermal and Photodynamic Therapies against Cancer Using Carbon Nanomaterial Platforms for In Vivo Studies. Photochem, 2021, 1, 434-450.	2.2	16
2549	Self-assembling protein nanocarrier for selective delivery of cytotoxic polypeptides to CXCR4+ head and neck squamous cell carcinoma tumors. Acta Pharmaceutica Sinica B, 2022, 12, 2578-2591.	12.0	15
2550	Tumor Microenvironment Modulating Functional Nanoparticles for Effective Cancer Treatments. Tissue Engineering and Regenerative Medicine, 2022, 19, 205-219.	3.7	14
2551	Potential of miRNA-Based Nanotherapeutics for Uveal Melanoma. Cancers, 2021, 13, 5192.	3.7	9
2552	Polyprodrug Nanomedicines: An Emerging Paradigm for Cancer Therapy. Advanced Materials, 2022, 34, e2107434.	21.0	57
2553	Targeted Antiâ€Tumor Immunotherapy Using Tumor Infiltrating Cells. Advanced Science, 2021, 8, e2101672.	11.2	36
2554	Promoting Nanoparticle Delivery Efficiency to Tumors by Locally Increasing Blood Flow There. ACS Applied Bio Materials, 2021, 4, 7615-7625.	4.6	4
2555	Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids?. Cancers, 2021, 13, 5346.	3.7	11
2556	Safety Evaluation of Nanotechnology Products. Pharmaceutics, 2021, 13, 1615.	4.5	18
2557	MXenes and MXene-based Materials with Cancer Diagnostic Applications: Challenges and Opportunities. Comments on Inorganic Chemistry, 2022, 42, 174-207.	5.2	31
2558	Stimuli-Responsive Polymeric Nanosystems for Controlled Drug Delivery. Applied Sciences (Switzerland), 2021, 11, 9541.	2.5	5
2559	Cell membrane-coated nanoparticles for immunotherapy. Chinese Chemical Letters, 2022, 33, 1673-1680.	9.0	27

#	Article	IF	CITATIONS
2560	Nano Ag@bioactive microspheres from marine sponge Clathria frondifera: Fabrication, fortification, characterization, anticancer and antibacterial potential evaluation. Environmental Research, 2022, 206, 112282.	7.5	5
2561	Nanodelivery Systems Face Challenges and Limitations in Bone Diseases Management. Advanced Therapeutics, 2021, 4, 2100152.	3.2	3
2562	Nanotechnology-enhanced immunotherapy for metastatic cancer. Innovation(China), 2021, 2, 100174.	9.1	29
2563	Erythrocyte Membrane Camouflaged Metal–Organic Framework Nanodrugs for Remodeled Tumor Microenvironment and Enhanced Tumor Chemotherapy. Advanced Functional Materials, 2022, 32, 2107791.	14.9	39
2564	Nanotechnology Addressing Cutaneous Melanoma: The Italian Landscape. Pharmaceutics, 2021, 13, 1617.	4.5	11
2565	Comparison of triblock copolymeric micelles based on \hat{l}_{\pm} - and \hat{l}_{μ} -poly(L-lysine): a Cornelian choice. Polymer Journal, 2022, 54, 199-209.	2.7	2
2566	Targeting Estrogen Receptor-Positive Breast Microtumors with Endoxifen-Conjugated, Hypoxia-Sensitive Polymersomes. ACS Omega, 2021, 6, 27654-27667.	3.5	6
2567	Multimodal obstruction of tumorigenic energy supply via bionic nanocarriers for effective tumor therapy. Biomaterials, 2021, 278, 121181.	11.4	15
2568	Prodrug nanoparticles rationally integrating stroma modification and chemotherapy to treat metastatic pancreatic cancer. Biomaterials, 2021, 278, 121176.	11.4	14
2569	Design of crown ether based micelles and their anti-tumor properties by perturbing potassium ion homeostasis. Materials and Design, 2021, 211, 110159.	7.0	2
2570	Surface functionalization of boron nitride nanosheet with folic acid: Toward an enhancement in Doxorubicin anticancer drug loading performance. Journal of Molecular Graphics and Modelling, 2021, 109, 108041.	2.4	4
2571	Amino acids combined chitosan nanoparticles for controlled release of Doxorubicin hydrochloride. Egyptian Journal of Chemistry, 2017, .	0.2	2
2573	Anticorps monoclonaux en oncologie : déclencher une réponse immunitaire en plus de la réduction tumorale spécifique Bulletin De L'Academie Nationale De Medecine, 2018, 202, 707-735.	0.0	0
2574	Cancer Nanotherapeutics Administered byÂNon-conventional Routes. Bioanalysis, 2019, , 253-274.	0.1	1
2575	Research Progress in Functional Metal-Organic Frameworks for Tumor Therapy. Acta Chimica Sinica, 2019, 77, 1156.	1.4	12
2576	Nanotechnology: The Future for Cancer Treatment. , 2019, , 389-418.		1
2577	Immunotherapy with mRNA vaccination and immunomodulation nanomedicine for cancer therapy. , 2019, , $551-600$.		0
2578	Construction of stimulus-responsive micelles systems for efficient targeting of cancer drugs. , 2019, , 227-246.		0

#	Article	IF	CITATIONS
2579	Drug Encapsulation and Nanocarriers for Targeted Delivery in Animals. , 2019, , 397-436.		3
2580	Theranostic Applications of Nanobiotechnology in Cancer. , 2019, , 277-295.		3
2581	Surface-functionalized magnetic nanoparticles in cancer-drug delivery and diagnosis., 2019,, 107-128.		0
2582	Nanomedicine and Nanoemulsion in Increasing the Availability of Antibiotics. , 2019, , 549-559.		0
2583	The Role of "Missile―and "Targeting―Metaphors in Nanomedicine. Philosophia Scientiae, 2019, , 39-55.	0.1	1
2585	Nanotherapeutic agent for cancer: Miracle or catastrophe. , 2019, 3, 010-012.		2
2587	PLASMONIC MONO- AND BIMETALLIC NANOPARTICLES OF GOLD AND SILVER AS PROMISING TOOLS OF COMPLEX THERAPY OF CANCER. Visnik Nacional Noi Academii Nauk Ukrai Ni, 2019, , 38-43.	0.3	0
2588	Algunas aplicaciones de la nanofot \tilde{A}^3 nica en la biomedicina. Mundo Nano Revista Interdisciplinaria En Nanociencia Y Nanotecnolog \tilde{A} a, 2019, 13, 1e-24e.	0.1	0
2589	Challenges in Development of Nanomedicine for Treatment of Cancer. Journal of Cancer Research Updates, 0, 8, 64-69.	0.3	0
2590	Gold Nanoparticles for Treatment of Experimental Burns. Nanosistemi, Nanomateriali, Nanotehnologii, 2019, 17, .	0.3	O
2591	Designing Personalized and Innovative Novel Drug Therapies for Cancer Treatment., 2020,, 213-228.		2
2592	Stimuli-Responsive Polymers for Cancer Nanomedicines. , 2020, , 289-311.		0
2593	Formation of H ₂ O ₂ /temperature dual-responsive supramolecular micelles for drug delivery and kinetics. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 821-829.	3.4	4
2595	Nanocarriers(s) Based Approaches in Cancer Therapeutics. Current Nanomedicine, 2020, 10, 130-148.	0.6	1
2597	Metal–Organic Framework (MOF)â€Based Ultrasoundâ€Responsive Dualâ€Sonosensitizer Nanoplatform for Hypoxic Cancer Therapy. Advanced Healthcare Materials, 2022, 11, e2101946.	7.6	43
2598	Chemo-photodynamic therapy with light-triggered disassembly of theranostic nanoplatform in combination with checkpoint blockade for immunotherapy of hepatocellular carcinoma. Journal of Nanobiotechnology, 2021, 19, 355.	9.1	33
2599	RGD engineered dendrimer nanotherapeutic as an emerging targeted approach in cancer therapy. Journal of Controlled Release, 2021, 340, 221-242.	9.9	62
2600	2D Nanosheetsâ€"A New Class of Therapeutic Formulations against Cancer. Pharmaceutics, 2021, 13, 1803.	4.5	12

#	Article	IF	CITATIONS
2601	Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy. Advanced Healthcare Materials, 2022, 11, e2101428.	7.6	27
2602	Radionuclide-Based Imaging of Breast Cancer: State of the Art. Cancers, 2021, 13, 5459.	3.7	18
2603	Nanomedicine from amphiphilized prodrugs: Concept and clinical translation. Advanced Drug Delivery Reviews, 2021, 179, 114027.	13.7	29
2604	Nano drug delivery systems improve metastatic breast cancer therapy. Medical Review, 2021, 1, 244-274.	1.2	4
2605	Cyclodextrin nanosponges as potential anticancer drug delivery systems to be introduced into the market, compared with liposomes. Journal of Drug Delivery Science and Technology, 2022, 67, 102931.	3.0	16
2606	Combining Nanotechnology and Gas Plasma as an Emerging Platform for Cancer Therapy: Mechanism and Therapeutic Implication. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-20.	4.0	12
2607	Carbon Dots: An Innovative Tool for Drug Delivery in Brain Tumors. International Journal of Molecular Sciences, 2021, 22, 11783.	4.1	54
2608	Rationally designed modular drug delivery platform based on intracellular peptide selfâ€assembly. Exploration, 2021, 1, 20210153.	11.0	42
2609	Redox-Responsive Molecularly Imprinted Nanoparticles for Targeted Intracellular Delivery of Protein toward Cancer Therapy. ACS Nano, 2021, 15, 18214-18225.	14.6	33
2611	Current understandings and clinical translation of nanomedicines for breast cancer therapy. Advanced Drug Delivery Reviews, 2022, 180, 114034.	13.7	32
2612	Cancer nanotechnology: current status and perspectives. Nano Convergence, 2021, 8, 34.	12.1	97
2613	Intercalation-Driven Formation of siRNA Nanogels for Cancer Therapy. Nano Letters, 2021, 21, 9706-9714.	9.1	33
2614	Oxygen-deficient tungsten oxide perovskite nanosheets-based photonic nanomedicine for cancer theranostics. Chemical Engineering Journal, 2022, 431, 133273.	12.7	6
2615	The endocytic pathway of Pt nanoclusters and their induced apoptosis of A549 and A549/Cis cells through c-Myc/p53 and Bcl-2/caspase-3 signaling pathways. Biomedicine and Pharmacotherapy, 2021, 144, 112360.	5.6	8
2616	Titanium-based sonosensitizers for sonodynamic cancer therapy. Applied Materials Today, 2021, 25, 101215.	4.3	30
2617	Nanomedicines in Cancer Therapy. Engineering Materials, 2020, , 321-356.	0.6	1
2618	Selfâ€Amplifying Nanotherapeutic Drugs Homing to Tumors in a Manner of Chain Reaction. Advanced Materials, 2021, 33, e2002094.	21.0	20
2619	Preparation and preliminary evaluation of hepatitis B core antigen virus like nanoparticles loaded with indocyanine green. Annals of Translational Medicine, 2020, 8, 1661-1661.	1.7	3

#	Article	IF	CITATIONS
2620	pH-responsive hollow Fe–gallic acid coordination polymer for multimodal synergistic-therapy and MRI of cancer. Nanoscale Advances, 2021, 4, 173-181.	4.6	20
2621	Potential Economic Value of Chitin and Its Derivatives as Major Biomaterials of Seafood Waste, with Particular Reference to Southeast Asia. Journal of Renewable Materials, 2022, 10, 909-938.	2.2	6
2622	Nanomedicines and Nanodrug Delivery Systems: Trends and Perspectives. , 2020, , 99-141.		3
2623	Exploring near-infrared absorbing nanocarriers to overcome cancer drug resistance., 2020, 3, 302-333.		4
2624	Rearrangement of protein structures on a gold nanoparticle surface is regulated by ligand adsorption modes. Nanoscale, 2021, 13, 20425-20436.	5.6	7
2625	Passive targeting of high-grade gliomas <i>via</i> the EPR effect: a closed path for metallic nanoparticles?. Biomaterials Science, 2021, 9, 7984-7995.	5.4	31
2626	Nanopharmacology Intervention in Human Pathological Diseases. , 2020, , 123-139.		0
2627	Green Synthesis of Nanoparticles and Their Application in Cancer Therapy., 2020, , 163-197.		5
2628	Specific, Surface-Driven, and High-Affinity Interactions of Fluorescent Hyaluronan with PEGylated Nanomaterials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6806-6813.	8.0	5
2629	Molecular Studies of Peptide Assemblies and Related Applications in Tumor Therapy and Diagnosis. , 2020, , 255-286.		0
2630	Polyunsaturated Fatty Acid-Loaded Nanomedicine for Solid Tumor. , 2020, , 185-200.		0
2631	AnÂOverview of Paclitaxel Delivery Systems. Sustainable Agriculture Reviews, 2020, , 161-215.	1.1	4
2632	Recent Advances in the Emergence of Nanorobotics in Medicine. , 2020, , 119-148.		0
2633	Specific nanotherapeutics for highly efficient diagnosis and treatment of systemic lupus erythematosus. Chemical Engineering Journal, 2022, 436, 133095.	12.7	7
2634	Superstable and Large-Scalable Organosilica-Micellar Hybrid Nanosystem <i>via</i> a Confined Gelation Strategy for Ultrahigh-Dosage Chemotherapy. Nano Letters, 2021, 21, 9388-9397.	9.1	12
2635	Synergistic nanoassemblies constructed from a STAT3 inhibitor and a cabazitaxel prodrug with enhanced cancer chemo-immunotherapy. Materials Today Nano, 2022, 17, 100155.	4.6	5
2636	pH-responsive hyaluronic acid nanoparticles codelivering DOX and ICG for effectively chemo-photothermal combination therapy. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	1
2637	Organic/Inorganic Selfâ€Assembled Hybrid Nanoâ€Architectures for Cancer Therapy Applications. Macromolecular Bioscience, 2022, 22, e2100349.	4.1	24

#	Article	IF	CITATIONS
2638	A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. Journal of Molecular Liquids, 2022, 348, 118008.	4.9	50
2639	Neutrophil-like cell membrane-coated siRNA of lncRNA AABR07017145.1 therapy for cardiac hypertrophy via inhibiting ferroptosis of CMECs. Molecular Therapy - Nucleic Acids, 2022, 27, 16-36.	5.1	21
2640	A Rapid Dual-Responsive Releasing Nano-Carrier by Decomposing the Copolymer and Reversing the Core Dissolution. Frontiers in Bioengineering and Biotechnology, 2021, 9, 784838.	4.1	1
2641	Supramolecular Drug Delivery System from Macrocycle-Based Self-Assembled Amphiphiles for Effective Tumor Therapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 53564-53573.	8.0	22
2642	Natural Products for the Management of Castration-Resistant Prostate Cancer: Special Focus on Nanoparticles Based Studies. Frontiers in Cell and Developmental Biology, 2021, 9, 745177.	3.7	21
2643	Hybrid amorphous TiO2/polymer nanomaterials trigger apoptosis of pediatric cancer cells upon ultrasound irradiation. Materials Today Chemistry, 2021, 22, 100613.	3 . 5	3
2644	Synthesis and characterisation of novel biopolymer stabilised organic Ptâ€nanocomposite: assessment of its antioxidant and antitumour properties. IET Nanobiotechnology, 2020, 14, 889-898.	3.8	1
2645	Biodegradable Polymeric Nanoparticles for Brain-Targeted Drug Delivery. Neuromethods, 2021, , 1-27.	0.3	1
2646	Brownian motion-based nanoparticle sizingâ€"A powerful approach for <i>in situ</i> analysis of nanoparticle-protein interactions. Biointerphases, 2020, 15, 061201.	1.6	5
2647	Weak Electric Current Treatment to Artificially Enhance Vascular Permeability in Embryonated Chicken Eggs. Biological and Pharmaceutical Bulletin, 2020, 43, 1729-1734.	1.4	1
2648	Nanomaterials Interaction with Cell Membranes: Computer Simulation Studies. Springer Tracts in Mechanical Engineering, 2021, , 189-210.	0.3	1
2649	A Short Review on the Important Aspects Involved in Preparation, Characterization and Application of Nanostructured Lipid Carriers for Drug Delivery. Current Nanomedicine, 2020, 10, 188-207.	0.6	3
2650	Overview of Tumor Immunotherapy based on Indoleamine 2,3 Dioxygenase Inhibitors. , 2020, , .		1
2651	The Daniel K. Inouye College of Pharmacy Scripts: Targeted Nanocarrier Based Systems for the Treatment of Lung Cancer. Hawai'i Journal of Medicine & Public Health: A Journal of Asia Pacific Medicine & Public Health, 2017, 76, 318-325.	0.4	0
2653	Î ² -sitosterol Mediated Silver Nanoparticles Induce Cytotoxicity in Human Colon Cancer HT-29 Cells. Avicenna Journal of Medical Biotechnology, 2021, 13, 42-46.	0.3	0
2654	Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. Journal of Controlled Release, 2022, 341, 227-246.	9.9	65
2655	Inhibiting autophagy flux and DNA repair of tumor cells to boost radiotherapy of orthotopic glioblastoma. Biomaterials, 2022, 280, 121287.	11.4	38
2656	Fabrication design, process technologies, and convolutions in the scale-up of nanotherapeutic delivery systems. , 2022, , 47-131.		1

#	Article	IF	CITATIONS
2657	Integration of PEG and PEI with graphene quantum dots to fabricate pH-responsive nanostars for colon cancer suppression in vitro and in vivo. FlatChem, 2022, 31, 100320.	5.6	17
2659	Minor change in the length of carbon chain has a great influence on the antitumor effect of paclitaxel-fatty alcohol prodrug nanoassemblies: Small roles, big impacts. Nano Research, 2022, 15, 3367-3375.	10.4	7
2660	Fucoidan-Based Nanoparticles with Inherently Therapeutic Efficacy for Cancer Treatment. Pharmaceutics, 2021, 13, 1986.	4.5	10
2661	Receptor-Mediated Targeted Delivery of Surface-ModifiedNanomedicine in Breast Cancer: Recent Update and Challenges. Pharmaceutics, 2021, 13, 2039.	4.5	14
2662	Intelligent gold nanoparticles for synergistic tumor treatment via intracellular Ca2+ regulation and resulting on-demand photothermal therapy. Chemical Engineering Journal, 2022, 433, 133850.	12.7	9
2663	Nanoparticles as Vectors to Tackle Cancer. Biomolecules, 2021, 11, 1729.	4.0	3
2664	Modulation of Oxidative Stress in Cancer Cells with a Biomineralized Converter., 2021, 3, 1778-1785.		3
2665	An NIR Discrete Metallacycle Constructed from Perylene Bisimide and Tetraphenylethylene Fluorophores for Imagingâ€Guided Cancer Radioâ€Chemotherapy. Advanced Materials, 2022, 34, e2106388.	21.0	79
2666	Power in Numbers: Harnessing Combinatorial and Integrated Screens to Advance Nanomedicine. Jacs Au, 2022, 2, 12-21.	7.9	10
2667	Amphiphilic small molecular mates match hydrophobic drugs to form nanoassemblies based on drug-mate strategy. Asian Journal of Pharmaceutical Sciences, 2022, 17, 129-138.	9.1	4
2668	Nearâ€Infraredâ€II Quantum Dots for In Vivo Imaging and Cancer Therapy. Small, 2022, 18, e2104567.	10.0	44
2669	Reduction-Sensitive Dextran–Paclitaxel Polymer–Drug Conjugate: Synthesis, Self-Assembly into Nanoparticles, and In Vitro Anticancer Efficacy. Bioconjugate Chemistry, 2021, 32, 2516-2529.	3.6	16
2670	Development of an Integrated High Serum Stability Zwitterionic Polypeptide-Based Nanodrug with Both Rapid Internalization and Endocellular Drug Releasing for Efficient Targeted Chemotherapy. Langmuir, 2021, 37, 14015-14025.	3.5	2
2671	MXenes for antimicrobial and antiviral applications: recent advances. Materials Technology, 2022, 37, 1890-1905.	3.0	20
2672	Transformation of nanoparticles into compacts: A study on PLGA and celecoxib nanoparticles. International Journal of Pharmaceutics, 2022, 611, 121278.	5.2	9
2673	Smart Nanotherapeutics and Lung Cancer. Pharmaceutics, 2021, 13, 1972.	4.5	28
2674	"Cluster Bomb―Based on Redox-Responsive Carbon Dot Nanoclusters Coated with Cell Membranes for Enhanced Tumor Theranostics. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55815-55826.	8.0	26
2675	Synthesized Chitosan-Sodium Alginate-Polyethylene glycol-D-Pinitol nanocomposites showed antiarthritic activity on Freund's Complete Adjuvant-induced arthritis in rats. Arabian Journal of Chemistry, 2022, 15, 103592.	4.9	1

#	Article	IF	CITATIONS
2676	Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nature Reviews Cardiology, 2022, 19, 228-249.	13.7	171
2677	Smart Nanoparticles as Advanced Anti-Akt Kinase Delivery Systems for Pancreatic Cancer Therapy. ACS Applied Materials & Delivery Systems for Pancreatic Cancer Therapy. ACS Applied Materials & Delivery Systems for Pancreatic Cancer Therapy. ACS	8.0	8
2678	Nanoantioxidants: Pioneer Types, Advantages, Limitations, and Future Insights. Molecules, 2021, 26, 7031.	3.8	29
2679	Cyclodextrin-Appended Superparamagnetic Iron Oxide Nanoparticles as Cholesterol-Mopping Agents. Frontiers in Chemistry, 2021, 9, 795598.	3.6	3
2680	Antibacterial Activity of T22, a Specific Peptidic Ligand of the Tumoral Marker CXCR4. Pharmaceutics, 2021, 13, 1922.	4.5	5
2681	The Neuropeptide Y ₁ Receptor Ligand-Modified Cell Membrane Promotes Targeted Photodynamic Therapy of Zeolitic Imidazolate Frameworks for Breast Cancer. Journal of Physical Chemistry Letters, 2021, 12, 11280-11287.	4.6	5
2682	Emerging Phospholipid Nanobiomaterials for Biomedical Applications to Lab-on-a-Chip, Drug Delivery, and Cellular Engineering. ACS Applied Bio Materials, 2021, 4, 8110-8128.	4.6	17
2683	cRGD Peptide-Modified Nanocarriers for Targeted Delivery of Angiogenesis Inhibitors to Attenuate Advanced Atherosclerosis. ACS Applied Nano Materials, 2021, 4, 11554-11562.	5.0	5
2684	Engineering pHâ€Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics. Small, 2022, 18, e2101959.	10.0	13
2685	Near-Infrared Fluorescent Micelles from Poly(norbornene) Brush Triblock Copolymers for Nanotheranostics. Biomacromolecules, 2021, 22, 5290-5306.	5.4	14
2686	Polymeric Matrix-Based Nanoplatforms toward Tumor Therapy and Diagnosis., 2022, 4, 21-48.		12
2687	Eu(III)-Chelated Polymeric Hybrid Nanoplatform for Luminescence Resonance Energy Transfer (LRET)-Based Real-Time Monitoring of Organic Cargo Release. ACS Macro Letters, 2021, 10, 1602-1608.	4.8	2
2688	Bioorthogonal Disassembly of Tetrazine Bearing Supramolecular Assemblies Inside Living Cells. Small, 2022, 18, e2104772.	10.0	3
2689	Metal complexation-mediated stable and biocompatible nanoformulation of clinically approved near-infrared absorber for improved tumor targeting and photonic theranostics. Nano Convergence, 2021, 8, 36.	12.1	7
2690	A Guideline for the Synthesis of Aminoâ€Acidâ€Functionalized Monomers and Their Polymerizations. Macromolecular Rapid Communications, 2022, 43, e2100615.	3.9	13
2691	Precise Control of Shape-Variable Nanomicelles in Nanofibers Reveals the Enhancement Mechanism of Passive Delivery. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 54715-54726.	8.0	3
2692	Hybrid Molecularly Imprinted Polymers: The Future of Nanomedicine?. Nanomaterials, 2021, 11, 3091.	4.1	11
2693	EGFR-targeted pemetrexed therapy of malignant pleural mesothelioma. Drug Delivery and Translational Research, 2022, 12, 2527-2536.	5.8	3

#	ARTICLE	IF	CITATIONS
2694	In vivo photodynamic therapy based on Near-Infrared AIE cationic polymers. Chemical Engineering Journal, 2022, 431, 133748.	12.7	14
2695	Harnessing the combined potential of cancer immunotherapy and nanomedicine: A new paradigm in cancer treatment. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102492.	3.3	4
2696	Reduction-responsive RNAi nanoplatform to reprogram tumor lipid metabolism and repolarize macrophage for combination pancreatic cancer therapy. Biomaterials, 2022, 280, 121264.	11.4	30
2697	Photocleavageâ€based Photoresponsive Drug Delivery ^{â€} . Photochemistry and Photobiology, 2022, 98, 288-302.	2.5	19
2698	Phenylboronic Acid Modification Augments the Lysosome Escape and Antitumor Efficacy of a Cylindrical Polymer Brush-Based Prodrug. Journal of the American Chemical Society, 2021, 143, 20927-20938.	13.7	45
2699	Gas-stabilizing nanoparticles for ultrasound imaging and therapy of cancer. Nano Convergence, 2021, 8, 39.	12.1	11
2700	Fluorinated paclitaxel prodrugs for potentiated stability and chemotherapy. Journal of Materials Chemistry B, 2021, 9, 9971-9979.	5.8	7
2701	Molekulare Roboter und künstliche Proteine. , 2021, , 103-119.		0
2702	Coating polymers on nanoparticles for biomedical uses. , 2021, , .		0
2703	Cationic vs. non-cationic polymeric vectors for nucleic acid delivery. , 2023, , 574-589.		1
2704	Multi-Walled Carbon Nanotubes InhibitÂPotential DetoxificationÂOf Dioxin-Mediated Toxicity by Blocking TheÂNuclear TranslocationÂOf Aryl Hydrocarbon Receptor. SSRN Electronic Journal, 0, , .	0.4	0
2706	Chapter 4. Diagnostic and Theranostic Applications of Inorganic Materials. Inorganic Materials Series, 2021, , 194-241.	0.7	0
2707	Mechanisms of Drug Resistance and Use of Nanoparticle Delivery to Overcome Resistance in Breast Cancers. Advances in Experimental Medicine and Biology, 2021, , 163-181.	1.6	4
2708	Antibody-Functionalized Carnauba Wax Nanoparticles to Target Breast Cancer Cells. ACS Applied Bio Materials, 2022, 5, 622-629.	4.6	10
2709	Synthesis and Processing of Magnetic-Based Nanomaterials for Biomedical Applications. Indian Institute of Metals Series, 2022, , 659-714.	0.3	1
2710	Liposome delivery to the brain with rapid short-pulses of focused ultrasound and microbubbles. Journal of Controlled Release, 2022, 341, 605-615.	9.9	33
2711	Targeted therapy for the treatment of gliomas with multifunctional orange emissive carbon dots. Nanoscale Advances, 2022, 4, 894-903.	4.6	8
2712	Assembly of catechol-modified polymer brushes for drug delivery. Polymer Chemistry, 2022, 13, 373-378.	3.9	14

#	Article	IF	CITATIONS
2713	Protein nanoparticles directed cancer imaging and therapy. Nano Convergence, 2022, 9, 2.	12.1	26
2714	A Review on Plants and Microorganisms Mediated Synthesis of Silver Nanoparticles, Role of Plants Metabolites and Applications. International Journal of Environmental Research and Public Health, 2022, 19, 674.	2.6	102
2715	Anti-PEG antibodies compromise the integrity of PEGylated lipid-based nanoparticles via complement. Journal of Controlled Release, 2022, 341, 475-486.	9.9	66
2716	Intracellular Reduction-Responsive Molecular Targeted Nanomedicine for Hepatocellular Carcinoma Therapy. Frontiers in Pharmacology, 2021, 12, 809125.	3.5	3
2717	Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomedicine and Pharmacotherapy, 2022, 146, 112530.	5.6	41
2718	Photodynamic therapy associated with nanomedicine strategies for treatment of human squamous cell carcinoma: A systematic review and meta-analysis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102505.	3.3	6
2719	Reconstructed adoptive-macrophages with DNA-tetrahedron-CpG/siRNA for synergistic solid tumor immunotherapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128184.	4.7	7
2720	Tumor reduction-sensitive self-delivery molecular prodrug nanomedicine for enhancing the therapeutic efficacy of chemotherapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128106.	4.7	1
2721	Galactose conjugated boron dipyrromethene and hydrogen bonding promoted J-aggregates for efficiently targeted NIR-II fluorescence assistant photothermal therapy. Journal of Colloid and Interface Science, 2022, 612, 287-297.	9.4	15
2722	Biodegradable 2D GeP nanosheets with high photothermal conversion efficiency for multimodal cancer theranostics. Chemical Engineering Journal, 2022, 431, 134176.	12.7	16
2723	Applications of Nanomaterials in Combined Antitumor Therapy. , 2020, , .		0
2724	Î ² -sitosterol Mediated Silver Nanoparticles Induce Cytotoxicity in Human Colon Cancer HT-29 Cells. Avicenna Journal of Medical Biotechnology, 2021, 13, 42-46.	0.3	12
2725	pH Responsive Biohybrid BSA-Poly(DPA) Nanoparticles for Interlysosomal Drug Delivery. SSRN Electronic Journal, 0, , .	0.4	0
2726	Progress in Application of Nanotechnology in Sorafenib. Journal of Biomedical Nanotechnology, 2021, 17, 529-557.	1.1	1
2727	Nanomedicine in Pancreatic Cancer: Current Status and Future Opportunities for Overcoming Therapy Resistance. Cancers, 2021, 13, 6175.	3.7	20
2728	Precision Medicine: Technological Impact into Breast Cancer Diagnosis, Treatment and Decision Making. Journal of Personalized Medicine, 2021, 11, 1348.	2.5	5
2729	An Alternative Technique for Monitoring the Live Interaction of Monocytes and Tumor Cells with Nanoparticles in the Mouse Lung. Bio-protocol, 2022, 12, e4293.	0.4	0
2730	A "Valveâ€Closing―Starvation Strategy for Amplification of Tumorâ€Specific Chemotherapy. Advanced Science, 2022, 9, e2104671.	11.2	30

#	Article	IF	CITATIONS
2731	Recent Advances of Poly(lacticâ€coâ€glycolic acid)â€Based Nanoparticles for Tumorâ€Targeted Drug Delivery. ChemistrySelect, 2022, 7, .	1.5	1
2732	Cancer Therapy by Silver Nanoparticles: Fiction or Reality?. International Journal of Molecular Sciences, 2022, 23, 839.	4.1	54
2733	Hybrid Nanoparticles as Theranostics Platforms for Glioblastoma Treatment: Phototherapeutic and X-ray Phase Contrast Tomography Investigations. Journal of Nanotheranostics, 2022, 3, 1-17.	3.1	1
2734	Engineered cancer cell membranes: An emerging agent for efficient cancer theranostics. Exploration, 2022, 2, .	11.0	37
2735	Assessment of the Antitumor Activity of Green Biosynthesized Zinc Nanoparticles as Therapeutic Agent Against Renal Cancer in Rats. Biological Trace Element Research, 2023, 201, 272-281.	3.5	9
2736	Spatio-temporal analysis of nanoparticles in live tumor spheroids impacted by cell origin and density. Journal of Controlled Release, 2022, 341, 661-675.	9.9	12
2737	Benefits and challenges of antibody drug conjugates as novel form of chemotherapy. Journal of Controlled Release, 2022, 341, 555-565.	9.9	20
2738	Recent progress of macrophage vesicle-based drug delivery systems. Drug Delivery and Translational Research, 2022, 12, 2287-2302.	5.8	11
2739	Therapeutic Advancements in Metal and Metal Oxide Nanoparticle-Based Radiosensitization for Head and Neck Cancer Therapy. Cancers, 2022, 14, 514.	3.7	15
2740	Design of Turmeric Rhizome Extract Nano-Formula for Delivery to Cancer Cells. Molecules, 2022, 27, 896.	3.8	3
2741	Synergistic Disruption of Metabolic Homeostasis through Hyperbranched Poly(ethylene glycol) Conjugates as Nanotherapeutics to Constrain Cancer Growth. Advanced Materials, 2022, 34, e2109036.	21.0	16
2742	Role of Nanoparticles in Cancer Therapy. Advances in Chemical and Materials Engineering Book Series, 2022, , 363-388.	0.3	0
2743	Targeted delivery of methotrexate by modified yeast \hat{l}^2 -glucan nanoparticles for rheumatoid arthritis therapy. Carbohydrate Polymers, 2022, 284, 119183.	10.2	13
2744	Identification and optimization of tunable endosomal escape parameters for enhanced efficacy in peptide-targeted prodrug-loaded nanoparticles. Nanoscale, 2022, 14, 1226-1240.	5.6	6
2745	Mitochondrial Dysfunction and Antioxidation Dyshomeostasis-Enhanced Tumor Starvation Synergistic Chemotherapy Achieved using a Metal–Organic Framework-Based Nano-Enzyme Reactor. ACS Applied Materials & Diterfaces, 2022, 14, 3675-3684.	8.0	14
2746	Acidity-Activated Charge Conversion of ¹⁷⁷ Lu-Labeled Nanoagent for the Enhanced Photodynamic Radionuclide Therapy of Cancer. ACS Applied Materials & Diterfaces, 2022, 14, 3875-3884.	8.0	9
2747	Drug Targeting and Nanomedicine: Lessons Learned from Liver Targeting and Opportunities for Drug Innovation. Pharmaceutics, 2022, 14, 217.	4.5	6
2748	Passive targeting., 2022, , 37-47.		0

#	Article	IF	CITATIONS
2749	Developing sensor materials for screening intestinal diseases. Materials Futures, 2022, 1, 022401.	8.4	5
2750	Engineering Macrophages via Nanotechnology and Genetic Manipulation for Cancer Therapy. Frontiers in Oncology, 2021, 11, 786913.	2.8	7
2751	Simultaneous Exposure of Different Nanoparticles Influences Cell Uptake. Pharmaceutics, 2022, 14, 136.	4.5	8
2752	Applications of Extracellular Vesicles in Triple-Negative Breast Cancer. Cancers, 2022, 14, 451.	3.7	14
2753	Synergistic effect of avidin/biotin system with biofunctionalized graphene oxide based nanocarrier in targeted coâ€delivery of hydrophobic anticancer drug <scp>SN</scp> â€38. Journal of Vinyl and Additive Technology, 2022, 28, 474-486.	3.4	3
2754	Macrophage membrane coated nanoparticles: a biomimetic approach for enhanced and targeted delivery. Biomaterials Science, 2022, 10, 1193-1208.	5.4	54
2755	Engineering of small-molecule lipidic prodrugs as novel nanomedicines for enhanced drug delivery. Journal of Nanobiotechnology, 2022, 20, 49.	9.1	25
2756	RNA cancer nanomedicine: nanotechnology-mediated RNA therapy. Nanoscale, 2022, 14, 4448-4455.	5.6	28
2757	Tumor-specific activatable biopolymer nanoparticles stabilized by hydroxyethyl starch prodrug for self-amplified cooperative cancer therapy. Theranostics, 2022, 12, 944-962.	10.0	27
2758	Silver Mesoporous Silica Nanoparticles: Fabrication to Combination Therapies for Cancer and Infection. Chemical Record, 2022, , e202100287.	5.8	4
2759	Bimetallic metal–organic frameworks for tumor inhibition via combined photothermal-immunotherapy. Chemical Communications, 2022, , .	4.1	4
2760	NUIG4: A biocompatible pcu metal–organic framework with an exceptional doxorubicin encapsulation capacity. Journal of Materials Chemistry B, 2022, 10, 1378-1385.	5.8	4
2761	Rational Design of Nanotherapeutics Based on the Five Features Principle for Potent Elimination of Cancer Stem Cells. Accounts of Chemical Research, 2022, 55, 526-536.	15.6	32
2762	Monitoring EPR Effect Dynamics during Nanotaxane Treatment with Theranostic Polymeric Micelles. Advanced Science, 2022, 9, e2103745.	11.2	20
2763	Revisiting the outstanding questions in cancer nanomedicine with a future outlook. Nanoscale Advances, 2022, 4, 634-653.	4.6	12
2764	Nearâ€Infrared Thermally Activated Delayed Fluorescence Nanoparticle: A Metalâ€Free Photosensitizer for Twoâ€Photonâ€Activated Photodynamic Therapy at the Cell and Small Animal Levels. Small, 2022, 18, e2106215.	10.0	61
2765	Recent advances in multifunctional nanomaterials for photothermal-enhanced Fenton-based chemodynamic tumor therapy. Materials Today Bio, 2022, 13, 100197.	5.5	45
2766	Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. Journal of Drug Delivery Science and Technology, 2022, 67, 103022.	3.0	3

#	Article	IF	CITATIONS
2767	New challenges in the use of nanomedicine in cancer therapy. Bioengineered, 2022, 13, 759-773.	3.2	40
2768	Targeted Delivery of Exosomes Armed with Anti-Cancer Therapeutics. Membranes, 2022, 12, 85.	3.0	17
2769	Cationic Polymer Brush-Modified Carbon Nanotube-Meditated eRNA LINC02569 Silencing Attenuates Nucleus Pulposus Degeneration by Blocking NF-κB Signaling Pathway and Alleviate Cell Senescence. Frontiers in Cell and Developmental Biology, 2021, 9, 837777.	3.7	2
2770	NIR-II Aggregation-Induced Emission Luminogens for Tumor Phototheranostics. Biosensors, 2022, 12, 46.	4.7	15
2771	Metal-free bioorthogonal click chemistry in cancer theranostics. Chemical Society Reviews, 2022, 51, 1336-1376.	38.1	76
2772	Advanced Optical Imaging-Guided Nanotheranostics towards Personalized Cancer Drug Delivery. Nanomaterials, 2022, 12, 399.	4.1	16
2773	Applications and Biocompatibility of Mesoporous Silica Nanocarriers in the Field of Medicine. Frontiers in Pharmacology, 2022, 13, 829796.	3. 5	13
2774	Extracellular Vesicles Mediate the Intercellular Exchange of Nanoparticles. Advanced Science, 2022, 9, e2102441.	11.2	11
2775	Facile one-step synthesis of NIR-Responsive siRNA-Inorganic hybrid nanoplatform for imaging-guided photothermal and gene synergistic therapy. Biomaterials, 2022, 282, 121404.	11.4	13
2776	Controlled release nanoplatforms for three commonly used chemotherapeutics. Molecular Aspects of Medicine, 2022, 83, 101043.	6.4	10
2777	Understanding Nanomaterial–Liver Interactions to Facilitate the Development of Safer Nanoapplications. Advanced Materials, 2022, 34, e2106456.	21.0	51
2778	Nanoparticulate strategies for theÂdelivery of miRNA mimics and inhibitors in anticancer therapy and its potential utility in oral submucous fibrosis. Nanomedicine, 2022, 17, 181-195.	3.3	10
2779	Supramolecular Nanomedicines of In-Situ Self-Assembling Peptides. Frontiers in Chemistry, 2022, 10, 815551.	3.6	3
2780	Fabrication of cellulose nanocrystals as potential anticancer drug delivery systems for colorectal cancer treatment. International Journal of Biological Macromolecules, 2022, 199, 372-385.	7. 5	25
2781	Performance of nanoparticles for biomedical applications: The <i>in vitro</i> /i>/i>in vivodiscrepancy. Biophysics Reviews, 2022, 3, .	2.7	10
2782	Metformin bicarbonate-mediated efficient RNAi for precise targeting of TP53 deficiency in colon and rectal cancers. Nano Today, 2022, 43, 101406.	11.9	8
2783	Excipient-free prodrug-based three-in-one nanoparticles co-deliver diversified agents to amplify tumor therapy. Chemical Engineering Journal, 2022, 435, 134880.	12.7	9
2784	Nanostructures and their associated challenges for drug delivery. , 2022, , 1-26.		O

#	Article	IF	CITATIONS
2785	A Unique Core–Shell Structured, Glycol Chitosan-Based Nanoparticle Achieves Cancer-Selective Gene Delivery with Reduced Off-Target Effects. Pharmaceutics, 2022, 14, 373.	4.5	8
2786	Gadolinium(III) Coordinated Theranostic Polymer for Proficient Sequential Targeting–Combinational Chemotherapy and <i>T</i> ₁ Weighted Magnetic Resonance Imaging. ACS Applied Polymer Materials, 2022, 4, 1752-1763.	4.4	5
2787	Multi-walled carbon nanotubes inhibit potential detoxification of dioxin-mediated toxicity by blocking the nuclear translocation of aryl hydrocarbon receptor. Journal of Hazardous Materials, 2022, 430, 128458.	12.4	3
2788	A Simple and Efficient Embolization-Combined Therapy for Solid Tumors by Smart Poly(amino acid)s Nanocomposites. ACS Applied Bio Materials, 2022, 5, 661-674.	4.6	5
2789	Evaluation of Cellular Targeting by Fab′ vs Full-Length Antibodies in Antibody–Nanoparticle Conjugates (ANCs) Using CD4 T-cells. Bioconjugate Chemistry, 2022, , .	3.6	7
2790	Progress and Hurdles of Therapeutic Nanosystems against Cancer. Pharmaceutics, 2022, 14, 388.	4.5	3
2791	Graphene and graphene oxide with anticancer applications: Challenges and future perspectives. MedComm, 2022, 3, e 118 .	7.2	30
2792	Mammalian Cells Exocytose Alkylated Gold Nanoparticles <i>via</i> Extracellular Vesicles. ACS Nano, 2022, 16, 2032-2045.	14.6	22
2793	Delivering Therapeutics to Glioblastoma: Overcoming Biological Constraints. International Journal of Molecular Sciences, 2022, 23, 1711.	4.1	34
2794	PSMA-Targeted Supramolecular Nanoparticles Prepared From Cucurbit[8]uril-Based Ternary Host–Guest Recognition for Prostate Cancer Therapy. Frontiers in Chemistry, 2022, 10, 847523.	3.6	5
2795	Synthesis of siRNA nanoparticles to silence plaque-destabilizing gene in atherosclerotic lesional macrophages. Nature Protocols, 2022, 17, 748-780.	12.0	52
2796	Current nano-therapeutic approaches ameliorating inflammation in cancer progression. Seminars in Cancer Biology, 2022, 86, 886-908.	9.6	11
2797	Nanomedicine targets iron metabolism for cancer therapy. Cancer Science, 2022, 113, 828-837.	3.9	19
2798	Stimuliâ€responsive nanoplatforms for antibacterial applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1775.	6.1	30
2799	Biomimetic Cucurbitacin B-Polydopamine Nanoparticles for Synergistic Chemo-Photothermal Therapy of Breast Cancer. Frontiers in Bioengineering and Biotechnology, 2022, 10, 841186.	4.1	5
2800	Reactive Oxygen Speciesâ€Responsive Peptideâ€Drug Conjugate for Mitochondriaâ€Specific Chemotherapy. ChemNanoMat, 0, , .	2.8	0
2801	Recent applications of cell-penetrating peptide guidance of nanosystems in breast and prostate cancer (Review). Oncology Letters, 2022, 23, 103.	1.8	5
2802	Applications of supramolecular polymer networks. Reactive and Functional Polymers, 2022, 172, 105209.	4.1	23

#	Article	IF	CITATIONS
2803	Discovery in polyethylene glycol immunogenicity: The characteristic of intergenerational inheritance of anti-polyethylene glycol IgG. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 172, 89-100.	4.3	3
2804	Emerging small molecule-engineered hybrid nanomedicines for cancer therapy. Chemical Engineering Journal, 2022, 435, 135160.	12.7	25
2805	Disulfiram-loaded metal organic framework for precision cancer treatment via ultrasensitive tumor microenvironment-responsive copper chelation and radical generation. Journal of Colloid and Interface Science, 2022, 615, 517-526.	9.4	7
2806	Current and Future Advancements of Raman Spectroscopy Techniques in Cancer Nanomedicine. International Journal of Molecular Sciences, 2021, 22, 13141.	4.1	16
2807	Novel Perspectives towards RNA-Based Nano-Theranostic Approaches for Cancer Management. Nanomaterials, 2021, 11, 3330.	4.1	33
2808	Semiconductor polymer nanoparticles for biological application. , 2022, , .		0
2809	<scp> </scp> -Cysteine as a reducing/capping/gel-forming agent for the preparation of silver nanoparticle composites with anticancer properties. Soft Matter, 2022, 18, 3031-3040.	2.7	13
2811	Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chemical Society Reviews, 2022, 51, 1702-1728.	38.1	53
2812	Development of poly($\langle i \rangle p \langle i \rangle$ -coumaric acid) as a self-anticancer nanocarrier for efficient and biosafe cancer therapy. Biomaterials Science, 2022, 10, 2263-2274.	5.4	11
2813	A Novel Targeted Delivery of Valeric Acid Using Liposomal Nanoparticles in Treatment of Lung Cell Carcinoma. Journal of Biomedical Nanotechnology, 2022, 18, 211-217.	1.1	4
2814	Iron oxide nanoparticles: current and future applications in nanomedicine., 2022,, 349-392.		1
2815	Mechanisms facilitating the uptake of carboxyl–polythene glycol-functionalized gold nanoparticles into multicellular spheroids. Journal of Pharmacy and Pharmacology, 2022, 74, 1282-1295.	2.4	3
2816	Metallodrugs in cancer nanomedicine. Chemical Society Reviews, 2022, 51, 2544-2582.	38.1	70
2817	Delivery strategies in treatments of leukemia. Chemical Society Reviews, 2022, 51, 2121-2144.	38.1	17
2818	Advanced nanomaterials for point-of-care diagnosis and therapy. , 2022, , 423-450.		1
2819	<i>In vivo</i> delivery of nuclear targeted drugs for lung cancer using novel synthesis and functionalization of iron oxide nanocrystals. New Journal of Chemistry, 2022, 46, 12488-12499.	2.8	6
2820	Hydrogen sulphide-triggered theranostic prodrugs based on the dynamic chemistry of tetrazines. Chemical Communications, 2022, 58, 5518-5521.	4.1	3
2821	ONP-302 Nanoparticles Inhibit Tumor Growth By Altering Tumor-Associated Macrophages And Cancer-Associated Fibroblasts. Journal of Cancer, 2022, 13, 1933-1944.	2.5	6

#	Article	IF	CITATIONS
2822	Graphene: A Promising Theranostic Agent. Advances in Experimental Medicine and Biology, 2022, 1351, 149-176.	1.6	1
2823	Copper sulfide nanostructures: synthesis and biological applications. RSC Advances, 2022, 12, 7550-7567.	3.6	19
2824	Tumor Site-Specific Peg Detachment and Active Tumor Homing of Therapeutic Pegylated Chitosan/Folate-Decorated Polydopamine Nanoparticles to Augment Antitumor Efficacy of Photothermal/Chemo Combination Therapy. SSRN Electronic Journal, 0, , .	0.4	0
2825	PEGylated Gold Nanoparticle Toxicity in Cardiomyocytes: Assessment of Size, Concentration, and Time Dependency. IEEE Transactions on Nanobioscience, 2022, 21, 387-394.	3.3	5
2826	Application of magnetic nanoparticles as drug delivery in cancer. , 2022, , 393-412.		1
2827	Actively Targeted Nanomedicines in Breast Cancer: From Pre-Clinal Investigation to Clinic. Cancers, 2022, 14, 1198.	3.7	29
2828	Multipotent Poly(Tertiary Amineâ€Oxide) Micelles for Efficient Cancer Drug Delivery. Advanced Science, 2022, 9, e2200173.	11.2	36
2829	Designing Functional Bionanoconstructs for Effective <i>In Vivo</i> Targeting. Bioconjugate Chemistry, 2022, 33, 429-443.	3.6	12
2830	Emerging landscapes of nanosystems based on pre-metastatic microenvironment for cancer theranostics. Chinese Chemical Letters, 2022, 33, 4157-4168.	9.0	15
2831	The Potential of Nanomedicine to Unlock the Limitless Applications of mRNA. Pharmaceutics, 2022, 14, 460.	4.5	11
2832	Targeted Drug Delivery for the Treatment of Blood Cancers. Molecules, 2022, 27, 1310.	3.8	11
2834	Tunneling Nanotubes: A New Target for Nanomedicine?. International Journal of Molecular Sciences, 2022, 23, 2237.	4.1	11
2835	The Emerging Role of Ultrasonic Nanotechnology for Diagnosing and Treatment of Diseases. Frontiers in Medicine, 2022, 9, 814986.	2.6	4
2836	Nanoparticles as phytochemical carriers for cancer treatment: News of the last decade. Expert Opinion on Drug Delivery, 2022, 19, 179-197.	5.0	16
2837	Engineered Cell Membrane-Derived Nanocarriers: The Enhanced Delivery System for Therapeutic Applications. Frontiers in Cell and Developmental Biology, 2022, 10, 844050.	3.7	5
2838	Co-axial electrospraying of injectable multi-cancer drugs nanocapsules with polymer shells for targeting aggressive breast cancers. Cancer Nanotechnology, 2022, 13, .	3.7	5
2839	Composition-Dependent Cytotoxic and Antibacterial Activity of Biopolymer-Capped Ag/Au Bimetallic Nanoparticles against Melanoma and Multidrug-Resistant Pathogens. Nanomaterials, 2022, 12, 779.	4.1	10
2840	Application of Rapid Fluorescence Lifetime Imaging Microscopy (RapidFLIM) to Examine Dynamics of Nanoparticle Uptake in Live Cells. Cells, 2022, 11, 642.	4.1	3

#	Article	IF	Citations
2841	Secondary metaboliteâ€entrapped, antiâ€GPA33 targeted polyâ€dopamine nanoparticles and their effectiveness in cancer treatment. Journal of Applied Polymer Science, 2022, 139, 52274.	2.6	2
2842	Synergistic Silencing of Skp2 by siRNA Selfâ€Assembled Nanoparticles as a Therapeutic Strategy for Advanced Prostate Cancer. Small, 2022, 18, e2106046.	10.0	8
2843	Spatiotemporal Tracing of the Cellular Internalization Process of Rod-Shaped Nanostructures. ACS Nano, 2022, 16, 4059-4071.	14.6	12
2844	Novel Green Approaches for the Preparation of Gold Nanoparticles and Their Promising Potential in Oncology. Processes, 2022, 10, 426.	2.8	16
2845	Computational Indicator Approach for Assessment of Nanotoxicity of Two-Dimensional Nanomaterials. Nanomaterials, 2022, 12, 650.	4.1	9
2846	The Landscape of Nanovectors for Modulation in Cancer Immunotherapy. Pharmaceutics, 2022, 14, 397.	4.5	4
2847	Tuning the Hydrophilic–Hydrophobic Balance of Molecular Polymer Bottlebrushes Enhances their Tumor Homing Properties. Advanced Healthcare Materials, 2022, 11, e2200163.	7.6	17
2848	Investigation of antibacterial activity of one-dimensional electrospun Walnut green husk extract-PVP nanofibers. Iranian Polymer Journal (English Edition), 2022, 31, 779-785.	2.4	3
2849	Re-establishing the comprehension of phytomedicine and nanomedicine in inflammation-mediated cancer signaling. Seminars in Cancer Biology, 2022, 86, 1086-1104.	9.6	25
2850	Polymeric Nanoparticles in Cancer Chemotherapy: A Narrative Review. Iranian Journal of Public Health, 0, , .	0.5	5
2851	Precursor Heterogeneity Driven Mo–Te Nanoparticle Structural Diversification for Cancer Photo-Theranostics. ACS Applied Materials & Samp; Interfaces, 2022, 14, 9987-10000.	8.0	0
2852	Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. Journal of Experimental and Clinical Cancer Research, 2022, 41, 68.	8.6	115
2853	Coordinately Tethered Iron(III) Fluorescent Nanotheranostic Polymer Ascertaining Cancer Cell Mitochondria Destined Potential Chemotherapy and T ₁ -Weighted MRI Competency. ACS Applied Bio Materials, 2022, 5, 1284-1296.	4.6	7
2854	End Group Dye‣abeled Polycarbonate Block Copolymers for Micellar (Immunoâ€)Drug Delivery. Macromolecular Rapid Communications, 2022, 43, e2200095.	3.9	9
2855	Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharmaceutica Sinica B, 2022, 12, 3028-3048.	12.0	103
2856	Nanomedicines Targeting Respiratory Injuries for Pulmonary Disease Management. Advanced Functional Materials, 2022, 32, .	14.9	9
2857	Boosting Tumor Immunotherapy by Bioactive Nanoparticles via Ca ²⁺ Interference Mediated TME Reprogramming and Specific PD‣1 Depletion. Advanced Functional Materials, 2022, 32, .	14.9	32
2858	Bioinspired soft nanovesicles for siteâ€selective cancer imaging and targeted therapies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1792.	6.1	1

#	Article	IF	CITATIONS
2859	Shape-specific microfabricated particles for biomedical applications: a review. Drug Delivery and Translational Research, 2022, 12, 2019-2037.	5.8	8
2860	A Platelet Intelligent Vehicle with Navigation for Cancer Photothermal-Chemotherapy. ACS Nano, 2022, 16, 6359-6371.	14.6	33
2861	Brain-Targeted Codelivery of Bcl-2/Bcl-xl and Mcl-1 Inhibitors by Biomimetic Nanoparticles for Orthotopic Glioblastoma Therapy. ACS Nano, 2022, 16, 6293-6308.	14.6	40
2862	pH-responsive and CD44-targeting polymer micelles based on CD44p-conjugated amphiphilic block copolymer PEG-b-HES-b-PLA for delivery of emodin to breast cancer cells. Nanotechnology, 2022, 33, 275604.	2.6	8
2863	Insights into Nanomedicine for Head and Neck Cancer Diagnosis and Treatment. Materials, 2022, 15, 2086.	2.9	8
2864	A snapshot of the vast array of diamagnetic CEST MRI contrast agents. NMR in Biomedicine, 2023, 36, e4715.	2.8	10
2866	Molecular Dynamics Simulations of Docetaxel Adsorption on Graphene Quantum Dots Surface Modified by PEG-b-PLA Copolymers. Nanomaterials, 2022, 12, 926.	4.1	10
2867	Formulation and Characterization of Doxycycline-Loaded Polymeric Nanoparticles for Testing Antitumor/Antiangiogenic Action in Experimental Colon Cancer in Mice. Nanomaterials, 2022, 12, 857.	4.1	9
2868	Engineered nanoparticles enable deep proteomics studies at scale by leveraging tunable nano–bio interactions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2106053119.	7.1	29
2869	PUMILIO proteins promote colorectal cancer growth via suppressing p21. Nature Communications, 2022, 13, 1627.	12.8	14
2870	Modified Drug Release from SiO2/Polyhydroxybutyrate Composite Prepared Using Bamboo Leaf-Derived Silica., 0,, 23-34.		1
2872	Multifunctional Therapeutic Approach of Nanomedicines against Inflammation in Cancer and Aging. Journal of Nanomaterials, 2022, 2022, 1-19.	2.7	38
2873	Development of a Localized Drug Delivery System with a Step-by-Step Cell Internalization Capacity for Cancer Immunotherapy. ACS Nano, 2022, 16, 5778-5794.	14.6	18
2874	Advanced Biomaterials for Cellâ€Specific Modulation and Restore of Cancer Immunotherapy. Advanced Science, 2022, 9, e2200027.	11.2	26
2875	Nanotherapeutics in transplantation: How do we get to clinical implementation?. American Journal of Transplantation, 2022, 22, 1293-1298.	4.7	4
2876	Intelligent Gold Nanoparticles with Oncogenic MicroRNAâ€Dependent Activities to Manipulate Tumorigenic Environments for Synergistic Tumor Therapy. Advanced Materials, 2022, 34, e2110219.	21.0	25
2877	Metal-Organic Framework-Based Nanotherapeutics With Tumor Hypoxia-Relieving Ability for Synergistic Sonodynamic/Chemo-therapy. Frontiers in Materials, 2022, 9, .	2.4	8
2878	CRPC Membrane-Camouflaged, Biomimetic Nanosystem for Overcoming Castration-Resistant Prostate Cancer by Cellular Vehicle-Aided Tumor Targeting. International Journal of Molecular Sciences, 2022, 23, 3623.	4.1	8

#	Article	IF	CITATIONS
2879	Three Millennia of Nanocrystals. ACS Nano, 2022, 16, 5085-5102.	14.6	27
2880	Light-Triggered Polymersome-Based Anticancer Therapeutics Delivery. Nanomaterials, 2022, 12, 836.	4.1	8
2881	Multifunctional Nanomaterials for Ferroptotic Cancer Therapy. Frontiers in Chemistry, 2022, 10, 868630.	3.6	13
2882	Current Strategies in Breast Cancer Therapy: Role of Epigenetics and Nanomedicine. Particle and Particle Systems Characterization, 0, , 2100276.	2.3	0
2883	Plant-Derived Nanoscale-Encapsulated Antioxidants for Oral and Topical Uses: A Brief Review. International Journal of Molecular Sciences, 2022, 23, 3638.	4.1	4
2884	Dual-Targeting of Tumor Cells and Tumor-Associated Macrophages by Palmitic Acid Modified Albumin Nanoparticles for Antitumor and Antimetastasis Therapy. ACS Applied Materials & Diterfaces, 2022, 14, 14887-14902.	8.0	11
2885	Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances. Journal of Nanobiotechnology, 2022, 20, 109.	9.1	42
2886	Acidâ€Responsive Aggregated Gold Nanoparticles for Radiosensitization and Synergistic Chemoradiotherapy in the Treatment of Esophageal Cancer. Small, 2022, 18, e2200115.	10.0	28
2887	cRGD enables rapid phagocytosis of liposomal vancomycin for intracellular bacterial clearance. Journal of Controlled Release, 2022, 344, 202-213.	9.9	11
2888	Mitigating off-target distribution and enhancing cytotoxicity in breast cancer cells with alpha-ketoglutaric acid-modified Fe/Mg-CA nanoparticles. Journal of Pharmaceutical Investigation, 2022, 52, 367-386.	5. 3	4
2889	Nano-delivery to the lung - by inhalation or other routes and why nano when micro is largely sufficient?. Advanced Drug Delivery Reviews, 2022, 183, 114173.	13.7	44
2890	Iron oxide nanoparticles for theranostic applications - Recent advances. Journal of Drug Delivery Science and Technology, 2022, 70, 103196.	3.0	12
2891	mPEG-PDLLA Micelles Potentiate Docetaxel for Intraperitoneal Chemotherapy in Ovarian Cancer Peritoneal Metastasis. Frontiers in Pharmacology, 2022, 13, 861938.	3.5	4
2892	Experimental and Theoretical Insights on Chemopreventive Effect of the Liposomal Thymoquinone Against Benzo[a]pyrene-Induced Lung Cancer in Swiss Albino Mice. Journal of Inflammation Research, 2022, Volume 15, 2263-2280.	3.5	10
2893	2D materials-based nanomedicine: From discovery to applications. Advanced Drug Delivery Reviews, 2022, 185, 114268.	13.7	53
2894	Mechanisms of Uptake and Membrane Curvature Generation for the Internalization of Silica Nanoparticles by Cells. Nano Letters, 2022, 22, 3118-3124.	9.1	14
2895	Recent advances in glioma microenvironment-response nanoplatforms for phototherapy and sonotherapy. Pharmacological Research, 2022, 179, 106218.	7.1	18
2896	Applications of Nanotechnology-based Approaches to Overcome Multi-drug Resistance in Cancer. Current Pharmaceutical Design, 2022, 28, 3140-3157.	1.9	4

#	ARTICLE	IF	CITATIONS
2897	Microfluidic Nanoparticles for Drug Delivery. Small, 2022, 18, e2106580.	10.0	58
2898	Phytochemical-loaded liposomes for anticancer therapy: an updated review. Nanomedicine, 2022, 17, 547-568.	3.3	35
2899	Manganese Phosphate-Doxorubicin-Based Nanomedicines Using Mimetic Mineralization for Cancer Chemotherapy. ACS Biomaterials Science and Engineering, 2022, 8, 1930-1941.	5.2	6
2900	Selective Anticancer Therapy Based on a HA-CD44 Interaction Inhibitor Loaded on Polymeric Nanoparticles. Pharmaceutics, 2022, 14, 788.	4.5	4
2901	Development of the poly(l-histidine) grafted carbon nanotube as a possible smart drug delivery vehicle. Computers in Biology and Medicine, 2022, 143, 105336.	7.0	9
2902	Immunophenotyping: Analytical approaches and role in preclinical development of nanomedicines. Advanced Drug Delivery Reviews, 2022, 185, 114281.	13.7	9
2903	A nanotherapy responsive to the inflammatory microenvironment for the dual-targeted treatment of atherosclerosis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, , 102557.	3.3	4
2904	Targeting nanoparticles to malignant tumors. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188703.	7.4	15
2905	Immunomodulatory effect of mushrooms and their bioactive compounds in cancer: A comprehensive review. Biomedicine and Pharmacotherapy, 2022, 149, 112901.	5 . 6	23
2906	Deciphering albumin-directed drug delivery by imaging. Advanced Drug Delivery Reviews, 2022, 185, 114237.	13.7	25
2907	Co-delivery of doxorubicin and CRISPR/Cas9 or RNAi-expressing plasmid by chitosan-based nanoparticle for cancer therapy. Carbohydrate Polymers, 2022, 287, 119315.	10.2	23
2909	New Therapeutic Approaches for Allergy: A Review of Cell Therapy and Bio- or Nano-Material-Based Strategies. Pharmaceutics, 2021, 13, 2149.	4.5	4
2910	A Nanoscale Shape-Discovery Framework Supporting Systematic Investigations of Shape-Dependent Biological Effects and Immunomodulation. ACS Nano, 2022, 16, 1547-1559.	14.6	16
2911	Bacteriophages as Solid Tumor Theragnostic Agents. International Journal of Molecular Sciences, 2022, 23, 402.	4.1	17
2913	Multistage Systemic and Cytosolic Protein Delivery for Effective Cancer Treatment. Nano Letters, 2022, 22, 111-118.	9.1	15
2914	Advances in Delivery of Chemotherapeutic Agents for Cancer Treatment. AAPS PharmSciTech, 2022, 23, 25.	3.3	19
2915	Rhamnolipid-coated W/O/W double emulsion nanoparticles for efficient delivery of doxorubicin/erlotinib and combination chemotherapy. Journal of Nanobiotechnology, 2021, 19, 411.	9.1	27
2916	Emerging Nanoparticle Strategies for Modulating Tumor-Associated Macrophage Polarization. Biomolecules, 2021, 11, 1912.	4.0	11

#	Article	IF	CITATIONS
2917	C–X–C Chemokine Receptor Type 4-Targeted Imaging in Glioblastoma Multiforme Using ⁶⁴ Cu-Radiolabeled Ultrasmall Gold Nanoclusters. ACS Applied Bio Materials, 2022, 5, 235-242.	4.6	3
2918	Polyester Dendrimers Based on Bis-MPA for Doxorubicin Delivery. Biomacromolecules, 2022, 23, 20-33.	5.4	5
2919	Temperatureâ€Dependent CATâ€Like RGDâ€BPNS@SMFN Nanoplatform for PTTâ€PDT Selfâ€Synergetic Tumor Phototherapy. Advanced Healthcare Materials, 2022, 11, e2102298.	7.6	29
2920	Modified Gold Nanoparticles to Overcome the Chemoresistance to Gemcitabine in Mutant p53 Cancer Cells. Pharmaceutics, 2021, 13, 2067.	4.5	16
2921	Near-infrared light-triggered nano-prodrug for cancer gas therapy. Journal of Nanobiotechnology, 2021, 19, 443.	9.1	31
2922	CD38-Directed Vincristine Nanotherapy for Acute Lymphoblastic Leukemia. Biomacromolecules, 2022, 23, 377-387.	5.4	2
2923	Construction of Glycogen-Based Nanoparticles Loaded with Resveratrol for the Alleviation of High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease. Biomacromolecules, 2022, 23, 409-423.	5.4	9
2924	Nanoparticle/Nanocarrier Formulation as an Antigen: The Immunogenicity and Antigenicity of Itself. Molecular Pharmaceutics, 2022, 19, 148-159.	4.6	9
2925	Theranostics: Principles, Materials, and Technical Advancements., 2022,, 317-343.		0
2926	Endogenous Oleoylethanolamide Crystals Loaded Lipid Nanoparticles with Enhanced Hydrophobic Drug Loading Capacity for Efficient Stroke Therapy. International Journal of Nanomedicine, 2021, Volume 16, 8103-8115.	6.7	5
2927	Nanomedicine in Hepatocellular Carcinoma: A New Frontier in Targeted Cancer Treatment. Pharmaceutics, 2022, 14, 41.	4.5	27
2928	A redox-responsive dihydroartemisinin dimeric nanoprodrug for enhanced antitumor activity. Journal of Nanobiotechnology, 2021, 19, 441.	9.1	11
2929	Recent developments in drug delivery strategies for targeting DNA damage response in glioblastoma. Life Sciences, 2021, 287, 120128.	4.3	9
2930	Smart Lipid-Based Nanosystems for Therapeutic Immune Induction against Cancers: Perspectives and Outlooks. Pharmaceutics, 2022, 14, 26.	4.5	15
2931	Engineering Supramolecular Nanomedicine for Targeted Near Infrared-triggered Mitochondrial Dysfunction to Potentiate Cisplatin for Efficient Chemophototherapy. ACS Nano, 2022, 16, 1421-1435.	14.6	36
2932	Non-Modified Ultrasound-Responsive Gas Vesicles from Microcystis with Targeted Tumor Accumulation. International Journal of Nanomedicine, 2021, Volume 16, 8405-8416.	6.7	11
2933	Mesoporous Doxorubicin-Loaded Polydopamine Nanoparticles Coated with a Platelet Membrane Suppress Tumor Growth in a Murine Model of Human Breast Cancer. ACS Applied Bio Materials, 2022, 5, 123-133.	4.6	13
2934	Chiral Cu _{2–<i>x</i>} Se Nanoparticles for Enhanced Synergistic Cancer Chemodynamic/Photothermal Therapy in the Second Near-Infrared Biowindow. ACS Applied Materials & Description of the Second Near-Infrared Biowindow. ACS Applied Materials	8.0	19

#	Article	IF	CITATIONS
2935	Molecular polymer bottlebrushes in nanomedicine: therapeutic and diagnostic applications. Chemical Communications, 2022, 58, 5683-5716.	4.1	22
2936	Active nanomotors surpass passive nanomedicines: current progress and challenges. Journal of Materials Chemistry B, 2022, 10, 7099-7107.	5.8	5
2937	Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomaterials Science, 2022, 10, 3029-3053.	5. 4	24
2938	Advanced Magnetic Resonance Imaging (MRI) Techniques: Technical Principles and Applications in Nanomedicine. Cancers, 2022, 14, 1626.	3.7	22
2939	Use of paclitaxel carried in lipid core nanoparticles in patients with late-stage solid cancers with bone metastases: lack of toxicity and therapeutic benefits. Journal of Bone Oncology, 2022, 34, 100431.	2.4	3
2940	Emerging Nanotherapeutic Approaches to Overcome Drug Resistance in Cancers with Update on Clinical Trials. Pharmaceutics, 2022, 14, 866.	4.5	17
2941	Recent Advances in Transition-Metal Based Nanomaterials for Noninvasive Oncology Thermal Ablation and Imaging Diagnosis. Frontiers in Chemistry, 2022, 10, 899321.	3.6	9
2942	Nanoparticular Carriers As Objects to Study Intentional and Unintentional Bioconjugation. ACS Biomaterials Science and Engineering, 2024, 10, 3-11.	5. 2	0
2943	Imaging Tumor Heterogeneity and the Variations in Nanoparticle Accumulation using Perfluorooctyl Bromide Nanocapsule Xâ€ray Computed Tomography Contrast. Advanced Therapeutics, 0, , 2200047.	3.2	1
2944	Exploiting recent trends for the synthesis and surface functionalization of mesoporous silica nanoparticles towards biomedical applications. International Journal of Pharmaceutics: X, 2022, 4, 100116.	1.6	17
2945	lodine Conjugated Pt(IV) Nanoparticles for Precise Chemotherapy with Iodine–Pt Guided Computed Tomography Imaging and Biotin-Mediated Tumor-Targeting. ACS Nano, 2022, 16, 6835-6846.	14.6	16
2946	Albumin-Embellished Arsenic Trioxide-Loaded Polymeric Nanoparticles Enhance Tumor Accumulation and Anticancer Efficacy via Transcytosis for Hepatocellular Carcinoma Therapy. AAPS PharmSciTech, 2022, 23, 111.	3.3	4
2947	A Novel CXCR4-Targeted Diphtheria Toxin Nanoparticle Inhibits Invasion and Metastatic Dissemination in a Head and Neck Squamous Cell Carcinoma Mouse Model. Pharmaceutics, 2022, 14, 887.	4.5	5
2948	Bioorthogonal in situ assembly of nanomedicines as drug depots for extracellular drug delivery. Nature Communications, 2022, 13, 2038.	12.8	27
2949	Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability. Biotechnology Advances, 2022, 59, 107962.	11.7	55
2950	Synthesis and characterization of phase shift dextran stabilized nanodroplets for ultrasound-induced cancer therapy: A novel nanobiotechnology approach. Journal of Biotechnology, 2022, 350, 17-23.	3.8	4
2951	Direct investigations of the electrical conductivity of normal and cancer breast cells by conductive atomic force microscopy. Ultramicroscopy, 2022, 237, 113531.	1.9	7
2952	Cell membrane-based biomimetic nanosystems for advanced drug delivery in cancer therapy: A comprehensive review. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112503.	5.0	14

#	ARTICLE	IF	CITATIONS
2972	Janusâ€like B _x C/C Quantum Sheets with Zâ€Scheme Mechanism Strengthen Tumor Photothermalâ€lmmunotherapy in NIRâ€ll Biowindow. Small Methods, 2022, 6, e2101551.	8.6	6
2973	Tumor microenvironment responsive polypeptide-based supramolecular nanoprodrugs for combination therapy. Acta Biomaterialia, 2022, 146, 396-405.	8.3	18
2974	In vivo biodistribution of edelfosine-loaded lipid nanoparticles radiolabeled with Technetium-99Âm: Comparison of administration routes in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 175, 1-6.	4.3	3
2975	Strategies of engineering nanomedicines for tumor retention. Journal of Controlled Release, 2022, 346, 193-211.	9.9	10
2976	Phototherapy: The novel emerging treatment for cancer. , 2022, , 31-50.		2
2977	Receptor-Targeted Surface-Engineered Nanomaterials for Breast Cancer Imaging and Theranostic Applications. Critical Reviews in Therapeutic Drug Carrier Systems, 2022, 39, 1-44.	2.2	14
2978	Lipid-coated CaCO ₃ -PDA nanoparticles as a versatile nanocarrier to enable pH-responsive dual modal imaging-guided combination cancer therapy. Journal of Materials Chemistry B, 2022, 10, 4096-4104.	5 . 8	4
2979	Nanostructures for the efficient oral delivery of chemotherapeutic agents., 2022,, 419-430.		O
2980	NIR-II-responsive AuNRs@SiO ₂ â€"RB@MnO ₂ nanotheranostic for multimodal imaging-guided CDT/PTT synergistic cancer therapy. Journal of Materials Chemistry B, 2022, 10, 4274-4284.	5.8	13
2981	Nanotechnology Applications in Breast Cancer. Advances in Medical Diagnosis, Treatment, and Care, 2022, , 442-465.	0.1	1
2982	Polyethylenimine/cGAMP Nanocomplexes for STING-Mediated Cancer Immunotherapy: Formulation and Characterization Using Orthogonal Techniques. Processes, 2022, 10, 882.	2.8	3
2983	Amino acids and doxorubicin as building blocks for metal ionâ€driven selfâ€assembly of biodegradable polyprodrugs for tumor theranostics. Acta Biomaterialia, 2022, 147, 245-257.	8.3	8
2984	Engineered nanomedicines block the PD-1/PD-L1 axis for potentiated cancer immunotherapy. Acta Pharmacologica Sinica, 2022, 43, 2749-2758.	6.1	16
2985	Nanotheranostics for Image-Guided Cancer Treatment. Pharmaceutics, 2022, 14, 917.	4.5	16
2986	Craft of Co-encapsulation in Nanomedicine: A Struggle To Achieve Synergy through Reciprocity. ACS Pharmacology and Translational Science, 2022, 5, 278-298.	4.9	9
2987	Recent Advances in Pretargeted Imaging of Tumors in Vivo. Analysis & Sensing, 2022, 2, .	2.0	6
2988	The interactions between DNA nanostructures and cells: A critical overview from a cell biology perspective. Acta Biomaterialia, 2022, 146, 10-22.	8.3	10
2989	Self-assembled Pt(II) metallacycles enable precise cancer combination chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202255119.	7.1	12

#	Article	IF	Citations
2990	Construction of hyperbranched polysiloxane-based multifunctional fluorescent prodrug for preferential cellular uptake and dual-responsive drug release. , 2022, , 212848.		6
2991	The dynamic, motile and deformative properties of RNA nanoparticles facilitate the third milestone of drug development. Advanced Drug Delivery Reviews, 2022, 186, 114316.	13.7	17
2992	Photoactivated Organic Nanomachines for Programmable Enhancement of Antitumor Efficacy. Small, 2022, 18, e2201525.	10.0	11
2993	Targeted Delivery of DNA Topoisomerase Inhibitor SN38 to Intracranial Tumors of Glioblastoma Using Subâ€5 Ultrafine Iron Oxide Nanoparticles. Advanced Healthcare Materials, 2022, 11, e2102816.	7.6	6
2994	Facile and One-step Direct Synthesis of Poly(valine) as a Robust Drug Nanocarrier for Enhanced Breast Cancer Therapy. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1016-1027.	3.8	7
2995	Update on the Use of Nanocarriers and Drug Delivery Systems and Future Directions in Cervical Cancer. Journal of Immunology Research, 2022, 2022, 1-11.	2.2	6
2996	Pectin mediated green synthesis of CuO nanoparticles: evaluation of its cytotoxicity, antioxidant and anti-human cervical cancer properties. Journal of Experimental Nanoscience, 2022, 17, 315-325.	2.4	4
2997	Self-Assembly of Intelligent Nanoplatform for Endogenous H ₂ S-Triggered Multimodal Cascade Therapy of Colon Cancer. Nano Letters, 2022, 22, 4207-4214.	9.1	28
2998	Industrially synthesized biosafe vaterite hollow CaCO3 for controllable delivery of anticancer drugs. Materials Today Chemistry, 2022, 24, 100917.	3.5	9
2999	Preparation, characterization, and antitumor activity of Chaenomeles speciosa polysaccharide-based selenium nanoparticles. Arabian Journal of Chemistry, 2022, 15, 103943.	4.9	8
3000	Phenylboronic acid conjugated mPEG-b-PCL micelles as DOX carriers for enhanced drug encapsulation and controlled drug release. European Polymer Journal, 2022, 173, 111235.	5.4	10
3001	Fabrication of a multifunctional nanomaterial from a mussel-derived peptide for multimodal synergistic cancer therapy. Chemical Engineering Journal, 2022, 446, 136837.	12.7	6
3002	Size and surface charge effect of layered double hydroxide particles upon blood cells. Applied Clay Science, 2022, 225, 106549.	5.2	7
3003	MXenes and MXene-based (nano)structures: A perspective on greener synthesis and biomedical prospects. Ceramics International, 2022, 48, 24144-24156.	4.8	44
3004	Design, Synthesis and <i>In Vivo</i> Fluorescence Imaging Study of a Cytochrome P450 1B1 Targeted NIR Probe Containing a Chelator Moiety. ChemBioChem, 2022, 23, .	2.6	4
3005	A Chemical Nanoreactor Based on a Levitated Nanoparticle in Vacuum. ACS Nano, 2022, 16, 8677-8683.	14.6	7
3006	Long-term chemical biotransformation and pathways of Cd-based quantum dots in mice. Nano Today, 2022, 44, 101504.	11.9	7
3007	The role of cellâ€penetrating peptides in potential antiâ€cancer therapy. Clinical and Translational Medicine, 2022, 12, e822.	4.0	42

#	Article	IF	CITATIONS
3008	Targeting Cancer by Using Nanoparticles to Modulate RHO GTPase Signaling. Advances in Experimental Medicine and Biology, 2022, 1357, 115-127.	1.6	0
3009	Unique Random-Block Polymer Architecture for Site-Specific Mitochondrial Sequestration-Aided Effective Chemotherapeutic Delivery and Enhanced Fluorocarbon Segmental Mobility-Facilitated ¹⁹ F Magnetic Resonance Imaging. Biomacromolecules, 2022, 23, 2428-2440.	5.4	4
3010	Advances in Nanomedicine Design: Multidisciplinary Strategies for Unmet Medical Needs. Molecular Pharmaceutics, 2022, 19, 1722-1765.	4.6	5
3011	Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations. Journal of Nanobiotechnology, 2022, 20, 236.	9.1	9
3012	Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chemical Society Reviews, 2022, 51, 4996-5041.	38.1	179
3013	Cell membrane-engineered nanoparticles for cancer therapy. Journal of Materials Chemistry B, 2022, 10, 7161-7172.	5.8	12
3014	INFLUENCE OF pH ON THE SPECTRAL-LUMINESCENT CHARACTERISTICS OF THE SOFT PROTEIN CROWN OF SILVER NANOPARTICLES. , 2022, 89, 230-237.		0
3015	Hydrogenâ€Bondsâ€Mediated Nanomedicine: Design, Synthesis, and Applications. Macromolecular Rapid Communications, 2022, 43, .	3.9	6
3016	Polymer-drug conjugates: Design principles, emerging synthetic strategies and clinical overview. International Journal of Pharmaceutics, 2022, 623, 121863.	5.2	19
3017	Modulation of Colloidal Particle Stiffness for the Exploration of Bio–Nano Interactions. Langmuir, 2022, 38, 6780-6785.	3.5	7
3018	Macrophage-Derived Extracellular Vesicles: A Promising Tool for Personalized Cancer Therapy. Biomedicines, 2022, 10, 1252.	3.2	8
3019	Nanomedicines and nanomaterials for cancer therapy: Progress, challenge and perspectives. Chemical Engineering Journal, 2022, 446, 137147.	12.7	35
3020	Understanding interactions between biomolecules and two-dimensional nanomaterials using in silico microscopes. Advanced Drug Delivery Reviews, 2022, 186, 114336.	13.7	22
3021	MXenes in photomedicine: advances and prospects. Chemical Communications, 2022, 58, 7336-7350.	4.1	23
3022	Bioinspired and Biomimetic Nanomedicines for Targeted Cancer Therapy. Pharmaceutics, 2022, 14, 1109.	4.5	15
3023	Peptide-decorated nanocarriers penetrating the blood-brain barrier for imaging and therapy of brain diseases. Advanced Drug Delivery Reviews, 2022, 187, 114362.	13.7	17
3024	Advances of nano drug delivery system for the theranostics of ischemic stroke. Journal of Nanobiotechnology, 2022, 20, .	9.1	13
3025	Artificial Intelligence and its Application in Cancer Nanomedicine. , 2022, , 16-26.		O

#	Article	IF	CITATIONS
3026	Artificial Intelligence-based Diagnostic Design for Precision Cancer Nanomedicine., 2022, , 27-38.		0
3027	Local delivery of tumorâ€targeting nanoâ€micelles harboring <scp>GSH</scp> â€responsive drug release to improve antitumor efficiency. Polymers for Advanced Technologies, 2022, 33, 2835-2844.	3.2	4
3028	Multi-Modal Optical Imaging and Combined Phototherapy of Nasopharyngeal Carcinoma Based on a Nanoplatform. International Journal of Nanomedicine, 0, Volume 17, 2435-2446.	6.7	3
3029	Active targeting redox-responsive mannosylated prodrug nanocolloids promote tumor recognition and cell internalization for enhanced colon cancer chemotherapy. Acta Biomaterialia, 2022, 147, 299-313.	8.3	20
3030	Tumor microenvironment–responsive versatile "Trojan horse―theranostic nanoplatform for magnetic resonance imaging–guided multimodal synergistic antitumor treatment. Acta Biomaterialia, 2022, 147, 270-286.	8.3	6
3031	DNA Origami Nanostructures Elicit Doseâ€Dependent Immunogenicity and Are Nontoxic up to High Doses In Vivo. Small, 2022, 18, .	10.0	40
3032	Evaluating nanobiomaterial-induced DNA strand breaks using the alkaline comet assay. Drug Delivery and Translational Research, 2022, 12, 2243-2258.	5.8	9
3033	Development of Irinotecan Liposome Armed with Dual-Target Anti-Epidermal Growth Factor Receptor and Anti-Fibroblast Activation Protein-Specific Antibody for Pancreatic Cancer Treatment. Pharmaceutics, 2022, 14, 1202.	4.5	7
3034	Biomarking and Induction of Apoptosis in Ovarian Cancer Using Bifunctional Polyethyleneimine-Caged Platinum Nanoclusters. Frontiers in Oncology, 0, 12, .	2.8	1
3035	Predictive Design and Analysis of Drug Transport by Multiscale Computational Models Under Uncertainty. Pharmaceutical Research, 2023, 40, 501-523.	3.5	3
3036	Nanotechnology and Matrix Metalloproteinases in Cancer Diagnosis and Treatment. Frontiers in Molecular Biosciences, 2022, 9, .	3.5	8
3037	Influence of pH on the Spectral-Luminescent Characteristics of the Soft Protein Crown of Silver Nanoparticles. Journal of Applied Spectroscopy, 2022, 89, 281-287.	0.7	1
3038	Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency. Advanced Science, 2022, 9, .	11.2	140
3039	Design and fabrication of cascade novel Fenton catalytic nanocomposite as theranostic agent for chemodynamic/photothermal synergistic tumor therapy. Materials and Design, 2022, 219, 110794.	7.0	6
3040	Nanoparticle-based medicines in clinical cancer therapy. Nano Today, 2022, 45, 101512.	11.9	59
3041	Tumor site-specific PEG detachment and active tumor homing of therapeutic PEGylated chitosan/folate-decorated polydopamine nanoparticles to augment antitumor efficacy of photothermal/chemo combination therapy. Chemical Engineering Journal, 2022, 446, 137243.	12.7	23
3043	Confined microemulsion sono-polymerization of poly(ethylene glycol) nanoparticles for targeted delivery. Chemical Communications, 2022, 58, 7777-7780.	4.1	7
3044	Synergistic size and charge conversions of functionalized PAMAM dendrimers under the acidic tumor microenvironment. Biomaterials Science, 2022, 10, 4271-4283.	5.4	4

#	Article	IF	CITATIONS
3045	Imaging mass spectrometry differentiates the effects of doxorubicin formulations on non-targeted tissues. Analyst, The, 2022, 147, 3201-3208.	3.5	1
3046	Fabrication of injectable hydrogels from an anticancer peptide for local therapeutic delivery and synergistic photothermal–chemotherapy. Journal of Materials Chemistry B, 2022, 10, 5165-5173.	5.8	9
3047	Balancing the interplay between ligand ejection and therapeutic window light absorption in ruthenium polypyridyl complexes. Dalton Transactions, 0, , .	3.3	1
3048	Delivery of enzalutamide <i>via</i> nanoparticles for effectively inhibiting prostate cancer progression. Biomaterials Science, 2022, 10, 5187-5196.	5.4	6
3049	Flexible CuS-embedded human serum albumin hollow nanocapsules with peroxidase-like activity for synergistic sonodynamic and photothermal cancer therapy. Nanoscale, 2022, 14, 9702-9714.	5.6	9
3050	Bioengineered nanogels for cancer immunotherapy. Chemical Society Reviews, 2022, 51, 5136-5174.	38.1	81
3051	Materdicine and Medmaterial. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, 37, 1151.	1.3	6
3052	Molecular engineering to achieve AIE-active photosensitizers with NIR emission and rapid ROS generation efficiency. Journal of Materials Chemistry B, 2022, 10, 5272-5278.	5.8	12
3053	Metal Ion-Based Supramolecular Self-Assembly for Cancer Theranostics. Frontiers in Chemistry, 0, 10, .	3.6	5
3054	Assembly of Fluorescent Polymer Nanoparticles Using Different Microfluidic Mixers. Langmuir, 2022, 38, 7945-7955.	3.5	9
3055	Efficacy of Green Cerium Oxide Nanoparticles for Potential Therapeutic Applications: Circumstantial Insight on Mechanistic Aspects. Nanomaterials, 2022, 12, 2117.	4.1	21
3056	Synthesis of 198AuÂnanoparticles sub 10Ânm due optimization on local dose by Monte Carlo simulations for cancer treatment. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331, 3033-3041.	1.5	2
3058	Glucose Metabolism Intervention-Facilitated Nanomedicine Therapy. International Journal of Nanomedicine, 0, Volume 17, 2707-2731.	6.7	9
3059	Predicting prognosis and clinical features of the tumor microenvironment based on ferroptosis score in patients with breast cancer. Scientific Reports, 2022, 12, .	3.3	7
3060	MnO ₂ Nanozymeâ€Loaded MXene for Cancer Synergistic Photothermalâ€Chemodynamic Therapy. ChemistrySelect, 2022, 7, .	1.5	9
3061	Chitosanâ€Gelatinâ€EGCG Nanoparticleâ€Meditated LncRNA TMEM44â€AS1 Silencing to Activate the P53 Signaling Pathway for the Synergistic Reversal of 5â€FU Resistance in Gastric Cancer. Advanced Science, 2022, 9, .	11.2	28
3062	PDGFB targeting biodegradable FePt alloy assembly for MRI guided starvation-enhancing chemodynamic therapy of cancer. Journal of Nanobiotechnology, 2022, 20, .	9.1	9
3063	Dual-Responsive multifunctional "core–shell―magnetic nanoparticles promoting Fenton reaction for tumor ferroptosis therapy. International Journal of Pharmaceutics, 2022, 622, 121898.	5.2	14

#	ARTICLE	IF	CITATIONS
3064	Rethinking nanoparticulate polymer–drug conjugates for cancer theranostics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	6.1	5
3065	Trojan Nanobacteria System for Photothermal Programmable Destruction of Deep Tumor Tissues. Angewandte Chemie, 0, , .	2.0	1
3066	Fluidity-Guided Assembly of Au@Pt on Liposomes as a Catalase-Powered Nanomotor for Effective Cell Uptake in Cancer Cells and Plant Leaves. ACS Nano, 2022, 16, 9019-9030.	14.6	16
3067	Facile fabrication of glutathione-responsive and photothermal nanocarriers with dendritic mesoporous silica nanoparticles for the controlled drug delivery. Journal of Nanoparticle Research, 2022, 24, .	1.9	6
3068	Tumorâ€Activatable Nanoparticles Target Lowâ€Density Lipoprotein Receptor to Enhance Drug Delivery and Antitumor Efficacy. Advanced Science, 2022, 9, .	11.2	16
3069	Increasing the Production of Reactive Oxygen Species through a Ferroptosis Pathway Disrupts the Redox Balance of Tumor Cells for Cancer Treatment. ACS Applied Polymer Materials, 2022, 4, 5001-5011.	4.4	4
3070	Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics, 2022, 14, 1213.	4.5	38
3071	Herbal Nanoparticles: A New Perspective of Drug Delivery System- A Review. Nanoscience and Nanotechnology - Asia, 2022, 12, .	0.7	0
3072	Emerging Biomaterials Imaging Antitumor Immune Response. Advanced Materials, 2022, 34, .	21.0	22
3073	A Potent Micron Neoantigen Tumor Vaccine GPâ€Neoantigen Induces Robust Antitumor Activity in Multiple Tumor Models. Advanced Science, 2022, 9, .	11.2	17
3074	Bifunctional scaffolds for tumor therapy and bone regeneration: Synergistic effect and interplay between therapeutic agents and scaffold materials. Materials Today Bio, 2022, 15, 100318.	5 . 5	8
3075	Nonmetal Graphdiyne Nanozyme-Based Ferroptosis–Apoptosis Strategy for Colon Cancer Therapy. ACS Applied Materials & Colon Cancer Therapy. ACS Applied Materials & Colon Cancer Therapy. ACS	8.0	26
3076	Antibioticâ€Loaded Amphiphilic Chitosan Nanoparticles Target Macrophages and Kill an Intracellular Pathogen. Small, 2022, 18, .	10.0	10
3077	Active targeting of CD4 ⁺ T lymphocytes by PEI-capped, peptide-functionalized gold nanoparticles. Nanotechnology, 2022, 33, 405101.	2.6	2
3078	Advances and applications of monoolein as a novel nanomaterial in mitigating chronic lung diseases. Journal of Drug Delivery Science and Technology, 2022, 74, 103541.	3.0	7
3079	Stimuli-Responsive Gold Nanocages for Cancer Diagnosis and Treatment. Pharmaceutics, 2022, 14, 1321.	4.5	4
3080	⁸⁹ Zr-labeled High-Density Lipoprotein Nanoparticle PET imaging reveals tumor uptake in patients with esophageal cancer. Journal of Nuclear Medicine, 0, , jnumed.121.263330.	5.0	1
3081	Different Sourced Extracellular Vesicles and Their Potential Applications in Clinical Treatments. Cells, 2022, 11, 1989.	4.1	25

#	ARTICLE	IF	CITATIONS
3082	Polymeric micellar paclitaxel (Pm-Pac) prolonged overall survival for NSCLC patients without pleural metastasis. International Journal of Pharmaceutics, 2022, 623, 121961.	5.2	11
3083	Role of Doxorubicin on the Loading Efficiency of ICG within Silk Fibroin Nanoparticles. ACS Biomaterials Science and Engineering, 2022, 8, 3054-3065.	5.2	1
3084	Size Effect of Zwitterionic Peptide-Based Nanoscale Micelles on Cancer Therapy. ACS Applied Nano Materials, 2022, 5, 9344-9355.	5.0	4
3085	Construction of NIR etchable nanoparticles via co-assembly strategy for appointed delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129395.	4.7	1
3086	Trojan Nanobacteria System for Photothermal Programmable Destruction of Deep Tumor Tissues. Angewandte Chemie - International Edition, 2022, 61, .	13.8	23
3087	Recent advances in nanotechnology-based functional coatings for the built environment. Materials Today Advances, 2022, 15, 100270.	5.2	30
3088	Nanomedicines and cell-based therapies for embryonal tumors of the nervous system. Journal of Controlled Release, 2022, 348, 553-571.	9.9	5
3089	Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance. Biomedicine and Pharmacotherapy, 2022, 153, 113305.	5.6	50
3090	Cardiolipin nanodisks confer protection against doxorubicin-induced mitochondrial dysfunction. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183984.	2.6	2
3091	Integrating DNA nanostructures with DNAzymes for biosensing, bioimaging and cancer therapy. Coordination Chemistry Reviews, 2022, 468, 214651.	18.8	18
3092	Applications of nanocomposites based on zeolitic imidazolate framework-8 in photodynamic and synergistic anti-tumor therapy. RSC Advances, 2022, 12, 16927-16941.	3.6	6
3093	Nitroreductase-Induced Bioorthogonal Ligation for Prodrug Activation: A Traceless Strategy for Cancer-Specific Imaging and Therapy. SSRN Electronic Journal, 0, , .	0.4	O
3094	Innovations in the prevention and treatment of postpartum hemorrhage: Analysis of a novel medicines development pipeline database. International Journal of Gynecology and Obstetrics, 2022, 158, 31-39.	2.3	6
3095	Systematic Identification of Genomic Markers for Guiding Iron Oxide Nanoparticles in Cervical Cancer Based on Translational Bioinformatics. International Journal of Nanomedicine, 0, Volume 17, 2823-2841.	6.7	4
3096	Recent Progress in Bio-Responsive Drug Delivery Systems for Tumor Therapy. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	4.1	9
3097	Matrix Metalloproteinase-2-Responsive Surface-Changeable Liposomes Decorated by Multifunctional Peptides to Overcome the Drug Resistance of Triple-Negative Breast Cancer through Enhanced Targeting and Penetrability. ACS Biomaterials Science and Engineering, 2022, 8, 2979-2994.	5.2	13
3098	Carbon Nanotubes in Tumor-Targeted Chemotherapeutic Formulations: A Review of Opportunities and Challenges. ACS Applied Nano Materials, 2022, 5, 8649-8679.	5.0	6
3099	Advances in Hybrid Vesicular-based Drug Delivery Systems: Improved Biocompatibility, Targeting, Therapeutic Efficacy and Pharmacokinetics of Anticancer Drugs. Current Drug Metabolism, 2022, 23, 757-780.	1.2	4

#	Article	IF	CITATIONS
3100	Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Seminars in Cancer Biology, 2022, 86, 805-833.	9.6	15
3101	Iron(III) Coordinated Theranostic Polyprodrug with Sequential Receptor-Mitochondria Dual Targeting and T ₁ -Weighted Magnetic Resonance Imaging Potency for Effective and Precise Chemotherapy. Biomacromolecules, 2022, 23, 3198-3212.	5.4	3
3102	Interference of layered double hydroxide nanoparticles with pathways for biomedical applications. Advanced Drug Delivery Reviews, 2022, 188, 114451.	13.7	18
3103	Mg2+ Ions Regulating 3WJ-PRNA to Construct Controllable RNA Nanoparticle Drug Delivery Platforms. Pharmaceutics, 2022, 14, 1413.	4.5	1
3104	Pharmacological senolysis reduces doxorubicin-induced cardiotoxicity and improves cardiac function in mice. Pharmacological Research, 2022, 183, 106356.	7.1	26
3105	Iron Oxide Nanoparticles: The precise strategy for targeted delivery of genes, oligonucleotides and peptides in cancer therapy. Journal of Drug Delivery Science and Technology, 2022, 74, 103585.	3.0	7
3106	Extracellular vesicles for improved tumor accumulation and penetration. Advanced Drug Delivery Reviews, 2022, 188, 114450.	13.7	26
3107	Nanomaterials-Mediated Therapeutics and Diagnosis Strategies for Myocardial Infarction. Frontiers in Chemistry, $0,10,.$	3.6	4
3108	Multimodal Therapies against Pancreatic Ductal Adenocarcinoma: A Review on Synergistic Approaches toward Ultimate Nanomedicine Treatments. Advanced Therapeutics, 2022, 5, .	3.2	8
3109	A REVIEW OF ADVANCED NANOTECHNOLOGIES AND DRUG DELIVERY SYSTEMS OF SALINOMYCIN AND THEIR ROLE IN TRIPLE-NEGATIVE BREAST CANCER. International Journal of Applied Pharmaceutics, 0, , 103-114.	0.3	0
3110	Development of a multi-route physiologically based pharmacokinetic (PBPK) model for nanomaterials: a comparison between a traditional versus a new route-specific approach using gold nanoparticles in rats. Particle and Fibre Toxicology, 2022, 19, .	6.2	15
3111	Cancer nanomedicine: A step towards improving the drug delivery and enhanced efficacy of chemotherapeutic drugs. OpenNano, 2022, 7, 100051.	4.8	7
3112	Mouse Strain– and Charge-Dependent Vessel Permeability of Nanoparticles at the Lower Size Limit. Frontiers in Chemistry, 0, 10, .	3.6	2
3113	Stimuli-responsive polyprodrug for cancer therapy. Materials Today Advances, 2022, 15, 100266.	5.2	4
3114	Nanocarriers for drug-delivery systems using a ureido-derivatized polymer gatekeeper for temperature-controlled spatiotemporal on–off drug release. , 2022, 139, 213026.		4
3115	Spatial specific delivery of combinational chemotherapeutics to combat intratumoral heterogeneity. Journal of Controlled Release, 2022, 348, 1004-1015.	9.9	6
3116	Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Advanced Drug Delivery Reviews, 2022, 188, 114449.	13.7	59
3117	Lipid nanoparticles to silence androgen receptor variants for prostate cancer therapy. Journal of Controlled Release, 2022, 349, 174-183.	9.9	10

#	Article	IF	CITATIONS
3118	An update on dual targeting strategy for cancer treatment. Journal of Controlled Release, 2022, 349, 67-96.	9.9	18
3119	A photosensitive sustainable lignin nanoplatform for multimodal image-guided mitochondria-targeted photodynamic and photothermal therapy. Materials Today Chemistry, 2022, 26, 101000.	3.5	2
3120	Fine Control of In Vivo Magnetic Hyperthermia Using Iron Oxide Nanoparticles with Different Coatings and Degree of Aggregation. Pharmaceutics, 2022, 14, 1526.	4.5	7
3121	Core–shell structured gold nanoparticles as carrier for 166Dy/166Ho in vivo generator. EJNMMI Radiopharmacy and Chemistry, 2022, 7, .	3.9	4
3122	Stepwise Size Shrinkage Cascadeâ€Activated Supramolecular Prodrug Boosts Antitumor Immunity by Eliciting Pyroptosis. Advanced Science, 2022, 9, .	11.2	35
3123	Nanoplatformâ€Based Reactive Oxygen Species Scavengers for Therapy of Ischemiaâ€Reperfusion Injury. Advanced Therapeutics, 2022, 5, .	3.2	9
3124	The in vivo fate of polymeric micelles. Advanced Drug Delivery Reviews, 2022, 188, 114463.	13.7	54
3125	Thiolâ€Disulfide Exchange as a Route for Endosomal Escape of Polymeric Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
3126	Confined Construction of Ultrasmall Molybdenum Disulfide-Loaded Porous Silica Particles for Efficient Tumor Therapy. ACS Biomaterials Science and Engineering, 2022, 8, 3377-3386.	5 . 2	4
3127	Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science, 2022, 377, .	12.6	72
3128	<i>Azadirachta indica</i> Seed Derived Carbon Nanocapsules: Cell Imaging, Depolarization of Mitochondrial Membrane Potential, and Dose-Dependent Control Death of Breast Cancer. ACS Biomaterials Science and Engineering, 0, , .	5.2	0
3129	Photochemical Internalization of siRNA for Cancer Therapy. Cancers, 2022, 14, 3597.	3.7	9
3130	Nucleusâ€specific RNAi nanoplatform for targeted regulation of nuclear lncRNA function and effective cancer therapy. Exploration, 2022, 2, .	11.0	7
3131	Thiolâ€Disulfide Exchange as a Route for Endosomal Escape of Polymeric Nanoparticles. Angewandte Chemie, 2022, 134, .	2.0	6
3132	Photoâ€excitable zinc sulfide nanoparticles: A theranostic nanotool for cancer management. Oral Diseases, 2023, 29, 3243-3258.	3.0	0
3133	Amphiphilic Dendritic Nanomicelle-Mediated Delivery of Gemcitabine for Enhancing the Specificity and Effectiveness. International Journal of Nanomedicine, 0, Volume 17, 3239-3249.	6.7	7
3134	Emerging mechanisms of pyroptosis and its therapeutic strategy in cancer. Cell Death Discovery, 2022, 8, .	4.7	24
3135	Mitochondrial targeting theranostic nanomedicine and molecular biomarkers for efficient cancer diagnosis and therapy. Biomedicine and Pharmacotherapy, 2022, 153, 113451.	5.6	13

#	ARTICLE	IF	CITATIONS
3136	How docetaxel entrapment, vesicle size, zeta potential and stability change with liposome composition–A formulation screening study. European Journal of Pharmaceutical Sciences, 2022, 177, 106267.	4.0	10
3137	Organic conjugated small molecules with donor–acceptor structures: design and application in the phototherapy of tumors. Materials Chemistry Frontiers, 2022, 6, 2968-2993.	5.9	21
3138	Nanovesicles for tumor-targeted drug delivery. , 2022, , 219-244.		1
3139	Mitochondria-targeted alginate/triphenylphosphonium-grafted-chitosan for treatment of hepatocellular carcinoma. RSC Advances, 2022, 12, 21690-21703.	3.6	7
3141	Redox-Sensitive Targeted Polymer Micelles for Enhanced Chemodynamic Therapy and Chemotherapy. SSRN Electronic Journal, 0, , .	0.4	0
3142	Insights on the Dynamics and Toxicity of Nanoparticles in Environmental Matrices. Bioinorganic Chemistry and Applications, 2022, 2022, 1-21.	4.1	5
3143	Tumor-on-a-chip model for advancement of anti-cancer nano drug delivery system. Journal of Nanobiotechnology, 2022, 20, .	9.1	13
3144	Retro-inversion follicle-stimulating hormone peptide-modified nanoparticles for delivery of PDK2 shRNA against chemoresistant ovarian cancer by switching glycolysis to oxidative phosphorylation. Cancer Nanotechnology, 2022, 13, .	3.7	2
3145	Nanofluidic optical diffraction interferometry for detection and classification of individual nanoparticles in a nanochannel. Microfluidics and Nanofluidics, 2022, 26, .	2.2	0
3146	Drug Delivery Systems with a "Tumor-Triggered―Targeting or Intracellular Drug Release Property Based on DePEGylation. Materials, 2022, 15, 5290.	2.9	3
3147	Tumor evolution-targeted nanomedicine ^{EVT} . Scientia Sinica Chimica, 2022, 52, 2121-2155.	0.4	4
3148	Research Progress Based on Regulation of Tumor Microenvironment Redox and Drug-Loaded Metal-Organic Frameworks. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-12.	4.0	1
3149	New Advances in Biomedical Application of Polymeric Micelles. Pharmaceutics, 2022, 14, 1700.	4.5	22
3150	Engineered metal and their complexes for nanomedicine-elicited cancer immunotherapy. Materials Today Advances, 2022, 15, 100276.	5.2	4
3151	Recent Advances in Nanoparticle-Based Co-Delivery Systems for Cancer Therapy. Nanomaterials, 2022, 12, 2672.	4.1	23
3152	Targeted inhibition of ubiquitin signaling reverses metabolic reprogramming and suppresses glioblastoma growth. Communications Biology, 2022, 5, .	4.4	6
3153	Self-Assembled DNA–Protein Hybrid Nanospheres: Biocompatible Nano-Drug-Carriers for Targeted Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 37493-37503.	8.0	3
3154	Disposition of E-selectin-targeting liposomes in tumor spheroids with a perfusable vascular network. Drug Metabolism and Pharmacokinetics, 2022, 47, 100469.	2.2	2

#	Article	IF	CITATIONS
3155	Importance of Standardizing Analytical Characterization Methodology for Improved Reliability of the Nanomedicine Literature. Nano-Micro Letters, 2022, 14 , .	27.0	12
3156	Progress on structural modification of Tetrandrine with wide range of pharmacological activities. Frontiers in Pharmacology, 0, 13, .	3.5	5
3157	Cancer cell membrane cloaked nanocarriers: A biomimetic approach towards cancer theranostics. Materials Today Communications, 2022, 33, 104289.	1.9	2
3158	Nanoparticle-Based Therapeutics to Overcome Obstacles in the Tumor Microenvironment of Hepatocellular Carcinoma. Nanomaterials, 2022, 12, 2832.	4.1	2
3159	lodine-Rich Nanoadjuvants for CT Imaging–Guided Photodynamic Immunotherapy of Breast Cancer. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	2
3160	An intravascular needle coated by ZnO nanoflowers for in vivo elimination of circulating tumor cells. Nano Research, 2023, 16, 873-881.	10.4	3
3161	Rational Nanomedicine Design Enhances Clinically Physical Treatmentâ€Inspired or Combined Immunotherapy. Advanced Science, 2022, 9, .	11.2	23
3162	Smart pH-responsive polyhydralazine/bortezomib nanoparticles for remodeling tumor microenvironment and enhancing chemotherapy. Biomaterials, 2022, 288, 121737.	11.4	21
3163	Smart drug delivery systems for precise cancer therapy. Acta Pharmaceutica Sinica B, 2022, 12, 4098-4121.	12.0	47
3164	Emulsion interfacial polymerization of anticancer peptides: fabricating polypeptide nanospheres with high drug-loading efficiency and enhanced anticancer activity. Science China Chemistry, 2022, 65, 2252-2259.	8.2	5
3165	Interstitial fluid streaming in deep tissue induced by ultrasound momentum transfer for accelerating nanoagent transport and controlling its distribution. Physics in Medicine and Biology, 2022, 67, 175011.	3.0	2
3166	Current Advances and Prospects in Carbon Nanomaterials-based Drug Deliver Systems for Cancer Therapy. Current Medicinal Chemistry, 2023, 30, 2710-2733.	2.4	4
3168	Recent advances in the development of biocompatible nanocarriers and their cancer cell targeting efficiency in photodynamic therapy. Frontiers in Chemistry, 0 , 10 , .	3.6	6
3170	Research advances in nanomedicine applied to the systemic treatment of colorectal cancer. International Journal of Cancer, 2023, 152, 807-821.	5.1	5
3171	Polymeric Nanoreactors with Chemically Tunable Redox Responsivity. ACS Applied Materials & Samp; Interfaces, 0, , .	8.0	1
3172	Self-Fueled Janus Nanomotors as Active Drug Carriers for Propulsion Behavior-Reinforced Permeability and Accumulation at the Tumor Site. Chemistry of Materials, 2022, 34, 7543-7552.	6.7	17
3173	Autophagy-targeted nanoparticles for effective cancer treatment: advances and outlook. NPG Asia Materials, 2022, 14, .	7.9	18
3174	Biocatalytic cascade in tumor microenvironment with a Fe2O3/Au hybrid nanozyme for synergistic treatment of triple negative breast cancer. Chemical Engineering Journal, 2023, 452, 138422.	12.7	32

#	Article	IF	CITATIONS
3175	Applications of rare earth elements in cancer: Evidence mapping and scientometric analysis. Frontiers in Medicine, 0, 9, .	2.6	3
3176	Pt/DOX Nanomotors Enhance Penetration in the Deep Tumor by Positive Chemotaxis. ACS Applied Materials & Samp; Interfaces, 2022, 14, 38172-38184.	8.0	11
3177	In Situ Silverâ€Based Electrochemical Oncolytic Bioreactor. Advanced Materials, 2022, 34, .	21.0	12
3178	Advances in single-cell nanoencapsulation and applications in diseases. Journal of Microencapsulation, 2022, 39, 481-494.	2.8	3
3179	Porphyrinâ€Based Nanoparticles: A Promising Phototherapy Platform. ChemPlusChem, 2022, 87, .	2.8	9
3180	A Hoechst Reporter Enables Visualization of Drug Engagement <i>In Vitro</i> and <i>In Vivo</i> Toward Safe and Effective Nanodrug Delivery. ACS Nano, 2022, 16, 12290-12304.	14.6	9
3181	Micro/nanomotor: A promising drug delivery system for cancer therapy. ChemPhysMater, 2022, , .	2.8	3
3182	Iron oxide nanoparticles for biomedical applications: an updated patent review (2015–2021). Expert Opinion on Therapeutic Patents, 2022, 32, 939-952.	5.0	5
3183	Programmable Bispecific Nano-immunoengager That Captures T Cells and Reprograms Tumor Microenvironment. Nano Letters, 2022, 22, 6866-6876.	9.1	4
3184	The recent progress of inorganicâ€based intelligent responsive nanoplatform for tumor theranostics. View, 2022, 3, .	5.3	29
3185	Navigations of the targeting pathway of nanomedicines toward tumor. Expert Opinion on Drug Delivery, 2022, 19, 985-996.	5.0	2
3186	Biomimetic Aggregationâ€Induced Emission Nanodots with Hitchhiking Function for T Cellâ€Mediated Cancer Targeting and NIRâ€I Fluorescenceâ€Guided Mildâ€Temperature Photothermal Therapy. Advanced Functional Materials, 2022, 32, .	14.9	20
3187	Nanotherapies from an oncologist doctor's view. Smart Materials in Medicine, 2023, 4, 183-198.	6.7	1
3188	Enhanced antitumor effect of icariin nanoparticles coated with iRGD functionalized erythrocyte membrane. European Journal of Pharmacology, 2022, 931, 175225.	3.5	8
3189	Size-dependent placental retention effect of liposomes in ICR pregnant mice: Potential superiority in placenta-derived disease therapy. International Journal of Pharmaceutics, 2022, 625, 122121.	5.2	2
3190	Derivation of an anti-cancer drug nanocarrier using a malonic acid-based deep eutectic solvent as a functionalization agent. Journal of Drug Delivery Science and Technology, 2022, 75, 103657.	3.0	1
3191	Repurposing maduramicin as a novel anticancer and anti-metastasis agent for triple-negative breast cancer as enhanced by nanoemulsion. International Journal of Pharmaceutics, 2022, 625, 122091.	5.2	4
3192	pH responsive biohybrid BSA-poly(DPA) nanoparticles for interlysosomal drug delivery. Journal of Drug Delivery Science and Technology, 2022, 75, 103591.	3.0	1

#	Article	IF	CITATIONS
3193	Pulmonary delivery of size-transformable nanoparticles improves tumor accumulation and penetration for chemo-sonodynamic combination therapy. Journal of Controlled Release, 2022, 350, 132-145.	9.9	11
3194	Comparative analysis of PEG-liposomes and RBCs-derived nanovesicles for anti-tumor therapy. Colloids and Surfaces B: Biointerfaces, 2022, 218, 112785.	5.0	5
3195	Two-dimensional silicene photodynamic tumor-targeting nanomedicine. Materials Today Bio, 2022, 16, 100393.	5.5	5
3196	The Proteolytic Landscape of Ovarian Cancer: Applications in Nanomedicine. International Journal of Molecular Sciences, 2022, 23, 9981.	4.1	2
3197	Nanocarriers as a Delivery Platform for Anticancer Treatment: Biological Limits and Perspectives in B-Cell Malignancies. Pharmaceutics, 2022, 14, 1965.	4.5	4
3198	Programmable Assembly of Multivalent DNAâ€Protein Superstructures for Tumor Imaging and Targeted Therapy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
3199	Programmable Assembly of Multivalent DNAâ€Protein Superstructures for Tumor Imaging and Targeted Therapy. Angewandte Chemie, 2022, 134, .	2.0	0
3200	A new personalized vaccine strategy based on inducing the pyroptosis of tumor cells in vivo by transgenic expression of a truncated GSDMD N-terminus. Frontiers in Immunology, $0,13,.$	4.8	4
3201	Self-targeting platinum(IV) amphiphilic prodrug nano-assembly as radiosensitizer for synergistic and safe chemoradiotherapy of hepatocellular carcinoma. Biomaterials, 2022, 289, 121793.	11.4	18
3202	Biomedical applications of mesoporous silica nanoparticles as a drug delivery carrier. Journal of Drug Delivery Science and Technology, 2022, 76, 103729.	3.0	44
3203	Deepening the understanding of the in vivo and cellular fate of nanocarriers. Advanced Drug Delivery Reviews, 2022, 189, 114529.	13.7	8
3204	Microfluidic synthesis of intelligent nanoclusters of ultrasmall iron oxide nanoparticles with improved tumor microenvironment regulation for dynamic MR imaging-guided tumor photothermo-chemo-chemodynamic therapy. Nano Today, 2022, 46, 101615.	11.9	11
3205	Targeting acidogenic metabolism by engineering self-catalytic siRNA nanocarriers/nanocatalysts for amplified tumor apoptosis/ferroptosis. Nano Today, 2022, 46, 101623.	11.9	19
3206	Folate receptor-mediated delivery of mitoxantrone-loaded solid lipid nanoparticles to breast cancer cells. Biomedicine and Pharmacotherapy, 2022, 154, 113525.	5.6	22
3207	Prediction the clinical EPR effect of nanoparticles in patient-derived xenograft models. Journal of Controlled Release, 2022, 351, 37-49.	9.9	12
3208	Stealth nanoparticles in oncology: Facing the PEG dilemma. Journal of Controlled Release, 2022, 351, 22-36.	9.9	59
3209	Octenyl-succinylated inulins for the delivery of hydrophobic drug. International Journal of Biological Macromolecules, 2022, 221, 1112-1120.	7.5	2
3210	Flavonoid-based nanomedicines to target tumor microenvironment. OpenNano, 2022, 8, 100081.	4.8	6

#	Article	IF	CITATIONS
3211	Pulmonary drug delivery applications of natural polysaccharide polymer derived nano/micro-carrier systems: A review. International Journal of Biological Macromolecules, 2022, 220, 1464-1479.	7.5	15
3212	Challenging the fundamental conjectures in nanoparticle drug delivery for chemotherapy treatment of solid cancers. Advanced Drug Delivery Reviews, 2022, 190, 114525.	13.7	22
3213	Nitroreductase-induced bioorthogonal ligation for prodrug activation: A traceless strategy for cancer-specific imaging and therapy. Bioorganic Chemistry, 2022, 129, 106167.	4.1	0
3214	Stimulus-responsive inorganic semiconductor nanomaterials for tumor-specific theranostics. Coordination Chemistry Reviews, 2022, 473, 214821.	18.8	4
3215	Covalent organic framework nanomedicines: Biocompatibility for advanced nanocarriers and cancer theranostics applications. Bioactive Materials, 2023, 21, 358-380.	15.6	37
3216	Challenges and opportunities in healthcare biotechnology. , 2022, , 321-342.		0
3217	Role of protein corona on nanoparticle-mediated organ and cell-targeted delivery. , 2022, , .		0
3218	Quantitative In Vivo Imaging toÂEnable Tumour Forecasting andÂTreatment Optimization. Emergence, Complexity and Computation, 2022, , 55-97.	0.3	6
3219	Nanoarchitectonics beyond perfect order – not quite perfect but quite useful. Nanoscale, 2022, 14, 15964-16002.	5.6	21
3220	Erythrocyte membrane camouflaged siRNA/chemodrug nanoassemblies for cancer combination therapy. Biomaterials Science, 2022, 10, 6601-6613.	5.4	9
3221	Surface-modified nanotherapeutics targeting atherosclerosis. Biomaterials Science, 2022, 10, 5459-5471.	5.4	6
3222	Targeted delivery of nanomedicines for promoting vascular regeneration in ischemic diseases. Theranostics, 2022, 12, 6223-6241.	10.0	9
3223	A multifunctional theranostics nanosystem featuring self-assembly of alcohol-abuse drug and photosensitizers for synergistic cancer therapy. Biomaterials Science, 2022, 10, 6267-6281.	5.4	4
3224	An excipient-free "sugar-coated bullet―for the targeted treatment of orthotopic hepatocellular carcinoma. Chemical Science, 2022, 13, 10815-10823.	7.4	6
3225	Medical Nanomaterials. Micro/Nano Technologies, 2022, , 1-48.	0.1	0
3226	Self-assembly micelles with pH/ROS dual responsive and mitochondrial targeting for potential anti-tumor. New Journal of Chemistry, 0, , .	2.8	1
3227	Tuning the Mechanical Properties of Colloid Particles for Drug Delivery. Acta Chimica Sinica, 2022, 80, 1010.	1.4	0
3228	Cancer Study: Cell to the Animal Models. , 2022, , 1-23.		O

#	Article	IF	CITATIONS
3229	Swarms: The Next Frontier for Cancer Nanomedicine. Emergence, Complexity and Computation, 2022, , 269-288.	0.3	1
3230	Rational development of molecularly imprinted nanoparticles for blocking PD-1/PD-L1 axis. Chemical Science, 2022, 13, 10897-10903.	7.4	8
3231	Nanotechnology for Enhancing Medical Imaging. Micro/Nano Technologies, 2022, , 1-60.	0.1	0
3232	Recent advances on drug delivery nanoplatforms for the treatment of autoimmune inflammatory diseases. Materials Advances, 2022, 3, 7687-7708.	5.4	8
3233	Nanotechnological application of peptide- and protein-based therapeutics. , 2022, , 205-238.		3
3234	Drawbacks of Bench to Bed Translation of Nanomedicines for Cancer Treatment. Emergence, Complexity and Computation, 2022, , 253-267.	0.3	0
3235	pH-Responsive, two-in-one doxorubicin and Bcl-2 siRNA-loaded micelleplexes for triple-negative breast cancer therapy. Polymer Chemistry, 2022, 13, 5568-5578.	3.9	3
3236	Synthesis of A Sulfonamide-Substituted Benzothiadiazole-Based Fluorescent Dye and Study of Its Application for Long-Term Cancer Cell Tracking. Chinese Journal of Organic Chemistry, 2022, 42, 2535.	1.3	1
3237	Raspberry-like AgBiS ₂ @PVP nanoparticles for enhanced sonodynamic and chemodynamic cancer therapy. Journal of Materials Chemistry B, 2022, 10, 8514-8524.	5.8	7
3238	Localized Hyperthermia Induced by Biogenic Synthesized Manganese Oxide Nanoparticles from Cannabis Sativa for Glioblastoma Photothermal Therapy. Journal of Biomedical Nanotechnology, 2022, 18, 1443-1448.	1.1	0
3239	Reduction/pH-responsive disassemblable MOF-microbial nanohybrid for targeted tumor penetration and synergistic therapy. Chemical Engineering Journal, 2023, 452, 139517.	12.7	14
3240	Different Influences of Biotinylation and PEGylation on Cationic and Anionic Proteins for Spheroid Penetration and Intracellular Uptake to Cancer Cells. Journal of Microbiology and Biotechnology, 2022, 32, 1209-1216.	2.1	0
3241	Multimodal Imaging and Phototherapy of Cancer and Bacterial Infection by Graphene and Related Nanocomposites. Molecules, 2022, 27, 5588.	3.8	8
3242	Cancer cell membrane-wrapped nanoparticles for cancer immunotherapy: A review of current developments. Frontiers in Immunology, 0, 13 , .	4.8	6
3243	Vaginal Nanoformulations for the Management of Preterm Birth. Pharmaceutics, 2022, 14, 2019.	4.5	3
3245	The Yin and Yang of the protein corona on the delivery journey of nanoparticles. Nano Research, 2023, 16, 715-734.	10.4	13
3246	Mitotane Nanocarriers for the Treatment of Adrenocortical Carcinoma: Evaluation of Albumin-Stabilized Nanoparticles and Liposomes in a Preclinical In Vitro Study with 3D Spheroids. Pharmaceutics, 2022, 14, 1891.	4.5	4
3247	Recent advances in nano-drug delivery systems for synergistic antitumor immunotherapy. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	4.1	3

#	Article	IF	Citations
3248	Microfluidic Manufacture of Lipid-Based Nanomedicines. Pharmaceutics, 2022, 14, 1940.	4.5	13
3249	Targeting tumour-reprogrammed myeloid cells: the new battleground in cancer immunotherapy. Seminars in Immunopathology, 2023, 45, 163-186.	6.1	14
3250	Recent Process in Microrobots: From Propulsion to Swarming for Biomedical Applications. Micromachines, 2022, 13, 1473.	2.9	13
3251	Design Strategies of Tumorâ€Targeted Delivery Systems Based on 2D Nanomaterials. Small Methods, 2022, 6, .	8.6	13
3252	Enhanced permeability and retention effect-focused tumor-targeted nanomedicines: latest trends, obstacles and future perspective. Nanomedicine, 2022, 17, 1213-1216.	3.3	11
3253	Multi-functionalized single-walled carbon nanotubes as delivery carriers: promote the targeting uptake and antitumor efficacy of doxorubicin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2022, 102, 801-817.	1.6	2
3254	Metal-Polymer Nanoconjugates Application in Cancer Imaging and Therapy. Nanomaterials, 2022, 12, 3166.	4.1	2
3255	Understanding of Polydopamine Encapsulation of Hydrophobic Curcumin for Pleiotropic Drug Nanoformulation. Particle and Particle Systems Characterization, 2023, 40, .	2.3	1
3256	Harnessing Protein Corona for Biomimetic Nanomedicine Design. Biomimetics, 2022, 7, 126.	3.3	13
3257	Oncolytic Newcastle Disease Virus Co-Delivered with Modified PLGA Nanoparticles Encapsulating Temozolomide against Glioblastoma Cells: Developing an Effective Treatment Strategy. Molecules, 2022, 27, 5757.	3.8	12
3258	Application of MOF-based nanotherapeutics in light-mediated cancer diagnosis and therapy. Journal of Nanobiotechnology, 2022, 20, .	9.1	20
3260	Graphitic carbon nitride–manganese oxide nanoflowers as promising T1 magnetic resonance imaging contrast material. Applied Physics A: Materials Science and Processing, 2022, 128, .	2.3	2
3261	Charge-Convertible and Reduction-Sensitive Cholesterol-Containing Amphiphilic Copolymers for Improved Doxorubicin Delivery. Materials, 2022, 15, 6476.	2.9	2
3262	Characterization and Biomedical Application Opportunities of the Nanoparticle's Protein Corona. Advanced Materials Interfaces, 2022, 9, .	3.7	4
3263	Edge modification facilitated heterogenization and exfoliation of two-dimensional nanomaterials for cancer catalytic therapy. Science Advances, 2022, 8, .	10.3	35
3264	Sustained Drug Release from Smart Nanoparticles in Cancer Therapy: A Comprehensive Review. Micromachines, 2022, 13, 1623.	2.9	23
3265	Spatial Transcriptomicsâ€Based Identification of Molecular Markers for Nanomedicine Distribution in Tumor Tissue. Small Methods, 2022, 6, .	8.6	7
3266	pH-activatable oxidative stress amplifying dissolving microneedles for combined chemo-photodynamic therapy of melanoma. Asian Journal of Pharmaceutical Sciences, 2022, 17, 679-696.	9.1	12

#	Article	IF	CITATIONS
3267	Efficient drug delivery to hypoxic tumors using thermosensitive liposomes with encapsulated anti-cancer drug under high intensity pulsed ultrasound. International Journal of Mechanical Sciences, 2023, 237, 107818.	6.7	13
3268	Disulfiram-loaded hollow copper sulfide nanoparticles show anti-tumor effects in preclinical models of colorectal cancer. Biochemical and Biophysical Research Communications, 2022, 635, 291-298.	2.1	7
3269	Construction of AlEgen functionalized nanomicelles and their stability study through †seesaw-like†fluorescence changes. Chinese Chemical Letters, 2023, 34, 107866.	9.0	0
3270	Nearâ€infrared fluorophores with absolute aggregationâ€caused quenching and negligible fluorescence reâ€illumination for in vivo bioimaging of nanocarriers. Aggregate, 2023, 4, .	9.9	10
3271	Nanoparticles (NPs)-mediated systemic mRNA delivery to reverse trastuzumab resistance for effective breast cancer therapy. Acta Pharmaceutica Sinica B, 2023, 13, 955-966.	12.0	6
3272	Catalytic Biomaterials and Nanomedicines with Exogenous and Endogenous Activations. Advanced Healthcare Materials, 2023, 12, .	7.6	16
3273	Emerging photodynamic/sonodynamic therapies for urological cancers: progress and challenges. Journal of Nanobiotechnology, 2022, 20, .	9.1	9
3274	Redox-sensitive hyaluronic acid-ferrocene micelles delivering doxorubicin for enhanced tumor treatment by synergistic chemo/chemodynamic therepay. Journal of Drug Delivery Science and Technology, 2022, 77, 103851.	3.0	5
3275	Nanoscale metal–organic frameworks for photodynamic therapy and radiotherapy. Current Opinion in Chemical Engineering, 2022, 38, 100871.	7.8	4
3276	Inorganic nanoparticles for oral drug delivery: opportunities, barriers, and future perspectives. Current Opinion in Chemical Engineering, 2022, 38, 100869.	7.8	15
3277	Stepwise photothermal therapy and chemotherapy by composite scaffolds of gold nanoparticles, BP nanosheets and gelatin immobilized with doxorubicin-loaded thermosensitive liposomes. Biomaterials Science, 2022, 10, 7042-7054.	5.4	4
3278	Natural cell based biomimetic cellular transformers for targeted therapy of digestive system cancer. Theranostics, 2022, 12, 7080-7107.	10.0	5
3279	Responsive polyprodrug for anticancer nanocarriers. Polymer Chemistry, 0, , .	3.9	0
3280	Smart systems in bio-encapsulation for cancer therapy. , 2022, , 223-236.		0
3281	Bioresponsive Nanomaterials for CNS Disease. , 2022, , 189-227.		0
3282	Nanomaterials Mediated Diagnosis of Lung Cancer. , 2022, , 225-259.		0
3283	Biosynthetic Luminescent Ag Nanoparticles in Functionalization for Breast Cancer Therapy. Journal of Biomedical Nanotechnology, 2022, 18, 1553-1561.	1.1	0
3284	Advances in the Application of Nanomaterials to the Treatment of Melanoma. Pharmaceutics, 2022, 14, 2090.	4.5	2

#	Article	IF	CITATIONS
3285	Stromal Homeostasis-Restoring Nanomedicine Enhances Pancreatic Cancer Chemotherapy. Nano Letters, 2022, 22, 8744-8754.	9.1	5
3286	Serratiopeptidase: An integrated View of Multifaceted Therapeutic Enzyme. Biomolecules, 2022, 12, 1468.	4.0	9
3287	Resveratrol-loaded gold nanoparticles enhance caspase-mediated apoptosis in PANC-1 pancreatic cells via mitochondrial intrinsic apoptotic pathway. Cancer Nanotechnology, 2022, 13, .	3.7	5
3288	Design of Mesoporous Silica Nanoparticles for the Treatment of Amyotrophic Lateral Sclerosis (ALS) with a Therapeutic Cocktail Based on Leptin and Pioglitazone. ACS Biomaterials Science and Engineering, 2022, 8, 4838-4849.	5.2	8
3289	Ferroptosis of Endothelial Cells in Vascular Diseases. Nutrients, 2022, 14, 4506.	4.1	8
3290	Targeting drugs to tumours using cell membrane-coated nanoparticles. Nature Reviews Clinical Oncology, 2023, 20, 33-48.	27.6	176
3291	Novel Implications of Nanoparticle-Enhanced Radiotherapy and Brachytherapy: Z-Effect and Tumor Hypoxia. Metabolites, 2022, 12, 943.	2.9	7
3292	Enhanced Tumor Accumulation of Multimodal Magnetoâ€Plasmonic Nanoparticles via an Implanted Micromagnetâ€Assisted Delivery Strategy. Advanced Healthcare Materials, 2023, 12, .	7.6	2
3293	Stimuli-responsive image-guided nanocarriers as smart drug delivery platforms. Expert Opinion on Drug Delivery, 2022, 19, 1487-1504.	5.0	5
3294	Surface Presentation of Hyaluronic Acid Modulates Nanoparticle–Cell Association. Bioconjugate Chemistry, 2022, 33, 2065-2075.	3.6	3
3295	Strategies to overcome the main challenges of the use of exosomes as drug carrier for cancer therapy. Cancer Cell International, 2022, 22, .	4.1	29
3296	Boosting Doxorubicinâ€Induced Mitochondria Apoptosis for the Monodrugâ€Mediated Combination of Chemotherapy and Chemodynamic Therapy. Advanced Healthcare Materials, 2023, 12, .	7.6	17
3297	Redox―and pHâ€Responsive Waterâ€Soluble Flexible Organic Frameworks Realize Synergistic Tumor Photodynamic and Chemotherapeutic Therapy. Macromolecular Rapid Communications, 2023, 44, .	3.9	2
3299	Advanced nanoparticles that can target therapy and reverse drug resistance may be the dawn of leukemia treatment: A bibliometrics study. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	1
3300	Nanomedicine for Treating Muscle Dystrophies: Opportunities, Challenges, and Future Perspectives. International Journal of Molecular Sciences, 2022, 23, 12039.	4.1	5
3301	Folate receptor targeted chitosan and polydopamine coated mesoporous silicaÂnanoparticles for photothermal therapy and drug delivery. Journal of Macromolecular Science - Pure and Applied Chemistry, 2022, 59, 810-817.	2.2	1
3302	Role of Plant-Derived Flavonoids in Cancer Treatment. Nutrition and Cancer, 2023, 75, 430-449.	2.0	3
3303	Holdase/Foldase Mimetic Nanochaperone Improves Antibodyâ€Based Cancer Immunotherapy. Small Methods, 2023, 7, .	8.6	6

#	Article	IF	CITATIONS
3304	Nanotherapeutics Plus Immunotherapy in Oncology: Who Brings What to the Table?. Pharmaceutics, 2022, 14, 2326.	4.5	2
3305	Porous Silicon-Based Nanomedicine for Simultaneous Management of Joint Inflammation and Bone Erosion in Rheumatoid Arthritis. ACS Nano, 2022, 16, 16118-16132.	14.6	9
3306	A small molecule inhibitor of the UBE2F-CRL5 axis induces apoptosis and radiosensitization in lung cancer. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	13
3307	pH-responsive nanoprodrugs combining a Src inhibitor and chemotherapy to potentiate antitumor immunity via pyroptosis in head and neck cancer. Acta Biomaterialia, 2022, 154, 497-509.	8.3	15
3308	FeOCl Nanodots and Doxorubicin Coâ€loaded Polymer Nanoparticles for Glutathione/pHâ€responsive Chemodynamic Therapy/Chemotherapy of Tumors. ChemNanoMat, 2022, 8, .	2.8	1
3309	Endogenous stimuli-responsive nanoparticles for cancer therapy: From bench to bedside. Pharmacological Research, 2022, 186, 106522.	7.1	13
3310	Aptamerâ€Based Cancer Cell Analysis and Treatment. ChemistryOpen, 2022, 11, .	1.9	3
3311	PEGylated Strontium Sulfite Nanoparticles with Spontaneously Formed Surface-Embedded Protein Corona Restrict Off-Target Distribution and Accelerate Breast Tumour-Selective Delivery of siRNA. Journal of Functional Biomaterials, 2022, 13, 211.	4.4	1
3312	A Nanomedicine Structure–Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano, 2022, 16, 17497-17551.	14.6	10
3313	Enhanced manipulation of tumor microenvironments by nanomotor for synergistic therapy of malignant tumor. Biomaterials, 2022, 290, 121853.	11.4	5
3314	Digital micelles of encoded polymeric amphiphiles for direct sequence reading and ex vivo label-free quantification. Nature Chemistry, 2023, 15, 257-270.	13.6	31
3315	Prostate-Specific Membrane Antigen Targeted Deep Tumor Penetration of Polymer Nanocarriers. ACS Applied Materials & Samp; Interfaces, 2022, 14, 50569-50582.	8.0	8
3316	Nanomedicine for advanced cancer immunotherapy. Journal of Controlled Release, 2022, 351, 1017-1037.	9.9	7
3317	Persistent and Enhanced Elimination of Bacteriaâ€Induced Periodontitis Using a Local Drug Delivery Nanoreactor. Advanced Therapeutics, 0, , 2200230.	3.2	0
3318	Shear induced fractionalized dispersion during Magnetic Drug Targeting in a permeable microvessel. Colloids and Surfaces B: Biointerfaces, 2023, 221, 113001.	5.0	4
3319	Nanoparticles: The future of effective diagnosis and treatment of colorectal cancer?. European Journal of Pharmacology, 2022, 936, 175350.	3.5	9
3320	The translational paradigm of nanobiomaterials: Biological chemistry to modern applications. Materials Today Bio, 2022, 17, 100463.	5 . 5	18
3321	Induction of ferroptosis using functionalized iron-based nanoparticles for anti-cancer therapy. Materials Today Bio, 2022, 17, 100457.	5.5	18

#	Article	IF	Citations
3322	Mechanism, structural design, modulation and applications of Aggregation-induced emission-based Metal-organic framework. Inorganic Chemistry Communication, 2022, 146, 110038.	3.9	6
3323	Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis. Journal of Controlled Release, 2022, 352, 211-241.	9.9	40
3324	Core-satellite porphyrinic MOF@CuS nanoconstructs for combined chemodynamic/photodynamic/photothermal therapy. Materials and Design, 2022, 224, 111302.	7.0	8
3325	Drug conjugate-based anticancer therapy - Current status and perspectives. Cancer Letters, 2023, 552, 215969.	7.2	23
3326	A tyrosinase-activated Pt(II) complex for melanoma photodynamic therapy and fluorescence imaging. Sensors and Actuators B: Chemical, 2023, 374, 132836.	7.8	7
3327	A new methodology combining QCM-D and proteomic profiling enables characterization of protein adsorption on 2D surfaces. Journal of Colloid and Interface Science, 2023, 630, 965-972.	9.4	4
3328	Source, fate and transport of ENMs in the environment, especially those that may eventually reach plant systems. , 2023, , 25-49.		0
3329	Click functionalized biocompatible gadolinium oxide core-shell nanocarriers for imaging of breast cancer cells. RSC Advances, 2022, 12, 31830-31845.	3.6	4
3330	Pharmaceutical liposomal deliveryâ€"specific considerations of innovation and challenges. Biomaterials Science, 2022, 11, 62-75.	5.4	17
3331	Enhanced photothermal and chemotherapy of pancreatic tumors by degrading the extracellular matrix. Colloids and Surfaces B: Biointerfaces, 2023, 221, 113010.	5.0	13
3332	Mitochondria-targeted pentacyclic triterpenoid carbon dots for selective cancer cell destruction via inducing autophagy, apoptosis, as well as ferroptosis. Bioorganic Chemistry, 2023, 130, 106259.	4.1	8
3333	Ethical and Societal Aspects of Nanotechnology Applications in Medicine. , 2022, , .		1
3334	Editorial: Bioengineered nanoparticles in cancer therapy, Volume II. Frontiers in Molecular Biosciences, 0, 9, .	3.5	1
3335	Ewing Sarcoma Meets Epigenetics, Immunology and Nanomedicine: Moving Forward into Novel Therapeutic Strategies. Cancers, 2022, 14, 5473.	3.7	4
3336	Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review. Catalysts, 2022, 12, 1386.	3.5	80
3337	Efficacy analysis of targeted nanodrug for non-small cell lung cancer therapy. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	4.1	1
3338	Homotypic Targeted Photosensitive Nanointerferer for Tumor Cell Cycle Arrest to Boost Tumor Photoimmunotherapy. ACS Nano, 2022, 16, 18555-18567.	14.6	14
3339	Penetration and translocation of functional inorganic nanomaterials into biological barriers. Advanced Drug Delivery Reviews, 2022, 191, 114615.	13.7	20

#	Article	IF	CITATIONS
3340	Recent Advances in Calciumâ€Based Anticancer Nanomaterials Exploiting Calcium Overload to Trigger Cell Apoptosis. Advanced Functional Materials, 2023, 33, .	14.9	18
3341	Assembling Biocompatible Polymers on Gold Nanoparticles: Toward a Rational Design of Particle Shape by Molecular Dynamics. ACS Omega, 2022, 7, 42292-42303.	3.5	4
3342	BSA-magnetite nanotorpedo for safe and efficient delivery of chemotherapy drugs. Chemical Engineering Journal, 2023, 454, 140440.	12.7	8
3343	Cascade Immune Activation of Selfâ€Delivery Biomedicine for Photodynamic Immunotherapy Against Metastatic Tumor. Small, 2023, 19, .	10.0	13
3344	Multifunctional nanomedicine strategies to manage brain diseases. Drug Delivery and Translational Research, $0, \dots$	5.8	4
3345	Nanotheranostic Strategies for Cancer Immunotherapy. Small Methods, 2022, 6, .	8.6	7
3346	Co-delivery of nigericin and decitabine using hexahistidine-metal nanocarriers for pyroptosis-induced immunotherapeutics. Acta Pharmaceutica Sinica B, 2022, 12, 4458-4471.	12.0	9
3347	Gold nanoparticles as antiangiogenic and antimetastatic agents. Drug Discovery Today, 2023, 28, 103438.	6.4	4
3348	Advancements in Polymeric Nanocarriers to Mediate Targeted Therapy against Triple-Negative Breast Cancer. Pharmaceutics, 2022, 14, 2432.	4.5	7
3349	Development of doped ZnO-based biomimicking and tumor-targeted nanotheranostics to improve pancreatic cancer treatment. Cancer Nanotechnology, 2022, 13, .	3.7	6
3350	Understanding the diffusive transport of nanoparticles in agarose hydrogels. Physics of Fluids, 2022, 34, .	4.0	3
3351	Cell surface biotinylation to identify the receptors involved in nanoparticle uptake into endothelial cells. Acta Biomaterialia, 2023, 155, 507-520.	8.3	2
3352	The Global Characterisation of a Drug-Dendrimer Conjugate - PEGylated poly-lysine Dendrimer. Journal of Pharmaceutical Sciences, 2023, 112, 844-858.	3.3	4
3353	Recent advances in dual- and multi-responsive nanomedicines for precision cancer therapy. Biomaterials, 2022, 291, 121906.	11.4	15
3354	Modulation of tumor hypoxia and redox microenvironment using nanomedicines for enhanced cancer photodynamic therapy. Applied Materials Today, 2022, 29, 101687.	4.3	3
3355	Preparation and applications of polymer-modified lanthanide-doped upconversion nanoparticles. Giant, 2022, 12, 100130.	5.1	8
3356	Self-assembled micelle derived from pterostilbene ameliorate acute inflammatory bowel disease. International Journal of Pharmaceutics, 2023, 630, 122420.	5.2	3
3357	Melanin-like nanoparticles: advances in surface modification and tumour photothermal therapy. Journal of Nanobiotechnology, 2022, 20, .	9.1	17

#	ARTICLE	IF	CITATIONS
3358	Biologically inspired stealth – Camouflaged strategies in nanotechnology for the improved therapies in various diseases. International Journal of Pharmaceutics, 2023, 631, 122407.	5.2	4
3359	Development of Silver nanoparticles green-formulated by ‎Matricaria chamomilla as novel chemotherapeutic nanoformulation for the treatment of oral squamous cell carcinoma‎. Combinatorial Chemistry and High Throughput Screening, 2022, 26, .	1.1	O
3360	Nanotechnology-based approaches overcome lung cancer drug resistance through diagnosis and treatment. Drug Resistance Updates, 2023, 66, 100904.	14.4	20
3361	Near-infrared photothermal therapy of chiral Au helicoids with broadband optical absorption. New Journal of Chemistry, 0, , .	2.8	1
3362	Development of functional nanomedicines for tumor associated macrophages-focused cancer immunotherapy. Theranostics, 2022, 12, 7821-7852.	10.0	12
3363	Intracellular accumulation and immunological response of NIR-II polymeric nanoparticles. International Journal of Pharmaceutics, 2023, 630, 122439.	5.2	2
3364	Evaluation of linear versus star-like polymer anti-cancer nanomedicines in mouse models. Journal of Controlled Release, 2023, 353, 549-562.	9.9	4
3365	Nanosensitizer-mediated unique dynamic therapy tactics for effective inhibition of deep tumors. Advanced Drug Delivery Reviews, 2023, 192, 114643.	13.7	8
3366	PTN-PTPRZ1 signaling axis blocking mediates tumor microenvironment remodeling for enhanced glioblastoma treatment. Journal of Controlled Release, 2023, 353, 63-76.	9.9	8
3367	Hydroxyethyl starch-folic acid conjugates stabilized theranostic nanoparticles for cancer therapy. Journal of Controlled Release, 2023, 353, 391-410.	9.9	20
3368	Effective combination of liposome-targeted chemotherapy and PD-L1 blockade of murine colon cancer. Journal of Controlled Release, 2023, 353, 490-506.	9.9	8
3369	Doxorubicin-loaded polymeric micelles decorated with nitrogen-doped carbon dots for targeted breast cancer therapy. Journal of Drug Delivery Science and Technology, 2023, 79, 104055.	3.0	4
3370	Oxygen-generating polymer vesicles for enhanced sonodynamic tumor therapy. Journal of Controlled Release, 2023, 353, 975-987.	9.9	4
3371	Multi-dimensional modeling of nanoparticles transportation from capillary bed into the tumor microenvironment. Computers in Biology and Medicine, 2023, 152, 106477.	7.0	1
3372	Role of nanoparticles in the treatment of human disease: a comprehensive review., 2023,, 381-404.		0
3373	Advances in image-guided drug delivery for antibacterial therapy. Advanced Drug Delivery Reviews, 2023, 192, 114634.	13.7	18
3374	Nanomaterial-based CT contrast agents and their applications in image-guided therapy. Theranostics, 2023, 13, 483-509.	10.0	21
3375	Nanomedicines in cancer immunotherapy: challenges and opportunities. , 2023, , 231-246.		O

#	ARTICLE	IF	CITATIONS
3376	Improving aqueous solubility of paclitaxel with polysarcosine-b-poly(\hat{l}^3 -benzyl glutamate) nanoparticles. International Journal of Pharmaceutics, 2023, 631, 122501.	5.2	3
3377	Elastin-like polypeptide-based micelles as a promising platform in nanomedicine. Journal of Controlled Release, 2023, 353, 713-726.	9.9	10
3378	The potential of nano-enabled oral ecosystem surveillance for respiratory disease management. Nano Today, 2023, 48, 101693.	11.9	0
3379	Synergistic effect of ultrasound and light to efficient singlet oxygen formation for photodynamic purposes. Dyes and Pigments, 2023, 210, 110986.	3.7	17
3380	CXCL10-coronated thermosensitive "stealth―liposomes for sequential chemoimmunotherapy in melanoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2023, 48, 102634.	3.3	2
3381	Natural mussel protein-derived antitumor nanomedicine with tumor-targeted bioadhesion and penetration. Nano Today, 2023, 48, 101700.	11.9	3
3382	Metal-polyphenol nanodots loaded hollow MnO2 nanoparticles with a "dynamic protection―property for enhanced cancer chemodynamic therapy. Journal of Colloid and Interface Science, 2023, 634, 836-851.	9.4	23
3383	Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioactive Materials, 2023, 23, 471-507.	15.6	16
3384	Health IT for the Future – It Isn't (Just) About the Technology. Computers in Health Care, 2022, , 471-477.	0.3	0
3385	Photothermally Responsive siRNA Delivery by PEGylated Poly(amido amine)s for Improved Tumor Therapy. Journal of Biomedical Nanotechnology, 2022, 18, 1755-1762.	1.1	O
3386	Defined Coadsorption of Prostate Cancer Targeting Ligands and PEG on Gold Nanoparticles for Significantly Reduced Protein Adsorption in Cell Media. Journal of Physical Chemistry C, 2022, 126, 20594-20604.	3.1	4
3387	Tumor immunomodulatory effects of polyphenols. Frontiers in Immunology, 0, 13, .	4.8	6
3388	Near-Infrared Light-Activated Oxygen Generator a Multidynamic Photo-Nanoplatform for Effective Anti-Cutaneous Squamous Cell Carcinoma Treatment. International Journal of Nanomedicine, 0, Volume 17, 5761-5777.	6.7	1
3389	Emerging Sonodynamic Therapyâ€Based Nanomedicines for Cancer Immunotherapy. Advanced Science, 2023, 10, .	11.2	50
3390	Nanostrategies: The Future Medicine for Fighting Cancer Progression and Drug Resistance 2.0. International Journal of Molecular Sciences, 2022, 23, 14486.	4.1	0
3391	Metal–Organic Frameworks as Intelligent Drug Nanocarriers for Cancer Therapy. Pharmaceutics, 2022, 14, 2641.	4.5	5
3392	Co-delivery of immunochemotherapeutic by classified targeting based on chitosan and cyclodextrin derivatives. International Journal of Biological Macromolecules, 2023, 226, 1396-1410.	7.5	3
3394	Recent advances of nanomaterial-based anti-angiogenic therapy in tumor vascular normalization and immunotherapy. Frontiers in Oncology, $0,12,.$	2.8	3

#	Article	IF	CITATIONS
3395	Recent Advances in Nanomaterials of Group XIV Elements of Periodic Table in Breast Cancer Treatment. Pharmaceutics, 2022, 14, 2640.	4.5	1
3396	Mesenchymal-endothelial nexus in breast cancer spheroids induces vasculogenesis and local invasion in a CAM model. Communications Biology, 2022, 5, .	4.4	3
3397	Roles of Mitochondria in Oral Squamous Cell Carcinoma Therapy: Friend or Foe?. Cancers, 2022, 14, 5723.	3.7	5
3398	Response Surface Methodology (RSM) Powered Formulation Development, Optimization and Evaluation of Thiolated Based Mucoadhesive Nanocrystals for Local Delivery of Simvastatin. Polymers, 2022, 14, 5184.	4.5	5
3399	Gold Nanoparticles Supported on Ceria Nanoparticles Modulate Leukocyte–Endothelium Cell Interactions and Inflammation in Type 2 Diabetes. Antioxidants, 2022, 11, 2297.	5.1	3
3400	Enhancing NIR-II Phosphorescence through Phosphorescence Resonance Energy Transfer for Tumor-Hypoxia Imaging., 2023, 5, 116-124.		3
3401	Advanced materials and technologies for oral diseases. Science and Technology of Advanced Materials, 2023, 24, .	6.1	6
3402	Clinical Trials Involving Chemotherapy-Based Nanocarriers in Cancer Therapy: State of the Art and Future Directions., 2023,, 325-383.		2
3403	Engineered drug-loaded cellular membrane nanovesicles for efficient treatment of postsurgical cancer recurrence and metastasis. Science Advances, 2022, 8, .	10.3	43
3404	Role of Surface Charge of Nanoscale Ultrasound Contrast Agents in Complement Activation and Phagocytosis. International Journal of Nanomedicine, 0, Volume 17, 5933-5946.	6.7	1
3405	Recent Trends and Developments in Multifunctional Nanoparticles for Cancer Theranostics. Molecules, 2022, 27, 8659.	3.8	6
3406	Nanomaterials targeting macrophages in sepsis: A promising approach for sepsis management. Frontiers in Immunology, 0, 13, .	4.8	8
3407	Recent advances in developing active targeting and multi-functional drug delivery systems via bioorthogonal chemistry. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	30
3408	Hyaluronan-based theranostic nanomicelles for breast cancer-targeting and anticancer drug delivery. Materials and Design, 2023, 225, 111551.	7.0	3
3409	Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects. Med, 2023, 4, 147-167.	4.4	47
3410	Composite Scaffolds of Gelatin and Fe ₃ O ₄ Nanoparticles for Magnetic Hyperthermiaâ€Based Breast Cancer Treatment and Adipose Tissue Regeneration. Advanced Healthcare Materials, 2023, 12, .	7.6	10
3411	Single low-dose INC280-loaded theranostic nanoparticles achieve multirooted delivery for MET-targeted primary and liver metastatic NSCLC. Molecular Cancer, 2022, 21, .	19.2	4
3412	Integration of In Vitro and In Vivo Models to Predict Cellular and Tissue Dosimetry of Nanomaterials Using Physiologically Based Pharmacokinetic Modeling. ACS Nano, 2022, 16, 19722-19754.	14.6	16

#	Article	IF	CITATIONS
3413	Extracellular vesicles derived from macrophages: Current applications and prospects in tumors. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	4.1	3
3414	Nanovaccines for cancer immunotherapy: Current knowledge and future perspectives. Chinese Chemical Letters, 2023, 34, 108098.	9.0	6
3415	Synergistically Enhancing the Therapeutic Effect on Cancer, via Asymmetric Bioinspired Materials. Molecules, 2022, 27, 8543.	3.8	1
3416	Gold nanoparticle delivery to solid tumors: a multiparametric study on particle size and the tumor microenvironment. Journal of Nanobiotechnology, 2022, 20, .	9.1	6
3417	Manganeseâ€CpG Nanocomposite Integrates ROSâ€Induced Cell Apoptosis and STINGâ€Activated and Adjuvantâ€Augmented Immune Responses for Tumor Elimination and Prevention. Advanced Therapeutics, 2023, 6, .	3.2	2
3418	Activation of Ibuprofen via Ultrasonic Complexation with Silver in N-Doped Oxidized Graphene Nanoparticles for Microwave Chemotherapy of Cervix Tumor Tissues. ACS Biomaterials Science and Engineering, 2023, 9, 182-196.	5.2	1
3419	Molecular Recognition and <i>In Vivo</i> Detection of Temozolomide and 5-Aminoimidazole-4-carboxamide for Glioblastoma Using Near-Infrared Fluorescent Carbon Nanotube Sensors. ACS Nano, 2023, 17, 240-250.	14.6	7
3420	Omultifunctional Nanoparticles For Organelle-Specific Targeted Drug Delivery In Cancer Therapy. Current Nanomedicine, 2022, 13, .	0.6	0
3421	Novel Development of Nanoparticlesâ€"A Promising Direction for Precise Tumor Management. Pharmaceutics, 2023, 15, 24.	4.5	4
3422	Nanoparticle-induced immune response: Health risk versus treatment opportunity?. Immunobiology, 2023, 228, 152317.	1.9	7
3423	Artificial and Naturally Derived Phospholipidic Bilayers as Smart Coatings of Solid-State Nanoparticles: Current Works and Perspectives in Cancer Therapy. International Journal of Molecular Sciences, 2022, 23, 15815.	4.1	3
3424	Editorial: Women in nanomedicine. Frontiers in Pharmacology, 0, 13, .	3.5	0
3425	Nanocarriers-Based Targeted Therapies for Pancreatic Cancer and Challenges Ahead., 2022,, 129-148.		0
3426	Research and Development of Supramolecules as Anticancer Drugs. , 2022, , 55-87.		0
3427	Nanomedicine as potential cancer therapy via targeting dysregulated transcription factors. Seminars in Cancer Biology, 2023, 89, 38-60.	9.6	7
3428	The portrayal of macrophages as tools and targets: A paradigm shift in cancer management. Life Sciences, 2023, 316, 121399.	4.3	2
3429	The Role of Nanotechnology in Spinal Cord Tumors. Advances in Experimental Medicine and Biology, 2023, , 193-207.	1.6	0
3430	Research and Application of Kupffer Cell Thresholds for BSA Nanoparticles. Molecules, 2023, 28, 880.	3.8	1

#	Article	IF	CITATIONS
3431	Functional Nanorealgar Quantum Dots with Aggregation-Induced Emission Enhancement for Tumor Neovascular-Targeted Theranostics. Journal of Nanomaterials, 2023, 2023, 1-13.	2.7	1
3432	Hyaluronic Acid-Modified Cisplatin-Encapsulated Poly(Lactic-co-Glycolic Acid) Magnetic Nanoparticles for Dual-Targeted NIR-Responsive Chemo-Photothermal Combination Cancer Therapy. Pharmaceutics, 2023, 15, 290.	4.5	12
3433	Localized Instillation Enables <i>In Vivo</i> Screening of Targeting Peptides Using One-Bead One-Compound Technology. ACS Nano, 2023, 17, 1381-1392.	14.6	3
3434	PDLLA length on anti-breast cancer efficacy of acid-responsive self-assembling mPEG-PDLLAâ€'docetaxel conjugates. Chinese Chemical Letters, 2023, 34, 108135.	9.0	1
3435	pH-triggered cancer-targeting polymers: From extracellular accumulation to intracellular release. Nano Research, 2023, 16, 5155-5168.	10.4	9
3436	Magnetic nanoparticles: multifunctional tool for cancer therapy. Expert Opinion on Drug Delivery, 2023, 20, 189-204.	5.0	7
3437	Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo―and radioresistances. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	6.1	8
3438	Aminopeptidase Nâ€Responsive Conjugates with Tunable Chargeâ€Reversal Properties for Highly Efficient Tumor Accumulation and Penetration. Angewandte Chemie, 2023, 135, .	2.0	3
3440	Engineering lactate-modulating nanomedicines for cancer therapy. Chemical Society Reviews, 2023, 52, 973-1000.	38.1	17
3441	Improving crossing of multiple bio-delivery barriers by a novel bio-interface design based on hydrophobic nanoparticle surfaces. Journal of Materials Chemistry B, 2023, 11, 1344-1355.	5.8	1
3442	Aminopeptidase Nâ€Responsive Conjugates with Tunable Chargeâ€Reversal Properties for Highly Efficient Tumor Accumulation and Penetration. Angewandte Chemie - International Edition, 2023, 62, .	13.8	10
3443	Role of Tunable Gold Nanostructures in Cancer Nanotheranostics: Implications on Synthesis, Toxicity, Clinical Applications and Their Associated Opportunities and Challenges. Journal of Nanotheranostics, 2023, 4, 1-34.	3.1	5
3444	"Smart―drug delivery: A window to future of translational medicine. Frontiers in Chemistry, 0, 10, .	3.6	12
3445	Medical Nanomaterials. Micro/Nano Technologies, 2023, , 51-98.	0.1	1
3446	Rational Design of Polymethine Dyes with NIRâ€II Emission and High Photothermal Conversion Efficiency for Multimodalâ€Imagingâ€Guided Photoâ€Immunotherapy. Advanced Materials, 2023, 35, .	21.0	23
3447	Targeted Nanophotoimmunotherapy Potentiates Cancer Treatment by Enhancing Tumor Immunogenicity and Improving the Immunosuppressive Tumor Microenvironment. Bioconjugate Chemistry, 2023, 34, 283-301.	3.6	3
3448	Albumin-based nanoparticles: small, uniform and reproducible. Nanoscale Advances, 2023, 5, 503-512.	4.6	1
3449	Recent Advances in Targeted Nanocarriers for the Management of Triple Negative Breast Cancer. Pharmaceutics, 2023, 15, 246.	4.5	7

#	Article	IF	CITATIONS
3450	Bioactive inorganic nanomaterials for cancer theranostics. Chemical Society Reviews, 2023, 52, 2031-2081.	38.1	43
3451	The Future of Nanomedicine. Micro/Nano Technologies, 2023, , 847-873.	0.1	0
3452	Non-covalent strategies to functionalize polymeric nanoparticles with NGR peptides for targeting breast cancer. International Journal of Pharmaceutics, 2023, 633, 122618.	5.2	5
3453	Fluorescent inosine analogues: Synthesis, cytotoxicity activity and self-assembly nanoparticle for live cell image. Tetrahedron, 2023, 131, 133230.	1.9	0
3454	NanomedicinesÂin oral cancer: inspiration comes from extracellular vesicles and biomimetic nanoparticles. Nanomedicine, 2022, 17, 1761-1778.	3.3	6
3455	Design and synthesis of cancer-cell-membrane-camouflaged hemoporfin-Cu9S8 nanoagents for homotypic tumor-targeted photothermal-sonodynamic therapy. Journal of Colloid and Interface Science, 2023, 637, 225-236.	9.4	10
3456	Nanomedicine-mediated ferroptosis targeting strategies for synergistic cancer therapy. Journal of Materials Chemistry B, 2023, 11, 1171-1190.	5.8	10
3457	Paclitaxel Has a Reduced Toxicity Profile in Healthy Rats After Polymeric Micellar Nanoparticle Delivery. International Journal of Nanomedicine, 0, Volume 18, 263-276.	6.7	3
3458	Nanotechnology for Enhancing Medical Imaging. Micro/Nano Technologies, 2023, , 99-156.	0.1	0
3459	Review of the Delivery Kinetics of Thermosensitive Liposomes. Cancers, 2023, 15, 398.	3.7	4
3460	Temperature-responsive and biocompatible nanocarriers based on clay nanotubes for controlled anti-cancer drug release. Nanoscale, 2023, 15, 2402-2416.	5.6	6
3461	The role of cell membrane-coated nanoparticles as a novel treatment approach in glioblastoma. Frontiers in Molecular Biosciences, 0, 9, .	3 . 5	2
3462	Phototheranostic Agents Based on Nonionic Heptamethine Cyanine for Realizing Synergistic Cancer Phototherapy. Advanced Healthcare Materials, 2023, 12, .	7.6	7
3463	<i>In Vivo</i> Fluorescence Imagingâ€Guided Development of Nearâ€Infrared AlEgens. Chemistry - an Asian Journal, 2023, 18, .	3.3	4
3464	Poly(ethylene glycol) alternatives in biomedical applications. Nano Today, 2023, 48, 101738.	11.9	28
3465	Nanocomplexes of doxorubicin and DNA fragments for efficient and safe cancer chemotherapy. Journal of Controlled Release, 2023, 354, 91-108.	9.9	5
3466	Polysaccharide-based nanocarriers for efficient transvascular drug delivery. Journal of Controlled Release, 2023, 354, 167-187.	9.9	20
3467	Supramolecular peptide hydrogel doped with nanoparticles for local siRNA delivery and diabetic wound healing. Chemical Engineering Journal, 2023, 457, 141244.	12.7	4

#	ARTICLE	IF	CITATIONS
3468	Recent advances in extracellular vesicle-based organic nanotherapeutic drugs for precision cancer therapy. Coordination Chemistry Reviews, 2023, 479, 215006.	18.8	15
3469	Functionalized liposomes for targeted breast cancer drug delivery. Bioactive Materials, 2023, 24, 401-437.	15.6	33
3470	Nanomaterials and Advances in Tumor Immune-Related Therapy: A Bibliometric Analysis. Journal of Biomedical Nanotechnology, 2022, 18, 2154-2170.	1.1	1
3471	Characterization of Hyaluronic Acid-Coated PLGA Nanoparticles by Surface-Enhanced Raman Spectroscopy. International Journal of Molecular Sciences, 2023, 24, 601.	4.1	7
3472	AÂpHâ€Activatable Copperâ€Biomineralized Proenzyme for Synergistic Chemodynamic/Chemoâ€Immunotherapy against Aggressive Cancers. Advanced Materials, 2023, 35, .	21.0	19
3473	Monocationic Chlorin as a Promising Photosensitizer for Antitumor and Antimicrobial Photodynamic Therapy. Pharmaceutics, 2023, 15, 61.	4.5	8
3474	Photo-Activable Organosilver Nanosystem Facilitates Synergistic Cancer Theranostics. ACS Applied Materials & Interfaces, 2023, 15, 711-722.	8.0	4
3475	Microbots y nanobots para el tratamiento de tumores cancerÃgenos. Journal Boliviano De Ciencias, 2022, 18, 94-113.	0.0	O
3476	Aptamer-functionalized liposomes for targeted cancer therapy. , 2023, , 141-172.		8
3477	Toward photodynamic cancer chemotherapy with C60-Doxorubicin nanocomplexes., 2023,, 489-522.		1
3478	A Magnetically Driven Amoeba‣ike Nanorobot for Wholeâ€Process Active Drug Transport. Advanced Science, 2023, 10, .	11.2	10
3479	Role of nanomedicine for targeted drug delivery in life-threatening diseases. , 2023, , 189-217.		0
3480	Structure–Activity Relationship of pH-Sensitive Doxorubicin-Fatty Acid Prodrug Albumin Nanoparticles. Nano Letters, 2023, 23, 1530-1538.	9.1	6
3481	Nanomedicine and nanocarriers for cancer treatment. , 2023, , 71-110.		0
3482	Molecular bottlebrush prodrugs as mono- and triplex combination therapies for multiple myeloma. Nature Nanotechnology, 2023, 18, 184-192.	31.5	30
3483	Boosting the Potential of Chemotherapy in Advanced Breast Cancer Lung Metastasis via Microâ€Combinatorial Hydrogel Particles. Advanced Science, 2023, 10, .	11.2	3
3484	Engineered liposomes as drug delivery and imaging agents. , 2023, , 75-108.		1
3485	Cellular uptake and retention studies of silica nanoparticles utilizing senescent fibroblasts. Scientific Reports, 2023, 13, .	3.3	1

#	Article	IF	CITATIONS
3486	Nanoformulation of the K-Ras(G12D)-inhibitory peptide KS-58 suppresses colorectal and pancreatic cancer-derived tumors. Scientific Reports, 2023, 13 , .	3.3	4
3487	Al and Nanomedicine in Realizing the Goal of Precision Medicine: Tailoring the Best Treatment for Personalized Cancer Treatment., 2023, , 181-194.		O
3488	Technological challenges of biomembrane-coated top-down cancer nanotherapy., 2023, 1, 156-158.		4
3489	Biodegradable nanomaterials for diagnosis and therapy of tumors. Journal of Materials Chemistry B, 2023, 11, 1829-1848.	5.8	9
3490	Targeted Protein Degradation Technology and Nanomedicine: Powerful Allies against Cancer. Small, 2023, 19, .	10.0	6
3491	Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers, 2023, 15, 724.	3.7	2
3492	Navigating zinc-involved nanomedicine in oncotherapy. Nanoscale, 2023, 15, 4261-4276.	5.6	2
3493	Magnetic Nanomaterials Mediate Electromagnetic Stimulations of Nerves for Applications in Stem Cell and Cancer Treatments. Journal of Functional Biomaterials, 2023, 14, 58.	4.4	2
3494	Porous Framework Materials for Bioimaging and Cancer Therapy. Molecules, 2023, 28, 1360.	3.8	3
3495	Nanotheranostic Approach for Cancer Treatment. , 2023, , 1-32.		O
3496	Cancer Study: Cell to the Animal Models. , 2023, , 27-48.		0
3497	Dual Drug Loaded Nanotheranostic Platforms as a Novel Synergistic Approach to Improve Pancreatic Cancer Treatment. Particle and Particle Systems Characterization, 2023, 40, .	2.3	0
3498	Harnessing the ROS for Cancer Treatment. , 2023, , 1-31.		0
3499	Utility of various drug delivery systems and their advantages and disadvantages. , 2023, , 235-258.		2
3500	Graphitic carbon nitride-based materials for biomedical applications. , 2023, , 377-404.		0
3501	Progress in aqueous dispersion RAFT PISA. European Polymer Journal, 2023, 188, 111848.	5.4	7
3502	Functionalized graphene nanomaterials: Next-generation nanomedicine., 2023,, 3-18.		2
3503	Dendrimers and dendrimer-based nano-objects for oncology applications. , 2023, , 41-78.		O

#	Article	IF	CITATIONS
3504	Background of carbon nanotubes for drug delivery systems. , 2023, , 1-35.		0
3505	Tumor Microenvironment-Responsive Magnetic Nanofluid for Enhanced Tumor MRI and Tumor multi-treatments. Pharmaceuticals, 2023, 16, 166.	3.8	1
3506	Role of Nanomedicine-Based Therapeutics in the Treatment of CNS Disorders. Molecules, 2023, 28, 1283.	3.8	5
3507	Metal Nanoparticles as Novel Agents for Lung Cancer Diagnosis and Therapy. Small, 2023, 19, .	10.0	7
3508	3D Bioprinting Models for Novel Breast Cancer Strategies. Research Journal of Pharmacy and Technology, 2022, , 5576-5582.	0.8	0
3509	Synthesis of Au NPs/ <i>Quince</i> nanoparticles mediated by <i>Quince</i> extract for the treatment of human cervical cancer: Introducing a novel chemotherapeutic supplement. Materials Express, 2022, 12, 1465-1473.	0.5	8
3510	Dendritic polyglycerolsulfate-SS-poly(ester amide) micelles for the systemic delivery of docetaxel: pushing the limits of stability through the insertion of $\ddot{\exists}\in \ddot{\exists}\in \ddot{\exists} \in \ddot{\exists}\in \ddot{\exists}\vec{\exists}\in \ddot{\exists}\vec{\exists}\in \ddot{\exists}\vec{\exists}\vec{\exists}\vec{\exists}\vec{\exists}\vec{\exists}\vec{\exists}\vec{\exists}\vec{\exists}\vec{\exists}\vec$	5.8	2
3511	Organosilica nanoparticles containing sodium borocaptate (BSH) provide a new perspectives for boron neutron capture therapy (BNCT): efficient cellular uptake and enhanced BNCT efficacy. Nanoscale Advances, 0, , .	4.6	4
3512	Applications of Nanoscience and Nanotechnology in Oral Cancer: A Review. Materials Horizons, 2023, , 177-199.	0.6	2
3513	Hybrid PLGA nanoparticles as advanced drug delivery and theranostic applications., 2023,, 417-431.		1
3514	Role of nanotechnology in cancer therapies: recent advances, current issues, and approaches. , 2023, , 73-95.		0
3515	Rapid generation of homogenous tumor spheroid microtissues in a scaffold-free platform for high-throughput screening of a novel combination nanomedicine. PLoS ONE, 2023, 18, e0282064.	2.5	6
3516	The potential role of nanomedicine in the treatment of breast cancer to overcome the obstacles of current therapies. Frontiers in Pharmacology, 0, 14 , .	3.5	3
3517	Repolarization of macrophages to improve sorafenib sensitivity for combination cancer therapy. Acta Biomaterialia, 2023, 162, 98-109.	8.3	5
3518	Tuning Nanobodies $\hat{a} \in \mathbb{N}$ Bioactivity: Coupling to Ultrasmall Gold Nanoparticles Allows the Intracellular Interference with Survivin. Small, 2023, 19, .	10.0	2
3519	A novel estrogen-targeted PEGylated liposome co-delivery oxaliplatin and paclitaxel for the treatment of ovarian cancer. Biomedicine and Pharmacotherapy, 2023, 160, 114304.	5.6	7
3520	Genetically engineered PD-1 displaying nanovesicles for synergistic checkpoint blockades and chemo-metabolic therapy against non-small cell lung cancer. Acta Biomaterialia, 2023, 161, 184-200.	8.3	8
3521	Regulation of metabolism in pancreatic ductal adenocarcinoma via nanotechnology-enabled strategies. Cancer Letters, 2023, 560, 216138.	7.2	3

#	Article	IF	CITATIONS
3522	MOF-based nanozyme grafted with cooperative Pt(IV) prodrug for synergistic anticancer therapy. Colloids and Surfaces B: Biointerfaces, 2023, 225, 113264.	5.0	10
3523	Dual-drug codelivery nanosystems: An emerging approach for overcoming cancer multidrug resistance. Biomedicine and Pharmacotherapy, 2023, 161, 114505.	5.6	5
3524	Recent progress in NIR-II fluorescence imaging-guided drug delivery for cancer theranostics. Advanced Drug Delivery Reviews, 2023, 197, 114821.	13.7	21
3525	Straightforward adsorption-based formulation of mesoporous silica nanoparticles for drug delivery applications. Journal of Colloid and Interface Science, 2023, 640, 961-974.	9.4	7
3526	Neutralization of the new coronavirus by extracting their spikes using engineered liposomes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2023, 50, 102674.	3.3	2
3527	Platinum-based combination nanomedicines for cancer therapy. Current Opinion in Chemical Biology, 2023, 74, 102290.	6.1	4
3528	Tumor microenvironment-triggered intratumoral in-situ biosynthesis of inorganic nanomaterials for precise tumor diagnostics. Coordination Chemistry Reviews, 2023, 484, 215115.	18.8	13
3529	Diselenide-triggered hydroxyethyl starch conjugate nanoparticles with cascade drug release properties for potentiating chemo-photodynamic therapy. Carbohydrate Polymers, 2023, 311, 120748.	10.2	7
3530	Nitrogen-doped carbon nanodots deposited on titania nanoparticles: Unconventional near-infrared active photocatalysts for cancer therapy. Catalysis Today, 2023, 419, 114154.	4.4	3
3531	A tumor-specific ROS self-supply enhanced cascade-responsive prodrug activation nanosystem for amplified chemotherapy against multidrug-resistant tumors. Acta Biomaterialia, 2023, 164, 522-537.	8.3	5
3532	c-Myc-Targeting PROTAC Based on a TNA-DNA Bivalent Binder for Combination Therapy of Triple-Negative Breast Cancer. Journal of the American Chemical Society, 2023, 145, 9334-9342.	13.7	22
3533	Advances in nuclei targeted delivery of nanoparticles for the management of cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2023, 1878, 188881.	7.4	3
3534	Construction of bionic nanoparticles camouflaged with macrophage membranes for drug delivery in breast cancer. Journal of Drug Delivery Science and Technology, 2023, 84, 104433.	3.0	3
3535	Discovery of endosomalytic cell-penetrating peptides based on bacterial membrane-targeting sequences. Bioorganic Chemistry, 2023, 134, 106424.	4.1	4
3536	Progress of Cancer Nano Medicine, Clinical Hurdles, and Opportunities., 2022,, 49-69.		0
3537	Nutrient-sensing nanoprotoplast augments tumor accumulation and immune response with short-term starvation. Nano Today, 2023, 49, 101762.	11.9	O
3538	Ferroptosis: The Entanglement between Traditional Drugs and Nanodrugs in Tumor Therapy. Advanced Healthcare Materials, 2023, 12, .	7.6	14
3539	Phototoxicity of temoporfin-loaded cyclodextrin nanosponges in stroma-rich three-dimensional models of head and neck cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2023, 184, 1-6.	4.3	2

#	Article	IF	CITATIONS
3540	Bioinspired microrobots: Opportunities and challenges in targeted cancer therapy. Journal of Controlled Release, 2023, 354, 439-452.	9.9	4
3541	Influence of lung cancer model characteristics on tumor targeting behavior of nanodrugs. Journal of Controlled Release, 2023, 354, 538-553.	9.9	5
3542	Artificial intelligence aids in development of nanomedicines for cancer management. Seminars in Cancer Biology, 2023, 89, 61-75.	9.6	86
3543	Liposomal celecoxib combined with dendritic cell therapy enhances antitumor efficacy in melanoma. Journal of Controlled Release, 2023, 354, 453-464.	9.9	2
3544	Comparative study between two different morphological structures based on polylactic acid, nanocellulose and magnetite for co-delivery of flurouracil and curcumin. International Journal of Biological Macromolecules, 2023, 230, 123315.	7.5	5
3545	Fluorescent Probes Based on AlEgenâ€Mediated Polyelectrolyte Assemblies for Manipulating Intramolecular Motion and Magnetic Relaxivity. Angewandte Chemie - International Edition, 2023, 62, .	13.8	13
3546	Fluorescent Probes Based on AlEgenâ€Mediated Polyelectrolyte Assemblies for Manipulating Intramolecular Motion and Magnetic Relaxivity. Angewandte Chemie, 2023, 135, .	2.0	0
3547	Nanotechnology in Lung Cancer Therapeutics: A Narrative Review. Cureus, 2023, , .	0.5	0
3548	BSA-templated synthesis of Ir/Gd bimetallic oxide nanotheranostics for MR/CT imaging-guided photothermal and photodynamic synergistic therapy. Nanoscale, 2023, 15, 4457-4468.	5.6	6
3549	Camouflaged Virusâ€Likeâ€Nanocarrier with a Transformable Rough Surface for Boosting Drug Delivery. Angewandte Chemie, 2023, 135, .	2.0	2
3550	Stimuli-Responsive Boron-Based Materials in Drug Delivery. International Journal of Molecular Sciences, 2023, 24, 2757.	4.1	9
3551	Camouflaged Virusâ€Likeâ€Nanocarrier with a Transformable Rough Surface for Boosting Drug Delivery. Angewandte Chemie - International Edition, 2023, 62, .	13.8	5
3552	Self-Assembled Core–Shell Nanoscale Coordination Polymer Nanoparticles Carrying a Sialyltransferase Inhibitor for Cancer Metastasis Inhibition. ACS Applied Materials & Samp; Interfaces, 2023, 15, 7713-7724.	8.0	3
3553	Nanoporous Silica Nanoparticles Coloaded with Cisplatin Prodrug and <scp> </scp> -Buthionine Sulfoximine for Cancer Therapy. ACS Applied Nano Materials, 2023, 6, 2569-2576.	5.0	1
3554	A glutathione-activated NIR-II fluorescent probe for precise localization of micrometastases. Sensors and Actuators B: Chemical, 2023, 381, 133457.	7.8	3
3555	Recent advances in long-acting drug delivery systems for anticancer drug. Advanced Drug Delivery Reviews, 2023, 194, 114724.	13.7	30
3556	Pharmacokinetics and biodistribution studies of [99mTc]-Labeled ZIF-8 nanoparticles to pave the way for image-guided drug delivery and theranostics. Journal of Drug Delivery Science and Technology, 2023, 81, 104249.	3.0	3
3557	Immunogenic antitumor potential of Prakasine nanoparticles in zebrafish by gene expression stimulation. Artificial Cells, Nanomedicine and Biotechnology, 2023, 51, 41-56.	2.8	1

#	Article	lF	CITATIONS
3558	Planted Graphene Quantum Dots for Targeted, Enhanced Tumor Imaging and Longâ€√erm Visualization of Local Pharmacokinetics. Advanced Materials, 2023, 35, .	21.0	15
3559	Intravital Microscopy Reveals Endothelial Transcytosis Contributing to Significant Tumor Accumulation of Albumin Nanoparticles. Pharmaceutics, 2023, 15, 519.	4.5	0
3560	Glucose metabolic reprogramming and its therapeutic potential in obesity-associated endometrial cancer. Journal of Translational Medicine, 2023, 21, .	4.4	5
3561	Co-Delivery of paclitaxel and doxorubicin in folate-Targeted pluronic/ploy (D,L-lactide- <i>b</i> -glycolide) polymersomes. Journal of Biomaterials Applications, 2023, 37, 1555-1567.	2.4	3
3562	Combined chemotherapy based on bioactive black phosphorus for pancreatic cancer therapy. Journal of Controlled Release, 2023, 354, 889-901.	9.9	3
3563	Beta glucan as an immune stimulant in tumor microenvironment — Insight into lessons and promises from past decade. International Journal of Biological Macromolecules, 2023, 234, 123617.	7.5	7
3564	A biomimetic nanoplatform for customized photothermal therapy of HNSCC evaluated on patient-derived xenograft models. International Journal of Oral Science, 2023, 15, .	8.6	4
3565	Controlled sequential in situ self-assembly and disassembly of a fluorogenic cisplatin prodrug for cancer theranostics. Nature Communications, 2023, 14 , .	12.8	38
3566	Emerging application of magnetic nanoparticles for breast cancer therapy. European Polymer Journal, 2023, 187, 111898.	5.4	28
3567	Nanoparticle drug delivery systems for synergistic delivery of tumor therapy. Frontiers in Pharmacology, 0, 14 , .	3.5	11
3568	Synchronized delivery of dual-drugs for potentiating combination chemotherapy based on smart triple-responsive polymeric micelles., 2023, 147, 213344.		4
3569	Lipid-based colloidal nanoparticles for applications in targeted vaccine delivery. Nanoscale Advances, 2023, 5, 1853-1869.	4.6	8
3570	Artificial intelligence for drug discovery: Resources, methods, and applications. Molecular Therapy - Nucleic Acids, 2023, 31, 691-702.	5.1	27
3571	Antibody-Functionalized Nanoparticles for Targeted Drug Delivery in Cancer Therapy., 2023,, 1-43.		0
3572	Sequential delivery of PD-1/PD-L1 blockade peptide and IDO inhibitor for immunosuppressive microenvironment remodeling via an MMP-2 responsive dual-targeting liposome. Acta Pharmaceutica Sinica B, 2023, 13, 2176-2187.	12.0	17
3573	The in vitro treatment of mesenchymal stem cells for colorectal cancer cells., 2023, 40,.		1
3574	PLGA-Based Micro/Nanoparticles: An Overview of Their Applications in Respiratory Diseases. International Journal of Molecular Sciences, 2023, 24, 4333.	4.1	10
3575	Molecularly Imprinted Nanobeacons Redirect Innate Immune Killing towards Triple Negative Breast Cancer. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2

#	Article	IF	Citations
3576	Molecularly Imprinted Nanobeacons Redirect Innate Immune Killing towards Triple Negative Breast Cancer. Angewandte Chemie, $2023,135,.$	2.0	0
3577	Organic and inorganic nanomedicine for combination cancer therapies. Nanoscale Advances, 2023, 5, 1600-1610.	4.6	2
3578	Vaccine-like nanomedicine for cancer immunotherapy. Journal of Controlled Release, 2023, 355, 760-778.	9.9	33
3579	Intelligent micro/nanorobots for improved tumor therapy. , 2023, 1, .		30
3580	Ferroptosis Detection: From Approaches to Applications. Angewandte Chemie - International Edition, 2023, 62, .	13.8	22
3581	Ferroptosis Detection: From Approaches to Applications. Angewandte Chemie, 2023, 135, .	2.0	0
3582	Targeting cancer-inducing inflammation: Current advancements and future prospects., 2023,, 113-142.		0
3583	Nanotechnology and cancer therapeutics: delivering on the hype?. BioTechniques, 2023, 74, 63-67.	1.8	0
3584	Recent advances in 2D material-based phototherapy. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	4.1	3
3585	A photocatalytic carbon monoxide-generating effervescent microneedle patch for improved transdermal chemotherapy. Journal of Materials Chemistry B, 2023, 11, 5406-5415.	5.8	3
3586	An iodide-containing covalent organic framework for enhanced radiotherapy. Chemical Science, 2023, 14, 3642-3651.	7.4	8
3587	Self-driving laboratories: A paradigm shift in nanomedicine development. Matter, 2023, 6, 1071-1081.	10.0	8
3588	Supramolecular photosensitizers using extended macrocyclic hosts for photodynamic therapy with distinct cellular delivery. Chemical Science, 2023, 14, 3523-3530.	7.4	9
3589	Dual-infinite coordination polymer-engineered nanomedicines for dual-ion interference-mediated oxidative stress-dependent tumor suppression. Materials Horizons, 0, , .	12.2	0
3590	End Group Nonplanarization Enhances Phototherapy Efficacy of A–D–A Fused-Ring Photosensitizer for Tumor Phototherapy. Nano Letters, 2023, 23, 2831-2838.	9.1	10
3591	Dual-sensitive and highly biocompatible O-carboxymethyl chitosan nanodroplets for prostate tumor ultrasonic imaging and treatment. Cancer Nanotechnology, 2023, 14, .	3.7	1
3592	Nanoparticleâ€Mediated STING Activation for Cancer Immunotherapy. Advanced Healthcare Materials, 2023, 12, .	7.6	7
3593	Nanomaterial's interfacial stimulation of vascular endothelial cells and divergent guidances for nanomedicine treating vasculature-associated diseases. Nano Today, 2023, 49, 101815.	11.9	1

#	Article	IF	CITATIONS
3594	Enhancing Pt(IV) Complexes' Anticancer Activity upon Encapsulation in Stimuliâ€Responsive Nanocages. Advanced Healthcare Materials, 2023, 12, .	7.6	6
3595	Monitoring Neovascularization of Malignant Solid Tumors with Horseradish Peroxidase-Functionalized Near-Infrared-II PbS Quantum Dots. , 0, , .		1
3596	Integrated transcriptomics and metabolomics analysis reveals the biomolecular mechanisms associated to the antitumoral potential of a novel silver-based core@shell nanosystem. Mikrochimica Acta, 2023, 190, .	5.0	1
3597	Effect of Cell Membraneâ€cloaked Nanoparticle Elasticity on Nanoâ€Bio Interaction. Small Methods, 2023, 7, .	8.6	3
3598	Exploiting Nanomedicine for Cancer Polychemotherapy: Recent Advances and Clinical Applications. Pharmaceutics, 2023, 15, 937.	4.5	1
3599	Mannoside-Functionalized Silica Nanocomposite-Encapsulated Doxorubicin for MDA-MB-231 Cancer Cell Targeting and Delivery. ACS Applied Nano Materials, 2023, 6, 4957-4968.	5.0	3
3600	Disulfide Bond-Based SN38 Prodrug Nanoassemblies with High Drug Loading and Reduction-Triggered Drug Release for Pancreatic Cancer Therapy. International Journal of Nanomedicine, 0, Volume 18, 1281-1298.	6.7	5
3601	Mechano-boosting nanomedicine antitumour efficacy by blocking the reticuloendothelial system with stiff nanogels. Nature Communications, 2023, 14 , .	12.8	14
3602	Ferroptosis open a new door for colorectal cancer treatment. Frontiers in Oncology, 0, 13, .	2.8	8
3603	<i>Propionibacterium acnes</i> Cloaked with ZnAl Layered Double Hydroxides Synergistically Inhibits Tumor Growth and Metastasis. Advanced Functional Materials, 2023, 33, .	14.9	0
3604	Nanomedicine in Lung Cancer Immunotherapy. Frontiers in Bioengineering and Biotechnology, $0,11,.$	4.1	12
3605	Development of stimuli responsive polymeric nanomedicines modulating tumor microenvironment for improved cancer therapy. Medical Review, 2023, 3, 4-30.	1.2	3
3606	Current progress in PLGA-based nanoparticles for treatment of cancer diseases., 2023, , 153-177.		0
3607	Tailorâ€Made Autophagy Cascade Amplification Polymeric Nanoparticles for Enhanced Tumor Immunotherapy. Small, 2023, 19, .	10.0	6
3608	Theranostic applications of selenium nanomedicines against lung cancer. Journal of Nanobiotechnology, 2023, 21, .	9.1	10
3609	Pre-exposure to Fe ₂ O ₃ or TiO ₂ Nanoparticles Inhibits Subsequent Biological Uptake of ⁵⁵ Fe-Labeled Fe ₂ O ₃ Nanoparticles. Environmental Science & Damp; Technology, 2023, 57, 4831-4840.	10.0	0
3610	A Phase Engineering Strategy of Perovskiteâ€Type ZnSnO ₃ :Nd for Boosting the Sonodynamic Therapy Performance. Advanced Functional Materials, 2023, 33, .	14.9	9
3611	Grafting of Cyclodextrin to Theranostic Nanoparticles Improves Blood-Brain Barrier Model Crossing. Biomolecules, 2023, 13, 573.	4.0	2

#	Article	IF	CITATIONS
3612	Selfâ€Assembled Carrierâ€Free Nanodrugs for Starvation Therapyâ€Amplified Photodynamic Therapy of Cancer. Advanced Healthcare Materials, 2023, 12, .	7.6	6
3613	Research Progress of Nanomedicine-Based Mild Photothermal Therapy in Tumor. International Journal of Nanomedicine, 0, Volume 18, 1433-1468.	6.7	9
3614	Advanced nanoformulations for theranostics: current status and challenges., 2023,, 1-19.		0
3615	Current status and prospects of MOFs in controlled delivery of Pt anticancer drugs. Dalton Transactions, 2023, 52, 6226-6238.	3.3	41
3616	Continuous Spatiotemporal Therapy of A Full-API Nanodrug via Multi-Step Tandem Endogenous Biosynthesis. Nature Communications, 2023, 14, .	12.8	15
3617	Current Understanding of Flavonoids in Cancer Therapy and Prevention. Metabolites, 2023, 13, 481.	2.9	11
3618	Recent advances in lab-on-a-chip systems for breast cancer metastasis research. Nanoscale Advances, 2023, 5, 2375-2393.	4.6	2
3619	Smart Nanosystems for Overcoming Multiple Biological Barriers in Cancer Nanomedicines Transport: Design Principles, Progress, and Challenges. Small, 2023, 19, .	10.0	4
3620	Glycol chitosanÂstabilized nanomedicine of lapatinib and doxorubicin for the management of metastatic breast tumor. Drug Delivery and Translational Research, 2023, 13, 2520-2532.	5.8	2
3621	Reprogramming Hypoxic Tumorâ€Associated Macrophages by Nanoglycoclusters for Boosted Cancer Immunotherapy. Advanced Materials, 2023, 35, .	21.0	5
3622	Bufalin-loaded vitamin E succinate-grafted chitosan oligosaccharide/RGD-conjugated TPGS mixed micelles inhibit intraperitoneal metastasis of ovarian cancer. Cancer Nanotechnology, 2023, 14, .	3.7	1
3623	Peptide photowrapping of gold-silica nanocomposites for constructing MMP-responsive drug capsules for chemo-photothermal therapy. Chemical Communications, 0, , .	4.1	1
3624	Recent progress in nanomedicine-mediated cytosolic delivery. RSC Advances, 2023, 13, 9788-9799.	3.6	6
3626	Overcoming the Limitations of Therapeutic Strategies to Combat Pancreatic Cancer Using Nanotechnology. Current Cancer Drug Targets, 2023, 23, .	1.6	1
3627	In depth characterization of physicochemical critical quality attributes of a clinical drug-dendrimer conjugate. International Journal of Pharmaceutics, 2023, 637, 122905.	5.2	0
3628	Phenylboronic acid-modified nanoscale multi-arm polymers for tumor-targeted therapy. Biomaterials Science, 0, , .	5.4	0
3629	AN UPDATED REVIEW ON OVARIAN CANCER., 0,, 24-29.		0
3630	Application of nanomaterials in the treatment of intracerebral hemorrhage. Journal of Tissue Engineering, 2023, 14, 204173142311570.	5.5	2

#	Article	IF	CITATIONS
3631	Green Synthesized Gold and Silver Nanoparticles Increased Oxidative Stress and Induced Cell Death in Colorectal Adenocarcinoma Cells. Nanomaterials, 2023, 13, 1251.	4.1	3
3632	Patient-derived xenografts or organoids in the discovery of traditional and self-assembled drug for tumor immunotherapy. Frontiers in Oncology, 0, 13, .	2.8	4
3633	Virusâ€Like Particleâ€Encapsulated Doxorubicin Enters and Kills Murine Tumor Cells Differently from Free Doxorubicin. Macromolecular Bioscience, 0, , .	4.1	0
3634	Polymeric Phthalocyanineâ€Based Nanosensitizers for Enhanced Photodynamic and Sonodynamic Therapies. Advanced Healthcare Materials, 2023, 12, .	7.6	2
3635	Cellulose nanocrystal as an enhancing core for antitumor polymeric micelles to overcome biological barriers. International Journal of Biological Macromolecules, 2023, 238, 124337.	7.5	0
3636	Mechanical nanosurgery of chemoresistant glioblastoma using magnetically controlled carbon nanotubes. Science Advances, 2023, 9, .	10.3	7
3637	Theranostic Approaches for Diagnosis and Treatment of Cancer: An Update. Biological and Medical Physics Series, 2023, , 631-662.	0.4	1
3638	Advancement of Nanocarrier-Based Engineering for Specific Drug Delivery for Cancer Therapy. Biological and Medical Physics Series, 2023, , 465-486.	0.4	2
3639	Role of Micelle Size in Cell Transcytosis-Based Tumor Extravasation, Infiltration, and Treatment Efficacy. Nano Letters, 2023, 23, 3904-3912.	9.1	7
3640	Recent advances of superparamagnetic iron oxide nanoparticles and its applications in neuroscience under external magnetic field. Applied Nanoscience (Switzerland), 0, , .	3.1	0
3641	Multifaceted Pt Nanoclusters for Targeting Recognition, Cellular Uptake, and Therapy In Vivo and In Vitro in Chronic Myeloid Leukemia Cells. ACS Applied Nano Materials, 0, , .	5.0	0
3642	A Recent Review on Cancer Nanomedicine. Cancers, 2023, 15, 2256.	3.7	15
3643	Poly Ethylene Glycol (PEG)â€Based Hydrogels for Drug Delivery in Cancer Therapy: A Comprehensive Review. Advanced Healthcare Materials, 2023, 12, .	7.6	18
3644	Carboxybetaine-Based Zwitterionic Polymer Nanogels with Long Blood Circulation for Cancer Therapy. Biomacromolecules, 2023, 24, 2392-2405.	5.4	5
3645	A nanomedicine based on stoichiometric coordination of camptothecin and organoplatinum (II) for synergistic antitumor therapy. Acta Biomaterialia, 2023, 164, 553-562.	8.3	2
3646	New Treatment Options in Metastatic Pancreatic Cancer. Cancers, 2023, 15, 2327.	3.7	4
3647	Glutathioneâ€Scavenging Nanoparticleâ€Mediated PROTACs Delivery for Targeted Protein Degradation and Amplified Antitumor Effects. Advanced Science, 2023, 10, .	11.2	10
3648	Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Advanced Drug Delivery Reviews, 2023, 197, 114828.	13.7	7

#	Article	IF	CITATIONS
3649	Photothermal-accelerated urease-powered human serum albumin nanomotor for rapid and efficient photothermal and photodynamic cancer combination therapy. International Journal of Biological Macromolecules, 2023, 240, 124486.	7.5	2
3650	Facile synthesis of layered double hydroxide nanosheets assembled porous structures for efficient drug delivery. RSC Advances, 2023, 13, 12059-12064.	3.6	3
3651	Bioaffinity Recovery of Linear CRGDS Peptides Grafted to Zwitterionic PAMAM Nanocarriers. ACS Applied Nano Materials, 0, , .	5.0	1
3652	Controllable Fabrication of Highly Uniform Subâ€10Ânm Nanoparticles from Spontaneous Confined Nanoemulsification. Small, 0, , .	10.0	1
3653	Nanomedicine Technologies for Diagnosis and Treatment of Breast Cancer. ACS Pharmacology and Translational Science, 2023, 6, 671-682.	4.9	7
3654	Target Embolization Combined with Multimodal Thermal Ablation for Solid Tumors by Smart Poly(amino acid)s Nanocomposites. ACS Biomaterials Science and Engineering, 0, , .	5.2	0
3655	A supramolecular assembly strategy for hydrophilic drug delivery towards synergistic cancer treatment. Acta Biomaterialia, 2023, 164, 407-421.	8.3	8
3657	Multiâ€ligand functionalized bloodâ€toâ€tumor sequential targeting strategies in the field of glioblastoma nanomedicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	6.1	1
3658	Role of pyroptosis in the pathogenesis and treatment of diseases. MedComm, 2023, 4, .	7.2	2
3659	Fe3+@PDOPA‑b‑PSar Nanoparticles for Magnetic Resonance Imaging and Cancer Chemotherapy. International Journal of Nanomedicine, 0, Volume 18, 2197-2208.	6.7	0
3660	Prospects for the Use of Metal-Based Nanoparticles as Adjuvants for Local Cancer Immunotherapy. Pharmaceutics, 2023, 15, 1346.	4.5	2
3661	Multi-functional chitosan-based nanoparticles for drug delivery: Recent advanced insight into cancer therapy. Carbohydrate Polymers, 2023, 315, 120972.	10.2	13
3662	Molecularly imprinted polymersÂ(MIPs): emerging biomaterials for cancer theragnostic applications. Biomaterials Research, 2023, 27, .	6.9	4
3663	Precise Starving Therapy via Physiologically Dependent Photothermal Conversion Promoted Mitochondrial Calcification Based on Multiâ€Functional Gold Nanoparticles for Effective Tumor Treatment. Advanced Functional Materials, 2023, 33, .	14.9	5
3664	Nanobiotechnological approaches in osteosarcoma therapy: Versatile (nano)platforms for theranostic applications. Environmental Research, 2023, 229, 115939.	7.5	4
3665	Organoids technology for advancing the clinical translation of cancer nanomedicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	6.1	2
3666	Fast Delivery of Multifunctional NIRâ€II Theranostic Nanoaggregates Enabled by the Photoinduced Thermoacoustic Process. Advanced Science, 2023, 10, .	11.2	5
3667	Recent Advances of Fe(III)/Fe(II)-MPNs in Biomedical Applications. Pharmaceutics, 2023, 15, 1323.	4.5	15

#	Article	IF	CITATIONS
3668	Dual potential- and waveband-resolved electrochemiluminescence platform for simultaneous determination of three lung cancer biomarkers. Sensors and Actuators B: Chemical, 2023, 389, 133916.	7.8	7
3669	Modulating tumor mechanics with nanomedicine for cancer therapy. Biomaterials Science, 2023, 11, 4471-4489.	5 . 4	3
3670	Analytical framework for end-to-end channel capacity in molecular communication system. Multimedia Tools and Applications, 2024, 83, 527-550.	3.9	0
3671	Current research trends of nanomedicines. Acta Pharmaceutica Sinica B, 2023, 13, 4391-4416.	12.0	8
3672	Exosome-driven epigenetic modulation of histone proteins: Pioneering anti-oncogenic and skin health applications. Scientific Journal of Genetics and Gene Therapy, 2023, 9, 001-004.	0.3	0
3673	A small pore black TiO ₂ /-large pore Fe ₃ O ₄ cascade nanoreactor for chemodynamic/photothermal synergetic tumour therapy. Journal of Materials Chemistry B, 2023, 11, 4498-4510.	5.8	3
3674	"One-for-All―approach: a black technology for nanomedicine development?. Medical Review, 2023, 3, 184-187.	1.2	0
3675	Advanced Nanosystems for Cancer Therapeutics: A Review. ACS Applied Nano Materials, 2023, 6, 7123-7149.	5.0	7
3676	Nanomedicine-based modulation of redox status for cancer therapy. Australian Journal of Chemistry, 2023, , NULL.	0.9	1
3677	Metal phenolic networks (MPNs)-based pH-sensitive stimulus responsive nanosystems for drug delivery in tumor microenvironment. Journal of Drug Delivery Science and Technology, 2023, 84, 104536.	3.0	1
3678	Long-acting therapeutic delivery systems for the treatment of gliomas. Advanced Drug Delivery Reviews, 2023, 197, 114853.	13.7	3
3679	The effect of blood velocity in solid tumor on intratumorally accumulation and penetration of nanocarriers and drugs. Nano Today, 2023, 50, 101870.	11.9	0
3680	Will nanomedicine become a good solution for the cardiotoxicity of chemotherapy drugs?. Frontiers in Pharmacology, $0, 14, .$	3 . 5	2
3681	Interplay between Liposomes and IgM: Principles, Challenges, and Opportunities. Advanced Science, 2023, 10, .	11.2	4
3682	Dual gatekeepers-modified mesoporous organic silica nanoparticles for synergistic photothermal-chemotherapy of breast cancer. Journal of Colloid and Interface Science, 2023, 646, 118-128.	9.4	2
3683	Advances and Challenges of Stimuli-Responsive Nucleic Acids Delivery System in Gene Therapy. Pharmaceutics, 2023, 15, 1450.	4.5	4
3684	Polyglycerol-Decorated Hollow Mesoporous Ruthenium Nanoparticles for Long Circulation and Antitumor Effect. ACS Applied Nano Materials, 2023, 6, 8695-8704.	5.0	0
3685	Studies on drug carrier potential of spherical boron nitride nanoparticles in cancer therapy. Journal of Materials Science, 2023, 58, 8076-8091.	3.7	O

#	Article	IF	CITATIONS
3686	Biomembraneâ€inspired design of medical micro/nanorobots: From cytomembrane stealth cloaks to cellularized Trojan horses. Aggregate, 2023, 4, .	9.9	2
3687	Multi-Faceted Role of Luteolin in Cancer Metastasis: EMT, Angiogenesis, ECM Degradation and Apoptosis. International Journal of Molecular Sciences, 2023, 24, 8824.	4.1	7
3688	Biocompatible Calcium Ion-Doped Magnesium Ferrite Nanoparticles as a New Family of Photothermal Therapeutic Materials for Cancer Treatment. Pharmaceutics, 2023, 15, 1555.	4.5	10
3689	Gas therapy potentiates aggregation-induced emission luminogen-based photoimmunotherapy of poorly immunogenic tumors through cGAS-STING pathway activation. Nature Communications, 2023, 14, .	12.8	29
3690	Acid-responsive DNA-Au nanomachine with active/passive dual-targeting capacity for combinational cancer therapy. Materials Today Nano, 2023, 23, 100355.	4.6	2
3691	Three Strategies in Engineering Nanomedicines for Tumor Microenvironmentâ€Enabled Phototherapy. Small, 2023, 19, .	10.0	6
3692	Recent and advanced therapy for oral cancer. Biotechnology and Bioengineering, 0, , .	3.3	0
3693	Supramolecular Cyclic Dinucleotide Nanoparticles for STING-Mediated Cancer Immunotherapy. ACS Nano, 2023, 17, 10090-10103.	14.6	5
3695	Cell membraneâ€coated nanoparticles for the treatment of cancer. Clinical and Translational Medicine, 2023, 13, .	4.0	2
3696	Comprehensive analysis of the influence of physicochemical properties and tumor-associated environments on liposome intratumoral penetration. Journal of Controlled Release, 2023, 359, 33-51.	9.9	0
3697	Dual targeting salinomycin-loaded smart nanomicelles for enhanced accumulation and therapeutic outcome in breast cancer. International Journal of Pharmaceutics, 2023, 642, 123095.	5.2	0
3698	X-ray-responsive prodrugs and polymeric nanocarriers for multimodal cancer therapy. Chemical Communications, 2023, 59, 8323-8331.	4.1	2
3699	Lymphocyte infiltration and antitumoral effect promoted by cytotoxic inflammatory proteins formulated as self-assembling, protein-only nanoparticles. Biomedicine and Pharmacotherapy, 2023, 164, 114976.	5.6	0
3700	Liposome encapsulated anticancer drugs on autophagy in cancer cells – Current and future perspective. International Journal of Pharmaceutics, 2023, 642, 123105.	5.2	4
3701	Nanoparticles loaded with Daunorubicin as an advanced tool for cancer therapy. European Journal of Medicinal Chemistry, 2023, 258, 115547.	5 . 5	6
3702	Combination of micelles and liposomes as a promising drug delivery system: a review. Drug Delivery and Translational Research, 2023, 13, 2767-2789.	5.8	3
3703	Revealing Population Heterogeneity in Vesicle-Based Nanomedicines Using Automated, Single Particle Raman Analysis. ACS Nano, 2023, 17, 11713-11728.	14.6	5
3704	A Perspective of Engineered Lipids and Liposomes: Chemical Design and Functional Application Based on Therapeutic Safety. Chemistry of Materials, 2023, 35, 4587-4597.	6.7	2

#	Article	IF	Citations
3705	Nanodelivery of scutellarin induces immunogenic cell death for treating hepatocellular carcinoma. International Journal of Pharmaceutics, 2023, 642, 123114.	5.2	2
3706	Encapsulation of Nanoâ€Bortezomib in Apoptotic Stem Cellâ€Derived Vesicles for the Treatment of Multiple Myeloma. Small, 2023, 19, .	10.0	5
3707	Drug content on anticancer efficacy of self-assembling ketal-linked dextran-paclitaxel conjugates. Journal of Controlled Release, 2023, 359, 175-187.	9.9	3
3708	Cerebral delivery of redox-responsive lenalidomide prodrug plus methotrexate for primary central nerve system lymphoma combination therapy. Journal of Controlled Release, 2023, 359, 132-146.	9.9	4
3709	Vault, viral, and virus-like nanoparticles for targeted cancer therapy. Materials Advances, 0, , .	5 . 4	0
3710	The Nanotechnology-Based Approaches against Kirsten Rat Sarcoma-Mutated Cancers. Pharmaceutics, 2023, 15, 1686.	4.5	1
3711	Biomedical applications of PLGA nanoparticles in nanomedicine: advances in drug delivery systems and cancer therapy. Expert Opinion on Drug Delivery, 2023, 20, 937-954.	5.0	14
3712	Pyroptosis: A road to next-generation cancer immunotherapy. Seminars in Immunology, 2023, 68, 101782.	5 . 6	9
3713	The Evolution and Recent Trends in Acoustic Targeting of Encapsulated Drugs to Solid Tumors: Strategies beyond Sonoporation. Pharmaceutics, 2023, 15, 1705.	4.5	1
3714	Harnessing Pillar[5]arene Host–Guest Complexation To Improve pH Stability and Affect Enzymatic Degradation of the Anticancer Prodrug Capecitabine: A ¹⁹ FÂNMR Study. Chemistry - A European Journal, 2023, 29, .	3.3	1
3715	Nanozymes with Peroxidase-like Activity for Ferroptosis-Driven Biocatalytic Nanotherapeutics of Glioblastoma Cancer: 2D and 3D Spheroids Models. Pharmaceutics, 2023, 15, 1702.	4.5	1
3716	Significance and implications of nanoparticle–biological corona fingerprints in diagnosis, prognosis, and therapeutics for diverse disorders. Nanoscale, 2023, 15, 11422-11433.	5 . 6	3
3717	Synergistic Photochemo Effects Based on Lightâ€Activatable Dual Prodrug Nanoparticles for Effective Cancer Therapy. Advanced Healthcare Materials, 2023, 12, .	7.6	1
3718	Curcuminâ€koaded nanoparticle based on poloxamer ₁₈₈ for glioma treatment: Synthesis, characterization and in vitro evaluation. Polymers for Advanced Technologies, 0, , .	3.2	0
3719	Research progress on the nucleoside/nucleotide-loaded nanomedicines. Zhejiang Da Xue Xue Bao Yi Xue Ban = Journal of Zhejiang University Medical Sciences, 2023, 52, 279-284.	0.3	0
3720	Cancer Nanomedicine. SpringerBriefs in Applied Sciences and Technology, 2023, , 17-31.	0.4	0
3721	Scalable production of microscopic particles for biological delivery. Materials Advances, 2023, 4, 2885-2908.	5.4	1
3722	Nuclear Delivery of Nanoparticle-Based Drug Delivery Systems by Nuclear Localization Signals. Cells, 2023, 12, 1637.	4.1	4

#	Article	IF	Citations
3723	Nanoparticle-Based Combination Therapy Enhances Fulvestrant Efficacy and Overcomes Tumor Resistance in ER-Positive Breast Cancer. Cancer Research, 2023, 83, 2924-2937.	0.9	3
3724	A Selfâ€Assembly Nanoâ€Prodrug for Combination Therapy in Tripleâ€Negative Breast Cancer Stem Cells. Small, 2023, 19, .	10.0	3
3725	Gemini nanoparticles-based quadruple therapy (GNQT) achieved effective tumor immunotherapy by comprehensive regulation of tumor microenvironment. Nano Today, 2023, 51, 101915.	11.9	2
3726	Glycolysis-based drug delivery nanosystems for therapeutic use in tumors and applications. Biomedicine and Pharmacotherapy, 2023, 165, 115009.	5.6	2
3727	Recent trends in macromolecule-conjugated hybrid quantum dots for cancer theranostic applications. RSC Advances, 2023, 13, 18760-18774.	3.6	2
3728	The role of protein corona on nanodrugs for organ-targeting and its prospects of application. Journal of Controlled Release, 2023, 360, 15-43.	9.9	11
3729	A Laser Synthesis Route to Boronâ€Doped Gold Nanoparticles Designed for Xâ€Ray Radiotherapy and Boron Neutron Capture Therapy Assisted by CT Imaging. Advanced Functional Materials, 2023, 33, .	14.9	4
3730	Application of Silver Nanoparticles in Parasite Treatment. Pharmaceutics, 2023, 15, 1783.	4.5	3
3731	2D Nano Covalent Organic Frameworks – A Porous Polymeric Promising Material Exploring New Prospects of Drug Delivery in Cancer Therapeutics. ChemistrySelect, 2023, 8, .	1.5	1
3732	Enhanced radiosensitivity and chemoradiation efficacy in nasopharyngeal carcinoma via a dual-targeted SPION@polymer hybrid nanosensitizer. NPG Asia Materials, 2023, 15, .	7.9	0
3733	Development and application of nanomaterials, nanotechnology and nanomedicine for treating hematological malignancies. Journal of Hematology and Oncology, 2023, 16, .	17.0	3
3734	Recent advances in nanomedicine preparative methods and their therapeutic potential for colorectal cancer: a critical review. Frontiers in Oncology, $0,13,.$	2.8	3
3735	Targeted therapy of breast tumor by PLGA-based nanostructures: The versatile function in doxorubicin delivery. Environmental Research, 2023, 233, 116455.	7.5	9
3736	How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature. International Journal of Nanomedicine, 0, Volume 18, 3535-3575.	6.7	1
3737	Innovative Metal-Organic Frameworks for Targeted Oral Cancer Therapy: A Review. Materials, 2023, 16, 4685.	2.9	3
3738	NIR-II Fluorescence Imaging for the Detection and Resection of Cancerous Foci and Lymph Nodes in Early-Stage Orthotopic and Advanced-Stage Metastatic Ovarian Cancer Models. ACS Applied Materials & Amp; Interfaces, 2023, 15, 32226-32239.	8.0	3
3739	The emerging nanomedicine-based technology for non-small cell lung cancer immunotherapy: how far are we from an effective treatment. Frontiers in Oncology, $0,13,.$	2.8	0
3740	Promotion of ICD via Nanotechnology. Macromolecular Bioscience, 0, , .	4.1	0

#	Article	IF	CITATIONS
3741	Activatable Immunoprotease Nanorestimulator for Second Near-Infrared Photothermal Immunotherapy of Cancer. ACS Nano, 2023, 17, 8183-8194.	14.6	15
3742	Interactions of Nanomaterials with Gut Microbiota and Their Applications in Cancer Therapy. Sensors, 2023, 23, 4428.	3.8	1
3743	Autophagy modulation in breast cancer utilizing nanomaterials and nanoparticles. Frontiers in Oncology, 0, 13 , .	2.8	1
3744	Polydopamine surface-modified hyperbranched polymeric nanoparticles for synergistic chemo/photothermal therapy of oral cancer. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	4.1	1
3745	Bioâ€Responsive Macromolecular Drug and Smallâ€Molecular Drug Conjugates: Nanoparticulate Prodrugs for Tumor Microenvironment Heterogeneity Management and Therapeutic Response Enhancement. Small, 2023, 19, .	10.0	3
3746	How eluents define proteomic fingerprinting of protein corona on nanoparticles. Journal of Colloid and Interface Science, 2023, 648, 497-510.	9.4	1
3747	Exogenous CD38 upregulation enables high-efficacy dually cascade targeted molecular therapy of leukemia. Nano Today, 2023, 50, 101872.	11.9	2
3748	Advances in photodynamic therapy for port-wine stain and our experience. Chinese Journal of Plastic and Reconstructive Surgery, 2023, 5, 96-99.	0.3	0
3749	Integrated pipeline for ultrasensitive protein detection in cancer nanomedicine. RSC Advances, 2023, 13, 14685-14697.	3.6	1
3750	Following nanoparticle uptake by cells using high-throughput microscopy and the deep-learning based cell identification algorithm Cellpose. Frontiers in Nanotechnology, 0, 5, .	4.8	0
3751	Enhanced Liposomal Drug Delivery Via Membrane Fusion Triggered by Dimeric Coiledâ€Coil Peptides. Small, 2023, 19, .	10.0	5
3752	The role of formulation approaches in presenting targeting ligands on lipid nanoparticles. Nanomedicine, 2023, 18, 589-597.	3.3	1
3753	A review on nanoparticles: Smart particles for cancer therapy. AIP Conference Proceedings, 2023, , .	0.4	0
3754	Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). Naunyn-Schmiedeberg's Archives of Pharmacology, 2023, 396, 2769-2792.	3.0	2
3755	Localized chemotherapy approaches and advanced drug delivery strategies: a step forward in the treatment of peritoneal carcinomatosis from ovarian cancer. Frontiers in Oncology, 0, 13, .	2.8	0
3756	Biodegradable CuMoO ₄ Nanodots with Multienzyme Activities for Multimodal Treatment of Tumor. Advanced Healthcare Materials, 2023, 12, .	7.6	4
3758	PLGA-based drug delivery systems in treating bone tumors. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	4.1	3
3759	Size Control and Biological Properties of PAMAM-Cored Multiarm Block Copolymers. ACS Applied Bio Materials, 2023, 6, 2426-2434.	4.6	1

#	ARTICLE	IF	CITATIONS
3760	Development of CO2-responsive supramolecular drug carrier system for potential application in anticancer treatment. Applied Materials Today, 2023, 33, 101865.	4.3	1
3761	Selective organ targeting nanoparticles: from design to clinical translation. Nanoscale Horizons, 2023, 8, 1155-1173.	8.0	1
3762	iRGDâ€Targeted Physalis Mottle Virus Like Nanoparticles for Targeted Cancer Delivery. Small Science, 2023, 3, .	9.9	2
3763	Multi-stimuli-responsive chitosan-functionalized magnetite/poly(ε-caprolactone) nanoparticles as theranostic platforms for combined tumor magnetic resonance imaging and chemotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2023, 52, 102695.	3.3	2
3764	Zeolite Nanoparticles Loaded with 2-Methoxystradiol as a Novel Drug Delivery System for the Prostate Cancer Therapy. International Journal of Molecular Sciences, 2023, 24, 10967.	4.1	0
3765	REVOLUTIONIZING CANCER TREATMENT: THE ROLE OF NANOTECHNOLOGY IN MODERN ONCOLOGY. International Journal of Research -GRANTHAALAYAH, 2023, 11, .	0.1	0
3766	Ultrasound-responsive low-dose doxorubicin liposomes trigger mitochondrial DNA release and activate cGAS-STING-mediated antitumour immunity. Nature Communications, 2023, 14 , .	12.8	13
3767	Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35, 108752.	9.0	1
3768	Gold Nanoparticles: Construction for Drug Delivery and Application in Cancer Immunotherapy. Pharmaceutics, 2023, 15, 1868.	4.5	5
3769	Autophagy inhibitors for cancer therapy: Small molecules and nanomedicines. , 2023, 249, 108485.		7
3770	Dual-Targeting Biomimetic Nanomaterials for Photo-/Chemo-/Antiangiogenic Synergistic Therapy. ACS Applied Materials & Samp; Interfaces, 2023, 15, 33288-33298.	8.0	2
3771	Tumor-overexpressed enzyme responsive amphiphiles small molecular self-assembly nano-prodrug for the chemo-phototherapy against non-small-cell lung cancer. Materials Today Bio, 2023, 21, 100722.	5.5	4
3772	Nanomedicine-based adjuvant therapy: a promising solution for lung cancer. Journal of Nanobiotechnology, 2023, 21, .	9.1	3
3773	Few more significant applications of nanofluids. , 2023, , 267-286.		2
3774	Total Bio-Based Material for Drug Delivery and Iron Chelation to Fight Cancer through Antimicrobial Activity. Nanomaterials, 2023, 13, 2036.	4.1	2
3775	Pure Organic AIE Nanoscintillator for Xâ€ray Mediated Type I and Type IIÂPhotodynamic Therapy. Advanced Science, 2023, 10, .	11.2	7
3776	Real-time imaging of nanobubble ultrasound contrast agent flow, extravasation, and diffusion through an extracellular matrix using a microfluidic model. Lab on A Chip, 2023, 23, 3453-3466.	6.0	2
3777	Fluorescent nano- and microparticles for sensing cellular microenvironment: past, present and future applications. Nanoscale Advances, 2023, 5, 4311-4336.	4.6	4

#	Article	IF	CITATIONS
3778	A review on reactive oxygen species (ROS)-inducing nanoparticles activated by uni- or multi-modal dynamic treatment for oncotherapy. Nanoscale, 2023, 15, 11813-11833.	5.6	6
3779	Surface Functionalization of Gold Nanoparticles for Targeting the Tumor Microenvironment to Improve Antitumor Efficiency. ACS Applied Bio Materials, 2023, 6, 2944-2981.	4.6	7
3780	Nanotechnology-empowered strategies in treatment of skin cancer. Environmental Research, 2023, 235, 116649.	7. 5	15
3781	Codelivery of vorinostat and chloroquine by autophagy-inhibitory hollow ZrO2 nanoshells for synergistic combination chemotherapy. Chemical Engineering Journal, 2023, 471, 144740.	12.7	1
3782	Advances of medical nanorobots for future cancer treatments. Journal of Hematology and Oncology, 2023, 16, .	17.0	21
3783	Nanoparticles with transformable physicochemical properties for overcoming biological barriers. Nanoscale, 0, , .	5.6	0
3784	Advancement in precision diagnosis and therapeutic for triple-negative breast cancer: Harnessing diagnostic potential of CRISPR-cas & amp; engineered CAR T-cells mediated therapeutics. Environmental Research, 2023, 235, 116573.	7.5	6
3786	Gas-assisted phototherapy for cancer treatment. Journal of Controlled Release, 2023, 360, 564-577.	9.9	4
3787	Role of long non-coding RNAs in cancer: From subcellular localization to nanoparticle-mediated targeted regulation. Molecular Therapy - Nucleic Acids, 2023, 33, 774-793.	5.1	4
3788	Nanoparticles (NPs)-mediated Siglec15 silencing and macrophage repolarization for enhanced cancer immunotherapy. Acta Pharmaceutica Sinica B, 2023, 13, 5048-5059.	12.0	1
3789	Miriplatin-loaded liposome, as a novel mitophagy inducer, suppresses pancreatic cancer proliferation through blocking POLG and TFAM-mediated mtDNA replication. Acta Pharmaceutica Sinica B, 2023, 13, 4477-4501.	12.0	1
3791	Iron oxide nanoparticles trigger endoplasmic reticulum damage in steatotic hepatic cells. Nanoscale Advances, 2023, 5, 4250-4268.	4.6	1
3792	Effect of Nanoparticle Weight on the Cellular Uptake and Drug Delivery Potential of PLGA Nanoparticles. ACS Omega, 2023, 8, 27146-27155.	3.5	4
3793	Single Nanovesicles Tracking Reveals Their Heterogeneous Extracellular Adsorptions. Small, 0, , .	10.0	0
3794	Applications of nanostructures. , 2023, , 201-238.		0
3795	Phyto nanomedicine for cancer therapy. , 2023, , 313-347.		0
3796	Modulation of two-dimensional palladium nanozyme activity to enhance chemodynamic/photothermal combined therapy for melanoma. Journal of Materials Chemistry B, O, , .	5.8	0
3797	Aggregation-Induced Emission (AIE), Life and Health. ACS Nano, 2023, 17, 14347-14405.	14.6	48

#	ARTICLE	IF	CITATIONS
3798	Targeting <scp>Circâ€OCAC</scp> suppress oral squamous cell carcinoma progression. Oral Diseases, 0,	3.0	0
3799	Intelligent Biomaterialomics: Molecular Design, Manufacturing, and Biomedical Applications. Advanced Materials, 0, , .	21.0	7
3800	The Spicy Science of Dendrimers in the Realm of Cancer Nanomedicine: A Report from the COST Action CA17140 Nano2Clinic. Pharmaceutics, 2023, 15, 2013.	4.5	1
3801	Dual-Ligand Synergistic Targeting Anti-Tumor Nanoplatforms with Cascade-Responsive Drug Release. Pharmaceutics, 2023, 15, 2014.	4. 5	1
3802	Nanogels: Synthesis, properties, and recent biomedical applications. Progress in Materials Science, 2023, 139, 101167.	32.8	8
3804	A Critical Appraisal of Lipid Nanoparticles Deployed in Cancer Pharmacotherapy. Recent Advances in Drug Delivery and Formulation, 2023, 17, .	0.9	0
3805	A manual controlled theranostic nanoplatform with real-time photoacoustic quantification of drug release for chemophotothermal therapy. Journal of Colloid and Interface Science, 2023, 651, 1020-1027.	9.4	2
3806	The design and straightforward synthesis of multifunctional DNA microgels for the improved targeted delivery of antitumor drugs. International Journal of Pharmaceutics, 2023, 643, 123242.	5.2	0
3807	Current advances in nanoformulations of therapeutic agents targeting tumor microenvironment to overcome drug resistance. Cancer and Metastasis Reviews, 2023, 42, 959-1020.	5.9	1
3808	Identifying nanocarrier–target interaction. , 2023, , 19-34.		0
3809	Nanoparticles in Cancer Diagnosis and Treatment. Materials, 2023, 16, 5354.	2.9	8
3810	Shining Light on Multidrugâ€Resistant Bacterial Infections: Rational Design of Multifunctional Organosilverâ€Based AlEgen Probes as Lightâ€Activated Theranostics for Combating Biofilms and Liver Abscesses. Advanced Functional Materials, 2023, 33, .	14.9	4
3811	Metal-based drug delivery systems for cancer immunotherapy. , 2023, , 851-891.		0
3812	Progress in construction and release of natural polysaccharide-platinum nanomedicines: A review. International Journal of Biological Macromolecules, 2023, 250, 126143.	7.5	0
3813	A pH-responsive polymer-coated CaO ₂ as oxygen-generating nanoparticle in situ for enhanced chemo-photodynamic synergistic therapy against tumors. Nanotechnology, 2023, 34, 455101.	2.6	0
3814	Synthesis and Characterization of a Quercetin-Based Nanocomposite and Its Ameliorating Impacts on the Growth, Physiological, and Biochemical Parameters of Ocimum basilicum L. under Salinity Stress. Sustainability, 2023, 15, 12059.	3.2	1
3815	Boosting Microwave Thermoâ€Dynamic Cancer Therapy of TiMOF via COFâ€Coating. Small, 2023, 19, .	10.0	7
3816	Nanomedicine in cancer therapy. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	30

#	Article	IF	CITATIONS
3817	Macromolecules and nanomaterials loaded with mitomycin C as promising new treatment option Cancer drug nanoformulation: A literature review. Journal of Drug Delivery Science and Technology, 2023, 87, 104835.	3.0	0
3818	Smart Targeted Delivery Systems for Enhancing Antitumor Therapy of Active Ingredients in Traditional Chinese Medicine. Molecules, 2023, 28, 5955.	3.8	2
3819	Nearâ€Infrared Responsive Nanomaterials for the Regulation of Ion Channel Function. Macromolecular Chemistry and Physics, 2023, 224, .	2.2	0
3820	Magnetic nanoparticle swarm with upstream motility and peritumor blood vessel crossing ability. Nanoscale, 2023, 15, 14227-14237.	5. 6	2
3821	New SDS-Based Polyelectrolyte Multicore Nanocarriers for Paclitaxel Delivery—Synthesis, Characterization, and Activity against Breast Cancer Cells. Cells, 2023, 12, 2052.	4.1	0
3822	Hyperthermia-triggered biomimetic bubble nanomachines. Nature Communications, 2023, 14, .	12.8	3
3823	Nanotheranostics: Platforms, Current Applications, and Mechanisms of Targeting in Breast and Prostate Cancers. Journal of Nanotheranostics, 2023, 4, 346-383.	3.1	0
3824	Improving cancer chemotherapy through photothermally triggered drug release from poly(N-isopropylacrylamide-co-acrylic acid)/Prussian blue hydrogel. Materials and Design, 2023, 233, 112243.	7.0	1
3825	The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics. Environmental Research, 2023, 237, 116894.	7.5	10
3826	Extracellular vesicles: powerful candidates in nano-drug delivery systems. Drug Delivery and Translational Research, 0, , .	5.8	O
3827	Ruthenium metallodendrimer against triple-negative breast cancer in mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2023, 53, 102703.	3.3	1
3828	Glutathione-sensitive mesoporous nanoparticles loaded with cinnamaldehyde for chemodynamic and immunological therapy of cancer. Journal of Materials Chemistry B, 2023, 11, 8717-8731.	5.8	2
3829	Nanofertilizersâ€"synthesis, advantages, and the current status. , 2023, , 43-77.		0
3830	Phospholipase-based nanocarriers for therapeutic applications. , 2023, , 111-128.		0
3831	Design and manufacturing of biomimetic scaffolds for bone repair inspired by bone trabeculae. Computers in Biology and Medicine, 2023, 165, 107369.	7.0	1
3832	Smart and bioinspired systems for overcoming biological barriers and enhancing disease theranostics. Progress in Materials Science, 2023, 140, 101170.	32.8	17
3833	Tumor permeable self-delivery nanodrug targeting mitochondria for enhanced chemotherapy. Journal of Controlled Release, 2023, 361, 792-802.	9.9	1
3834	<scp>pH</scp> â€responsive polymers for drug delivery: Trends and opportunities. Journal of Polymer Science, 2023, 61, 2828-2850.	3.8	4

#	Article	IF	CITATIONS
3835	Current and evolving knowledge domains of cubosome studies in the new millennium. Journal of Nanoparticle Research, 2023, 25, .	1.9	0
3836	Physalis Mottle Virus-Like Nanocarriers with Expanded Internal Loading Capacity. Bioconjugate Chemistry, 0, , .	3.6	2
3837	Nanoprobe-based molecular imaging for tumor stratification. Chemical Society Reviews, 2023, 52, 6447-6496.	38.1	7
3838	Rapid Internalization of Nanoparticles by Human Cells at the Single Particle Level. ACS Nano, 2023, 17, 16517-16529.	14.6	4
3839	An Overview of Nanotechnological Approaches for the Diagnosis and Treatment of Allergic Illness. Current Pharmaceutical Design, 2023, 29, 2050-2061.	1.9	0
3840	Review on Metal-Based Theranostic Nanoparticles for Cancer Therapy and Imaging. Technology in Cancer Research and Treatment, 2023, 22, .	1.9	1
3841	Recent Advances in Targeted Drug Delivery Strategy for Enhancing Oncotherapy. Pharmaceutics, 2023, 15, 2233.	4.5	8
3842	Nano Titania Applications in Cancer Theranostics. , 0, , .		0
3843	Treatment of Cancer Using Combination of Herbal and Novel Drug Delivery System., 2023, , 1177-1197.		0
3844	PEG2000-PLA-based nanoscale polymeric micelles reduce paclitaxel-related toxicity in beagle dogs. Journal of Controlled Release, 2023, 362, 197-209.	9.9	0
3845	Swarming Multifunctional Heater–Thermometer Nanorobots for Precise Feedback Hyperthermia Delivery. ACS Nano, 2023, 17, 16731-16742.	14.6	3
3846	Prospects of charged cyclodextrins in biomedical applications. Carbohydrate Polymers, 2023, , 121348.	10.2	0
3847	Small molecules and conjugates as theranostic agents. RSC Chemical Biology, 2023, 4, 826-849.	4.1	1
3848	Design and synthesis of novel 1,2,3, <scp>4â€ŧetrazines</scp> as new antiâ€ŀeukemia cancer agents. Chemical Biology and Drug Design, 2023, 102, 1186-1201.	3.2	0
3849	Antifouling polymers for nanomedicine and surfaces: recent advances. Nanoscale, 2023, 15, 15472-15512.	5.6	0
3850	An Overview of Nanotherapeutic Drug Delivery Options for the Management of Glioblastoma. Journal of Nanotheranostics, 2023, 4, 323-345.	3.1	1
3851	Preparation of Amino-Functionalized \hat{l}^2 -Cyclodextrin/Fe3O4@SiO2 Magnetic Nanocarrier for Controlled Release of Doxorubicin, an Anticancer Drug. Arabian Journal for Science and Engineering, 0, , .	3.0	0
3852	CD44-targeted nanoparticles for co-delivery of docetaxel and an Akt inhibitor against colorectal cancer., 2023, 154, 213595.		0

#	Article	IF	CITATIONS
3853	Research Progress on Nanomaterials for Tissue Engineering in Oral Diseases. Journal of Functional Biomaterials, 2023, 14, 404.	4.4	0
3854	Kinetic control over co-self-assembly using an in situ dynamic covalent reaction resulting in a synergistic chemo-photodynamic therapy. Cell Reports Physical Science, 2023, 4, 101598.	5 . 6	0
3855	Transcytosisâ€Inducing Multifunctional Albumin Nanomedicines with Deep Penetration Ability for Imageâ€Guided Solid Tumor Treatment. Small, 2023, 19, .	10.0	1
3856	Advances and prospects of RAFT polymerization-derived nanomaterials in MRI-assisted biomedical applications. Progress in Polymer Science, 2023, 146, 101739.	24.7	4
3857	Ferrocene-Based Drugs, Delivery Nanomaterials and Fenton Mechanism: State of the Art, Recent Developments and Prospects. Pharmaceutics, 2023, 15, 2044.	4.5	7
3858	Dualâ€Responsive Drugâ€Delivery System Based on PEGâ€Functionalized Pillararenes Containing Disulfide and Amido Bonds for Cancer Theranostics. ChemBioChem, 2023, 24, .	2.6	1
3859	Cancer Therapy Empowered by Extracellular Vesicle-Mediated Targeted Delivery. Biological and Pharmaceutical Bulletin, 2023, 46, 1353-1364.	1.4	1
3860	Radiotherapy Potentiates the P-Selectin Targeted Cancer Drug Delivery Based on a Cisplatin and Mitoxantrone Coassembled Fucoidan Nanogel. , 2023, 5, 2843-2851.		1
3861	Next Generation of Brain Cancer Nanomedicines to Overcome the Blood–Brain Barrier (BBB): Insights on Transcytosis, Perivascular Tumor Growth, and BBB Models. Advanced Therapeutics, 2023, 6, .	3.2	0
3862	Magnetic Nanoparticles Decorated with Gold Nanoclusters–Applications in Cancer Theranostics. Advanced Materials Interfaces, 2023, 10, .	3.7	0
3863	Metal nanoparticles for cancer therapy: Precision targeting of DNA damage. Acta Pharmaceutica Sinica B, 2024, 14, 1132-1149.	12.0	0
3864	Neutrophil-Mediated Delivery of Nanocrystal Drugs via Photoinduced Inflammation Enhances Cancer Therapy. ACS Nano, 2023, 17, 15542-15555.	14.6	9
3865	Lutein-Based pH and Photo Dual-Responsive Novel Liposomes Coated with Ce6 and PTX for Tumor Therapy. ACS Omega, 2023, 8, 31436-31449.	3. 5	0
3866	A Nucleus-Targeting WT1 Antagonistic Peptide Encapsulated in Polymeric Nanomicelles Combats Refractory Chronic Myeloid Leukemia. Pharmaceutics, 2023, 15, 2305.	4.5	0
3867	Unleashing novel horizons in advanced prostate cancer treatment: investigating the potential of prostate specific membrane antigen-targeted nanomedicine-based combination therapy. Frontiers in Immunology, 0, 14, .	4.8	0
3868	Theranostic imaging and multimodal photodynamic therapy and immunotherapy using the mTOR signaling pathway. Nature Communications, 2023, 14, .	12.8	13
3869	Single Particle Chemical Characterisation of Nanoformulations for Cargo Delivery. AAPS Journal, 2023, 25, .	4.4	1
3870	Emerging nanotechnological approaches to regulating tumor vasculature for cancer therapy. Journal of Controlled Release, 2023, 362, 647-666.	9.9	4

#	Article	IF	CITATIONS
3871	Core-triple shells pH-responsive zinc-ferrite nanocomposite: Efficient dual remedy for targeted lung cancer therapy. Journal of Drug Delivery Science and Technology, 2023, 88, 104950.	3.0	0
3872	A pHâ€responsive nanoparticle delivery system containing dihydralazine and doxorubicinâ€based prodrug for enhancing antitumor efficacy. Aggregate, 2024, 5, .	9.9	0
3873	Cellular organelles as drug carriers for disease treatment. Journal of Controlled Release, 2023, 363, 114-135.	9.9	0
3874	Targeted therapies against breast cancer: Clinical perspectives, obstacles and new opportunities. Journal of Drug Delivery Science and Technology, 2023, 89, 105049.	3.0	2
3875	Surface modification potentials of cell membrane-based materials for targeted therapies: a chemotherapy-focused review. Nanomedicine, 2023, 18, 1281-1303.	3.3	0
3876	Prospecting the cancer therapeutic edge of chitosan-based gold nanoparticles through conformation selective binding to the parallel G-quadruplex formed by short telomeric DNA sequence: A multi-spectroscopic approach. International Journal of Biological Macromolecules, 2023, 253, 126835.	7.5	1
3877	Hydrogen-Bond-Driven Core-Crosslinked Supramolecular Micelles with pH/Thermal/Glutathione-Responsive Drug Release toward Enhanced Cancer Therapy. Chemistry of Materials, 2023, 35, 7655-7670.	6.7	2
3878	Current perspectives and trends in nanoparticle drug delivery systems in breast cancer: bibliometric analysis and review. Frontiers in Bioengineering and Biotechnology, $0,11,.$	4.1	0
3879	Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Molecular Cancer, 2023, 22, .	19.2	30
3880	Microfluidic approaches for producing lipid-based nanoparticles for drug delivery applications. Biophysics Reviews, 2023, 4, .	2.7	0
3881	Cancer treatment and toxicity outlook of nanoparticles. Environmental Research, 2023, 237, 116870.	7. 5	9
3882	Apoptosis induction in human hepatoma cell line HepG2 cells by trans- Anethole via activation of mitochondria-mediated apoptotic pathways. Biomedicine and Pharmacotherapy, 2023, 165, 115236.	5.6	0
3883	Gold nanoparticle adsorption alters the cell stiffness and cell wall bio-chemical landscape of Candida albicans fungal cells. Journal of Colloid and Interface Science, 2024, 654, 390-404.	9.4	2
3884	Biofilms as Battlefield Armor for Bacteria against Antibiotics: Challenges and Combating Strategies. Microorganisms, 2023, 11, 2595.	3.6	0
3885	Magnetic and Fluorescent Dual-Labeled Genetically Encoded Targeted Nanoparticles for Malignant Glioma Cell Tracking and Drug Delivery. Pharmaceutics, 2023, 15, 2422.	4.5	1
3886	Acceptor engineering-facilitated versatile AlEgen for mitochondria-targeted multimodal imaging-guided cancer photoimmunotherapy. Biomaterials, 2023, 301, 122276.	11.4	1
3887	Application of Advanced Technologies—Nanotechnology, Genomics Technology, and 3D Printing Technology—In Precision Anesthesia: A Comprehensive Narrative Review. Pharmaceutics, 2023, 15, 2289.	4.5	3
3888	Exploring novel strategies to improve anti-tumour efficiency: The potential for targeting reactive oxygen species. Heliyon, 2023, 9, e19896.	3.2	3

#	Article	IF	CITATIONS
3889	Nano-bio interactions in mRNA nanomedicine: Challenges and opportunities for targeted mRNA delivery. Advanced Drug Delivery Reviews, 2023, 203, 115116.	13.7	6
3890	The future opportunities and remaining challenges in the application of nanoparticleâ€mediated hyperthermia combined with chemoâ€radiotherapy in cancer. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	6.1	4
3891	Design of in vitro biomimetic experimental system and simulation analysis for transvascular transport of nano-preparation. Microvascular Research, 2024, 151, 104597.	2.5	2
3892	Impact of Targeting Moiety Type and Protein Corona Formation on the Uptake of Fn14-Targeted Nanoparticles by Cancer Cells. ACS Nano, 2023, 17, 19667-19684.	14.6	0
3893	Intelligent nanomaterials for cancer therapy: recent progresses and future possibilities. Medical Review, 2023, .	1.2	0
3894	â€~Passive' nanoparticles for organ-selective systemic delivery: design, mechanism and perspective. Chemical Society Reviews, 2023, 52, 7579-7601.	38.1	5
3895	Good's buffer based highly biocompatible ionic liquid modified PLGA nanoparticles for the selective uptake in cancer cells. Materials Chemistry Frontiers, 2023, 7, 6213-6228.	5.9	2
3896	Pulmonary delivery of nanoâ€particles for lung cancer diagnosis and therapy: Recent advances and future prospects. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2024, 16, .	6.1	1
3897	Targeted Nanoparticles Based on Alendronate Polyethylene Glycol Conjugated Chitosan for the Delivery of siRNA and Curcumin for Bone Metastasized Breast Cancer Applications. Macromolecular Bioscience, 2024, 24, .	4.1	0
3898	Adaptive design of mRNA-loaded extracellular vesicles for targeted immunotherapy of cancer. Nature Communications, 2023, 14 , .	12.8	4
3899	The protein arginine methyltransferase family (PRMTs) regulates metastases in various tumors: From experimental study to clinical application. Biomedicine and Pharmacotherapy, 2023, 167, 115456.	5.6	0
3900	Challenges in delivery of plant actives. , 2023, , 35-82.		0
3901	A PATH OF NOVELITY FROM NANOPARTICLES TO NANOBOTS: THERAGNOSTIC APPROACH FOR TARGETING CANCER THERAPY. Critical Reviews in Therapeutic Drug Carrier Systems, 2023, , .	2.2	0
3902	Mn ²⁺ /lr ³⁺ â€Doped and CaCO ₃ â€Covered Prussian Blue Nanoparticles with Indocyanine Green Encapsulation for Tumor Microenvironment Modulation and Imageâ€Guided Synergistic Cancer Therapy. Advanced Healthcare Materials, 2023, 12, .	7.6	0
3903	Palladium-based multifunctional nanoparticles for combined chemodynamic/photothermal and calcium overload therapy of tumors. Colloids and Surfaces B: Biointerfaces, 2023, 230, 113529.	5.0	1
3904	Nanoparticle (NP)-mediated APOC1 silencing to inhibit MAPK/ERK and NF-κB pathway and suppress breast cancer growth and metastasis. Science China Life Sciences, 0, , .	4.9	0
3905	Spatiotemporallyâ€Programmed Dualâ€Acidâ€Sensitive Nanoworms of Albuminâ€Poly(tertiary) Tj ETQq0 0 0 rgB 2023, 12, .	3T /Overloch 7.6	ck 10 Tf 50 10 O
3906	High-precision targeting and destruction of cancer-associated PDGFR-β+ stromal fibroblasts through self-assembling, protein-only nanoparticles. Acta Biomaterialia, 2023, 170, 543-555.	8.3	0

#	Article	IF	CITATIONS
3907	Four-Color SERS Monitoring of Size-dependent Nanoparticle Delivery in the Same Tumor. Analytical Chemistry, 2023, 95, 13880-13888.	6.5	0
3908	Nimbolide-based nanomedicine inhibits breast cancer stem-like cells by epigenetic reprogramming of DNMTs-SFRP1-Wnt/β-catenin signaling axis. Molecular Therapy - Nucleic Acids, 2023, 34, 102031.	5.1	1
3909	Breaking Tumor Immunosuppressive Network by Regulating Multiple Nodes with Triadic Drug Delivery Nanoparticles. ACS Nano, 2023, 17, 17826-17844.	14.6	1
3910	Progress of cell membrane-derived biomimetic nanovesicles for cancer phototherapy. Biomaterials Science, 0, , .	5.4	0
3911	Chemo-immunotherapy by dual-enzyme responsive peptide self-assembling abolish melanoma. Bioactive Materials, 2024, 31, 549-562.	15.6	1
3912	NIRâ€II Regulation of Mitochondrial Potassium Channel with Dualâ€Targeted Conjugated Oligomer Nanoparticles for Efficient Cancer Theranostics In Vivo. Advanced Healthcare Materials, 2023, 12, .	7.6	0
3913	Coâ€based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. Advanced Materials, 2024, 36, .	21.0	6
3914	FNIII14 Peptide-Enriched Membrane Nanocarrier to Disrupt Stromal Barriers through Reversing CAFs for Augmenting Drug Penetration in Tumors. Nano Letters, 2023, 23, 9963-9971.	9.1	2
3915	Combined Effects of Core Rigidity and Surface Charge of Polymeric Nanomicelles on the Cellular Uptake Efficiency. Macromolecules, 2023, 56, 7663-7674.	4.8	1
3916	Nanoparticles for Targeted Drug Delivery Systems with Cancer Therapy in Perspective. , 2023, , 313-334.		0
3917	Modeling and Computer Simulation of Nanocomplexation for Cancer Therapy. EAI/Springer Innovations in Communication and Computing, 2024, , 257-272.	1,1	0
3918	Perivascular nanocarrier aggregation as a drug reservoir augments tumor drug delivery and treatment efficacy. Nano Today, 2023, 53, 102004.	11.9	0
3919	Synergized photothermal therapy and magnetic field induced hyperthermia via bismuthene for lung cancer combinatorial treatment. Materials Today Bio, 2023, 23, 100825.	5 . 5	1
3920	Drug-drug conjugates self-assembled nanomedicines triggered photoâ^/immuno- therapy for synergistic cancer treatments. Journal of Controlled Release, 2023, 363, 361-375.	9.9	2
3921	Nano-drug delivery systems based on biodegradable polymers for the therapy of gynecological malignancies. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-16.	3.4	0
3922	Current status of Fe-based MOFs in biomedical applications. RSC Medicinal Chemistry, 0, , .	3.9	0
3923	Multifunctional biocompatible Ni/Ni–P nanospheres for anti-tumor "neoadjuvant phototherapy― combining photothermal therapy and photodynamic therapy. Journal of Materials Chemistry B, 2023, 11, 10019-10028.	5.8	0
3924	Revolutionizing cancer treatment: nanotechnology-enabled photodynamic therapy and immunotherapy with advanced photosensitizers. Frontiers in Immunology, 0, 14, .	4.8	2

#	ARTICLE	IF	CITATIONS
3925	Revolutionizing Human papillomavirus (HPV)â€related cancer therapies: Unveiling the promise of Proteolysis Targeting Chimeras (PROTACs) and Proteolysis Targeting Antibodies (PROTABs) in cancer nanoâ€vaccines. Journal of Medical Virology, 2023, 95, .	5.0	5
3926	Carrier-free doxorubicin/rhein supramolecular co-assembly for cancer therapy. Journal of Drug Delivery Science and Technology, 2023, 89, 105030.	3.0	1
3927	Antibody-Mediated Nanodrug of Proteasome Inhibitor Carfilzomib Boosts the Treatment of Multiple Myeloma. Biomacromolecules, 0, , .	5.4	0
3928	Nanomaterialâ€Enabled Photothermal Heating and Its Use for Cancer Therapy via Localized Hyperthermia. Small, 2024, 20, .	10.0	1
3929	Lipid-assisted PEG- $\langle i \rangle$ b $\langle i \rangle$ -PLA nanoparticles with ultrahigh SN38 loading capability for efficient cancer therapy. Biomaterials Science, 0, , .	5.4	0
3930	Liposome-Derived Nanosystems for the Treatment of Behavioral and Neurodegenerative Diseases: The Promise of Niosomes, Transfersomes, and Ethosomes for Increased Brain Drug Bioavailability. Pharmaceuticals, 2023, 16, 1424.	3.8	3
3931	Targeting Breast Cancer Signaling via Phytomedicine and Nanomedicine. Pharmacology, 2023, 108, 504-520.	2.2	1
3932	Targeted drug delivery systems for pancreatic ductal adenocarcinoma: overcoming tumor microenvironment challenges with CAF-specific nanoparticles. Journal of the National Cancer Center, 2023, , .	7.4	0
3933	Label-Free Quantification of Digital Nanorods Assembled from Discrete Oligourethane Amphiphiles. Journal of the American Chemical Society, 2023, 145, 23176-23187.	13.7	1
3934	NIRâ€Actuated Targeted Janus Nanomotors Remodel Immunosuppressive Tumor Microenvironment for Augmented Cancer Immunotherapy. Advanced Healthcare Materials, 2024, 13, .	7.6	O
3935	Hemocompatibility of dextran-graft-polyacrylamide/zinc oxide nanosystems: Hemolysis or eryptosis?. Nanotechnology, 0, , .	2.6	0
3936	Micro-syringe chip-guided intratumoral administration of lipid nanoparticles for targeted anticancer therapy. Biomaterials Research, 2023, 27, .	6.9	1
3937	Biodistributions and Imaging of Poly(ethylene glycol)-Conjugated Silicon Quantum Dot Nanoparticles in Osteosarcoma Models via Intravenous and Intratumoral Injections. ACS Applied Bio Materials, 0, , .	4.6	1
3938	Reexamining the effects of drug loading on the in vivo performance of PEGylated liposomal doxorubicin. Acta Pharmacologica Sinica, 0, , .	6.1	1
3939	Single Live Cell Imaging of Multidrug Resistance Using Silver Ultrasmall Nanoparticles as Biosensing Probes in Triple-Negative Breast Cancer Cells. ACS Applied Bio Materials, 0, , .	4.6	0
3940	Microneedle patch loaded with ferritin-nanocaged doxorubicin for locally targeted drug delivery and efficient skin cancer treatment. Particuology, 2024, 88, 282-289.	3.6	0
3941	Internal stimuli-responsive nanocarriers for controlled anti-cancer drug release: a review. Therapeutic Delivery, 0, , .	2.2	1
3942	How Does pH Affect the Adsorption of Human Serum Protein in the Presence of Hydrophobic and Hydrophilic Nanoparticles at Air–Water and Lipid–Water Interfaces?. Langmuir, 0, , .	3.5	0

#	Article	IF	CITATIONS
3943	The spatiotemporal journey of nanomedicines in solid tumors on their therapeutic efficacy. Advanced Drug Delivery Reviews, 2023, 203, 115137.	13.7	2
3944	Lipid polymer hybrid nanoparticles as potent vehicles for drug delivery in cancer therapeutics. Medicine in Drug Discovery, 2023, 20, 100165.	4.5	2
3945	Recent advancement of nanomedicine-based targeted delivery for cervical cancer treatment. , 2023, 40, .		0
3946	Emerging applications of anti-angiogenic nanomaterials in oncotherapy. Journal of Controlled Release, 2023, 364, 61-78.	9.9	3
3947	Remodeling of Mitochondrial Metabolism by a Mitochondria†Targeted RNAi Nanoplatform for Effective Cancer Therapy. Small, 0, , .	10.0	0
3948	Advancements in the Utilization of Metal Nanoparticles for Breast Cancer Treatment: An In Vivo Studies Update., 2023, 2, 63-71.		0
3949	mPEG-PDLLA polymeric micelles loading a novel pyridazinone derivative IMB5036 for improving anti-tumor activity in hepatocellular carcinoma. Journal of Drug Delivery Science and Technology, 2023, 90, 105101.	3.0	0
3950	Peptide-nanoparticle conjugates as a theranostic platform. Coordination Chemistry Reviews, 2024, 500, 215530.	18.8	0
3951	Biomaterials Elicit Pyroptosis Enhancing Cancer Immunotherapy. Advanced Functional Materials, 2024, 34, .	14.9	1
3952	Current Advances on Nanomaterials Interfering with Lactate Metabolism for Tumor Therapy. Advanced Science, 2024, 11, .	11.2	1
3953	Enhancing Endosomal Escape and Gene Regulation Activity for Spherical Nucleic Acids. Small, 0, , .	10.0	0
3954	Biomedical Applications of Cell Membraneâ€Based Biomimetic Nanoâ€Delivery System. Advanced Therapeutics, 2024, 7, .	3.2	0
3955	Advanced optical imaging for the rational design of nanomedicines. Advanced Drug Delivery Reviews, 2024, 204, 115138.	13.7	1
3956	MXenes as theranostics: Diagnosis and therapy including in vitro and in vivo applications. Applied Materials Today, 2023, 35, 102002.	4.3	O
3957	Development of nano-immunotherapy for cancer treatment: achievements and scopes. Journal of Pharmaceutical Investigation, 2023, 53, 827-844.	5. 3	0
3958	Microfluidic-based nanoplatforms for cancer theranostic applications: A mini-review on recent advancements. OpenNano, 2024, 15, 100197.	4.8	0
3959	An Overview of the Potential of Food-Based Carbon Dots for Biomedical Applications. International Journal of Molecular Sciences, 2023, 24, 16579.	4.1	0
3960	Thiol-mediated transportation pathway: an approach for improving tumor penetration of nanomedicines in vivo. Science China Chemistry, 0 , , .	8.2	O

#	Article	IF	CITATIONS
3961	Advanced approaches to overcome biological barriers in respiratory and systemic routes of administration for enhanced nucleic acid delivery to the lung. Expert Opinion on Drug Delivery, 2023, 20, 1531-1552.	5.0	1
3962	Polypyridyl-based Co(<scp>iii</scp>) complexes of vitamin B ₆ Schiff base for photoactivated antibacterial therapy. Dalton Transactions, 2023, 52, 17562-17572.	3.3	0
3963	Covalent Organic Frameworks: Opportunities for Rational Materials Design in Cancer Therapy. Angewandte Chemie - International Edition, 2024, 63, .	13.8	1
3964	End Group Engineering for Constructing Aâ^'Dâ^'A Fusedâ€Ring Photosensitizers with Balanced Phototheranostics Performance. Small, 0, , .	10.0	0
3965	RNA Nanotechnology for Chemotherapy and Immunotherapy. RNA Technologies, 2023, , 645-666.	0.3	0
3966	Covalent Organic Frameworks: Opportunities for Rational Materials Design in Cancer Therapy. Angewandte Chemie, 2024, 136, .	2.0	0
3967	Recent advances in exosome-based immunotherapy applied to cancer. Frontiers in Immunology, 0, 14, .	4.8	3
3968	Quantum Dots as Optical Materials: Small Wonders and Endless Frontiers. Indian Institute of Metals Series, 2024, , 545-596.	0.3	0
3969	Multistage Self-Assembled Nanomaterials for Cancer Immunotherapy. Molecules, 2023, 28, 7750.	3.8	2
3970	How does aggregation of doxorubicin molecules affect its solvation and membrane penetration?. New Journal of Chemistry, 2023, 47, 22063-22077.	2.8	0
3972	Selective Manipulation of the Mitochondria Oxidative Stress in Different Cells Using Intelligent Mesoporous Silica Nanoparticles to Activate Onâ€Demand Immunotherapy for Cancer Treatment. Small, 0, , .	10.0	2
3973	Engineered exosomes-based theranostic strategy for tumor metastasis and recurrence. Asian Journal of Pharmaceutical Sciences, 2023, 18, 100870.	9.1	0
3974	Lipid nanoparticles for targeted delivery of anticancer therapeutics: Recent advances in development of siRNA and lipoprotein-mimicking nanocarriers. Advanced Drug Delivery Reviews, 2023, 203, 115136.	13.7	0
3975	Improved antitumor activity through a tyramidyl maslinic acid derivative. Design and validation as drug-loaded electrospun polymeric nanofibers. European Journal of Pharmaceutics and Biopharmaceutics, 2023, 193, 241-253.	4.3	0
3976	Bright Semiconductor Quantum Dots Shed New Light on Precision Nanomedicine for Various Diseases. Small Science, 0, , .	9.9	0
3977	Cytotoxicity of PEG-Coated Gold and Gold–Iron Alloy Nanoparticles: ROS or Ferroptosis?. Nanomaterials, 2023, 13, 3044.	4.1	1
3978	Effect of the Protein Corona Formation on Antibody Functionalized Liquid Lipid Nanocarriers. International Journal of Molecular Sciences, 2023, 24, 16759.	4.1	0
3979	The impact of PEG chain length on the in vivo tumor accumulation of self-assembled amphiphilic drug-PEG polymeric micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 682, 132823.	4.7	0

#	Article	IF	CITATIONS
3980	Self-assembled nanoplatforms for chemodynamic therapy. Chemical Engineering Journal, 2024, 479, 147702.	12.7	0
3981	A review on Stimuli-pH responsive liposomal formulation in cancer therapy. Journal of Drug Delivery Science and Technology, 2023, 90, 105172.	3.0	1
3982	Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: a comprehensive review. Cancer Cell International, 2023, 23, .	4.1	0
3983	A Brief Review on Manipulation of Essential Metal Ions as Nanomedicine for Cancer Therapy. Advanced NanoBiomed Research, 0, , .	3.6	0
3984	Multifunctional cell membranes-based nano-carriers for targeted therapies: a review of recent trends and future perspective. Drug Delivery, 2023, 30, .	5.7	2
3985	Promoting Intratumoral Drug Accumulation by Bio-Membrane Regulated Active Targeting for Tumor Photothermal Therapy. International Journal of Nanomedicine, 0, Volume 18, 7287-7304.	6.7	0
3986	Recent Advances on NIRâ€II Lightâ€Enhanced Chemodynamic Therapy. Advanced Healthcare Materials, 0, , .	7.6	3
3987	Predicting nanocarriers' efficacy in 3D models with Brillouin microscopy. Nanoscale, 2023, 15, 19255-19267.	5.6	0
3988	Drug Delivery to the Brain: Recent Advances and Unmet Challenges. Pharmaceutics, 2023, 15, 2658.	4.5	1
3989	Simultaneous Light-Triggered Release of Nitric Oxide and Carbon Monoxide from a Lipid-Coated Upconversion Nanosystem Inhibits Colon Tumor Growth. ACS Applied Materials & Diterfaces, 0, , .	8.0	0
3991	Carrier-free, pure nanodrugs based on dasatinib and 5-Fluorouracil show aggregation-induced emission and enhanced antitumor efficacy. Journal of Drug Delivery Science and Technology, 2023, 90, 105142.	3.0	0
3992	An "AND―Logicâ€Gated Prodrug Micelle Locally Stimulates Antitumor Immunity. Advanced Materials, 2024, 36, .	21.0	1
3993	Development of Statistically Optimized Piperine-Loaded Polymeric Nanoparticles for Breast Cancer: In Vitro Evaluation and Cell Culture Studies. ACS Omega, 2023, 8, 44183-44194.	3.5	0
3994	Mixing versus Polymer Chemistry in the Synthesis of Loaded Polymer Nanoparticles through Nanoprecipitation. Langmuir, 2023, 39, 16532-16542.	3.5	0
3996	Recent advances in cancer cell bionic nanoparticles for tumour therapy. Journal of Drug Targeting, 2023, 31, 1065-1080.	4.4	0
3997	Ginsenoside modified lipid-coated perfluorocarbon nanodroplets: A novel approach to reduce complement protein adsorption and prolong in vivo circulation. Acta Pharmaceutica Sinica B, 2023, , .	12.0	1
3999	Composite Nanomaterials of Conjugated Polymers and Upconversion Nanoparticles for NIR-Triggered Photodynamic/Photothermal Synergistic Cancer Therapy. ACS Applied Materials & Diterfaces, O, , .	8.0	0
4000	Amphiphilic Poly(2-oxazoline)s with Glycine-Containing Hydrophobic Blocks Tailored for Panobinostat- and Imatinib-Loaded Micelles. Biomacromolecules, 2023, 24, 5915-5925.	5.4	1

#	Article	IF	Citations
4002	A Highâ€Resolution Prediction Network for Predicting Intratumoral Distribution of Nanoprobes by Tumor Vascular and Nuclear Feature. Advanced Intelligent Systems, 0, , .	6.1	0
4003	Targetedly Attenuating Cancer Stemness and Plasticity by Homologous Cancer Stem Cellâ€Inherited Fusion Membrane Nanoeffectors against Cancer Metastasis. Small Science, 2024, 4, .	9.9	0
4004	Exploration of a Pretargeted Theranostic Copolymer Employing Inverse Electron-Demand Diels–Alder Conjugation in Ovarian Cancer. ACS Applied Polymer Materials, 0, , .	4.4	0
4005	Novel targeted delivery of quercetin for human hepatocellular carcinoma using starch/polyvinyl alcohol nanocarriers based hydrogel containing Fe2O3 nanoparticles. International Journal of Biological Macromolecules, 2024, 257, 128626.	7.5	0
4006	Drug-Free Hybrid Nanoarchitecture Modulation of the Metastatic Behavior of Pancreatic Ductal Adenocarcinoma in Alternative <i>in Vivo</i> Models. ACS Applied Nano Materials, 0, , .	5.0	0
4007	Emerging Strategies for Immunotherapy of Solid Tumors Using Lipidâ€Based Nanoparticles. Advanced Science, 2024, 11, .	11.2	0
4008	Nanomedicine Disrupts Stromal Barriers to Augment Drug Penetration for Improved Cancer Therapy. Chinese Journal of Chemistry, 0, , .	4.9	0
4009	The application of nanoparticles based on ferroptosis in cancer therapy. Journal of Materials Chemistry B, O, , .	5 . 8	0
4010	Targeting neutrophils potentiates hitchhiking delivery of drugs and agonists for postsurgical chemo-immunotherapy. Nano Today, 2024, 54, 102096.	11.9	0
4011	Phellinus linteus polysaccharides: A review on their preparation, structure-activity relationships, and drug delivery systems. International Journal of Biological Macromolecules, 2024, 258, 128702.	7.5	0
4012	Natural bioactive lysosomes extracted from multiple cells for tumor therapy. Biomaterials, 2024, 304, 122430.	11.4	0
4013	Cell membrane-coated nanoparticles for cancer therapy. , 2023, 2, 37-48.		0
4014	Synergistic effect of photothermal and magnetic hyperthermia for in situ activation of Fenton reaction in tumor microenvironment for chemodynamic therapy. , 2024, 157, 213724.		0
4015	Liquid metal biomaterials: translational medicines, challenges and perspectives. National Science Review, 0, , .	9.5	0
4016	Stimulusâ€Responsive Nanoâ€Prodrug Strategies for Cancer Therapy: A Focus on Camptothecin Delivery. Small Methods, 0, , .	8.6	2
4017	Impact of protein coronas on nanoparticle interactions with tissues and targeted delivery. Current Opinion in Biotechnology, 2024, 85, 103046.	6.6	0
4018	Dexterous green synthesis of Cu ₂ O nanoparticles: An amenable catalyst for aqueous click reaction, antiproliferative, and wound healing applications. Applied Organometallic Chemistry, 0, , .	3.5	0
4019	Harnessing the power of gold: advancements in anticancer gold complexes and their functionalized nanoparticles. Journal of Materials Chemistry B, 2024, 12, 552-576.	5.8	1

#	Article	IF	CITATIONS
4020	Controlling the biodistribution and clearance of nanomedicines. , 0, , .		6
4022	Magnetically Controlled Cell Robots with Immune-Enhancing Potential. , 2023, , .		O
4023	Multi-Stimuli-Responsive and Cell Membrane Camouflaged Aggregation-Induced Emission Nanogels for Precise Chemo-photothermal Synergistic Therapy of Tumors. ACS Nano, 2023, 17, 25205-25221.	14.6	0
4024	A green approach for preparation of chitosan/hydroxyapatite/graphitic carbon nitride hydrogel nanocomposite for improved 5-FU delivery. International Journal of Biological Macromolecules, 2024, 258, 128736.	7.5	O
4025	Progress and challenges in the translation of cancer nanomedicines. Current Opinion in Biotechnology, 2024, 85, 103045.	6.6	0
4026	Targeted reversal of multidrug resistance in ovarian cancer cells using exosomeâ€encapsulated tetramethylpyrazine. Molecular Medicine Reports, 2023, 29, .	2.4	O
4027	Clearance of nanoparticles from blood: Effects of hydrodynamic size and surface coatings. Environmental Science: Nano, 0, , .	4.3	0
4028	Efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations. Frontiers in Bioinformatics, 0, 3, .	2.1	0
4029	Nano Strategies for Artemisinin Derivatives to Enhance Reverse Efficiency of Multidrug Resistance in Breast Cancer. Current Pharmaceutical Design, 2023, 30, .	1.9	0
4030	Efficacy and tolerability of an mRNA vaccine expressing gB and pp38 antigens of Marek's disease virus in chickens. Virology, 2024, 590, 109970.	2.4	0
4031	Size Switchable Self-Assembled Iron Oxide Aggregations Loaded with Doxorubicin for Deep Penetration and Enhanced Chemotherapy of Cancer. ACS Applied Bio Materials, 0, , .	4.6	0
4032	Synthesis of a Multifunctional Glyco-Block Copolymer through Reversible Addition–Fragmentation Chain Transfer Polymerization and Click Chemistry for Enzyme and Drug Loading into MDA-MB-231 Cells. ACS Applied Materials & Drug Loading into MDA-MB-231 cells.	8.0	0
4033	A novel nanoformulation of parthenolide coated with polydopamine shows selective cytotoxicity and induces apoptosis in gastric cancer cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 0, , .	3.0	0
4034	Macrophage membrane-derived pH-responsive nanovesicles to target tumor cells with integrin $\hat{l}\pm4\hat{l}^21$ receptor. Macromolecular Research, 0, , .	2.4	0
4035	Nanoparticles with Active Targeting Ability and Acid Responsiveness for an Enhanced Antitumor Effect of Docetaxel. Biomacromolecules, 0, , .	5.4	0
4036	Energy spectrum analysis on a red blood cell model. Journal of Chemical Physics, 2023, 159, .	3.0	0
4037	Spike nanoparticles: From design to biomedical applications. , 2024, 2, 100080.		0
4038	Effect of ligand and shell densities on surface structure of core-shell nanoparticles self-assembled from function-spacer-lipid constructs. Biomaterials Science, 0, , .	5.4	O

#	ARTICLE	IF	CITATIONS
4039	In situ generation of hybrid alginate hydrogels for enhanced breast tumor ferrotherapy through multiplex magnifying redox imbalances. International Journal of Biological Macromolecules, 2024, 258, 128952.	7.5	0
4040	Tackling Esophageal Squamous Cell Carcinoma with ITFnâ€Pt(IV): A Novel Fusion of PDâ€L1 Blockade, Chemotherapy, and Tâ€cell Activation. Advanced Healthcare Materials, 2024, 13, .	7.6	0
4041	Maduramicin-guided nanotherapy: A polymeric micelles for targeted drug delivery in canine mammary tumors. Biomedicine and Pharmacotherapy, 2024, 170, 116062.	5.6	0
4042	Docetaxel-loaded nanoformulations delivery for breast cancer management: Challenges, recent advances, and future perspectives. Journal of Drug Delivery Science and Technology, 2024, 92, 105314.	3.0	O
4043	Advances in Nanotechnology for Enhanced Leukemia Therapy: A Systematic Review of In Vivo Studies., 2023, 2, 86-99.		0
4044	Recent advances and clinical translation of liposomal delivery systems in cancer therapy. European Journal of Pharmaceutical Sciences, 2024, 193, 106688.	4.0	4
4045	Synthesis and Bioapplication of Emerging Nanomaterials of Hafnium. ACS Nano, 2024, 18, 1289-1324.	14.6	0
4046	Nanoscale polymer discs, toroids and platelets: a survey of their syntheses and potential applications. Chemical Society Reviews, 2024, 53, 1984-2021.	38.1	3
4047	Unraveling the complex roles of macrophages in obese adipose tissue: an overview. Frontiers of Medicine, 0, , .	3.4	1
4048	Singleâ€Atom Nanozymes for Catalytic Therapy: Recent Advances and Challenges. Advanced Functional Materials, 2024, 34, .	14.9	O
4049	Microfluidic synthesis of lipid-based nanoparticles for drug delivery: recent advances and opportunities. Lab on A Chip, 2024, 24, 1154-1174.	6.0	0
4050	Harnessing Nanotechnology: Emerging Strategies for Multiple Myeloma Therapy. Biomolecules, 2024, 14, 83.	4.0	1
4051	Stimuliâ€Responsive Nanocarriers for Transcytosisâ€Based Cancer Drug Delivery. Advanced NanoBiomed Research, 2024, 4, .	3.6	0
4052	Molecular Modeling of the Fluorination Effect on the Penetration of Nanoparticles across Lipid Bilayers. Langmuir, 2024, 40, 1295-1304.	3.5	O
4053	Evaluation of a targeted drug delivery system on breast tumor spheroids on a chip. Journal of Drug Delivery Science and Technology, 2024, 92, 105346.	3.0	0
4054	High throughput preparation and particle size control strategy of nano apigenin by a scale-up microreactor. Journal of Industrial and Engineering Chemistry, 2023, , .	5.8	O
4055	Exploration of Ultrasoundâ€Sensitive Biomaterials in Cancer Theranostics. Advanced Functional Materials, 0, , .	14.9	0
4056	A nIR fluorescent single walled carbon nanotube sensor for broad-spectrum diagnostics. Sensors & Diagnostics, 2024, 3, 203-217.	3.8	2

#	ARTICLE	IF	CITATIONS
4057	Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis. Chemical Science, 2024, 15, 1966-2006.	7.4	1
4058	Organic nanomotors: emerging versatile nanobots. Nanoscale, 2024, 16, 2789-2804.	5.6	0
4059	Engineered praseodymium sulfide nanocarrier and supramolecular association of anticancer drug for effective delivery to breast cancer cells. Journal of Biotechnology, 2024, 381, 100-108.	3.8	0
4060	Biomimetic Nano-Drug Delivery System: An Emerging Platform for Promoting Tumor Treatment. International Journal of Nanomedicine, 0, Volume 19, 571-608.	6.7	2
4061	The role of nanotechnology: Organic nanomaterials and the mechanism of cancer phototheranostics. , 2024, , 21-64.		0
4062	Efficient and highly biocompatible 8-arm PEG-Chlorin e6 nanosystems for 2-photon photodynamic therapy of adrenergic disorders. Materials Advances, 2024, 5, 1736-1745.	5.4	0
4063	Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, , 109554.	9.0	0
4064	Rational Design of Nearâ€infrared II Plasmonic Optofunctional Materials for Diagnostic and Therapeutic Applications. Advanced Functional Materials, 2024, 34, .	14.9	0
4065	Strategies for the Nuclear Delivery of Metal Complexes to Cancer Cells. Advanced Materials, 2024, 36, .	21.0	0
4066	A Journey of Challenges and Victories: A Bibliometric Worldview of Nanomedicine since the 21st Century. Advanced Materials, 2024, 36, .	21.0	0
4067	Dual stimuli-responsive polymeric nanoparticles combining soluplus and chitosan for enhanced breast cancer targeting. RSC Advances, 2024, 14, 3070-3084.	3.6	0
4068	Regulating Cholesterol in Tumorigenesis: A Novel Paradigm for Tumor Nanotherapeutics. International Journal of Nanomedicine, 0, Volume 19, 1055-1076.	6.7	1
4069	Advances in the Use of Nanomaterials in Tumour Therapy: Challenges and Prospects., 2023, 2, 37-48.		0
4070	Bibliometric and visualized analysis of cancer nanomedicine from 2013 to 2023. Drug Delivery and Translational Research, 0, , .	5.8	1
4071	Various Cu+, Mg2+ and S2- ionic concentration effects on a novel Cu2ZnMgS4 quaternary compound synthesis for various scientific applications., 2023, 19, 793-808.		0
4072	Nanoparticle-mediated active and passive drug targeting in oral squamous cell carcinoma: current trends and advances. Nanomedicine, 2023, 18, 2061-2080.	3.3	0
4073	Tumor Mechanics Meets Nanomedicine Mechanical Properties. Chemistry of Materials, 2024, 36, 1041-1053.	6.7	0
4074	Nanoscience: an overview about nanotheranostics for cancer treatment. Egyptian Journal of Basic and Applied Sciences, 2024, 11, 55-68.	0.6	O

#	Article	IF	CITATIONS
4075	Molecular and nanoparticulate agents for photodynamic therapy guided by near infrared imaging. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2024, 58, 100652.	11.6	0
4076	Addressing the diagnosis and therapeutics of malignant tumor cells. , 2024, , 99-116.		O
4077	Nanocarrier-mediated delivery targeting for pancreatic cancer. , 2024, , 233-255.		0
4078	Silica nanoparticles inhibit cadmium uptake by the protozoan Tetrahymena thermophila without the need for adsorption. Journal of Hazardous Materials, 2024, 466, 133569.	12.4	0
4079	Multifunctional nanocarrier-mediated approaches and conventional therapies for effective treatment of cancer., 2024,, 35-61.		0
4080	Construction and antitumor evaluation of stimulus-responsive dual-drug micelles based on computer simulation. Journal of Drug Delivery Science and Technology, 2024, 93, 105366.	3.0	O
4081	Nanoformulations of chemotherapeutic activators of the cGAS–STING pathway in tumor chemoimmunotherapy. Drug Discovery Today, 2024, 29, 103892.	6.4	0
4082	Development of tumor-evolution-targeted anticancer therapeutic nanomedicineEVT. CheM, 2024, 10, 1337-1356.	11.7	O
4083	Nanoemulsions in comparison with conventional emulsions for biomedical applications. , 2024, , 77-106.		0
4084	Tumorâ€Microenvironmentâ€Responsive Ceriumâ€Enriched Copper Nanozyme with O ₂ Supply and Oxidative Stress Amplification for In Situ Disulfiram Chemotherapy and Chemodynamic Therapy Intensification. Advanced Healthcare Materials, 2024, 13, .	7.6	0
4085	Mini-Review: Current Bladder Cancer Treatmentâ€"The Need for Improvement. International Journal of Molecular Sciences, 2024, 25, 1557.	4.1	1
4086	Disulfiram: A novel repurposed drug for cancer therapy. Chinese Medical Journal, 0, , .	2.3	O
4087	Biomimetic Nanomedicine Targeting Orchestrated Metabolism Coupled with Regulatory Factors to Disrupt the Metabolic Plasticity of Breast Cancer. ACS Nano, 2024, 18, 4360-4375.	14.6	0
4088	Synergistic Effect of Ferroptosisâ€Inducing Nanoparticles and Xâ€Ray Irradiation Combination Therapy. Small, 2024, 20, .	10.0	1
4089	Programmed nanocarrier loaded with paclitaxel and dual-siRNA to reverse chemoresistance by synergistic therapy. International Journal of Biological Macromolecules, 2024, 261, 129726.	7. 5	0
4090	NIRâ€Mediated Cu ₂ O/Au Nanomotors for Synergistically Treating Hepatoma Carcinoma Cells. Chemistry - an Asian Journal, 2024, 19, .	3.3	0
4091	Construction and in vitro evaluation of pH-sensitive nanoparticles to reverse drug resistance of breast cancer stem cells. Discover Oncology, 2024, 15, .	2.1	0
4092	Constructing Tumor Organoid-like Tissue for Reliable Drug Screening Using Liver-Decellularized Extracellular Matrix Scaffolds. ACS Omega, 2024, 9, 5888-5898.	3.5	О

#	Article	IF	CITATIONS
4093	Nano delivery of juglone causes cell cycle arrest and apoptosis for hepatocellular carcinoma therapy. Journal of Drug Delivery Science and Technology, 2024, 93, 105431.	3.0	0
4094	Polydopamine Nanosystems in Drug Delivery: Effect of Size, Morphology, and Surface Charge. Nanomaterials, 2024, 14, 303.	4.1	O
4095	Drug-initiated poly(thiocitc acid) polymer incorporating host-guest interaction for cancer combination chemotherapy. IScience, 2024, 27, 109070.	4.1	0
4096	Drug-Loaded Biomimetic Carriers for Non-Hodgkin's Lymphoma Therapy: Advances and Perspective. ACS Biomaterials Science and Engineering, 2024, 10, 723-742.	5. 2	0
4097	Different administration routes for nanovectors in cancer immunotherapy., 2024,, 71-110.		0
4098	Current status, challenges, and future perspective of nanomedicine-based cancer immunotherapy. , 2024, , 495-516.		0
4099	Lipid-based nanomedicines for cancer immunotherapy. , 2024, , 207-242.		0
4100	Liposome-based nanomedicines for cancer immunotherapy. , 2024, , 271-298.		O
4101	Nanomedicine. , 2024, , 267-296.		0
4102	Nanomaterials in robotics and artificial intelligence. , 2024, , 101-120.		0
4103	Defect Engineering in Nanocatalysts: From Design and Synthesis to Applications. Advanced Functional Materials, 0, , .	14.9	0
4104	In Situ Mitochondrial Biomineralization for Drugâ€Free Cancer Therapy. Advanced Materials, 2024, 36, .	21.0	0
4105	Engineered Nanomaterial Coatings for Food Packaging: Design, Manufacturing, Regulatory, and Sustainability Implications. Micromachines, 2024, 15, 245.	2.9	0
4106	Polyethylenimine Triggers Dll4 Degradation to Regulate Angiogenesis In Vitro. ACS Omega, 0, , .	3.5	0
4107	Nanomedicine targeted anti-inflammatory therapy to deal with the †crux' of rheumatoid arthritis. Journal of Drug Targeting, 2024, 32, 381-392.	4.4	0
4108	State of the art in pediatric nanomedicines. Drug Delivery and Translational Research, 0, , .	5.8	0
4109	Ultrasmall Gold Nanoparticles Radiolabeled with Iodine-125 as Potential New Radiopharmaceutical. ACS Applied Bio Materials, 2024, 7, 1240-1249.	4.6	0
4110	Conjugation to gold nanoparticles of methionine gamma-lyase, a cancer-starving enzyme. Physicochemical characterization of the nanocomplex for prospective nanomedicine applications. International Journal of Pharmaceutics, 2024, 653, 123882.	5.2	O

#	Article	IF	CITATIONS
4111	Viridibacillus culture derived silver nanoparticles exert potent anticancer action in 2D and 3D models of lung cancer via mitochondrial depolarization-mediated apoptosis. Materials Today Bio, 2024, 25, 100997.	5.5	0
4112	Uncovering the Importance of Ligand Mobility on Cellular Uptake of Nanoparticles: Insights from Experimental, Computational, and Theoretical Investigations. ACS Nano, 2024, 18, 6463-6476.	14.6	0
4113	Biosafety evaluation of etoposide lipid nanomedicines in C.Âelegans. Drug Delivery and Translational Research, 0, , .	5.8	0
4114	Piquing artificial intelligence towards drug discovery: Tools, techniques, and applications. Drug Development Research, 2024, 85, .	2.9	0
4115	Nanomaterials in Medicine: Understanding Cellular Uptake, Localization, and Retention for Enhanced Disease Diagnosis and Therapy. , 2024, .		0
4116	Natural Products-Based Inhaled Formulations for Treating Pulmonary Diseases. International Journal of Nanomedicine, 0, Volume 19, 1723-1748.	6.7	0
4117	Copper(<scp>ii</scp>)-based metal–organic framework delivery of calcium ascorbate for enhanced chemodynamic therapy <i>via</i> H ₂ O ₂ self-supply and glutathione depletion. Biomaterials Science, 2024, 12, 1871-1882.	5.4	0
4118	Nanotechnology-based delivery systems to overcome drug resistance in cancer. Medical Review, 2024, 4, 5-30.	1.2	0
4119	Devastating the Supply Wagons: Multifaceted Liposomes Capable of Exhausting Tumor to Death via Triple Energy Depletion. Small, 0, , .	10.0	0
4120	Synthesis, characterization and assessment of anticancer potency of oxcarbazepine with folic acid conjugated Fe2O3 nanostructures as nano-drugs. Journal of Molecular Structure, 2024, 1306, 137842.	3.6	0
4121	The application of silver nanoparticles green-formulated by Origanum majorana leaf extract as a hydrazine sensor and treatment of human breast cancer by following the P53 and STAT3 signaling pathways. Journal of Science: Advanced Materials and Devices, 2024, 9, 100691.	3.1	0
4122	Peptideâ€Based Supramolecular Therapeutics for Fighting Major Diseases. Advanced Functional Materials, 0, , .	14.9	0
4123	Review of Carrier-Free Self-Assembly of Anticancer Nanodrugs. ACS Applied Nano Materials, 2024, 7, 4564-4587.	5.0	0
4124	pH/H ₂ O ₂ Cascadeâ€Responsive Nanoparticles of Lipidâ€Like Prodrugs through Dynamicâ€Covalent and Coordination Interactions for Chemotherapy. Small, 0, , .	10.0	0
4125	Recent insights on pharmacological potential of lycopene and its nanoformulations: an emerging paradigm towards improvement of human health. Phytochemistry Reviews, 0, , .	6. 5	0
4126	Multifunctional RGD coated a single-atom iron nanozyme: A highly selective approach to inducing ferroptosis and enhancing immunotherapy for pancreatic cancer. Nano Research, 0, , .	10.4	О
4127	Application and Potential of Nanobiomaterials in Bone Regeneration. Journal of Biomaterials and Tissue Engineering, 2024, 14, 1-20.	0.1	0
4128	Stimulus-responsive nanomedicine mediated by metabolic intervention mechanisms to amplify redox anticancer therapy. Chemical Engineering Journal, 2024, 486, 150130.	12.7	0

#	Article	IF	CITATIONS
4129	Potentialities of Bio-functionalized Carbon Nanotubes for Different Anti-cancerous Activities. Journal of Inorganic and Organometallic Polymers and Materials, 0, , .	3.7	0
4130	Preparation of etoposide liposomes for enhancing antitumor efficacy on small cell lung cancer and reducing hematotoxicity of drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2024, 198, 114239.	4.3	O
4131	Recent research progress based on ferroptosis-related signaling pathways and the tumor microenvironment on it effects. European Journal of Medicinal Chemistry, 2024, 269, 116290.	5 . 5	0
4132	Selfâ€Assembly of Heterogeneous Ferritin Nanocages for Tumor Uptake and Penetration. Advanced Science, 2024, 11, .	11.2	0
4133	Encapsulation and release of calcein from herceptin-conjugated eLiposomes. Heliyon, 2024, 10, e27882.	3.2	0
4134	Nanoassemblies of heptamethine cyanine dye-initiated poly(amino acid) enhance ROS generation for effective antitumour phototherapy. Nanoscale Horizons, 2024, 9, 731-741.	8.0	0
4135	Recent advancements in Nanotechnology-Mediated Platinum-Based cancer therapy. Coordination Chemistry Reviews, 2024, 508, 215796.	18.8	0
4136	Mathematical Modeling of Micro-/Nanoparticles Transport in Blood Vessels: A Review. Korean Journal of Chemical Engineering, 2024, 41, 1273-1305.	2.7	0
4137	Polyethylene Glycol–Based Polymer-Drug Conjugates: Novel Design and Synthesis Strategies for Enhanced Therapeutic Efficacy and Targeted Drug Delivery. Applied Biochemistry and Biotechnology, 0,	2.9	0
4138	Antiâ€HER2 Immunoliposomes: Antitumor Efficacy Attributable to Targeted Delivery of Anthraquinoneâ€Fused Enediyne. Advanced Science, 2024, 11, .	11.2	O
4139	Sub-100 nm carriers by template polymerization for drug delivery applications. Nanoscale Horizons, 2024, 9, 693-707.	8.0	0
4140	Tumor microenvironment reprogramming by nanomedicine to enhance the effect of tumor immunotherapy. Asian Journal of Pharmaceutical Sciences, 2024, 19, 100902.	9.1	O
4141	Advancing cancer theranostics through biomimetics: A comprehensive review. Heliyon, 2024, 10, e27692.	3.2	0
4142	Nanomedicine as a multimodal therapeutic paradigm against cancer: on the way forward in advancing precision therapy. Nanoscale, 2024, 16, 6330-6364.	5.6	0
4143	Current advances in porous organic nanoplatforms for tumor theranostics. Chemical Engineering Journal, 2024, 487, 150448.	12.7	0
4144	Advances and applications of nanoparticles in cancer therapy. , 2024, 3, .		0
4145	Nanotherapeutics targeting autophagy regulation for improved cancer therapy. Acta Pharmaceutica Sinica B, 2024, , .	12.0	0
4146	Advances in Precision Medicine Approaches for Colorectal Cancer: From Molecular Profiling to Targeted Therapies. ACS Pharmacology and Translational Science, 2024, 7, 967-990.	4.9	O

#	Article	IF	CITATIONS
4147	An up-to-date review of biomedical applications of serratiopeptidase and its biobetter derivatives as a multi-potential metalloprotease. Archives of Microbiology, 2024, 206, .	2.2	0
4148	Nano voyagers: Pioneering a new frontier in cancer treatment with nanorobots as drug transporters. Applied Materials Today, 2024, 38, 102162.	4.3	0
4149	Innovative pharmacotherapy for hepatic metabolic and chronic inflammatory diseases in China. British Journal of Pharmacology, 0 , , .	5.4	0
4150	Probing the Impact of Surface Functionalization Module on the Performance of Mitoxantrone Prodrug Nanoassemblies: Improving the Effectiveness and Safety. Nano Letters, 2024, 24, 3759-3767.	9.1	0
4151	Tumor Microenvironment-Activatable Nanosystem Capable of Overcoming Multiple Therapeutic Obstacles for Augmenting Immuno/Metal-Ion Therapy. ACS Nano, 2024, 18, 8996-9010.	14.6	0
4152	Potential Application Prospects of Biomolecule-Modified Two-Dimensional Chiral Nanomaterials in Biomedicine. ACS Biomaterials Science and Engineering, 2024, 10, 2022-2040.	5.2	0
4153	Redox-responsive nanomedicine of doxorubicin-conjugated poly-L-glutathione oxidized for cancer therapy. Journal of the Taiwan Institute of Chemical Engineers, 2024, 159, 105456.	5.3	0