Intrinsically disordered proteins in overcrowded milieu separation, and intrinsic disorder

Current Opinion in Structural Biology 44, 18-30 DOI: 10.1016/j.sbi.2016.10.015

Citation Report

#	Article	IF	CITATIONS
1	Intrinsic disorder here, there, and everywhere, and nowhere to escape from it. Cellular and Molecular Life Sciences, 2017, 74, 3065-3067.	2.4	25
2	Point mutations in the N-terminal domain of transactive response DNA-binding protein 43 kDa (TDP-43) compromise its stability, dimerization, and functions. Journal of Biological Chemistry, 2017, 292, 11992-12006.	1.6	66
3	CtIP/Ctp1/Sae2, molecular form fit for function. DNA Repair, 2017, 56, 109-117.	1.3	52
4	Mechanistic roles of protein disorder within transcription. Current Opinion in Structural Biology, 2017, 42, 155-161.	2.6	56
5	The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll–Mr. Hyde― behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy, 2017, 13, 2115-2162.	4.3	48
6	Role of solvent properties of water in crowding effects induced by macromolecular agents and osmolytes. Molecular BioSystems, 2017, 13, 2551-2563.	2.9	45
7	Paradoxes and wonders of intrinsic disorder: Stability of instability. Intrinsically Disordered Proteins, 2017, 5, e1327757.	1.9	31
8	Liquid phase condensation in cell physiology and disease. Science, 2017, 357, .	6.0	2,699
9	Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nature Communications, 2017, 8, 275.	5.8	552
10	SFPQ•NONO and XLF function separately and together to promote DNA double-strand break repair via canonical nonhomologous end joining. Nucleic Acids Research, 2017, 45, 1848-1859.	6.5	63
11	Sequence Polymorphism and Intrinsic Structural Disorder as Related to Pathobiological Performance of the Helicobacter pylori CagA Oncoprotein. Toxins, 2017, 9, 136.	1.5	20
12	Cellular Regulation of Amyloid Formation in Aging and Disease. Frontiers in Neuroscience, 2017, 11, 64.	1.4	70
13	180 Years of the Cell: From Matthias Jakob Schleiden to the Cell Biology of the Twenty-First Century. Plant Cell Monographs, 2018, , 7-37.	0.4	1
14	Ubiquitin Modulates Liquid-Liquid Phase Separation of UBQLN2 via Disruption of Multivalent Interactions. Molecular Cell, 2018, 69, 965-978.e6.	4.5	257
15	Characterization of gene regulation and protein interaction networks for Matrin 3 encoding mutations linked to amyotrophic lateral sclerosis and myopathy. Scientific Reports, 2018, 8, 4049.	1.6	30
16	Convergence of Artificial Protein Polymers and Intrinsically Disordered Proteins. Biochemistry, 2018, 57, 2405-2414.	1.2	70
17	Long Noncoding RNAs and Their Applications: Focus on Architectural RNA (arcRNA), a Class of IncRNA. , 2018, , 161-187.		2
18	P-Bodies: Composition, Properties, and Functions. Biochemistry, 2018, 57, 2424-2431.	1.2	384

		EPORT	
#	Article	IF	CITATIONS
19	Function and Regulation of Phase-Separated Biological Condensates. Biochemistry, 2018, 57, 2452-2461.	1.2	41
20	Physical principles of intracellular organization via active and passive phase transitions. Reports on Progress in Physics, 2018, 81, 046601.	8.1	319
21	IDPs in macromolecular complexes: the roles of multivalent interactions in diverse assemblies. Current Opinion in Structural Biology, 2018, 49, 36-43.	2.6	98
22	<i>In Aqua Veritas</i> : The Indispensable yet Mostly Ignored Role of Water in Phase Separation and Membrane-less Organelles. Biochemistry, 2018, 57, 2437-2451.	1.2	59
23	Why Do Disordered and Structured Proteins Behave Differently in Phase Separation?. Trends in Biochemical Sciences, 2018, 43, 499-516.	3.7	114
24	Intrinsically Disordered Protein Ntr2 Modulates the Spliceosomal RNA Helicase Brr2. Biophysical Journal, 2018, 114, 788-799.	0.2	15
25	Protein Phase Separation: A New Phase in Cell Biology. Trends in Cell Biology, 2018, 28, 420-435.	3.6	1,439
26	SUMO-specific proteases and isopeptidases of the SENP family at a glance. Journal of Cell Science, 2018, 131, .	1.2	162
27	Dynamic regulation of nucleolar architecture. Current Opinion in Cell Biology, 2018, 52, 105-111.	2.6	89
28	Dissecting physical structure of calreticulin, an intrinsically disordered Ca ²⁺ -buffering chaperone from endoplasmic reticulum. Journal of Biomolecular Structure and Dynamics, 2018, 36, 1617-1636.	2.0	14
29	Intrinsic Disorder, Protein–Protein Interactions, and Disease. Advances in Protein Chemistry and Structural Biology, 2018, 110, 85-121.	1.0	91
30	Intrinsically Disordered Proteome of Human Membrane‣ess Organelles. Proteomics, 2018, 18, e1700193.	1.3	151
31	ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease. Chemical Reviews, 2018, 118, 1092-1136.	23.0	186
32	Disease of mRNA Regulation: Relevance for Ischemic Brain Injury. Translational Stroke Research, 2018, 9, 251-257.	2.3	6
33	Thy-1, a Pathfinder Protein for the Post-genomic Era. Frontiers in Cell and Developmental Biology, 2018, 6, 173.	1.8	21
34	Maternal RNAs, Drosophila. , 2018, , 257-265.		0
35	Functions of short lifetime biological structures at large: the case of intrinsically disordered proteins. Briefings in Functional Genomics, 2020, 19, 60-68.	1.3	14
36	Controlling Liquid–Liquid Phase Separation of Cold-Adapted Crystallin Proteins from the Antarctic Toothfish. Journal of Molecular Biology, 2018, 430, 5151-5168.	2.0	15

#	Article	IF	CITATIONS
37	Single Molecule FRET: A Powerful Tool to Study Intrinsically Disordered Proteins. Biomolecules, 2018, 8, 140.	1.8	50
38	Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains. Cell, 2018, 175, 1842-1855.e16.	13.5	1,195
39	Fluorescence Depolarization Kinetics to Study the Conformational Preference, Structural Plasticity, Binding, and Assembly of Intrinsically Disordered Proteins. Methods in Enzymology, 2018, 611, 347-381.	0.4	25
40	The C Terminus of the Ribosomal-Associated Protein LrtA is an Intrinsically Disordered Oligomer. International Journal of Molecular Sciences, 2018, 19, 3902.	1.8	2
41	UPA-seq: prediction of functional lncRNAs using differential sensitivity to UV crosslinking. Rna, 2018, 24, 1785-1802.	1.6	4
42	Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS. Communications Biology, 2018, 1, 139.	2.0	45
43	Targeting the Intrinsically Disordered Proteome Using Small-Molecule Ligands. Methods in Enzymology, 2018, 611, 703-734.	0.4	14
44	Molecular dissection of nuclear paraspeckles: towards understanding the emerging world of the RNP milieu. Open Biology, 2018, 8, .	1.5	73
45	Intrinsically Disordered Proteins: The Dark Horse of the Dark Proteome. Proteomics, 2018, 18, e1800061.	1.3	66
46	The RNA Exosome Adaptor ZFC3H1 Functionally Competes with Nuclear Export Activity to Retain Target Transcripts. Cell Reports, 2018, 23, 2199-2210.	2.9	65
47	Organization out of disorder: liquid–liquid phase separation in plants. Current Opinion in Plant Biology, 2018, 45, 68-74.	3.5	84
48	Intrinsically disordered proteins in crowded milieu: when chaos prevails within the cellular gumbo. Cellular and Molecular Life Sciences, 2018, 75, 3907-3929.	2.4	71
49	Multimodal Light Microscopy Approaches to Reveal Structural and Functional Properties of Promyelocytic Leukemia Nuclear Bodies. Frontiers in Oncology, 2018, 8, 125.	1.3	26
50	Modified binodal model describes phase separation in aqueous two-phase systems in terms of the effects of phase-forming components on the solvent features of water. Journal of Chromatography A, 2018, 1567, 226-232.	1.8	6
51	The Role of Post-Translational Modifications on Prion-Like Aggregation and Liquid-Phase Separation of FUS. International Journal of Molecular Sciences, 2018, 19, 886.	1.8	92
52	MRI Is a DNA Damage Response Adaptor during Classical Non-homologous End Joining. Molecular Cell, 2018, 71, 332-342.e8.	4.5	76
53	Phasing in on the cell cycle. Cell Division, 2018, 13, 1.	1.1	33
54	The P Granules of C. elegans: A Genetic Model for the Study of RNA–Protein Condensates. Journal of Molecular Biology, 2018, 430, 4702-4710.	2.0	129

#	Article	IF	CITATIONS
55	Liquid Droplet of Protein-Polyelectrolyte Complex for High-Concentration Formulations. Journal of Pharmaceutical Sciences, 2018, 107, 2713-2719.	1.6	24
56	Liquid–liquid phase separation in artificial cells. Interface Focus, 2018, 8, 20180032.	1.5	145
57	Does water stress promote the proteome-wide adjustment of intrinsically disordered proteins in plants?. Cell Stress and Chaperones, 2018, 23, 807-812.	1.2	7
58	The solvent side of proteinaceous membrane-less organelles in light of aqueous two-phase systems. International Journal of Biological Macromolecules, 2018, 117, 1224-1251.	3.6	45
59	P-Bodies: Cytosolic Droplets for Coordinated mRNA Storage. Trends in Genetics, 2018, 34, 612-626.	2.9	194
60	The chromatin nuclear protein NUPR1L is intrinsically disordered and binds to the same proteins as its paralogue. Biochemical Journal, 2018, 475, 2271-2291.	1.7	9
61	Stress Granules and Processing Bodies in Translational Control. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032813.	2.3	325
62	The molecular language of membraneless organelles. Journal of Biological Chemistry, 2019, 294, 7115-7127.	1.6	515
63	The Nucleolus: A Multiphase Condensate Balancing Ribosome Synthesis and Translational Capacity in Health, Aging and Ribosomopathies. Cells, 2019, 8, 869.	1.8	81
64	The synergic effect of water and biomolecules in intracellular phase separation. Nature Reviews Chemistry, 2019, 3, 552-561.	13.8	58
65	Structure and Function of Negri Bodies. Advances in Experimental Medicine and Biology, 2019, 1215, 111-127.	0.8	28
66	Entropy and Information within Intrinsically Disordered Protein Regions. Entropy, 2019, 21, 662.	1.1	41
67	Physical Virology. Advances in Experimental Medicine and Biology, 2019, , .	0.8	8
68	Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. Journal of Biological Chemistry, 2019, 294, 15218-15234.	1.6	37
69	Super-enhancers: critical roles and therapeutic targets in hematologic malignancies. Journal of Hematology and Oncology, 2019, 12, 77.	6.9	69
70	Influence of size and charge of unstructured polypeptides on pharmacokinetics and biodistribution of targeted fusion proteins. Journal of Controlled Release, 2019, 307, 379-392.	4.8	22
71	Liquid–Liquid Phase Separation Is Driven by Large-Scale Conformational Unwinding and Fluctuations of Intrinsically Disordered Protein Molecules. Journal of Physical Chemistry Letters, 2019, 10, 3929-3936.	2.1	113
72	The ERC1 scaffold protein implicated in cell motility drives the assembly of a liquid phase. Scientific Reports, 2019, 9, 13530.	1.6	25

# 73	ARTICLE The Role of Post-Translational Modifications in the Phase Transitions of Intrinsically Disordered Proteins. International Journal of Molecular Sciences, 2019, 20, 5501.	IF 1.8	Citations 155
74	Evidence for and against Liquid-Liquid Phase Separation in the Nucleus. Non-coding RNA, 2019, 5, 50.	1.3	114
75	Intrinsic Disorder of the BAF Complex: Roles in Chromatin Remodeling and Disease Development. International Journal of Molecular Sciences, 2019, 20, 5260.	1.8	18
76	Intrinsically disordered proteins in the formation of functional amyloids from bacteria to humans. Progress in Molecular Biology and Translational Science, 2019, 166, 109-143.	0.9	19
77	Nanoparticle Mobility over a Surface as a Probe for Weak Transient Disordered Peptide–Peptide Interactions. Nano Letters, 2019, 19, 6524-6534.	4.5	10
78	The Oncogene Metadherin Interacts with the Known Splicing Proteins YTHDC1, Sam68 and T-STAR and Plays a Novel Role in Alternative mRNA Splicing. Cancers, 2019, 11, 1233.	1.7	31
79	ULK1/2 Restricts the Formation of Inducible SINT-Speckles, Membraneless Organelles Controlling the Threshold of TBK1 Activation. IScience, 2019, 19, 527-544.	1.9	13
80	Features of molecular recognition of intrinsically disordered proteins via coupled folding and binding. Protein Science, 2019, 28, 1952-1965.	3.1	55
81	Regulation of zebrafish dorsoventral patterning by phase separation of RNA-binding protein Rbm14. Cell Discovery, 2019, 5, 37.	3.1	10
82	Supramolecular Fuzziness of Intracellular Liquid Droplets: Liquid–Liquid Phase Transitions, Membrane-Less Organelles, and Intrinsic Disorder. Molecules, 2019, 24, 3265.	1.7	30
83	The molecular basis of LST-1 self-renewal activity and its control of stem cell pool size. Development (Cambridge), 2019, 146, .	1.2	24
84	Driving Forces of Liquid–Liquid Phase Separation in Biological Systems. Biomolecules, 2019, 9, 473.	1.8	18
85	Quantifying Dynamics in Phase-Separated Condensates Using Fluorescence Recovery after Photobleaching. Biophysical Journal, 2019, 117, 1285-1300.	0.2	208
86	Intrinsically Disordered Proteins and Their "Mysterious―(Meta)Physics. Frontiers in Physics, 2019, 7, .	1.0	352
87	First-generation predictors of biological protein phase separation. Current Opinion in Structural Biology, 2019, 58, 88-96.	2.6	119
88	The Functionally Important N-Terminal Half of Fission Yeast Mid1p Anillin Is Intrinsically Disordered and Undergoes Phase Separation. Biochemistry, 2019, 58, 3031-3041.	1.2	21
89	Intrinsic Disorder-Based Emergence in Cellular Biology: Physiological and Pathological Liquid-Liquid Phase Transitions in Cells. Polymers, 2019, 11, 990.	2.0	54
90	The Structural and Functional Diversity of Intrinsically Disordered Regions in Transmembrane Proteins. Journal of Membrane Biology, 2019, 252, 273-292.	1.0	14

#	Article	IF	CITATIONS
91	Protein intrinsic disorder and structure-function continuum. Progress in Molecular Biology and Translational Science, 2019, 166, 1-17.	0.9	78
92	Phase Separation and the Centrosome: A Fait Accompli?. Trends in Cell Biology, 2019, 29, 612-622.	3.6	48
93	Cellular consequences of arginine methylation. Cellular and Molecular Life Sciences, 2019, 76, 2933-2956.	2.4	99
94	The Nuclear Arsenal of Cilia. Developmental Cell, 2019, 49, 161-170.	3.1	27
95	Stochasticity of Biological Soft Matter: Emerging Concepts in Intrinsically Disordered Proteins and Biological Phase Separation. Trends in Biochemical Sciences, 2019, 44, 716-728.	3.7	94
96	Probing Inhomogeneous Diffusion in the Microenvironments of Phase-Separated Polymers under Confinement. Journal of the American Chemical Society, 2019, 141, 7751-7757.	6.6	25
97	N-terminal sequences in matrin 3 mediate phase separation into droplet-like structures that recruit TDP43 variants lacking RNA binding elements. Laboratory Investigation, 2019, 99, 1030-1040.	1.7	30
98	Recent Advances in Computational Protocols Addressing Intrinsically Disordered Proteins. Biomolecules, 2019, 9, 146.	1.8	50
99	Quo Vadis Biomolecular NMR Spectroscopy?. International Journal of Molecular Sciences, 2019, 20, 1278.	1.8	16
100	Structural and Dynamical Order of a Disordered Protein: Molecular Insights into Conformational Switching of PAGE4 at the Systems Level. Biomolecules, 2019, 9, 77.	1.8	19
101	Matter over mind: Liquid phase separation and neurodegeneration. Journal of Biological Chemistry, 2019, 294, 7160-7168.	1.6	176
102	Aqueous/Aqueous Micro Phase Separation: Construction of an Artificial Model of Cellular Assembly. Frontiers in Chemistry, 2019, 7, 44.	1.8	16
103	Lipid Raft Phase Modulation by Membrane-Anchored Proteins with Inherent Phase Separation Properties. ACS Omega, 2019, 4, 6551-6559.	1.6	40
104	IncRedibly versatile: biochemical and biological functions of long noncoding RNAs. Biochemical Journal, 2019, 476, 1083-1104.	1.7	26
105	Anomalous Dense Liquid Condensates Host the Nucleation of Tumor Suppressor p53 Fibrils. IScience, 2019, 12, 342-355.	1.9	46
106	Self-Assembling Micelles Based on an Intrinsically Disordered Protein Domain. Journal of the American Chemical Society, 2019, 141, 4291-4299.	6.6	31
107	Functional interactions between scaffold proteins, noncoding RNAs, and genome loci induce liquidâ€liquid phase separation as organizing principle for 3â€dimensional nuclear architecture: implications in cancer. FASEB Journal, 2019, 33, 5814-5822.	0.2	13
108	Ciphers and Executioners: How 3′-Untranslated Regions Determine the Fate of Messenger RNAs. Frontiers in Genetics, 2019, 10, 6.	1.1	72

#	Article	IF	CITATIONS
109	Assessing the Intricate Balance of Intermolecular Interactions upon Self-Association of Intrinsically Disordered Proteins. Journal of Molecular Biology, 2019, 431, 511-523.	2.0	9
110	Effect of additives on liquid droplet of protein–polyelectrolyte complex for high-concentration formulations. Journal of Chemical Physics, 2019, 150, 064903.	1.2	14
111	Sequence-Derived Markers of Drug Targets and Potentially Druggable Human Proteins. Frontiers in Genetics, 2019, 10, 1075.	1.1	14
112	Intermolecular Charge-Transfer Modulates Liquid–Liquid Phase Separation and Liquid-to-Solid Maturation of an Intrinsically Disordered pH-Responsive Domain. Journal of the American Chemical Society, 2019, 141, 20380-20389.	6.6	54
113	Splice-Junction-Based Mapping of Alternative Isoforms in the Human Proteome. Cell Reports, 2019, 29, 3751-3765.e5.	2.9	64
114	Life in Phases: Intra- and Inter- Molecular Phase Transitions in Protein Solutions. Biomolecules, 2019, 9, 842.	1.8	52
115	RNA Splicing and Disease: Animal Models to Therapies. Trends in Genetics, 2019, 35, 68-87.	2.9	154
116	Liquid- and solid-like RNA granules form through specific scaffold proteins and combine into biphasic granules. Journal of Biological Chemistry, 2019, 294, 3532-3548.	1.6	45
117	Folding of poly-amino acids and intrinsically disordered proteins in overcrowded milieu induced by pH change. International Journal of Biological Macromolecules, 2019, 125, 244-255.	3.6	11
118	Proteome Analysis of Phase-Separated Condensed Proteins with Ionic Surfactants Revealed Versatile Formation of Artificial Biomolecular Condensates. Biomacromolecules, 2019, 20, 539-545.	2.6	3
119	Analyzing aggregation propensities of clinically relevant PTEN mutants: a new culprit in pathogenesis of cancer and other PTENopathies. Journal of Biomolecular Structure and Dynamics, 2020, 38, 2253-2266.	2.0	6
120	Electrostatic interactions in molecular recognition of intrinsically disordered proteins. Journal of Biomolecular Structure and Dynamics, 2020, 38, 4883-4894.	2.0	18
121	Quantitative proteomics indicate a strong correlation of mitotic phospho-/dephosphorylation with non-structured regions of substrates. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140295.	1.1	5
122	Site‧pecific Isotopic Labeling (SSIL): Access to Highâ€Resolution Structural and Dynamic Information in Lowâ€Complexity Proteins. ChemBioChem, 2020, 21, 769-775.	1.3	12
123	Legionnaires' Disease: State of the Art Knowledge of Pathogenesis Mechanisms of <i>Legionella</i> . Annual Review of Pathology: Mechanisms of Disease, 2020, 15, 439-466.	9.6	158
124	Interplay between intrinsically disordered proteins inside membraneless protein liquid droplets. Chemical Science, 2020, 11, 1269-1275.	3.7	22
125	Peptides in proteins. Journal of Peptide Science, 2020, 26, e3235.	0.8	4
126	From parts lists to functional significance—RNA–protein interactions in gene regulation. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1582.	3.2	21

#	Article	IF	CITATIONS
127	The functional diversity of structural disorder in plant proteins. Archives of Biochemistry and Biophysics, 2020, 680, 108229.	1.4	27
128	A Non-amyloid Prion Particle that Activates a Heritable Gene Expression Program. Molecular Cell, 2020, 77, 251-265.e9.	4.5	69
129	Prions and Prion-like assemblies in neurodegeneration and immunity: The emergence of universal mechanisms across health and disease. Seminars in Cell and Developmental Biology, 2020, 99, 115-130.	2.3	19
130	Clueless forms dynamic, insulin-responsive bliss particles sensitive to stress. Developmental Biology, 2020, 459, 149-160.	0.9	13
131	Flexible and Extended Linker Domains Support Efficient Targeting of Heh2 to the Inner Nuclear Membrane. Structure, 2020, 28, 185-195.e5.	1.6	7
132	Role of Intrinsically Disordered Regions in Acceleration of Protein–Protein Association. Journal of Physical Chemistry B, 2020, 124, 20-27.	1.2	8
133	Dynamic multivalent interactions of intrinsically disordered proteins. Current Opinion in Structural Biology, 2020, 62, 9-13.	2.6	41
134	Liquidâ€liquid phase separation and fibrillation of the prion protein modulated by a highâ€affinity DNA aptamer. FASEB Journal, 2020, 34, 365-385.	0.2	42
135	Molecular structure in biomolecular condensates. Current Opinion in Structural Biology, 2020, 60, 17-26.	2.6	91
136	Negri bodies and other virus membrane-less replication compartments. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118831.	1.9	60
137	Structural analysis of SARS-CoV-2 genome and predictions of the human interactome. Nucleic Acids Research, 2020, 48, 11270-11283.	6.5	73
138	Liquid-liquid phase separation promotes animal desiccation tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27676-27684.	3.3	50
139	Selfâ€Emergent Protocells Generated in an Aqueous Solution with Binary Macromolecules through Liquidâ€Liquid Phase Separation. ChemBioChem, 2020, 21, 3323-3328.	1.3	24
140	Divide and Rule: Phase Separation in Eukaryotic Genome Functioning. Cells, 2020, 9, 2480.	1.8	15
141	Client proximity enhancement inside cellular membrane-less compartments governed by client-compartment interactions. Nature Communications, 2020, 11, 5642.	5.8	19
142	Liquid–Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus–Host Interactions. International Journal of Molecular Sciences, 2020, 21, 9045.	1.8	110
143	Sequence dependent phase separation of protein-polynucleotide mixtures elucidated using molecular simulations. Nucleic Acids Research, 2020, 48, 12593-12603.	6.5	83
144	Pathophysiological implications of RNP granules in frontotemporal dementia and ALS. Neurochemistry International, 2020, 140, 104819.	1.9	5

		CITATION REPORT	
#	ARTICLE	IF	CITATIONS
145	Formation and function of bacterial organelles. Nature Reviews Microbiology, 2020, 18, 677-689	. 13.6	112
146	Preface: Looking at the clouds through kaleidoscope. Progress in Molecular Biology and Translational Science, 2020, 174, xiii-xx.	0.9	0
147	The Dynamism of Intrinsically Disordered Proteins: Binding-Induced Folding, Amyloid Formation, a Phase Separation. Journal of Physical Chemistry B, 2020, 124, 11541-11560.	ind 1.2	31
148	MloDisDB: a manually curated database of the relations between membraneless organelles and diseases. Briefings in Bioinformatics, 2021, 22, .	3.2	10
149	Intrinsically Disordered Proteins: Insights from Poincaré, Waddington, and Lamarck. Biomolecu 2020, 10, 1490.	les, 1.8	8
150	Mammalian stress granules and P bodies at a glance. Journal of Cell Science, 2020, 133, .	1.2	198
151	Amyloid and Amyloid-Like Aggregates: Diversity and the Term Crisis. Biochemistry (Moscow), 202 1011-1034.	0, 85, 0.7	17
152	Protein Dynamics in F-like Bacterial Conjugation. Biomedicines, 2020, 8, 362.	1.4	15
153	Protein Databases Related to Liquid–Liquid Phase Separation. International Journal of Molecula Sciences, 2020, 21, 6796.	r 1.8	27
154	Structural Polymorphism of Single pDNA Condensates Elicited by Cationic Block Polyelectrolytes. Polymers, 2020, 12, 1603.	2.0	8
155	Marked Difference in the Conformational Transition of DNA Caused by Propanol Isomer. Polymers 2020, 12, 1607.	5, 2.0	1
156	Liquid–Liquid Phase Separation in Crowded Environments. International Journal of Molecular Sciences, 2020, 21, 5908.	1.8	156
157	Advanced Biological Imaging for Intracellular Micromanipulation: Methods and Applications. Appl Sciences (Switzerland), 2020, 10, 7308.	ied 1.3	6
158	Revisiting promyelocytic leukemia protein targeting by human cytomegalovirus immediate-early protein 1. PLoS Pathogens, 2020, 16, e1008537.	2,1	16
159	Molecular heterogeneity in aqueous cosolvent systems. Journal of Chemical Physics, 2020, 152, 1	190901. 1.2	17
160	How the Local Environment of Functional Sites Regulates Protein Function. Journal of the America Chemical Society, 2020, 142, 9861-9871.	an 6.6	28
161	Proteins in assemblages formed by phase separation possess properties that promote their transformation to autoantigens: Implications for autoimmunity. Journal of Autoimmunity, 2020, 102471.	111, 3.0	1
162	Protein Phase Separation during Stress Adaptation and Cellular Memory. Cells, 2020, 9, 1302.	1.8	20

#	Article	IF	CITATIONS
163	Stress granule subtypes: an emerging link to neurodegeneration. Cellular and Molecular Life Sciences, 2020, 77, 4827-4845.	2.4	73
164	Unraveling the molecular interactions involved in phase separation of glucocorticoid receptor. BMC Biology, 2020, 18, 59.	1.7	45
165	Partitioning of cancer therapeutics in nuclear condensates. Science, 2020, 368, 1386-1392.	6.0	281
166	The Role of Liquid–Liquid Phase Separation in the Compartmentalization of Cell Nucleus and Spatial Genome Organization. Biochemistry (Moscow), 2020, 85, 643-650.	0.7	30
167	Come Together: Protein Assemblies, Aggregates and the Sarcostat at the Heart of Cardiac Myocyte Homeostasis. Frontiers in Physiology, 2020, 11, 586.	1.3	14
168	SNAP29 mediates the assembly of histidine-induced CTP synthase filaments in proximity to the cytokeratin network. Journal of Cell Science, 2020, 133, .	1.2	6
169	Liquid-Liquid Phase Transition Drives Intra-chloroplast Cargo Sorting. Cell, 2020, 180, 1144-1159.e20.	13.5	70
170	Physical basis of the disorder-order transition. Archives of Biochemistry and Biophysics, 2020, 685, 108305.	1.4	19
171	Common Functions of Disordered Proteins across Evolutionary Distant Organisms. International Journal of Molecular Sciences, 2020, 21, 2105.	1.8	32
172	An in-silico human cell model reveals the influence of spatial organization on RNA splicing. PLoS Computational Biology, 2020, 16, e1007717.	1.5	16
173	Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells. Angewandte Chemie, 2020, 132, 11121-11129.	1.6	19
174	Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells. Angewandte Chemie - International Edition, 2020, 59, 11028-11036.	7.2	53
175	pH-Controlled Coacervate–Membrane Interactions within Liposomes. ACS Nano, 2020, 14, 4487-4498.	7.3	94
176	Liquid–Liquid Phase Separation and Its Mechanistic Role in Pathological Protein Aggregation. Journal of Molecular Biology, 2020, 432, 1910-1925.	2.0	163
177	Nonspecific characteristics of macromolecules create specific effects in living cells. Biophysical Reviews, 2020, 12, 425-434.	1.5	10
178	Formation and functionalization of membraneless compartments in Escherichia coli. Nature Chemical Biology, 2020, 16, 1143-1148.	3.9	95
179	A protein phosphorylation module patterns the <i>Bacillus subtilis</i> spore outer coat. Molecular Microbiology, 2020, 114, 934-951.	1.2	20
180	The pathophysiology of neurodegenerative disease: Disturbing the balance between phase separation and irreversible aggregation. Progress in Molecular Biology and Translational Science, 2020, 174, 187-223.	0.9	16

#	Article	IF	Citations
	Stress Induces Dynamic, Cytotoxicity-Antagonizing TDP-43 Nuclear Bodies via Paraspeckle LncRNA		
181	NEAT1-Mediated Liquid-Liquid Phase Separation. Molecular Cell, 2020, 79, 443-458.e7.	4.5	118
182	RBM45 associates with nuclear stress bodies and forms nuclear inclusions during chronic cellular stress and in neurodegenerative diseases. Acta Neuropathologica Communications, 2020, 8, 91.	2.4	9
183	SPLIT: Stable Protein Coacervation Using a Light Induced Transition. ACS Synthetic Biology, 2020, 9, 500-507.	1.9	44
184	Model for disordered proteins with strongly sequence-dependent liquid phase behavior. Journal of Chemical Physics, 2020, 152, 075101.	1.2	120
185	Physical Chemistry of the Protein Backbone: Enabling the Mechanisms of Intrinsic Protein Disorder. Journal of Physical Chemistry B, 2020, 124, 4379-4390.	1.2	12
186	The Biochemistry of Survival Motor Neuron Protein Is Paving the Way to Novel Therapies for Spinal Muscle Atrophy. Biochemistry, 2020, 59, 1391-1397.	1.2	7
187	ENL initiates multivalent phase separation of the super elongation complex (SEC) in controlling rapid transcriptional activation. Science Advances, 2020, 6, eaay4858.	4.7	47
188	Weak interactions in higher-order chromatin organization. Nucleic Acids Research, 2020, 48, 4614-4626.	6.5	50
189	Functional characterization of an unknown soybean intrinsically disordered protein in vitro and in Escherichia coli. International Journal of Biological Macromolecules, 2021, 166, 538-549.	3.6	4
190	Unusual features in a child with Marshall-Smith syndrome due to a novel NFIX variant: Evidence for an abnormal protein function. Gene Reports, 2021, 22, 100991.	0.4	0
191	Alternative paths to telomere elongation. Seminars in Cell and Developmental Biology, 2021, 113, 88-96.	2.3	12
192	Natural deep eutectic solvents: Hypothesis for their possible roles in cellular functions and interaction with membranes and other organized biological systems. Advances in Botanical Research, 2021, , 133-158.	0.5	11
193	The Non-continuum Nature of Eukaryotic Transcriptional Regulation. Advances in Experimental Medicine and Biology, 2021, , 1.	0.8	1
194	Insight into membraneless organelles and their associated proteins: Drivers, Clients and Regulators. Computational and Structural Biotechnology Journal, 2021, 19, 3964-3977.	1.9	24
195	Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Molecular Cancer, 2021, 20, 3.	7.9	191
196	Recent advances in atomic molecular dynamics simulation of intrinsically disordered proteins. Physical Chemistry Chemical Physics, 2021, 23, 777-784.	1.3	45
199	Computational modeling suggests binding-induced expansion of Epsin disordered regions upon association with AP2. PLoS Computational Biology, 2021, 17, e1008474.	1.5	1
200	Fibrogranular materials function as organizers to ensure the fidelity of multiciliary assembly. Nature Communications, 2021, 12, 1273.	5.8	21

	Сіта	TION REPORT	
#	Article	IF	CITATIONS
201	Therapeutic Potential of $\hat{I}\pm S$ Evolvability for Neuropathic Gaucher Disease. Biomolecules, 2021, 11, 289.	1.8	4
202	The transcriptional regulation of normal and malignant blood cell development. FEBS Journal, 2022, 289, 1240-1255.	2.2	19
203	The Participation of the Intrinsically Disordered Regions of the bHLH-PAS Transcription Factors in Disease Development. International Journal of Molecular Sciences, 2021, 22, 2868.	1.8	2
204	Protoâ€proteins in Protocells. ChemSystemsChem, 2021, 3, e2100002.	1.1	6
205	USP42 drives nuclear speckle mRNA splicing via directing dynamic phase separation to promote tumorigenesis. Cell Death and Differentiation, 2021, 28, 2482-2498.	5.0	26
206	Loci-specific phase separation of FET fusion oncoproteins promotes gene transcription. Nature Communications, 2021, 12, 1491.	5.8	66
209	Mutations of Intrinsically Disordered Protein Regions Can Drive Cancer but Lack Therapeutic Strategies. Biomolecules, 2021, 11, 381.	1.8	26
210	Regulation of Age-Related Protein Toxicity. Frontiers in Cell and Developmental Biology, 2021, 9, 637084.	1.8	12
211	RNA polymerase II condensate formation and association with Cajal and histone locus bodies in living human cells. Genes To Cells, 2021, 26, 298-312.	0.5	13
212	Membraneless organelles restructured and built by pandemic viruses: HIV-1 and SARS-CoV-2. Journal of Molecular Cell Biology, 2021, 13, 259-268.	1.5	28
213	Mesoscopic protein-rich clusters host the nucleation of mutant p53 amyloid fibrils. Proceedings of the United States of America, 2021, 118, .	3.3	28
214	Aberrant phase separation and cancer. FEBS Journal, 2022, 289, 17-39.	2.2	42
215	Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nature Reviews Drug Discovery, 2021, 20, 509-530.	21.5	186
216	Phosphorylation of GAP-43 T172 is a molecular marker of growing axons in a wide range of mammals including primates. Molecular Brain, 2021, 14, 66.	1.3	9
217	Suppression of liquid–liquid phase separation by 1,6-hexanediol partially compromises the 3D genome organization in living cells. Nucleic Acids Research, 2021, 49, 10524-10541.	e 6.5	68
218	Discovery of Arginine Methylation, Phosphorylation, and Their Co-occurrence in Condensate-Associated Proteins in <i>Saccharomyces cerevisiae</i> . Journal of Proteome Research, 2021, 20, 2420-2434.	1.8	8
219	Characterization of Weak Protein Domain Structure by Spin-Label Distance Distributions. Frontiers in Molecular Biosciences, 2021, 8, 636599.	1.6	12
220	Supramolecular tripeptide self-assembly initiated at the surface of coacervates by polyelectrolyte exchange. Journal of Colloid and Interface Science, 2021, 588, 580-588.	5.0	10

#	ARTICLE	IF	CITATIONS
221	Photo-dependent membrane-less organelles formed from plant phyB and PIF6 proteins in mammalian cells. International Journal of Biological Macromolecules, 2021, 176, 325-331.	3.6	7
222	Mechanisms and regulation underlying membraneless organelle plasticity control. Journal of Molecular Cell Biology, 2021, 13, 239-258.	1.5	14
223	Liquid–liquid phase separation of tau: From molecular biophysics to physiology and disease. Protein Science, 2021, 30, 1294-1314.	3.1	54
224	ATP regulates RNAâ€driven cold inducible RNA binding protein phase separation. Protein Science, 2021, 30, 1438-1453.	3.1	18
225	Recent Developments in the Field of Intrinsically Disordered Proteins: Intrinsic Disorder–Based Emergence in Cellular Biology in Light of the Physiological and Pathological Liquid–Liquid Phase Transitions. Annual Review of Biophysics, 2021, 50, 135-156.	4.5	57
226	The Role of Non-Specific Interactions in Canonical and ALT-Associated PML-Bodies Formation and Dynamics. International Journal of Molecular Sciences, 2021, 22, 5821.	1.8	17
227	Conserved allosteric ensembles in disordered proteins using TROSY/anti-TROSY R2-filtered spectroscopy. Biophysical Journal, 2021, 120, 2498-2510.	0.2	4
228	Reversible protein aggregation as cytoprotective mechanism against heat stress. Current Genetics, 2021, 67, 849-855.	0.8	9
229	Mechanomorphogenic Films Formed via Interfacial Assembly of Fluorinated Amino Acids. Advanced Functional Materials, 2021, 31, 2104223.	7.8	6
231	Protein Phase Separation Arising from Intrinsic Disorder: First-Principles to Bespoke Applications. Journal of Physical Chemistry B, 2021, 125, 6740-6759.	1.2	38
232	Solubility Parameters of Amino Acids on Liquid–Liquid Phase Separation and Aggregation of Proteins. Frontiers in Cell and Developmental Biology, 2021, 9, 691052.	1.8	6
233	Arginine methylation and cytoplasmic mRNA fate: An exciting new partnership. Yeast, 2021, 38, 441-452.	0.8	3
234	RNA and liquid-liquid phase separation. Non-coding RNA Research, 2021, 6, 92-99.	2.4	52
235	Application of Thermoresponsive IntrinsicallyÂDisordered Protein Polymers in Nanostructured and Microstructured Materials. Macromolecular Bioscience, 2021, 21, 2100129.	2.1	12
236	Thermodynamic Compensation in Peptides Following Liquid–Liquid Phase Separation. Journal of Physical Chemistry B, 2021, 125, 6431-6439.	1.2	11
237	New Perspectives on the Biogenesis of Viral Inclusion Bodies in Negative-Sense RNA Virus Infections. Cells, 2021, 10, 1460.	1.8	31
238	Quadruplex Folding Promotes the Condensation of Linker Histones and DNAs via Liquid–Liquid Phase Separation. Journal of the American Chemical Society, 2021, 143, 9849-9857.	6.6	36
239	Emerging Roles of Liquid–Liquid Phase Separation in Cancer: From Protein Aggregation to Immune-Associated Signaling. Frontiers in Cell and Developmental Biology, 2021, 9, 631486.	1.8	48

#	Article	IF	Citations
240	A Tale of Loops and Tails: The Role of Intrinsically Disordered Protein Regions in R-Loop Recognition	1.6	21
	and Phase Separation. Frontiers in Molecular Biosciences, 2021, 8, 691694.		
241	Two-Step Crystal Nucleation Is Selected Because of a Lower Surface Free Energy Barrier. Crystal Growth and Design, 2021, 21, 5394-5402.	1.4	10
242	Role of Liquid–Liquid Separation in Endocrine and Living Cells. Journal of the Endocrine Society, 2021, 5, bvab126.	0.1	4
244	Induction and Monitoring of DNA Phase Separation in Living Cells by a Light-Switching Ruthenium Complex. Journal of the American Chemical Society, 2021, 143, 11370-11381.	6.6	19
245	Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids Research, 2021, 49, 7839-7855.	6.5	47
246	Order from Disorder with Intrinsically Disordered Peptide Amphiphiles. Journal of the American Chemical Society, 2021, 143, 11879-11888.	6.6	14
247	Seeing Keratinocyte Proteins through the Looking Glass of Intrinsic Disorder. International Journal of Molecular Sciences, 2021, 22, 7912.	1.8	8
248	Lattice protein design using Bayesian learning. Physical Review E, 2021, 104, 014404.	0.8	3
249	Methodologies for Measuring Protein Trafficking across Cellular Membranes. ChemPlusChem, 2021, 86, 1397-1415.	1.3	4
250	Moving in the mesoscale: Understanding the mechanics of cytoskeletal molecular motors by combining mesoscale simulations with imaging. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1570.	6.2	1
251	RNA regulatory mechanisms that control antiviral innate immunity. Immunological Reviews, 2021, 304, 77-96.	2.8	14
252	Modulating α-Synuclein Liquid–Liquid Phase Separation. Biochemistry, 2021, 60, 3676-3696.	1.2	67
253	Polymerization/depolymerization of actin cooperates with the morphology and stability of cell-sized droplets generated in a polymer solution under a depletion effect. Journal of Chemical Physics, 2021, 155, 075101.	1.2	6
254	What's in the BAGs? Intrinsic disorder angle of the multifunctionality of the members of a family of chaperone regulators. Journal of Cellular Biochemistry, 2021, , .	1.2	3
255	Conformational Expansion of Tau in Condensates Promotes Irreversible Aggregation. Journal of the American Chemical Society, 2021, 143, 13056-13064.	6.6	78
256	Identification of abscission checkpoint bodies as structures that regulate ESCRT factors to control abscission timing. ELife, 2021, 10, .	2.8	14
258	The Role of Methionine Residues in the Regulation of Liquid-Liquid Phase Separation. Biomolecules, 2021, 11, 1248.	1.8	6
259	Polyampholyte physics: Liquid–liquid phase separation and biological condensates. Current Opinion in Colloid and Interface Science, 2021, 54, 101457.	3.4	32

#	Article	IF	CITATIONS
260	Targeted modulation of protein liquid–liquid phase separation by evolution of amino-acid sequence. PLoS Computational Biology, 2021, 17, e1009328.	1.5	21
261	The nucleolus from a liquid droplet perspective. Journal of Biochemistry, 2021, 170, 153-162.	0.9	14
262	Uncharged Components of Single-Stranded DNA Modulate Liquid–Liquid Phase Separation With Cationic Linker Histone H1. Frontiers in Cell and Developmental Biology, 2021, 9, 710729.	1.8	6
263	Impact of heat treatment of milk on acid gelation. International Dairy Journal, 2022, 125, 105222.	1.5	19
264	The disordered regions of the methyltransferase SETD2 govern its function by regulating its proteolysis and phase separation. Journal of Biological Chemistry, 2021, 297, 101075.	1.6	8
266	Tau N-Terminal Inserts Regulate Tau Liquid-Liquid Phase Separation and Condensates Maturation in a Neuronal Cell Model. International Journal of Molecular Sciences, 2021, 22, 9728.	1.8	12
267	Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants, 2021, 10, 1483.	2.2	22
268	Identification of a Region in the Common Amino-terminal Domain of Hendra Virus P, V, and W Proteins Responsible for Phase Transition and Amyloid Formation. Biomolecules, 2021, 11, 1324.	1.8	20
269	Primordial Germ Cell Specification in Vertebrate Embryos: Phylogenetic Distribution and Conserved Molecular Features of Preformation and Induction. Frontiers in Cell and Developmental Biology, 2021, 9, 730332.	1.8	21
271	Distinct RNA polymerase transcripts direct the assembly of phase-separated DBC1 nuclear bodies in different cell lines. Molecular Biology of the Cell, 2021, 32, ar33.	0.9	5
272	In Silico Modeling of the Influence of Environment on Amyloid Folding Using FOD-M Model. International Journal of Molecular Sciences, 2021, 22, 10587.	1.8	11
273	Liquid-liquid phase separation as a common organizing principle of intracellular space and biomembranes providing dynamic adaptive responses. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119102.	1.9	55
274	Lipids, membranes, colloids and cells: A long view. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183684.	1.4	16
275	Impact of macromolecular crowding on the mesomorphic behavior of lipid self-assemblies. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183728.	1.4	5
276	1,6-Hexanediol, commonly used to dissolve liquid–liquid phase separated condensates, directly impairs kinase and phosphatase activities. Journal of Biological Chemistry, 2021, 296, 100260.	1.6	84
277	Self-Assembly of Silk-like Protein into Nanoscale Bicontinuous Networks under Phase-Separation Conditions. Biomacromolecules, 2021, 22, 690-700.	2.6	10
278	Cellâ€Inspired Allâ€Aqueous Microfluidics: From Intracellular Liquid–Liquid Phase Separation toward Advanced Biomaterials. Advanced Science, 2020, 7, 1903359.	5.6	111
279	Nucleophosmin, a multifunctional nucleolar organizer with a role in DNA repair. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140532.	1.1	31

#	Article	IF	CITATIONS
280	Phase Separation of Disease-Associated SHP2 Mutants Underlies MAPK Hyperactivation. Cell, 2020, 183, 490-502.e18.	13.5	123
281	Biomolecular condensates as arbiters of biochemical reactions inside the nucleus. Communications Biology, 2020, 3, 773.	2.0	59
282	Heritable pattern of oxidized DNA base repair coincides with pre-targeting of repair complexes to open chromatin. Nucleic Acids Research, 2021, 49, 221-243.	6.5	29
295	Modeling Elastically Mediated Liquid-Liquid Phase Separation. Physical Review Letters, 2020, 125, 268001.	2.9	31
296	New technologies to analyse protein function: an intrinsic disorder perspective. F1000Research, 2020, 9, 101.	0.8	17
297	Targeting liquid-liquid phase separation in pancreatic cancer. Translational Cancer Research, 2019, 8, 96-103.	0.4	15
298	Effect of nuclear import receptors on liquid–liquid phase separation. Biophysics and Physicobiology, 2020, 17, 25-29.	0.5	5
299	Liquid–Liquid Phase Separation: Undergraduate Labs on a New Paradigm for Intracellular Organization. The Biophysicist, 2020, 1, .	0.1	2
300	Controlling protein function by fine-tuning conformational flexibility. ELife, 2020, 9, .	2.8	35
301	Molecular simulations of IDPs: From ensemble generation to IDP interactions leading to disorder-to-order transitions. Progress in Molecular Biology and Translational Science, 2021, 183, 135-185.	0.9	9
302	L-bodies are RNA–protein condensates driving RNA localization in <i>Xenopus</i> oocytes. Molecular Biology of the Cell, 2021, 32, ar37.	0.9	21
303	How to strike a conformational balance in protein force fields for molecular dynamics simulations?. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1578.	6.2	4
304	Distinctive Network Topology of Phase-Separated Proteins in Human Interactome. Journal of Molecular Biology, 2022, 434, 167292.	2.0	3
313	De novo ensemble modeling suggests that AP2-binding to disordered regions can increase steric volume of Epsin but not Eps15. , 2019, , .		0
315	Phase separation drives the self-assembly of mitochondrial nucleoids for transcriptional modulation. Nature Structural and Molecular Biology, 2021, 28, 900-908.	3.6	24
316	The solid and liquid states of chromatin. Epigenetics and Chromatin, 2021, 14, 50.	1.8	55
318	Protein phase separation in cell death and survival. , 2022, , 175-195.		0
319	Multivalent polymers can control phase boundary, dynamics, and organization of liquid-liquid phase separation. PLoS ONE, 2021, 16, e0245405.	1.1	3

#	Article	IF	CITATIONS
322	Proximity labeling identifies LOTUS domain proteins that promote the formation of perinuclear germ granules in C. elegans. ELife, 2021, 10, .	2.8	9
323	An intrinsically disordered pathological prion variant Y145Stop converts into self-seeding amyloids via liquid–liquid phase separation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
325	Exploring Relationships between the Density of Charged Tracts within Disordered Regions and Phase Separation. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2020, 25, 207-218.	0.7	0
326	Yeast Proteins may Reversibly Aggregate like Amphiphilic Molecules. Journal of Molecular Biology, 2022, 434, 167352.	2.0	4
327	Subcellular Localization of Seed-Expressed LEA_4 Proteins Reveals Liquid-Liquid Phase Separation for LEA9 and for LEA48 Homo- and LEA42-LEA48 Heterodimers. Biomolecules, 2021, 11, 1770.	1.8	13
328	Starvation-induced proteasome assemblies in the nucleus link amino acid supply to apoptosis. Nature Communications, 2021, 12, 6984.	5.8	29
329	Structural basis of Apt48 inhibition of the BCL6 BTB domain. Structure, 2022, 30, 396-407.e3.	1.6	4
330	Therapeutic Potential of α-Synuclein Evolvability for Autosomal Recessive Parkinson's Disease. Parkinson's Disease, 2021, 2021, 1-11.	0.6	1
331	Unconventional conservation reveals structure-function relationships in the synaptonemal complex. ELife, 2021, 10, .	2.8	10
332	Hydrogen Bond Arrangement Is Shown to Differ in Coexisting Phases of Aqueous Two-Phase Systems. Biomolecules, 2021, 11, 1787.	1.8	4
333	FOXN1 forms higher-order nuclear condensates displaced by mutations causing immunodeficiency. Science Advances, 2021, 7, eabj9247.	4.7	10
334	Visualization of intrinsically disordered proteins by high-speed atomic force microscopy. Current Opinion in Structural Biology, 2022, 72, 260-266.	2.6	16
335	Ubiquitination of Alzheimer's-related tau protein affects liquid-liquid phase separation in a site- and cofactor-dependent manner. International Journal of Biological Macromolecules, 2022, 201, 173-181.	3.6	16
336	Controlled chemical assembly of enzymes in cell lysate enabled by genetic-encoded nonstandard amino acids. Materials Chemistry Frontiers, 2022, 6, 182-193.	3.2	4
337	ER-to-Golgi trafficking of procollagen III via conventional vesicular and tubular carriers. Molecular Biology of the Cell, 2022, , mbcE21070372.	0.9	2
338	Rich Phase Separation Behavior of Biomolecules. Molecules and Cells, 2022, 45, 6-15.	1.0	12
339	circVAMP3 Drives CAPRIN1 Phase Separation and Inhibits Hepatocellular Carcinoma by Suppressing câ€Myc Translation. Advanced Science, 2022, 9, e2103817.	5.6	38
341	Dynamic assembly of the mRNA m6A methyltransferase complex is regulated by METTL3 phase separation. PLoS Biology, 2022, 20, e3001535.	2.6	22

#	Article	IF	CITATIONS
343	Phase separation of the mammalian prion protein: Physiological and pathological perspectives. Journal of Neurochemistry, 2023, 166, 58-75.	2.1	6
344	Capillary flow experiments for thermodynamic and kinetic characterization of protein liquid-liquid phase separation. Nature Communications, 2021, 12, 7289.	5.8	27
345	Affinity of Aromatic Amino Acid Side Chains in Amino Acid Solvents. SSRN Electronic Journal, 0, , .	0.4	0
346	Intrinsically Disordered Proteins: Critical Components of the Wetware. Chemical Reviews, 2022, 122, 6614-6633.	23.0	48
347	Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry. Chemical Reviews, 2022, 122, 6719-6748.	23.0	55
348	Origin of Cancer: Cell work is the Key to Understanding Cancer Initiation and Progression. Frontiers in Cell and Developmental Biology, 2022, 10, 787995.	1.8	8
349	On the stability and layered organization of protein-DNA condensates. Biophysical Journal, 2022, 121, 1727-1737.	0.2	20
350	Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion. Nature Communications, 2022, 13, 1154.	5.8	47
351	Purine biosynthetic enzymes assemble into liquid-like condensates dependent on the activity of chaperone protein HSP90. Journal of Biological Chemistry, 2022, 298, 101845.	1.6	16
353	Novel insights into the SPOP E3 ubiquitin ligase: From the regulation of molecular mechanisms to tumorigenesis. Biomedicine and Pharmacotherapy, 2022, 149, 112882.	2.5	13
354	State without borders: Membrane-less organelles and liquid–liquid phase transitions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119251.	1.9	1
356	Liquid–liquid phase separation as an organizing principle of intracellular space: overview of the evolution of the cell compartmentalization concept. Cellular and Molecular Life Sciences, 2022, 79, 251.	2.4	42
359	Predicting Protein Conformational Disorder and Disordered Binding Sites. Methods in Molecular Biology, 2022, 2449, 95-147.	0.4	4
360	Advanced tools and methods for single-cell surgery. Microsystems and Nanoengineering, 2022, 8, 47.	3.4	27
361	Reconsideration of Alzheimer's Disease Therapy from a Viewpoint of Amyloidogenic Evolvability. Journal of Alzheimer's Disease Reports, 2022, 6, 207-210.	1.2	1
362	Work relation for determining the mixing free energy of small-scale mixtures. Physical Review Research, 2022, 4, .	1.3	1
364	Phase-Separated Subcellular Compartmentation and Related Human Diseases. International Journal of Molecular Sciences, 2022, 23, 5491.	1.8	4
365	BIAPSS: A Comprehensive Physicochemical Analyzer of Proteins Undergoing Liquid–Liquid Phase Separation. International Journal of Molecular Sciences, 2022, 23, 6204.	1.8	9

#	Article	IF	CITATIONS
366	Progress on Crowding Effect in Cell-like Structures. Membranes, 2022, 12, 593.	1.4	4
367	Affinity of aromatic amino acid side chains in amino acid solvents. Biophysical Chemistry, 2022, 287, 106831.	1.5	2
369	Structural and Functional Insights into CP2c Transcription Factor Complexes. International Journal of Molecular Sciences, 2022, 23, 6369.	1.8	3
370	Camouflaged Fluorescent Silica Nanoparticles Target Aggregates and Condensates of the Amyloidogenic Protein Tau. Bioconjugate Chemistry, 2022, 33, 1261-1268.	1.8	4
371	Proteomic Mapping and Targeting of Mitotic Pericentriolar Material in Tumors Bearing Centrosome Amplification. Cancer Research, 2022, 82, 2576-2592.	0.4	5
372	Phase separation of insulin receptor substrate 1 drives the formation of insulin/IGF-1 signalosomes. Cell Discovery, 2022, 8, .	3.1	13
373	A Mechanistic Model for Cell Cycle Control in Which CDKs Act as Switches of Disordered Protein Phase Separation. Cells, 2022, 11, 2189.	1.8	4
374	Liquid–liquid phase separation in tumor biology. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	52
375	Essential Roles and Risks of G-Quadruplex Regulation: Recognition Targets of ALS-Linked TDP-43 and FUS. Frontiers in Molecular Biosciences, 0, 9, .	1.6	7
376	Principles Governing the Phase Separation of Multidomain Proteins. Biochemistry, 2022, 61, 2443-2455.	1.2	40
377	Self-construction of actin networks through phase separation–induced abLIM1 condensates. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
379	Single-droplet surface-enhanced Raman scattering decodes the molecular determinants of liquid-liquid phase separation. Nature Communications, 2022, 13, .	5.8	17
380	Lipid-driven condensation and interfacial ordering of FUS. Science Advances, 2022, 8, .	4.7	15
381	When liquid-liquid phase separation meets viral infections. Frontiers in Immunology, 0, 13, .	2.2	15
382	Aberrant liquid-liquid phase separation and amyloid aggregation of proteins related to neurodegenerative diseases. International Journal of Biological Macromolecules, 2022, 220, 703-720.	3.6	15
383	Guide to studying intrinsically disordered proteins by high-speed atomic force microscopy. Methods, 2022, 207, 44-56.	1.9	4
384	Phase separation in Cancer: From the Impacts and Mechanisms to Treatment potentials. International Journal of Biological Sciences, 2022, 18, 5103-5122.	2.6	18
385	Quantitative prediction of ensemble dynamics, shapes and contact propensities of intrinsically disordered proteins. PLoS Computational Biology, 2022, 18, e1010036.	1.5	4

#	Article	IF	CITATIONS
386	Carboxyl Terminus of HOATZ is Intrinsically Disordered and Interacts with Heat Shock Protein A Families. Protein and Peptide Letters, 2022, 29, 971-978.	0.4	0
387	Development and Validation of a Liquid-Liquid Phase Separation-Related Gene Signature as Prognostic Biomarker for Low-Grade Gliomas. Disease Markers, 2022, 2022, 1-9.	0.6	0
388	The material properties of a bacterial-derived biomolecular condensate tune biological function in natural and synthetic systems. Nature Communications, 2022, 13, .	5.8	39
389	Regulating the p53 Tumor Suppressor Network at PML Biomolecular Condensates. Cancers, 2022, 14, 4549.	1.7	7
390	The Role of Intrinsically Disordered Proteins in Liquid–Liquid Phase Separation during Calcium Carbonate Biomineralization. Biomolecules, 2022, 12, 1266.	1.8	9
391	Role of the Spore Coat Proteins CotA and CotB, and the Spore Surface Protein CDIF630_02480, on the Surface Distribution of Exosporium Proteins in Clostridioides difficile 630 Spores. Microorganisms, 2022, 10, 1918.	1.6	1
392	A genetically encoded BRET-based SARS-CoV-2 Mpro protease activity sensor. Communications Chemistry, 2022, 5, .	2.0	9
395	New Horizons in Studying the Cellular Mechanisms of Alzheimer's Disease. Future of Business and Finance, 2022, , 51-88.	0.3	0
396	Modulating liquid–liquid phase separation of FUS: mechanisms and strategies. Journal of Materials Chemistry B, 2022, 10, 8616-8628.	2.9	10
397	Single-Molecule Imaging of the Phase Separation-Modulated DNA Compaction to Study Transcriptional Repression. Methods in Molecular Biology, 2023, , 215-223.	0.4	0
398	Phase Separation of Purified Human LSM4 Protein. Molecular Biology, 0, , .	0.4	0
399	Multiscale Modeling of Protein-RNA Condensation in and Out of Equilibrium. Methods in Molecular Biology, 2023, , 117-133.	0.4	0
401	Hotspot mutations in the structured ENL YEATS domain link aberrant transcriptional condensates and cancer. Molecular Cell, 2022, 82, 4080-4098.e12.	4.5	21
402	Histone H2B.8 compacts flowering plant sperm through chromatin phase separation. Nature, 2022, 611, 614-622.	13.7	28
403	Nuclear Organization in Response to Stress: A Special Focus on Nucleoli. Results and Problems in Cell Differentiation, 2022, , 469-494.	0.2	2
404	Intrinsically disordered regions: a platform for regulated assembly of biomolecular condensates. , 2023, , 397-430.		2
405	Droplets of life: role of phase separation in virus replication and compartmentalization. , 2023, , 567-615.		0
406	Known types of membrane-less organelles and biomolecular condensates. , 2023, , 271-335.		2

#	Article	IF	CITATIONS
407	Biochemical and structural biology aspects of liquid–liquid phase separation: protein side of liquid–liquid phase separation, membrane-less organelles, and biomolecular condensates. , 2023, , 101-132.		0
408	Interactions and interplay of MLOs with classical membrane-bound organelles. , 2023, , 375-395.		1
409	Biophysical principles of liquid–liquid phase separation. , 2023, , 3-82.		1
410	Guidelines for experimental characterization of liquid–liquid phase separation inÂvitro. , 2023, , 233-249.		0
411	Liquid–liquid phase separation, membrane-less organelles, and biomolecular condensates in cardiovascular disease. , 2023, , 663-679.		0
412	Stress, membraneless organelles, and liquid–liquid phase separation. , 2023, , 505-529.		1
413	DNA-Stimulated Liquid-Liquid phase separation by eukaryotic topoisomerase ii modulates catalytic function. ELife, 0, 11, .	2.8	4
414	Sequence Context and Complex Hofmeister Salt Interactions Dictate Phase Separation Propensity of Resilin-like Polypeptides. Biomacromolecules, 2022, 23, 5225-5238.	2.6	7
415	Biological soft matter: intrinsically disordered proteins in liquid–liquid phase separation and biomolecular condensates. Essays in Biochemistry, 2022, 66, 831-847.	2.1	16
416	Mitochondria and G-quadruplex evolution: an intertwined relationship. Trends in Genetics, 2023, 39, 15-30.	2.9	9
417	Macromolecular crowding: how it affects protein structure, disorder, and catalysis. , 2023, , 353-376.		1
418	Thermodynamic perspective of protein disorder and phase separation: model systems. , 2023, , 97-126.		1
419	Structure and disorder: protein functions depend on this new binary transforming lock-and-key into structure-function continuum. , 2023, , 127-148.		1
420	Thermostable Proteins from HaCaT Keratinocytes Identify a Wide Breadth of Intrinsically Disordered Proteins and Candidates for Liquid–Liquid Phase Separation. International Journal of Molecular Sciences, 2022, 23, 14323.	1.8	3
421	Effects of Conformational Constraint on Peptide Solubility Limits. Journal of Physical Chemistry B, 2022, 126, 10510-10518.	1.2	4
422	Properties of rabies virus phosphoprotein and nucleoprotein biocondensates formed in vitro and in cellulo. PLoS Pathogens, 2022, 18, e1011022.	2.1	9
423	Molecular determinants for the layering and coarsening of biological condensates. Aggregate, 2022, 3, .	5.2	7
424	Protein Phase Separation: New Insights into Carcinogenesis. Cancers, 2022, 14, 5971.	1.7	0

#	Article	IF	CITATIONS
425	Heterotypic electrostatic interactions control complex phase separation of tau and prion into multiphasic condensates and co-aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	21
426	Tau liquid–liquid phase separation is modulated by the Ca ²⁺ â€switched chaperone activity of the <scp>S100B</scp> protein. Journal of Neurochemistry, 2023, 166, 76-86.	2.1	6
427	Emerging implications for ribosomes in proximity to mitochondria. Seminars in Cell and Developmental Biology, 2024, 154, 123-130.	2.3	1
428	CASC3 biomolecular condensates restrict Turnip crinkle virus by limiting host factor availability. Journal of Molecular Biology, 2023, , 167956.	2.0	3
429	Liquid-liquid Phase Separation in Viral Function. Journal of Molecular Biology, 2023, 435, 167955.	2.0	7
430	Rabies virus P protein binds to TBK1 and interferes with the formation of innate immunity-related liquid condensates. Cell Reports, 2023, 42, 111949.	2.9	7
431	Site-directed double monoubiquitination of the repeat domain of the amyloid-forming protein tau impairs self-assembly and coacervation. Bioorganic Chemistry, 2023, 132, 106347.	2.0	6
432	Activation of L-lactate oxidase by the formation of enzyme assemblies through liquid–liquid phase separation. Scientific Reports, 2023, 13, .	1.6	4
433	New insights into the centrosomeâ€associated spliceosome components as regulators of ciliogenesis and tissue identity. Wiley Interdisciplinary Reviews RNA, 2023, 14, .	3.2	3
436	基于集ç¾ಢº³ç±³æœºå™¨æŠ€æœ¯å'Œå•̂æˆç"Ÿå'½åŒ−å┤的动æ€äººå·¥ 细胞. Science China Materials, 20	23,3666, 20	90æ099.
437	Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair. Science China Chemistry, 0, , .	4.2	0
438	Sestrin2-mediated disassembly of stress granules dampens aerobic glycolysis to overcome glucose starvation. Cell Death Discovery, 2023, 9, .	2.0	3
439	Aberrant RNA m6A modification in gastrointestinal malignancies: versatile regulators of cancer hallmarks and novel therapeutic opportunities. Cell Death and Disease, 2023, 14, .	2.7	3
440	The Role of Liquid–Liquid Phase Separation in Actin Polymerization. International Journal of Molecular Sciences, 2023, 24, 3281.	1.8	6
441	Biophysics of biomolecular condensates. Biophysical Journal, 2023, 122, 737-740.	0.2	1
442	Punctaâ€localized <scp>TRAF</scp> domain protein <scp>TC1b</scp> contributes to the autoimmunity of <i>snc1</i> . Plant Journal, 2023, 114, 591-612.	2.8	0
443	ILF3 prion-like domain regulates gene expression and fear memory under chronic stress. IScience, 2023, 26, 106229.	1.9	2
444	Limosilactobacillus fermentum 3872 That Produces Class III Bacteriocin Forms Co-Aggregates with the Antibiotic-Resistant Staphylococcus aureus Strains and Induces Their Lethal Damage. Antibiotics, 2023, 12, 471.	1.5	3

#	Article	IF	CITATIONS
445	Light, Water, and Melatonin: The Synergistic Regulation of Phase Separation in Dementia. International Journal of Molecular Sciences, 2023, 24, 5835.	1.8	4
446	The Oligomerization Domains of the APC Protein Mediate Liquid-Liquid Phase Separation That Is Phosphorylation Controlled. International Journal of Molecular Sciences, 2023, 24, 6478.	1.8	3
449	<i>Cauliflower mosaic virus</i> protein P6 is a multivalent node for RNA granule proteins and interferes with stress granule responses during plant infection. Plant Cell, 0, , .	3.1	3
485	Phase Separation Orchestrates Cancer Signaling: Stress Granules as a Promising Target for Cancer Therapy. , 2023, , 209-252.		0
486	Positive and Negative Aspects of Protein Aggregation Induced by Phase Separation. , 2023, , 71-92.		0
492	Functional unfoldomics: Roles of intrinsic disorder in protein (multi)functionality. Advances in Protein Chemistry and Structural Biology, 2023, , .	1.0	0