Post-transcriptional gene regulation by mRNA modification

Nature Reviews Molecular Cell Biology 18, 31-42 DOI: 10.1038/nrm.2016.132

Citation Report

#	Article	IF	CITATIONS
1	Pseudouridine and <i>N</i> ⁶ -methyladenosine modifications weaken PUF protein/RNA interactions. Rna, 2017, 23, 611-618.	1.6	50
2	The RNA code comes into focus. Nature, 2017, 542, 503-506.	13.7	12
3	Antibodies specific for nucleic acid modifications. RNA Biology, 2017, 14, 1089-1098.	1.5	29
4	NSUN2-Mediated m5C Methylation and METTL3/METTL14-Mediated m6A Methylation Cooperatively Enhance p21 Translation. Journal of Cellular Biochemistry, 2017, 118, 2587-2598.	1.2	203
5	5-methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Research, 2017, 27, 606-625.	5.7	666
6	Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nature Methods, 2017, 14, 695-698.	9.0	218
7	Incorporation of an epigenetic evaluation into safety assessment: What we first need to know. Current Opinion in Toxicology, 2017, 3, 20-24.	2.6	2
8	m 6 A in mRNA: An Ancient Mechanism for Fine-Tuning Gene Expression. Trends in Genetics, 2017, 33, 380-390.	2.9	338
9	Brothers in arms: emerging roles of RNA epigenetics in DNA damage repair. Cell and Bioscience, 2017, 7, 24.	2.1	12
10	Identification of N 6 -methyladenosine reader proteins. Methods, 2017, 126, 105-111.	1.9	5
11	Flavin-dependent epitranscriptomic world. Archives of Biochemistry and Biophysics, 2017, 632, 28-40.	1.4	17
12	Circular RNAs: Coding or noncoding?. Cell Research, 2017, 27, 724-725.	5.7	44
13	STAT5 alters the state of transcriptional networks, driving aggressive leukemia. Nature Immunology, 2017, 18, 597-598.	7.0	3
14	RNA-binding proteins, the guardians of the marginal zone. Nature Immunology, 2017, 18, 595-597.	7.0	0
15	5-methylcytosine mediates nuclear export of mRNA. Cell Research, 2017, 27, 717-719.	5.7	45
16	A fly view on the roles and mechanisms of the m ⁶ A mRNA modification and its players. RNA Biology, 2017, 14, 1232-1240.	1.5	56
17	The Epitranscriptome of Noncoding RNAs in Cancer. Cancer Discovery, 2017, 7, 359-368.	7.7	132
18	Reversible RNA modifications in meiosis and pluripotency. Nature Methods, 2017, 14, 18-22.	9.0	33

	CITATION	Report	
#	Article	IF	CITATIONS
19	Temporal Control of Mammalian Cortical Neurogenesis by m6A Methylation. Cell, 2017, 171, 877-889.e17.	13.5	567
20	Mutations in RNA methylating enzymes in disease. Current Opinion in Chemical Biology, 2017, 41, 20-27.	2.8	18
21	Multifarious Functions of the Fragile X Mental Retardation Protein. Trends in Genetics, 2017, 33, 703-714.	2.9	96
22	Discovering Epimodifications of the Genome, Transcriptome, Proteome, and Metabolome: the Quest for Conquering the Uncharted Epi(c) Territories. Current Pharmacology Reports, 2017, 3, 286-293.	1.5	8
23	The RNA modification landscape in human disease. Rna, 2017, 23, 1754-1769.	1.6	427
24	Synthesis and Multiple Incorporations of 2′â€ <i>O</i> â€Methylâ€5â€hydroxymethylcytidine, 5â€Hydroxymethylcytidine and 5â€Formylcytidine Monomers into RNA Oligonucleotides. ChemBioChem, 2017, 18, 2236-2241.	1.3	16
25	Shaping and Reshaping Transcriptome Plasticity during Evolution. Trends in Biochemical Sciences, 2017, 42, 682-684.	3.7	4
26	Post-transcriptional control of gene expression following stress: the role of RNA-binding proteins. Biochemical Society Transactions, 2017, 45, 1007-1014.	1.6	65
27	Adenosine Deaminases That Act on RNA (ADARs). The Enzymes, 2017, 41, 215-268.	0.7	29
28	Mettl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation. Cell Research, 2017, 27, 1100-1114.	5.7	306
29	Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Research, 2017, 27, 1115-1127.	5.7	696
30	Epitranscriptomics and Flowering: mRNA Methylation/Demethylation Regulates Flowering Time. Plant Cell, 2017, 29, 2949-2950.	3.1	11
31	Detection of <i>N</i> ⁶ -methyladenosine based on the methyl-sensitivity of MazF RNA endonuclease. Chemical Communications, 2017, 53, 12930-12933.	2.2	113
32	Fingerprints of Modified RNA Bases from Deep Sequencing Profiles. Journal of the American Chemical Society, 2017, 139, 17074-17081.	6.6	35
33	5-Methylcytosine RNA Methylation in Arabidopsis Thaliana. Molecular Plant, 2017, 10, 1387-1399.	3.9	181
34	Post-transcriptional regulation of the pluripotent state. Current Opinion in Genetics and Development, 2017, 46, 15-23.	1.5	35
35	Impact of RNA Modifications and RNA-Modifying Enzymes on Eukaryotic Ribonucleases. The Enzymes, 2017, 41, 299-329.	0.7	11
36	RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nature Structural and Molecular Biology, 2017, 24, 561-569.	3.6	117

#	Article	IF	CITATIONS
37	Three distinct 3-methylcytidine (m3C) methyltransferases modify tRNA and mRNA in mice and humans. Journal of Biological Chemistry, 2017, 292, 14695-14703.	1.6	159
38	Biogenesis and iron-dependency of ribosomal RNA hydroxylation. Nucleic Acids Research, 2017, 45, 12974-12986.	6.5	34
39	Epitranscriptomics for Biomedical Discovery. , 2017, , .		0
40	Recent Advances in Identification of RNA Modifications. Non-coding RNA, 2017, 3, 1.	1.3	20
41	Layered-up regulation in the developing brain. Nature, 2017, 551, 448-449.	13.7	4
42	Chemical and Conformational Diversity of Modified Nucleosides Affects tRNA Structure and Function. Biomolecules, 2017, 7, 29.	1.8	104
43	Causes and Consequences of Flavivirus RNA Methylation. Frontiers in Microbiology, 2017, 8, 2374.	1.5	22
44	The DEAD-Box RNA Helicase DDX3 Interacts with m ⁶ A RNA Demethylase ALKBH5. Stem Cells International, 2017, 2017, 1-11.	1.2	53
45	Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs. Genome Biology, 2017, 18, 205.	3.8	161
46	QNB: differential RNA methylation analysis for count-based small-sample sequencing data with a quad-negative binomial model. BMC Bioinformatics, 2017, 18, 387.	1.2	40
47	SR Proteins: Binders, Regulators, and Connectors of RNA. Molecules and Cells, 2017, 40, 1-9.	1.0	209
48	X chromosome inactivation: new players in the initiation of gene silencing. F1000Research, 2017, 6, 344.	0.8	34
49	Selective Recognition of RNA Substrates by ADAR Deaminase Domains. Biochemistry, 2018, 57, 1640-1651.	1.2	35
50	Enzymatic or In Vivo Installation of Propargyl Groups in Combination with Click Chemistry for the Enrichment and Detection of Methyltransferase Target Sites in RNA. Angewandte Chemie - International Edition, 2018, 57, 6342-6346.	7.2	82
51	Deciphering the Epitranscriptome in Cancer. Trends in Cancer, 2018, 4, 207-221.	3.8	39
52	Nicotine and caffeine modulate haloperidol-induced changes in postsynaptic density transcripts expression: Translational insights in psychosis therapy and treatment resistance. European Neuropsychopharmacology, 2018, 28, 538-559.	0.3	7
53	Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nature Reviews Molecular Cell Biology, 2018, 19, 158-174.	16.1	577
54	VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discovery, 2018, 4, 10.	3.1	643

#	Article	IF	CITATIONS
55	Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 2018, 20, 285-295.	4.6	1,650
56	An additional class of m6A readers. Nature Cell Biology, 2018, 20, 230-232.	4.6	37
57	Enzymatischer oder In-vivo-Einbau von Propargylgruppen in Kombination mit Klick-Chemie zur Anreicherung und Detektion von Methyltransferase-Zielsequenzen in RNA. Angewandte Chemie, 2018, 130, 6451-6455.	1.6	19
58	RNA helicase DDX5 participates in oxLDL-induced macrophage scavenger receptor 1 expression by suppressing mRNA degradation. Experimental Cell Research, 2018, 366, 114-120.	1.2	15
59	SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Research, 2018, 46, 5195-5208.	6.5	210
60	<scp>METTL</scp> 3 regulates alternative splicing of MyD88 upon the lipopolysaccharideâ€induced inflammatory response in human dental pulp cells. Journal of Cellular and Molecular Medicine, 2018, 22, 2558-2568.	1.6	152
61	RNA N6-methyladenosine modification in cancers: current status and perspectives. Cell Research, 2018, 28, 507-517.	5.7	586
62	Epigenetics and epitranscriptomics in temporal patterning of cortical neural progenitor competence. Journal of Cell Biology, 2018, 217, 1901-1914.	2.3	69
63	Hijacking DNA methyltransferase transition state analogues to produce chemical scaffolds for PRMT inhibitors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170072.	1.8	24
64	Translatome analysis at the egg-to-embryo transition in sea urchin. Nucleic Acids Research, 2018, 46, 4607-4621.	6.5	19
65	Profiling of m6A <scp>RNA</scp> modifications identified an ageâ€associated regulation of <i><scp>AGO</scp>2 </i> <scp>mRNA</scp> stability. Aging Cell, 2018, 17, e12753.	3.0	101
66	Biochemistry and Molecular Biology of Flaviviruses. Chemical Reviews, 2018, 118, 4448-4482.	23.0	211
67	Emerging role of dynamic RNA modifications during animal development. Mechanisms of Development, 2018, 154, 24-32.	1.7	30
68	2′-O-methylation in mRNA disrupts tRNA decoding during translation elongation. Nature Structural and Molecular Biology, 2018, 25, 208-216.	3.6	92
69	Meddling with METTLs in Normal and Leukemia Stem Cells. Cell Stem Cell, 2018, 22, 139-141.	5.2	19
70	RNA Biology in Retinal Development and Disease. Trends in Genetics, 2018, 34, 341-351.	2.9	29
71	N6-methyladenosine links RNA metabolism to cancer progression. Cell Death and Disease, 2018, 9, 124.	2.7	381
72	Positive-sense RNA viruses reveal the complexity and dynamics of the cellular and viral epitranscriptomes during infection. Nucleic Acids Research, 2018, 46, 5776-5791.	6.5	105

#	Article	IF	CITATIONS
73	Increased N6â€methyladenosine causes infertility is associated with FTO expression. Journal of Cellular Physiology, 2018, 233, 7055-7066.	2.0	129
74	Epitranscriptomic m6A Regulation of Axon Regeneration in the Adult Mammalian Nervous System. Neuron, 2018, 97, 313-325.e6.	3.8	292
75	mRNA Translation Gone Awry: Translation Fidelity and Neurological Disease. Trends in Genetics, 2018, 34, 218-231.	2.9	78
76	Modificaomics: deciphering the functions of biomolecule modifications. Science China Chemistry, 2018, 61, 381-392.	4.2	38
77	Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. Nature, 2018, 554, 123-127.	13.7	164
78	ALKBH5-dependent m6A demethylation controls splicing and stability of long 3′-UTR mRNAs in male germ cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E325-E333.	3.3	399
79	RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chemical Reviews, 2018, 118, 4177-4338.	23.0	408
80	Mechanism of N6-methyladenosine modification and its emerging role in cancer. , 2018, 189, 173-183.		31
81	Investigation of RNA Synthesis Using 5-Bromouridine Labelling and Immunoprecipitation. Journal of Visualized Experiments, 2018, , .	0.2	4
82	YTH Domain: A Family of N 6 -methyladenosine (m 6 A) Readers. Genomics, Proteomics and Bioinformatics, 2018, 16, 99-107.	3.0	277
83	Deep in shadows: Epigenetic and epigenomic regulations of medicinal plants. Chinese Herbal Medicines, 2018, 10, 239-248.	1.2	18
84	RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia. Nature Communications, 2018, 9, 1163.	5.8	132
85	Can single-cell RNA sequencing crack the mystery of cells?. Cell Biology and Toxicology, 2018, 34, 1-6.	2.4	45
86	Role of N6-methyladenosine modification in cancer. Current Opinion in Genetics and Development, 2018, 48, 1-7.	1.5	178
87	The emerging role of mRNA methylation in normal and pathological behavior. Genes, Brain and Behavior, 2018, 17, e12428.	1.1	65
88	Experienceâ€dependent neural plasticity, learning, and memory in the era of epitranscriptomics. Genes, Brain and Behavior, 2018, 17, e12426.	1.1	28
89	RNA N6â€methyladenosine methyltransferaseâ€like 3 promotes liver cancer progression through YTHDF2â€dependent posttranscriptional silencing of SOCS2. Hepatology, 2018, 67, 2254-2270.	3.6	980
90	Reversible modification of DNA by methyltransferase-catalyzed transfer and light-triggered removal of photo-caging groups. Chemical Communications, 2018, 54, 449-451.	2.2	42

#	Article	IF	Citations
91	Systems to study codon effect on post-transcriptional regulation of gene expression. Methods, 2018, 137, 82-89.	1.9	7
92	Our views of dynamic <i>N</i> ⁶ -methyladenosine RNA methylation. Rna, 2018, 24, 268-272.	1.6	41
93	Engineering of a DNA Polymerase for Direct m ⁶ A Sequencing. Angewandte Chemie - International Edition, 2018, 57, 417-421.	7.2	66
94	Entwicklung einer DNAâ€Polymerase für die direkte m ⁶ Aâ€Sequenzierung. Angewandte Chemie, 2018, 130, 424-428.	1.6	15
95	RNA epigenetics spurs investor interest, but uncertainties linger. Nature Biotechnology, 2018, 36, 1123-1124.	9.4	3
96	N6-methyladenosine (m6A): Revisiting the Old with Focus on New, an Arabidopsis thaliana Centered Review. Genes, 2018, 9, 596.	1.0	30
97	RNA Modification Level Estimation with pulseR. Genes, 2018, 9, 619.	1.0	2
98	Sustained protein synthesis and reduced eEF2K levels in TAp73 mice brain: a possible compensatory mechanism. Cell Cycle, 2018, 17, 2637-2643.	1.3	4
99	AlkAnilineâ€ S eq: Profiling of m 7 G and m 3 C RNA Modifications at Single Nucleotide Resolution. Angewandte Chemie, 2018, 130, 17027-17032.	1.6	0
100	METTL3 promotes ovarian carcinoma growth and invasion through the regulation of AXL translation and epithelial to mesenchymal transition. Gynecologic Oncology, 2018, 151, 356-365.	0.6	139
101	AlkAniline‣eq: Profiling of m ⁷ G and m ³ C RNA Modifications at Single Nucleotide Resolution. Angewandte Chemie - International Edition, 2018, 57, 16785-16790.	7.2	119
102	Refined RIP-seq protocol for epitranscriptome analysis with low input materials. PLoS Biology, 2018, 16, e2006092.	2.6	112
103	Plant mRNA decay: extended roles and potential determinants. Current Opinion in Plant Biology, 2018, 45, 178-184.	3.5	6
104	The m6A-methylase complex recruits TREX and regulates mRNA export. Scientific Reports, 2018, 8, 13827.	1.6	89
105	Epigenetic Modifications in Cardiovascular Aging and Diseases. Circulation Research, 2018, 123, 773-786.	2.0	180
106	A MADSâ€box transcription factor regulates a central step in sporulation of the oomycete Phytophthora infestans. Molecular Microbiology, 2018, 110, 562-575.	1.2	17
107	FGF23 and Fetuin-A Interaction in the Liver and in the Circulation. International Journal of Biological Sciences, 2018, 14, 586-598.	2.6	15
108	Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. Chemical Record, 2018, 18, 1760-1781.	2.9	4

#	Article	IF	CITATIONS
109	Aberrant Regulation of mRNA m6A Modification in Cancer Development. International Journal of Molecular Sciences, 2018, 19, 2515.	1.8	48
110	Maternal obesity aggravates the abnormality of porcine placenta by increasing N6-methyladenosine. International Journal of Obesity, 2018, 42, 1812-1820.	1.6	29
111	PEA: an integrated R toolkit for plant epitranscriptome analysis. Bioinformatics, 2018, 34, 3747-3749.	1.8	31
112	Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Research, 2018, 28, 616-624.	5.7	1,045
113	Development of Hair Fibres. Advances in Experimental Medicine and Biology, 2018, 1054, 109-154.	0.8	35
114	Osmium Tag for Postâ€ŧranscriptionally Modified RNA. ChemBioChem, 2018, 19, 1653-1656.	1.3	8
115	Mettl1/Wdr4-Mediated m7G tRNA Methylome Is Required for Normal mRNA Translation and Embryonic Stem Cell Self-Renewal and Differentiation. Molecular Cell, 2018, 71, 244-255.e5.	4.5	276
116	ALKBH5-induced demethylation of mono- and dimethylated adenosine. Chemical Communications, 2018, 54, 8591-8593.	2.2	31
117	The m ⁶ A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′–3′ exoribonuclease XRN1. Rna, 2018, 24, 1339-1350.	1.6	171
118	Mettl14 Is Essential for Epitranscriptomic Regulation of Striatal Function and Learning. Neuron, 2018, 99, 283-292.e5.	3.8	110
119	iRNA-3typeA: Identifying Three Types of Modification at RNA's Adenosine Sites. Molecular Therapy - Nucleic Acids, 2018, 11, 468-474.	2.3	173
120	Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Research, 2018, 28, 904-917.	5.7	203
121	Link Between m6A Modification and Cancers. Frontiers in Bioengineering and Biotechnology, 2018, 6, 89.	2.0	244
122	Transcriptome-Wide Annotation of m5C RNA Modifications Using Machine Learning. Frontiers in Plant Science, 2018, 9, 519.	1.7	44
123	New Era of Studying RNA Secondary Structure and Its Influence on Gene Regulation in Plants. Frontiers in Plant Science, 2018, 9, 671.	1.7	29
124	A Hierarchical Coding Strategy for Live Cell Imaging of Protein‧pecific Glycoform. Angewandte Chemie - International Edition, 2018, 57, 12007-12011.	7.2	40
125	A Hierarchical Coding Strategy for Live Cell Imaging of Protein‧pecific Glycoform. Angewandte Chemie, 2018, 130, 12183-12187.	1.6	15
126	Epitranscriptomes in the Adult Mammalian Brain: Dynamic Changes Regulate Behavior. Neuron, 2018, 99, 243-245.	3.8	24

		Citation Ri	EPORT	
#	Article		IF	CITATIONS
127	METTL3 regulates WTAP protein homeostasis. Cell Death and Disease, 2018, 9, 796.		2.7	108
128	The Role of m6A/m-RNA Methylation in Stress Response Regulation. Neuron, 2018, 99	, 389-403.e9.	3.8	293
129	Commentary: RNA editing with CRISPR-Cas13. Frontiers in Genetics, 2018, 9, 134.		1.1	20
130	Epigenetic and Transcriptional Pre-patterning—An Emerging Theme in Cortical Neurc in Neuroscience, 2018, 12, 359.	genesis. Frontiers	1.4	29
131	trumpet: transcriptome-guided quality assessment of m6A-seq data. BMC Bioinformat	ics, 2018, 19, 260.	1.2	10
132	Above the Epitranscriptome: RNA Modifications and Stem Cell Identity. Genes, 2018, 9	9, 329.	1.0	39
133	A potentially abundant junctional RNA motif stabilized by m6A and Mg2+. Nature Com 2018, 9, 2761.	imunications,	5.8	66
134	RNA m6A methylation participates in regulation of postnatal development of the mou Genome Biology, 2018, 19, 68.	se cerebellum.	3.8	166
135	New insights into the plant epitranscriptome. Journal of Experimental Botany, 2018, 6	9, 4659-4665.	2.4	30
136	N6-Methyladenosine Role in Acute Myeloid Leukaemia. International Journal of Molecu 2018, 19, 2345.	lar Sciences,	1.8	34
137	A Plant Biologist's Toolbox to Study Translation. Frontiers in Plant Science, 2018, 9	9, 873.	1.7	26
138	Loss of YTHDF2-mediated m6A-dependent mRNA clearance facilitates hematopoietic s regeneration. Cell Research, 2018, 28, 1035-1038.	tem cell	5.7	95
139	m6A mRNA methylation regulates AKT activity to promote the proliferation and tumor endometrial cancer. Nature Cell Biology, 2018, 20, 1074-1083.	igenicity of	4.6	592
140	Epitranscriptomic Code and Its Alterations in Human Disease. Trends in Molecular Mec 886-903.	licine, 2018, 24,	3.5	101
141	Critical Enzymatic Functions of FTO in Obesity and Cancer. Frontiers in Endocrinology	, 2018, 9, 396.	1.5	102
142	Transgenerational Epigenetics of Traumatic Stress. Progress in Molecular Biology and Science, 2018, 158, 273-298.	Franslational	0.9	76
143	Advances and Limitations of Current Epigenetic Studies Investigating Mammalian Axo Neurotherapeutics, 2018, 15, 529-540.	nal Regeneration.	2.1	22
144	Chemical and Biochemical Perspectives of Protein Lysine Methylation. Chemical Review 6656-6705.	vs, 2018, 118,	23.0	167

#	Article	IF	CITATIONS
145	Inhibitory effects of Orostachys malacophyllus var. iwarenge extracts on reactive oxygen species production and lipid accumulation during 3T3-L1 adipocyte differentiation. Food Science and Biotechnology, 2019, 28, 227-236.	1.2	12
146	Glucose Is Involved in the Dynamic Regulation of m6A in Patients With Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 665-673.	1.8	159
147	FTO-Dependent N ⁶ -Methyladenosine Regulates Cardiac Function During Remodeling and Repair. Circulation, 2019, 139, 518-532.	1.6	369
148	Methylation of RNA N6-methyladenosine in modulation of cytokine responses and tumorigenesis. Cytokine, 2019, 118, 35-41.	1.4	24
149	The Role of Dynamic m ⁶ A <scp>RNA</scp> Methylation in Photobiology. Photochemistry and Photobiology, 2019, 95, 95-104.	1.3	31
150	Using Large Datasets to Understand Nanotechnology. Advanced Materials, 2019, 31, e1902798.	11.1	45
151	RNA methylomes reveal the m6A-mediated regulation of DNA demethylase gene SIDML2 in tomato fruit ripening. Genome Biology, 2019, 20, 156.	3.8	174
152	Modularity Within Artificial Gene Regulatory Networks. , 2019, , .		0
153	miR-5195-3p Suppresses Cell Proliferation and Induces Apoptosis by Directly Targeting NEDD9 in Osteosarcoma. Cancer Biotherapy and Radiopharmaceuticals, 2019, 34, 405-412.	0.7	7
154	Retinal disease in ciliopathies: Recent advances with a focus on stem cell-based therapies. Translational Science of Rare Diseases, 2019, 4, 97-115.	1.6	22
155	RNAs and RNA-Binding Proteins in Immuno-Metabolic Homeostasis and Diseases. Frontiers in Cardiovascular Medicine, 2019, 6, 106.	1.1	20
156	Analysis of the Effects of Cr(VI) Exposure on mRNA Modifications. Chemical Research in Toxicology, 2019, 32, 2078-2085.	1.7	22
157	Determination of RNA Hydroxylmethylation in Mammals by Mass Spectrometry Analysis. Analytical Chemistry, 2019, 91, 10477-10483.	3.2	29
158	Sex-Based Mhrt Methylation Chromatinizes MeCP2 in the Heart. IScience, 2019, 17, 288-301.	1.9	8
159	Peptides as epigenetic modulators: therapeutic implications. Clinical Epigenetics, 2019, 11, 101.	1.8	22
160	Are European sea bass as euryhaline as expected? Intraspecific variation in freshwater tolerance. Marine Biology, 2019, 166, 1.	0.7	11
161	KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner. Oncogene, 2019, 38, 6123-6141.	2.6	149
162	ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1. Journal of Physiology and Biochemistry, 2019, 75, 379-389.	1.3	215

	CHATION	REPORT	
#	Article	IF	CITATIONS
163	Key actors in cancer therapy: epigenetic modifiers. Turkish Journal of Biology, 2019, 43, 155-170.	2.1	5
164	Leukemia Stem Cells in Hematologic Malignancies. Advances in Experimental Medicine and Biology, 2019, , .	0.8	1
165	Networks of mRNA Processing and Alternative Splicing Regulation in Health and Disease. Advances in Experimental Medicine and Biology, 2019, 1157, 1-27.	0.8	9
166	Epigenetic Regulation Of Axon Regeneration and Glial Activation in Injury Responses. Frontiers in Genetics, 2019, 10, 640.	1.1	25
167	Global gene expression reveals an increase of HMGB1 and APEX1 proteins and their involvement in oxidative stress, apoptosis and inflammation pathways among betaâ€thalassaemia intermedia and major phenotypes. British Journal of Haematology, 2019, 186, 608-619.	1.2	7
168	Programmable RNA-Guided RNA Effector Proteins Built from Human Parts. Cell, 2019, 178, 122-134.e12.	13.5	110
169	The m6A demethylase ALKBH5 controls trophoblast invasion at the maternal-fetal interface by regulating the stability of <i>CYR61</i> mRNA. Theranostics, 2019, 9, 3853-3865.	4.6	116
170	RNA modifications and the link to human disease. Methods in Enzymology, 2019, 626, 133-146.	0.4	20
171	In search of the mRNA modification landscape in plants. BMC Plant Biology, 2019, 19, 421.	1.6	24
172	N6-methyladenosine mRNA marking promotes selective translation of regulons required for human erythropoiesis. Nature Communications, 2019, 10, 4596.	5.8	42
173	Translational Control in p53 Expression: The Role of 5′-Terminal Region of p53 mRNA. International Journal of Molecular Sciences, 2019, 20, 5382.	1.8	10
174	METTL14-dependent m6A regulates vascular calcification induced by indoxyl sulfate. Life Sciences, 2019, 239, 117034.	2.0	47
175	Pseudouridinylation of mRNA coding sequences alters translation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23068-23074.	3.3	127
176	Dual Transcriptional Profile of Aspergillus flavus during Co-Culture with Listeria monocytogenes and Aflatoxin B1 Production: A Pathogen–Pathogen Interaction. Pathogens, 2019, 8, 198.	1.2	6
177	Method for Direct Mass-Spectrometry-Based Identification of Monomethylated RNA Nucleoside Positional Isomers and Its Application to the Analysis of <i>Leishmania</i> rRNA. Analytical Chemistry, 2019, 91, 15634-15643.	3.2	21
178	A RNA-Targeted Two-Photon Bioprobe with High Selective Permeability into Nuclear Pore Complexes for Dynamically Tracking the Autophagy Process among Multi-Organelles. Analytical Chemistry, 2019, 91, 14911-14919.	3.2	21
179	WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Molecular Cancer, 2019, 18, 127.	7.9	400
180	Genes and Mechanisms Involved in the Generation and Amplification of Basal Radial Clial Cells. Frontiers in Cellular Neuroscience, 2019, 13, 381.	1.8	65

	CI	ATION REPORT	
#	Article	IF	CITATIONS
181	Trans-Acting RNA–RNA Interactions in Segmented RNA Viruses. Viruses, 2019, 11, 751.	1.5	14
182	Gene silencing by double-stranded RNA from C. elegans neurons reveals functional mosaicism of RNA interference. Nucleic Acids Research, 2019, 47, 10059-10071.	6.5	4
183	Temozolomide and Other Alkylating Agents in Glioblastoma Therapy. Biomedicines, 2019, 7, 69.	1.4	136
184	Reading, writing and erasing mRNA methylation. Nature Reviews Molecular Cell Biology, 2019, 20, 608-624.	16.1	1,403
185	Xist RNA in action: Past, present, and future. PLoS Genetics, 2019, 15, e1008333.	1.5	160
186	Insights into Biological Role of LncRNAs in Epithelial-Mesenchymal Transition. Cells, 2019, 8, 1178.	1.8	151
187	DART-seq: an antibody-free method for global m6A detection. Nature Methods, 2019, 16, 1275-1280.	9.0	283
188	Eukaryotic Translation Elongation is Modulated by Single Natural Nucleotide Derivatives in the Coding Sequences of mRNAs. Genes, 2019, 10, 84.	1.0	35
189	Mettl3 Regulates Osteogenic Differentiation and Alternative Splicing of Vegfa in Bone Marrow Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2019, 20, 551.	1.8	93
190	Identify gene expression pattern change at transcriptional and post-transcriptional levels. Transcription, 2019, 10, 137-146.	1.7	9
191	A story of birth and death: mRNA translation and clearance at the onset of maternal-to-zygotic transition in mammalsâ€. Biology of Reproduction, 2019, 101, 579-590.	1.2	124
192	Inosine induces context-dependent recoding and translational stalling. Nucleic Acids Research, 2019, 47, 3-14.	6.5	128
193	Epitranscriptomic Signatures in IncRNAs and Their Possible Roles in Cancer. Genes, 2019, 10, 52.	1.0	74
194	Metabolic Regulation of the Epitranscriptome. ACS Chemical Biology, 2019, 14, 316-324.	1.6	19
195	<p>Expression profiles and prognostic significance of RNA N6-methyladenosine-related genes in patients with hepatocellular carcinoma: evidence from independent datasets</p> . Cancer Management and Research, 2019, Volume 11, 3921-3931.	0.9	91
196	Interplay Between N6-Methyladenosine (m6A) and Non-coding RNAs in Cell Development and Cancer. Frontiers in Cell and Developmental Biology, 2019, 7, 116.	1.8	97
197	The epitranscriptome in translation regulation: <scp>mRNA</scp> and <scp>tRNA</scp> modification as the two sides of the same coin?. FEBS Letters, 2019, 593, 1483-1493.	s 1.3	32
198	m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nature Communications, 2019, 10, 2782.	5.8	468

~		_	
(ITAT	ION	REPO	RT

#	Article	IF	CITATIONS
199	Transcriptome-wide analysis of pseudouridylation of mRNA and non-coding RNAs in Arabidopsis. Journal of Experimental Botany, 2019, 70, 5089-5600.	2.4	45
200	Deciphering the Epitranscriptomic Signatures in Cell Fate Determination and Development. Stem Cell Reviews and Reports, 2019, 15, 474-496.	5.6	12
201	Targeted m6A reader proteins to study the epitranscriptome. Methods in Enzymology, 2019, 621, 1-16.	0.4	5
202	mRNA methylation in cell senescence. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1547.	3.2	35
203	The role of m6A RNA methylation in human cancer. Molecular Cancer, 2019, 18, 103.	7.9	714
204	RNA methyltransferase BCDIN3D is crucial for female fertility and miRNA and mRNA profiles in Drosophila ovaries. PLoS ONE, 2019, 14, e0217603.	1.1	12
205	AlkB Homologue 1 Demethylates <i>N</i> ³ -Methylcytidine in mRNA of Mammals. ACS Chemical Biology, 2019, 14, 1418-1425.	1.6	50
206	Time-resolved protein activation by proximal decaging in living systems. Nature, 2019, 569, 509-513.	13.7	146
207	Aberrant alternative splicing in breast cancer. Journal of Molecular Cell Biology, 2019, 11, 920-929.	1.5	67
208	Maternal heat stress regulates the early fat deposition partly through modification of m6A RNA methylation in neonatal piglets. Cell Stress and Chaperones, 2019, 24, 635-645.	1.2	23
209	Role of identified RNA N6-methyladenosine methylation in liver. Analytical Biochemistry, 2019, 578, 45-50.	1.1	30
210	The epitranscriptome and synaptic plasticity. Current Opinion in Neurobiology, 2019, 59, 41-48.	2.0	35
212	N6â€methyladenosine regulatory machinery in plants: composition, function and evolution. Plant Biotechnology Journal, 2019, 17, 1194-1208.	4.1	140
213	Searching for a Match: Structure, Function and Application of Sequence-Specific RNA-Binding Proteins. Plant and Cell Physiology, 2019, 60, 1927-1938.	1.5	22
214	A Review in Research Progress Concerning m6A Methylation and Immunoregulation. Frontiers in Immunology, 2019, 10, 922.	2.2	209
215	Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation. Nature Communications, 2019, 10, 1898.	5.8	325
216	Role of RNA secondary structures in regulating Dscam alternative splicing. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194381.	0.9	13
217	The RNA N6-methyladenosine modification landscape of human fetal tissues. Nature Cell Biology, 2019, 21, 651-661.	4.6	124

#	Article	IF	Citations
218	Zfp217 mediates m6A mRNA methylation to orchestrate transcriptional and post-transcriptional regulation to promote adipogenic differentiation. Nucleic Acids Research, 2019, 47, 6130-6144.	6.5	101
219	Chemical RNA Modifications: The Plant Epitranscriptome. , 2019, , 291-310.		1
220	Transcriptome-wide Mapping of Internal N7-Methylguanosine Methylome in Mammalian mRNA. Molecular Cell, 2019, 74, 1304-1316.e8.	4.5	276
221	Targeting the RNA m6A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia. Cell Stem Cell, 2019, 25, 137-148.e6.	5.2	342
222	N6-Methyladenosine (m6A): A Promising New Molecular Target in Acute Myeloid Leukemia. Frontiers in Oncology, 2019, 9, 251.	1.3	66
223	Genome-wide screening of altered m6A-tagged transcript profiles in the hippocampus after traumatic brain injury in mice. Epigenomics, 2019, 11, 805-819.	1.0	49
224	RNA structure maps across mammalian cellular compartments. Nature Structural and Molecular Biology, 2019, 26, 322-330.	3.6	183
225	The Critical Role of RNA m6A Methylation in Cancer. Cancer Research, 2019, 79, 1285-1292.	0.4	505
226	Direct observation of an intramolecular charge transfer state in epigenetic nucleobase <i>N</i> 6-methyladenine. Physical Chemistry Chemical Physics, 2019, 21, 6878-6885.	1.3	13
227	Regulation of transposable elements by DNA modifications. Nature Reviews Genetics, 2019, 20, 417-431.	7.7	285
228	Transcriptomeâ€wide analysis of N6â€methyladenosine uncovers its regulatory role in gene expression in the lepidopteran <i>Bombyx mori</i> . Insect Molecular Biology, 2019, 28, 703-715.	1.0	38
229	m6A-induced IncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Molecular Cancer, 2019, 18, 87.	7.9	300
230	RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Molecular Cancer, 2019, 18, 46.	7.9	416
231	Mass Spectrometry for Investigating the Effects of Toxic Metals on Nucleic Acid Modifications. Chemical Research in Toxicology, 2019, 32, 808-819.	1.7	20
232	Transcriptome-Wide Mapping 5-Methylcytosine by m5C RNA Immunoprecipitation Followed by Deep Sequencing in Plant. Methods in Molecular Biology, 2019, 1933, 389-394.	0.4	5
233	Multiple covalent fluorescence labeling of eukaryotic mRNA at the poly(A) tail enhances translation and can be performed in living cells. Nucleic Acids Research, 2019, 47, e42-e42.	6.5	47
234	Messenger RNA Modifications in Plants. Trends in Plant Science, 2019, 24, 328-341.	4.3	74
235	The global DNA and RNA methylation and their reversal in lung under different concentration exposure of ambient air particulate matter in mice. Ecotoxicology and Environmental Safety, 2019, 172, 396-402	2.9	23

#	Article	IF	Citations
236	Depletion of S-adenosylmethionine impacts on ribosome biogenesis through hypomodification of a single rRNA methylation. Nucleic Acids Research, 2019, 47, 4226-4239.	6.5	19
237	PUS7 mutations impair pseudouridylation in humans and cause intellectual disability and microcephaly. Human Genetics, 2019, 138, 231-239.	1.8	53
238	The role of m6A RNA methylation in cancer. Biomedicine and Pharmacotherapy, 2019, 112, 108613.	2.5	540
239	YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. Molecular Cancer, 2019, 18, 163.	7.9	230
240	Ontogenic mRNA expression of RNA modification writers, erasers, and readers in mouse liver. PLoS ONE, 2019, 14, e0227102.	1.1	14
242	Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N6-methyladenosine of Notch1. Molecular Cancer, 2019, 18, 168.	7.9	122
243	The m6A Dynamics of Profilin in Neurogenesis. Frontiers in Genetics, 2019, 10, 987.	1.1	8
244	N6-Methyladenosine: A Novel RNA Imprint in Human Cancer. Frontiers in Oncology, 2019, 9, 1407.	1.3	22
245	RADAR: differential analysis of MeRIP-seq data with a random effect model. Genome Biology, 2019, 20, 294.	3.8	46
246	NMR Chemical Exchange Measurements Reveal That <i>N</i> ⁶ -Methyladenosine Slows RNA Annealing. Journal of the American Chemical Society, 2019, 141, 19988-19993.	6.6	46
247	Defining the functions of adenosine-to-inosine RNA editing through hematology. Current Opinion in Hematology, 2019, 26, 241-248.	1.2	6
248	m6A minimally impacts the structure, dynamics, and Rev ARM binding properties of HIV-1 RRE stem IIB. PLoS ONE, 2019, 14, e0224850.	1.1	15
249	Synthesis of an acp3U phosphoramidite and incorporation of the hypermodified base into RNA. Chemical Communications, 2019, 55, 12216-12218.	2.2	6
250	Milk osteopontin promotes brain development by upâ€regulating osteopontin in the brain in early life. FASEB Journal, 2019, 33, 1681-1694.	0.2	32
251	Analytical Methods for Deciphering RNA Modifications. Analytical Chemistry, 2019, 91, 743-756.	3.2	57
252	Differential m6A methylomes between two major life stages allows potential regulations in Trypanosoma brucei. Biochemical and Biophysical Research Communications, 2019, 508, 1286-1290.	1.0	22
253	m6A modification of non-coding RNA and the control of mammalian gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 310-318.	0.9	132
254	m6A modification controls the innate immune response to infection by targeting type I interferons. Nature Immunology, 2019, 20, 173-182.	7.0	317

#	Article	IF	CITATIONS
255	RNA-binding protein YTHDF3 suppresses interferon-dependent antiviral responses by promoting FOXO3 translation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 976-981.	3.3	120
256	On-line trapping/capillary hydrophilic-interaction liquid chromatography/mass spectrometry for sensitive determination of RNA modifications from human blood. Chinese Chemical Letters, 2019, 30, 553-557.	4.8	46
257	Succinic acid enhanced quantitative determination of blood modified nucleosides in the development of diabetic nephropathy based on hydrophilic interaction liquid chromatography mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2019, 164, 309-316.	1.4	20
258	Novel positioning from obesity to cancer: FTO, an m6A RNA demethylase, regulates tumour progression. Journal of Cancer Research and Clinical Oncology, 2019, 145, 19-29.	1.2	101
259	Cap-specific terminal <i>N</i> ⁶ -methylation of RNA by an RNA polymerase II–associated methyltransferase. Science, 2019, 363, .	6.0	262
260	Changes of RNA N6-methyladenosine in the hormesis effect induced by arsenite on human keratinocyte cells. Toxicology in Vitro, 2019, 56, 84-92.	1.1	46
261	A dynamic reversible RNA N ⁶ â€methyladenosine modification: current status and perspectives. Journal of Cellular Physiology, 2019, 234, 7948-7956.	2.0	101
262	Mapping <i>N</i> ⁶ â€Methyladenosine (m ⁶ A) in RNA: Established Methods, Remaining Challenges, and Emerging Approaches. Chemistry - A European Journal, 2019, 25, 3455-3464.	1.7	18
263	RNA Modifications: Reversal Mechanisms and Cancer. Biochemistry, 2019, 58, 312-329.	1.2	41
264	<i>N</i> 6-methyladenosine modification and METTL3 modulate enterovirus 71 replication. Nucleic Acids Research, 2019, 47, 362-374.	6.5	133
265	Mechanistic insights into m6A RNA enzymes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 222-229.	0.9	89
266	Catalytic crosslinking-based methods for enzyme-specified profiling of RNA ribonucleotide modifications. Methods, 2019, 156, 60-65.	1.9	3
267	Human ALKBH3-induced m1A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 35-46.	0.9	88
268	N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nature Chemical Biology, 2019, 15, 88-94.	3.9	258
270	High-Resolution Mapping of N 6-Methyladenosine Using m6A Crosslinking Immunoprecipitation Sequencing (m6A-CLIP-Seq). Methods in Molecular Biology, 2019, 1870, 69-79.	0.4	10
271	Identification of Methylated Transcripts Using the TRIBE Approach. Methods in Molecular Biology, 2019, 1870, 89-106.	0.4	8
272	Cell-type specific polysome profiling from mammalian tissues. Methods, 2019, 155, 131-139.	1.9	15
273	The dynamic RNA modification 5â€methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1510.	3.2	236

#	Article	IF	CITATIONS
274	The m6A‑methylase complex and mRNA export. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 319-328.	0.9	40
275	Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue Engineering - Part A, 2019, 25, 91-112.	1.6	68
276	METTL3-mediated m ⁶ A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut, 2020, 69, 1193-1205.	6.1	521
277	Chemoâ€enzymatic treatment of RNA to facilitate analyses. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1561.	3.2	31
278	N ⁶ -methyladenosine-dependent primary microRNA-126 processing activated PI3K-AKT-mTOR pathway drove the development of pulmonary fibrosis induced by nanoscale carbon black particles in rats. Nanotoxicology, 2020, 14, 1-20.	1.6	56
279	Chromatin modification and epigenetic control in functional nerve regeneration. Seminars in Cell and Developmental Biology, 2020, 97, 74-83.	2.3	6
280	Landscape and Regulation of m6A and m6Am Methylome across Human and Mouse Tissues. Molecular Cell, 2020, 77, 426-440.e6.	4.5	179
281	Highâ€resolution ion mobility spectrometryâ€mass spectrometry of isomeric/isobaric ribonucleotide variants. Journal of Mass Spectrometry, 2020, 55, e4465.	0.7	22
282	RNA Nanotechnology-Mediated Cancer Immunotherapy. Theranostics, 2020, 10, 281-299.	4.6	100
283	METTL3-mediated m ⁶ A is required for murine oocyte maturation and maternal-to-zygotic transition. Cell Cycle, 2020, 19, 391-404.	1.3	69
284	Mouse Trmt2B protein is a dual specific mitochondrial metyltransferase responsible for m ⁵ U formation in both tRNA and rRNA. RNA Biology, 2020, 17, 441-450.	1.5	22
285	Electrochemical competitive immunodetection of messengerÂRNA modified with N6-methyladenosine by using DNA-modified mesoporous PtCo nanospheres. Mikrochimica Acta, 2020, 187, 31.	2.5	22
286	Episo: quantitative estimation of RNA 5-methylcytosine at isoform level by high-throughput sequencing of RNA treated with bisulfite. Bioinformatics, 2020, 36, 2033-2039.	1.8	5
287	The chemistry and applications ofÂRNA 2′-OH acylation. Nature Reviews Chemistry, 2020, 4, 22-37.	13.8	48
288	An Emerging Role for isomiRs and the microRNA Epitranscriptome in Neovascularization. Cells, 2020, 9, 61.	1.8	31
289	BMP2 Modified by the m6A Demethylation Enzyme ALKBH5 in the Ossification of the Ligamentum Flavum Through the AKT Signaling Pathway. Calcified Tissue International, 2020, 106, 486-493.	1.5	27
290	Epigenetic Modifications of mRNA and DNA in Plants. Molecular Plant, 2020, 13, 14-30.	3.9	124
291	The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N6-methyladenosine methylation of Parp10 mRNA. Nature Cell Biology, 2020, 22, 1319-1331.	4.6	93

#	Article	IF	CITATIONS
292	Landscape of N6-Methyladenosine Modification Patterns in Human Ameloblastoma. Frontiers in Oncology, 2020, 10, 556497.	1.3	23
293	Fusarium infection alters the m6A-modified transcript landscape in the cornea. Experimental Eye Research, 2020, 200, 108216.	1.2	13
294	WTAP Function in Sertoli Cells Is Essential for Sustaining the Spermatogonial Stem Cell Niche. Stem Cell Reports, 2020, 15, 968-982.	2.3	27
295	Fluorescein-based monitoring of RNA N6-methyladenosine at single-nucleotide resolution. Journal of Molecular Cell Biology, 2020, 13, 325-328.	1.5	0
296	Development and validation of a six-RNA binding proteins prognostic signature and candidate drugs for prostate cancer. Genomics, 2020, 112, 4980-4992.	1.3	17
297	Hepatic FTO is dispensable for the regulation of metabolism but counteracts HCC development inÂvivo. Molecular Metabolism, 2020, 42, 101085.	3.0	37
298	m6A RNA Methylation in Cardiovascular Diseases. Molecular Therapy, 2020, 28, 2111-2119.	3.7	73
299	Epitranscriptomic N4-Acetylcytidine Profiling in CD4+ T Cells of Systemic Lupus Erythematosus. Frontiers in Cell and Developmental Biology, 2020, 8, 842.	1.8	22
300	The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases. Genes and Diseases, 2021, 8, 746-758.	1.5	51
301	N ⁶ â€methyladenosine (m ⁶ A) RNA modification in human cancer. Cell Proliferation, 2020, 53, e12921.	2.4	29
302	RNA N6-Methyladenosine and the Regulation of RNA Localization and Function in the Brain. Trends in Neurosciences, 2020, 43, 1011-1023.	4.2	36
303	N6-methyladenosine-dependent pri-miR-17-92 maturation suppresses PTEN/TMEM127 and promotes sensitivity to everolimus in gastric cancer. Cell Death and Disease, 2020, 11, 836.	2.7	50
304	M6A RNA Methylation Regulator HNRNPC Contributes to Tumorigenesis and Predicts Prognosis in Glioblastoma Multiforme. Frontiers in Oncology, 2020, 10, 536875.	1.3	44
305	The Ongoing Quest to Crack the Genetic Code for Protein Production. Molecular Cell, 2020, 80, 193-209.	4.5	36
306	Mettl5 mediated 18S rRNA N6-methyladenosine (m6A) modification controls stem cell fate determination and neural function. Genes and Diseases, 2022, 9, 268-274.	1.5	21
307	m6A modification-mediated BATF2 acts as a tumor suppressor in gastric cancer through inhibition of ERK signaling. Molecular Cancer, 2020, 19, 114.	7.9	61
308	Validation strategies for antibodies targeting modified ribonucleotides. Rna, 2020, 26, 1489-1506.	1.6	18
309	METTL3 promotes the proliferation and invasion of esophageal cancer cells partly through AKT signaling pathway. Pathology Research and Practice, 2020, 216, 153087.	1.0	27

#	Article	IF	CITATIONS
310	Genomic, Transcriptomic and Epigenomic Tools to Study the Domestication of Plants and Animals: A Field Guide for Beginners. Frontiers in Genetics, 2020, 11, 742.	1.1	21
311	IFN regulatory Factor-1 induced macrophage pyroptosis by modulating m6A modification of circ_0029589 in patients with acute coronary syndrome. International Immunopharmacology, 2020, 86, 106800.	1.7	71
312	N6-Adenosine Methylation of Socs1 mRNA Is Required to Sustain the Negative Feedback Control of Macrophage Activation. Developmental Cell, 2020, 55, 737-753.e7.	3.1	51
313	Dynamic analysis of m6A methylation spectroscopy during progression and reversal of hepatic fibrosis. Epigenomics, 2020, 12, 1707-1723.	1.0	22
314	Small Molecule-Inducible RNA-Targeting Systems for Temporal Control of RNA Regulation. ACS Central Science, 2020, 6, 1987-1996.	5.3	27
315	RNA-Binding Protein HuR Suppresses Inflammation and Promotes Extracellular Matrix Homeostasis via NKRF in Intervertebral Disc Degeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 611234.	1.8	7
316	Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing. Nature Communications, 2020, 11, 6016.	5.8	111
317	Translational control of coronaviruses. Nucleic Acids Research, 2020, 48, 12502-12522.	6.5	43
318	Programmable N6-methyladenosine modification of CDCP1 mRNA by RCas9-methyltransferase like 3 conjugates promotes bladder cancer development. Molecular Cancer, 2020, 19, 169.	7.9	24
319	Emerging role of N4-acetylcytidine modification of RNA in gene regulation and cellular functions. Molecular Biology Reports, 2020, 47, 9189-9199.	1.0	22
320	RNA Editing and Modifications in Mood Disorders. Genes, 2020, 11, 872.	1.0	18
321	Crosstalk between RNA m6A Modification and Non-coding RNA Contributes to Cancer Growth and Progression. Molecular Therapy - Nucleic Acids, 2020, 22, 62-71.	2.3	59
322	Integrative Genomic Enrichment Analysis Identified the Brain Regions and Development Stages Related to Anorexia Nervosa and Obsessive-Compulsive Disorder. Cerebral Cortex, 2020, 30, 6481-6489.	1.6	6
323	Novel insights into the interplay between m6A modification and noncoding RNAs in cancer. Molecular Cancer, 2020, 19, 121.	7.9	148
324	N6-Methylandenosine-Related IncRNAs Are Potential Biomarkers for Predicting the Overall Survival of Lower-Grade Glioma Patients. Frontiers in Cell and Developmental Biology, 2020, 8, 642.	1.8	117
325	Integrative Genomic Analysis Predicts Regulatory Role of N6-Methyladenosine-Associated SNPs for Adiposity. Frontiers in Cell and Developmental Biology, 2020, 8, 551.	1.8	6
326	<i>YTHDC1</i> gene polymorphisms and hepatoblastoma susceptibility in Chinese children: A sevenâ€center case–control study. Journal of Gene Medicine, 2020, 22, e3249.	1.4	17
327	Impact of Microbiome on Hepatic Metabolizing Enzymes and Transporters in Mice during Pregnancy. Drug Metabolism and Disposition, 2020, 48, 708-722.	1.7	6

#	Article	IF	CITATIONS
328	Control of Early B Cell Development by the RNA N6-Methyladenosine Methylation. Cell Reports, 2020, 31, 107819.	2.9	77
329	Synthesis of Triazole-Linked SAM-Adenosine Conjugates: Functionalization of Adenosine at N-1 or N-6 Position without Protecting Groups. Molecules, 2020, 25, 3241.	1.7	9
330	Dm6A-TSVM: detection of N6-methyladenosine (m6A) sites from RNA transcriptomes using the twin support vector machines. Journal of Ambient Intelligence and Humanized Computing, 2020, , 1.	3.3	1
331	Prognostic values of m6A RNA methylation regulators in differentiated Thyroid Carcinoma. Journal of Cancer, 2020, 11, 5187-5197.	1.2	15
332	METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications. Theranostics, 2020, 10, 8939-8956.	4.6	136
333	Epigenetic Regulation of Endothelial Cell Function by Nucleic Acid Methylation in Cardiac Homeostasis and Disease. Cardiovascular Drugs and Therapy, 2021, 35, 1025-1044.	1.3	7
334	Associations of smoking and air pollution with peripheral blood RNA N6-methyladenosine in the Beijing truck driver air pollution study. Environment International, 2020, 144, 106021.	4.8	25
335	m6A RNA Methylation Regulators Participate in the Malignant Progression and Have Clinical Prognostic Value in Lung Adenocarcinoma. Frontiers in Genetics, 2020, 11, 994.	1.1	44
336	Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation. Journal of Experimental and Clinical Cancer Research, 2020, 39, 224.	3.5	49
337	m ⁶ A RNA modification modulates PI3K/Akt/mTOR signal pathway in Gastrointestinal Cancer. Theranostics, 2020, 10, 9528-9543.	4.6	62
338	Interplay of m ⁶ A and H3K27 trimethylation restrains inflammation during bacterial infection. Science Advances, 2020, 6, eaba0647.	4.7	85
339	Dynamic N1-Methyladenosine in Plant Messenger RNA. Plant Physiology, 2020, 183, 1416-1417.	2.3	1
340	Gene Signatures and Prognostic Values of m6A RNA Methylation Regulators in Ovarian Cancer. Cancer Control, 2020, 27, 107327482096046.	0.7	14
341	YTHDF2/3 Are Required for Somatic Reprogramming through Different RNA Deadenylation Pathways. Cell Reports, 2020, 32, 108120.	2.9	44
342	Upregulation of METTL14 mediates the elevation of PERP mRNA N6 adenosine methylation promoting the growth and metastasis of pancreatic cancer. Molecular Cancer, 2020, 19, 130.	7.9	140
343	The FTO/miRâ€181bâ€3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer. Cancer Communications, 2020, 40, 484-500.	3.7	108
344	m6A RNA Methylation: Ramifications for Gene Expression and Human Health. Molecular Biotechnology, 2020, 62, 467-484.	1.3	40
345	It's the Little Things (in Viral RNA). MBio, 2020, 11,	1.8	11

#	Article	IF	CITATIONS
346	Gene signatures and prognostic values of m1A-related regulatory genes in hepatocellular carcinoma. Scientific Reports, 2020, 10, 15083.	1.6	49
347	New insights into non-transcriptional regulation of mammalian core clock proteins. Journal of Cell Science, 2020, 133, .	1.2	32
348	Epitranscriptomics and epiproteomics in cancer drug resistance: therapeutic implications. Signal Transduction and Targeted Therapy, 2020, 5, 193.	7.1	66
349	Novel Insights into Adipogenesis from the Perspective of Transcriptional and RNA N6â€Methyladenosineâ€Mediated Postâ€Transcriptional Regulation. Advanced Science, 2020, 7, 2001563.	5.6	20
350	ALKBH5 regulates IGF1R expression to promote the Proliferation and Tumorigenicity of Endometrial Cancer. Journal of Cancer, 2020, 11, 5612-5622.	1.2	31
351	Transcriptome-Wide 5-Methylcytosine Functional Profiling of Long Non-Coding RNA in Hepatocellular Carcinoma. Cancer Management and Research, 2020, Volume 12, 6877-6885.	0.9	19
352	Two-Dimensional Hybridization Chain Reaction Strategy for Highly Sensitive Analysis of Intracellular mRNA. Analytical Chemistry, 2020, 92, 12700-12709.	3.2	28
353	RNA–protein interaction mapping via MS2- or Cas13-based APEX targeting. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22068-22079.	3.3	105
354	The Identification of Critical m6A RNA Methylation Regulators as Malignant Prognosis Factors in Prostate Adenocarcinoma. Frontiers in Genetics, 2020, 11, 602485.	1.1	23
355	Liver-specific Mettl3 ablation delays liver regeneration in mice. Genes and Diseases, 2022, 9, 697-704.	1.5	8
356	Differential roles of YTHDF1 and YTHDF3 in embryonic stem cell-derived cardiomyocyte differentiation. RNA Biology, 2021, 18, 1-10.	1.5	33
357	To Kill But Not Be Killed: Controlling the Activity of Mammalian Pore-Forming Proteins. Frontiers in Immunology, 2020, 11, 601405.	2.2	15
358	m6A Regulates Liver Metabolic Disorders and Hepatogenous Diabetes. Genomics, Proteomics and Bioinformatics, 2020, 18, 371-383.	3.0	49
359	Transcriptome-Wide m6A Methylation in Skin Lesions From Patients With Psoriasis Vulgaris. Frontiers in Cell and Developmental Biology, 2020, 8, 591629.	1.8	23
360	YTHDF1-enhanced iron metabolism depends on TFRC m ⁶ A methylation. Theranostics, 2020, 10, 12072-12089.	4.6	50
361	Molecular characterization, biological function, tumor microenvironment association and clinical significance of m6A regulators in lung adenocarcinoma. Briefings in Bioinformatics, 2021, 22, .	3.2	100
362	RNA m6A Modification in Cancers: Molecular Mechanisms and Potential Clinical Applications. Innovation(China), 2020, 1, 100066.	5.2	69
363	tRIPâ€seq reveals repression of premature polyadenylation by coâ€transcriptional FUSâ€U1 snRNP assembly. EMBO Reports, 2020, 21, e49890.	2.0	18

#	Article	IF	CITATIONS
364	Emerging role of RNA methyltransferase METTL3 in gastrointestinal cancer. Journal of Hematology and Oncology, 2020, 13, 57.	6.9	71
365	N6-methyladenosine methyltransferase METTL3 affects the phenotype of cerebral arteriovenous malformation via modulating Notch signaling pathway. Journal of Biomedical Science, 2020, 27, 62.	2.6	36
366	RNA modifications in brain tumorigenesis. Acta Neuropathologica Communications, 2020, 8, 64.	2.4	15
367	Identification of a m6A RNA methylation regulators-based signature for predicting the prognosis of clear cell renal carcinoma. Cancer Cell International, 2020, 20, 157.	1.8	38
368	m6A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development. Immunity, 2020, 52, 1007-1021.e8.	6.6	99
369	Modulation of circRNA Metabolism by m6A Modification. Cell Reports, 2020, 31, 107641.	2.9	217
370	Dynamic landscape and evolution of m6A methylation in human. Nucleic Acids Research, 2020, 48, 6251-6264.	6.5	173
371	Critical roles of mRNA m6A modification and YTHDC2 expression for meiotic initiation and progression in female germ cells. Gene, 2020, 753, 144810.	1.0	14
372	RNA-Binding Proteins in Pulmonary Hypertension. International Journal of Molecular Sciences, 2020, 21, 3757.	1.8	6
373	The N ¹ -Methyladenosine Methylome of Petunia mRNA. Plant Physiology, 2020, 183, 1710-1724.	2.3	31
374	Investigating cell cycle-dependent gene expression in the context of nuclear architecture at a single allele resolution. Journal of Cell Science, 2020, 133, .	1.2	3
375	SUMO1 modification of methyltransferase-like 3 promotes tumor progression via regulating Snail mRNA homeostasis in hepatocellular carcinoma. Theranostics, 2020, 10, 5671-5686.	4.6	94
376	N6-methyladenosine regulates PEDV replication and host gene expression. Virology, 2020, 548, 59-72.	1.1	21
377	Staufen1 is Essential for Cell-Cycle Transitions and Cell Proliferation Via the Control of E2F1 Expression. Journal of Molecular Biology, 2020, 432, 3881-3897.	2.0	14
378	Increased expression of YTHDF1 and HNRNPA2B1 as potent biomarkers for melanoma: a systematic analysis. Cancer Cell International, 2020, 20, 239.	1.8	30
379	Mechanism of RNA modification N6-methyladenosine in human cancer. Molecular Cancer, 2020, 19, 104.	7.9	184
380	Dysregulated m6A-Related Regulators Are Associated With Tumor Metastasis and Poor Prognosis in Osteosarcoma. Frontiers in Oncology, 2020, 10, 769.	1.3	61
381	High expression of WTAP leads to poor prognosis of gastric cancer by influencing tumourâ€associated T lymphocyte infiltration. Journal of Cellular and Molecular Medicine, 2020, 24, 4452-4465.	1.6	100

#	Article	IF	CITATIONS
382	Prdx1 Reduces Intracerebral Hemorrhage-Induced Brain Injury via Targeting Inflammation- and Apoptosis-Related mRNA Stability. Frontiers in Neuroscience, 2020, 14, 181.	1.4	24
383	Epitranscriptomic technologies and analyses. Science China Life Sciences, 2020, 63, 501-515.	2.3	12
384	Srsf7 Establishes the Juvenile Transcriptome through Age-Dependent Alternative Splicing in Mice. IScience, 2020, 23, 100929.	1.9	21
385	Deciphering UVâ€induced DNA Damage Responses to Prevent and Treat Skin Cancer. Photochemistry and Photobiology, 2020, 96, 478-499.	1.3	47
386	Cytoplasmic m1A reader YTHDF3 inhibits trophoblast invasion by downregulation of m1A-methylated IGF1R. Cell Discovery, 2020, 6, 12.	3.1	48
387	m6A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell, 2020, 37, 270-288.	7.7	688
388	Viral RNA in an m6A disguise. Nature Microbiology, 2020, 5, 531-532.	5.9	5
389	Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nature Reviews Molecular Cell Biology, 2020, 21, 327-340.	16.1	156
390	m6A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer. Molecular Cancer, 2020, 19, 53.	7.9	704
391	Impact of the gut microbiota on the m6A epitranscriptome of mouse cecum and liver. Nature Communications, 2020, 11, 1344.	5.8	59
392	Long noncoding RNA pncRNA-D reduces cyclin D1 gene expression and arrests cell cycle through RNA m6A modification. Journal of Biological Chemistry, 2020, 295, 5626-5639.	1.6	24
393	Multiple m6A RNA methylation modulators promote the malignant progression of hepatocellular carcinoma and affect its clinical prognosis. BMC Cancer, 2020, 20, 165.	1.1	51
394	N6-methyladenosine-induced ERRÎ ³ triggers chemoresistance of cancer cells through upregulation of ABCB1 and metabolic reprogramming. Theranostics, 2020, 10, 3382-3396.	4.6	37
395	Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nature Biotechnology, 2020, 38, 1431-1440.	9.4	173
396	Posttranscriptional and translational control of neurogenesis. , 2020, , 731-750.		4
397	METTL3 and N6-Methyladenosine Promote Homologous Recombination-Mediated Repair of DSBs by Modulating DNA-RNA Hybrid Accumulation. Molecular Cell, 2020, 79, 425-442.e7.	4.5	182
398	Association between <i>METTL3</i> gene polymorphisms and neuroblastoma susceptibility: A nineâ€centre caseâ€control study. Journal of Cellular and Molecular Medicine, 2020, 24, 9280-9286.	1.6	20
399	A Census and Categorization Method of Epitranscriptomic Marks. International Journal of Molecular Sciences, 2020, 21, 4684.	1.8	29

#	Article	IF	CITATIONS
400	Diabetic nephropathy produces alterations in the tissue expression profile of the orphan receptors GPR149, GPR153, GPR176, TAAR3, TAAR5 and TAAR9 in Wistar rats. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 1150-1161.	0.4	5
401	Identification of Conserved Proteomic Networks in Neurodegenerative Dementia. Cell Reports, 2020, 31, 107807.	2.9	49
402	circ_KIAA1429 accelerates hepatocellular carcinoma advancement through the mechanism of m6A-YTHDF3-Zeb1. Life Sciences, 2020, 257, 118082.	2.0	78
403	Dynamic N6-methyladenosine RNA methylation in brain and diseases. Epigenomics, 2020, 12, 371-380.	1.0	17
404	ToxPoint: Dissecting Functional RNA Modifications in Responses to Environmental Exposure—Mechanistic Toxicology Research Enters a New Era. Toxicological Sciences, 2020, 174, 1-2.	1.4	13
405	Codon and amino acid content are associated with mRNA stability in mammalian cells. PLoS ONE, 2020, 15, e0228730.	1.1	54
406	<scp>YTHDF</scp> 1â€mediated translation amplifies Wntâ€driven intestinal stemness. EMBO Reports, 2020, 21, e49229.	2.0	84
407	<i>ALKBH5</i> gene polymorphisms and Wilms tumor risk in Chinese children: A fiveâ€center caseâ€control study. Journal of Clinical Laboratory Analysis, 2020, 34, e23251.	0.9	19
408	Deep analysis of RNA N6-adenosine methylation (m6A) patterns in human cells. NAR Genomics and Bioinformatics, 2020, 2, Iqaa007.	1.5	17
409	The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis. Molecular Cancer, 2020, 19, 44.	7.9	205
410	Direct microRNA Sequencing Using Nanopore-Induced Phase-Shift Sequencing. IScience, 2020, 23, 100916.	1.9	26
411	How miRNA Structure of Animals Influences Their Biogenesis. Russian Journal of Genetics, 2020, 56, 17-29.	0.2	2
412	Conserved chromosomal functions of RNA interference. Nature Reviews Genetics, 2020, 21, 311-331.	7.7	62
413	Invited Review: Epigenetics in neurodevelopment. Neuropathology and Applied Neurobiology, 2020, 46, 6-27.	1.8	34
414	Molecular Mechanisms Driving mRNA Degradation by m6A Modification. Trends in Genetics, 2020, 36, 177-188.	2.9	251
415	Chemical tagging for sensitive determination of uridine modifications in RNA. Chemical Science, 2020, 11, 1878-1891.	3.7	41
416	Quantification and Single-Base Resolution Analysis of <i>N</i> 1-Methyladenosine in mRNA by Ligation-Assisted Differentiation. Analytical Chemistry, 2020, 92, 2612-2619.	3.2	17
417	Characterization of METTL16 as a cytoplasmic RNA binding protein. PLoS ONE, 2020, 15, e0227647.	1.1	43

#	Article	IF	Citations
418	RNA N6-methyladenosine modification in solid tumors: new therapeutic frontiers. Cancer Gene	2.2	22
419	The m6A methyltransferase METTL3 contributes to Transforming Growth Factor-beta-induced epithelial-mesenchymal transition of lung cancer cells through the regulation of JUNB. Biochemical and Biophysical Research Communications, 2020, 524, 150-155.	1.0	108
420	Widespread non-modular overlapping codes in the coding regions*. Physical Biology, 2020, 17, 031002.	0.8	22
421	RNA modifications and cancer. RNA Biology, 2020, 17, 1560-1575.	1.5	93
422	The <i>N</i> ⁶ â€methyladenosine (m ⁶ A) erasers alkylation repair homologue 5 (ALKBH5) and fat mass and obesityâ€associated protein (FTO) are prognostic biomarkers in patients with clear cell renal carcinoma. BJU International, 2020, 125, 617-624.	1.3	65
423	Functional and transcriptomic characterization of cisplatin-resistant AGS and MKN-28 gastric cancer cell lines. PLoS ONE, 2020, 15, e0228331.	1.1	7
424	Nucleoside-modified AdoMet analogues for differential methyltransferase targeting. Chemical Communications, 2020, 56, 2115-2118.	2.2	27
425	Surface protein imputation from single cell transcriptomes by deep neural networks. Nature Communications, 2020, 11, 651.	5.8	47
426	RNA m ⁶ A methylation regulates uveal melanoma cell proliferation, migration, and invasion by targeting câ€Met. Journal of Cellular Physiology, 2020, 235, 7107-7119.	2.0	47
427	N6-methyladenosine demethylase FTO promotes M1 and M2 macrophage activation. Cellular Signalling, 2020, 69, 109553.	1.7	110
428	Pathogenic diversity of RNA variants and RNA variation-associated factors in cancer development. Experimental and Molecular Medicine, 2020, 52, 582-593.	3.2	10
429	Identification of m6A-related genes and m6A RNA methylation regulators in pancreatic cancer and their association with survival. Annals of Translational Medicine, 2020, 8, 387-387.	0.7	68
430	FTO Demethylates Cyclin D1 mRNA and Controls Cell-Cycle Progression. Cell Reports, 2020, 31, 107464.	2.9	55
431	Analysis of mitochondrial m1A/G RNA modification reveals links to nuclear genetic variants and associated disease processes. Communications Biology, 2020, 3, 147.	2.0	22
432	Wilms' tumour 1â€associating protein inhibits endothelial cell angiogenesis by m6Aâ€dependent epigenetic silencing of desmoplakin in brain arteriovenous malformation. Journal of Cellular and Molecular Medicine, 2020, 24, 4981-4991.	1.6	43
433	The M6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation. Journal of Cancer, 2020, 11, 3588-3595.	1.2	78
434	RNA methyltransferase NSUN2 promotes gastric cancer cell proliferation by repressing p57Kip2 by an m5C-dependent manner. Cell Death and Disease, 2020, 11, 270.	2.7	90
435	Global profiling of <i>N</i> ⁶ â€methyladenosine methylation in maize callus induction. Plant Genome, 2020, 13, e20018.	1.6	18

ARTICLE IF CITATIONS # A metabolic labeling method detects m6A transcriptome-wide at single base resolution. Nature 436 3.9 133 Chemical Biology, 2020, 16, 887-895. DNA Methylation Inhibits the Expression of CFSH in Mud Crab. Frontiers in Endocrinology, 2020, 11, 163. 1.5 438 Role of RNA modifications in cancer. Nature Reviews Cancer, 2020, 20, 303-322. 12.8 621 G3BP1 Is a Tunable Switch that Triggers Phase Separation to Assemble Stress Granules. Cell, 2020, 181, 697 325-345.e28. Synthetic Biological Circuits within an Orthogonal Central Dogma. Trends in Biotechnology, 2021, 39, 441 4.9 42 59-71. m⁶A mRNA methylation regulates testosterone synthesis through modulating autophagy 4.3 in Leydig cells. Autophagy, 2021, 17, 457-475. A birds'â€eye view of the activity and specificity of the <scp>mRNA m⁶A</scp> 443 3.2 34 methyltransferase complex. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1618. Expressions of m6A RNA methylation regulators and their clinical predictive value in cervical 444 squamous cell carcinoma and endometrial adenocarcinoma. Clinical and Experimental Pharmacology and Physiology, 2021, 48, 270-278. 445 RNA in cancer. Nature Reviews Cancer, 2021, 21, 22-36. 12.8 655 KIAA1429 promotes the progression of lung adenocarcinoma by regulating the m6A level of MUC3A. 446 1.0 Pathology Research and Practice, 2021, 217, 153284. N6â€methyladenineâ€related genes affect biological behavior and the prognosis of glioma. Cancer 447 1.3 22 Medicine, 2021, 10, 98-108. Epitranscriptomic m6A regulation following spinal cord injury. Journal of Neuroscience Research, 448 1.3 28 2021, 99, 843-857. Methods for isolation of messenger RNA from biological samples. Analytical Methods, 2021, 13, 449 1.3 7 289-298. The epitranscriptome beyond m6A. Nature Reviews Genetics, 2021, 22, 119-131. 353 RNA N6-Methyladenosine Methyltransferase METTL3 Facilitates Colorectal Cancer by Activating the 451 0.6 161 m6A-GLUT1-mTORC1 Axis and is a Therapeutic Target. Gastroenterology, 2021, 160, 1284-1300.e16. HBXIP drives metabolic reprogramming in hepatocellular carcinoma cells via METTL3â€mediated m6A modification of HIFâ€1α. Journal of Cellular Physiology, 2021, 236, 3863-3880. 59 <i>DMDRMR</i>-Mediated Regulation of m6A-Modified <i>CDK4</i> by m6A Reader IGF2BP3 Drives ccRCC 453 0.4 93 Progression. Cancer Research, 2021, 81, 923-934. Posttranscriptional modifications at the 37th position in the anticodon stem–loop of tRNA: 454 1.6 structural insights from MD simulations. Rna, 2021, 27, 202-220.

#	Article	IF	CITATIONS
455	Genetic variants in N6-methyladenosine are associated with bladder cancer risk in the Chinese population. Archives of Toxicology, 2021, 95, 299-309.	1.9	18
456	Enterotoxigenic <i>Escherichia coli</i> infection promotes enteric defensin expression via FOXO6-METTL3-m ⁶ A-GPR161 signalling axis. RNA Biology, 2021, 18, 576-586.	1.5	20
457	Epigenetic regulation of adipose tissue expansion and adipogenesis by <i>N</i> ⁶ â€methyladenosine. Obesity Reviews, 2021, 22, e13124.	3.1	14
458	Oncogenic AURKA-enhanced N6-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells. Cell Research, 2021, 31, 345-361.	5.7	68
459	Regulation of RNA N ⁶ -methyladenosine modification and its emerging roles in skeletal muscle development. International Journal of Biological Sciences, 2021, 17, 1682-1692.	2.6	25
460	Arginine Methylation Regulates Ribosome CAR Function. International Journal of Molecular Sciences, 2021, 22, 1335.	1.8	6
461	Experimental and Computational Methods for Guiding Identification and Characterization of Epitranscriptome Proteins. RNA Technologies, 2021, , 593-632.	0.2	0
462	Epitranscriptomic Signatures in Neural Development and Disease. RNA Technologies, 2021, , 79-120.	0.2	1
463	The crosstalk between m ⁶ A RNA methylation and other epigenetic regulators: a novel perspective in epigenetic remodeling. Theranostics, 2021, 11, 4549-4566.	4.6	57
464	Tet Proteins Regulate Neutrophil Granulation in Zebrafish through Demethylation of socs3b mRNA. Cell Reports, 2021, 34, 108632.	2.9	13
465	DNA alkylation lesion repair: outcomes and implications in cancer chemotherapy. Journal of Zhejiang University: Science B, 2021, 22, 47-62.	1.3	15
466	Epigenetics concepts: An overview. , 2021, , 19-40.		0
467	m ⁶ A regulator-based methylation modification patterns characterized by distinct tumor microenvironment immune profiles in colon cancer. Theranostics, 2021, 11, 2201-2217.	4.6	148
468	Robustness and Evolvability in Transcriptional Regulation. , 2021, , 197-219.		1
469	Regulation of Gene Expression Associated With the N6-Methyladenosine (m6A) Enzyme System and Its Significance in Cancer. Frontiers in Oncology, 2020, 10, 623634.	1.3	27
470	RNA immunoprecipitation to identify in vivo targets of RNA editing and modifying enzymes. Methods in Enzymology, 2021, 658, 137-160.	0.4	10
471	HIV-1: To Splice or Not to Splice, That Is the Question. Viruses, 2021, 13, 181.	1.5	34
472	Precise identification of an RNA methyltransferase's substrate modification site. Chemical Communications, 2021, 57, 2499-2502.	2.2	7

#	Article	IF	CITATIONS
473	Discovery and Characterization of Non-coding RNA Through Modern Genomics. , 2021, , 284-298.		0
474	Construction and validation of an N6‑methyladenosine‑associated prognostic signature in hepatocellular carcinoma. Oncology Letters, 2021, 21, 221.	0.8	2
476	Epigenetic modifiers in normal and aberrent erythropoeisis. Seminars in Hematology, 2021, 58, 15-26.	1.8	1
477	Integration Analysis of m6A Regulators and m6A-Related Genes in Hepatocellular Carcinoma. BIO Integration, 2021, 2, .	0.9	1
478	Signatures and Prognostic Values of N6-methyladenosine (m6A) - related Immune Genes in Bladder Cancer. Bioengineered, 2021, 12, 2649-2663.	1.4	5
479	Targeting the RNA demethylase FTO for cancer therapy. RSC Chemical Biology, 2021, 2, 1352-1369.	2.0	26
481	RNA modifications in cardiovascular disease—An experimental and computational perspective. , 2021, , 113-125.		3
482	A live-cell assay for the detection of pre-microRNA–protein interactions. RSC Chemical Biology, 2021, 2, 241-247.	2.0	7
483	RNA Metabolism Guided by RNA Modifications: The Role of SMUG1 in rRNA Quality Control. Biomolecules, 2021, 11, 76.	1.8	8
484	Epitranscriptomics Markers Regulate the Infection by RNA Viruses. RNA Technologies, 2021, , 141-163.	0.2	1
485	Arrow pushing in RNA modification sequencing. Chemical Society Reviews, 2021, 50, 9482-9502.	18.7	10
486	RNA m6A Modification Functions in Larval Development and Caste Differentiation in Honeybee (Apis) Tj ETQq1 1	0.7.84314	rgBT /Overl
487	MiRâ€103â€3p targets the m ⁶ A methyltransferase METTL14 to inhibit osteoblastic bone formation. Aging Cell, 2021, 20, e13298.	3.0	47
488	Metabolic regulation in urological tumors: Interplay with epigenetics and epitranscriptomics. , 2021, , 107-145.		0
489	Knockdown of RNA N6-methyladenosine methyltransferase METTL3 represses Warburg effect in colorectal cancer via regulating HIF-1α. Signal Transduction and Targeted Therapy, 2021, 6, 89.	7.1	18
491	Epitranscriptome machinery in Trypanosomatids: New players on the table?. Molecular Microbiology, 2021, 115, 942-958.	1.2	7
493	Context-Dependent Roles of RNA Modifications in Stress Responses and Diseases. International Journal of Molecular Sciences, 2021, 22, 1949.	1.8	35
494	Subcellular relocalization and nuclear redistribution of the RNA methyltransferases TRMT1 and TRMT1L upon neuronal activation. RNA Biology, 2021, 18, 1905-1919.	1.5	9

#	Article	IF	CITATIONS
495	The molecular biology of FMRP: new insights into fragile X syndrome. Nature Reviews Neuroscience, 2021, 22, 209-222.	4.9	164
496	RNA Modification by m6A Methylation in Cardiovascular Disease. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-13.	1.9	8
497	The Potential Regulatory Roles of Circular RNAs in Tumor Immunology and Immunotherapy. Frontiers in Immunology, 2020, 11, 617583.	2.2	20
498	The Regulation of RNA Modification Systems: The Next Frontier in Epitranscriptomics?. Genes, 2021, 12, 345.	1.0	29
499	Alteration of mRNA 5-Methylcytosine Modification in Neurons After OGD/R and Potential Roles in Cell Stress Response and Apoptosis. Frontiers in Genetics, 2021, 12, 633681.	1.1	12
500	Identification of a Two-m6A RNA Methylation Regulator Risk Signature as an Independent Prognostic Biomarker in Papillary Renal Cell Carcinoma by Bioinformatic Analysis. BioMed Research International, 2021, 2021, 1-10.	0.9	5
501	DNN-m6A: A Cross-Species Method for Identifying RNA N6-methyladenosine Sites Based on Deep Neural Network with Multi-Information Fusion. Genes, 2021, 12, 354.	1.0	17
502	Deciphering nucleotide modification-induced structure and stability changes. RNA Biology, 2021, 18, 1920-1930.	1.5	12
503	The role of m6A modification in the biological functions and diseases. Signal Transduction and Targeted Therapy, 2021, 6, 74.	7.1	718
504	METTL3-dependent m6A modification programs T follicular helper cell differentiation. Nature Communications, 2021, 12, 1333.	5.8	99
505	Identification of a New Prognostic Risk Signature of Clear Cell Renal Cell Carcinoma Based on N6-Methyladenosine RNA Methylation Regulators. Journal of Immunology Research, 2021, 2021, 1-23.	0.9	7
506	m6A Modifications Play Crucial Roles in Glial Cell Development and Brain Tumorigenesis. Frontiers in Oncology, 2021, 11, 611660.	1.3	11
507	RNA N6-Methyladenosine Regulator-Mediated Methylation Modifications Pattern and Immune Infiltration Features in Glioblastoma. Frontiers in Oncology, 2021, 11, 632934.	1.3	22
508	Prognostic and Predictive Value of m6A "Eraser―Related Gene Signature in Gastric Cancer. Frontiers in Oncology, 2021, 11, 631803.	1.3	15
509	N6-methyladenosine (m6A) is an endogenous A3 adenosine receptor ligand. Molecular Cell, 2021, 81, 659-674.e7.	4.5	28
510	METTL3-mediated m6A modification regulates cell cycle progression of dental pulp stem cells. Stem Cell Research and Therapy, 2021, 12, 159.	2.4	24
511	The networks of m6A-SARS-CoV-2 related genes and immune infiltration patterns in idiopathic pulmonary fibrosis. Aging, 2021, 13, 6273-6288.	1.4	5
512	RALYL increases hepatocellular carcinoma stemness by sustaining the mRNA stability of TGF-β2. Nature Communications, 2021, 12, 1518.	5.8	42

#	Article	IF	CITATIONS
513	A neural m6A/Ythdf pathway is required for learning and memory in Drosophila. Nature Communications, 2021, 12, 1458.	5.8	54
514	Analysis of m6A-Related Signatures in the Tumor Immune Microenvironment and Identification of Clinical Prognostic Regulators in Adrenocortical Carcinoma. Frontiers in Immunology, 2021, 12, 637933.	2.2	54
515	Deciphering Epitranscriptome: Modification of mRNA Bases Provides a New Perspective for Post-transcriptional Regulation of Gene Expression. Frontiers in Cell and Developmental Biology, 2021, 9, 628415.	1.8	76
516	N ⁶ â€methyladenosine modification of lncRNA <i>Pvt1</i> governs epidermal stemness. EMBO Journal, 2021, 40, e106276.	3.5	30
517	RNA Biogenesis Instructs Functional Inter-Chromosomal Genome Architecture. Frontiers in Genetics, 2021, 12, 645863.	1.1	7
518	Alteration of m6A RNA Methylation in Heart Failure With Preserved Ejection Fraction. Frontiers in Cardiovascular Medicine, 2021, 8, 647806.	1.1	33
519	Molecular mechanism of RNase R substrate sensitivity for RNA ribose methylation. Nucleic Acids Research, 2021, 49, 4738-4749.	6.5	8
520	N ⁶ â€Methyladenosine (m ⁶ A) readers are dysregulated in renal cell carcinoma. Molecular Carcinogenesis, 2021, 60, 354-362.	1.3	19
521	RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nature Communications, 2021, 12, 1394.	5.8	190
522	N6-methyladenosine modification of HIV-1 RNA suppresses type-I interferon induction in differentiated monocytic cells and primary macrophages. PLoS Pathogens, 2021, 17, e1009421.	2.1	38
523	Pooled CRISPR screening identifies m ⁶ A as a positive regulator of macrophage activation. Science Advances, 2021, 7, .	4.7	102
524	Roles of FAM134B in diseases from the perspectives of organelle membrane morphogenesis and cellular homeostasis. Journal of Cellular Physiology, 2021, 236, 7242-7255.	2.0	8
525	Main N6-Methyladenosine Readers: YTH Family Proteins in Cancers. Frontiers in Oncology, 2021, 11, 635329.	1.3	35
526	Autophagy of the m6A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis. Nature Communications, 2021, 12, 2183.	5.8	72
528	The Emerging Role of RNA Modifications in DNA Double-Strand Break Repair. Frontiers in Molecular Biosciences, 2021, 8, 664872.	1.6	11
529	CLK1/SRSF5 pathway induces aberrant exon skipping of METTL14 and Cyclin L2 and promotes growth and metastasis of pancreatic cancer. Journal of Hematology and Oncology, 2021, 14, 60.	6.9	46
530	N6-Methyladenosine, DNA Repair, and Genome Stability. Frontiers in Molecular Biosciences, 2021, 8, 645823.	1.6	16
531	Comprehensive Analysis of Differential m6A RNA Methylomes in the Hippocampus of Cocaine-Conditioned Mice. Molecular Neurobiology, 2021, 58, 3759-3768.	1.9	8

#	Article	IF	CITATIONS
532	COVID-19: A methyl-group assault?. Medical Hypotheses, 2021, 149, 110543.	0.8	24
534	Novel insights into the m6A-RNA methyltransferase METTL3 in cancer. Biomarker Research, 2021, 9, 27.	2.8	23
535	Role of Hakai in m6A modification pathway in Drosophila. Nature Communications, 2021, 12, 2159.	5.8	31
536	Epigenetic regulation of mRNA N6-methyladenosine modifications in mammalian gametogenesis. Molecular Human Reproduction, 2021, 27, .	1.3	15
537	USP48 Is Upregulated by Mettl14 to Attenuate Hepatocellular Carcinoma via Regulating SIRT6 Stabilization. Cancer Research, 2021, 81, 3822-3834.	0.4	68
538	<i>N6</i> -Methyladenosine Regulates mRNA Stability and Translation Efficiency of KRT7 to Promote Breast Cancer Lung Metastasis. Cancer Research, 2021, 81, 2847-2860.	0.4	65
540	Circular RNA hsa_circ_0072309 promotes tumorigenesis and invasion by regulating the miR-607/FTO axis in non-small cell lung carcinoma. Aging, 2021, 13, 11629-11645.	1.4	22
541	Control of RNA Stability in Immunity. Annual Review of Immunology, 2021, 39, 481-509.	9.5	47
542	The occurrence order and cross-talk of different tRNA modifications. Science China Life Sciences, 2021, 64, 1423-1436.	2.3	17
543	CPSF30-L-mediated recognition of mRNA m6A modification controls alternative polyadenylation of nitrate signaling-related gene transcripts in Arabidopsis. Molecular Plant, 2021, 14, 688-699.	3.9	75
544	Bisulphite miRNA-seq reveals widespread CpG and non-CpG 5-(hydroxy)methyl-Cytosine in human microRNAs. RNA Biology, 2021, 18, 2226-2235.	1.5	10
545	mRNA modifications in cardiovascular biology and disease: with a focus on m6A modification. Cardiovascular Research, 2022, 118, 1680-1692.	1.8	66
546	Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response. Nucleic Acids Research, 2021, 49, 5779-5797.	6.5	92
547	Functions of RNA N6-methyladenosine modification in acute myeloid leukemia. Biomarker Research, 2021, 9, 36.	2.8	13
548	Demethyltransferase AlkBH1 substrate diversity and relationship to human diseases. Molecular Biology Reports, 2021, 48, 4747-4756.	1.0	11
550	A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Research, 2021, 49, 7239-7255.	6.5	190
551	Methyltransferase‣ike Protein 14 Attenuates Mitochondrial Antiviral Signaling Protein Expression to Negatively Regulate Antiviral Immunity via N ⁶ â€methyladenosine Modification. Advanced Science, 2021, 8, e2100606.	5.6	11
552	The Role of RNA Modifications and RNA-modifying Proteins in Cancer Therapy and Drug Resistance. Current Cancer Drug Targets, 2021, 21, 326-352.	0.8	23

#	Article	IF	CITATIONS
553	m7G Methyltransferase METTL1 Promotes Post-ischemic Angiogenesis via Promoting VEGFA mRNA Translation. Frontiers in Cell and Developmental Biology, 2021, 9, 642080.	1.8	35
554	The m6A Reader IGF2BP2 Regulates Macrophage Phenotypic Activation and Inflammatory Diseases by Stabilizing TSC1 and PPAR <i>γ</i> . Advanced Science, 2021, 8, 2100209.	5.6	70
555	Epitranscriptomic regulation of insecticide resistance. Science Advances, 2021, 7, .	4.7	34
556	METTL3 regulates skeletal muscle specific miRNAs at both transcriptional and post-transcriptional levels. Biochemical and Biophysical Research Communications, 2021, 552, 52-58.	1.0	19
557	Mitochondria's role in sleep: Novel insights from sleep deprivation and restriction studies. World Journal of Biological Psychiatry, 2022, 23, 1-13.	1.3	10
558	Systematic expression analysis of m 6 A RNA methyltransferases in clear cell renal cell carcinoma. BJUI Compass, 2021, 2, 402-411.	0.7	8
559	The m6A epitranscriptome on neural development and degeneration. Journal of Biomedical Science, 2021, 28, 40.	2.6	43
560	Identification of an m6A-Related IncRNA Signature for Predicting the Prognosis in Patients With Kidney Renal Clear Cell Carcinoma. Frontiers in Oncology, 2021, 11, 663263.	1.3	42
561	Emerging Roles of Wild-type and Mutant IDH1 in Growth, Metabolism and Therapeutics of Glioma. , 0, , 61-78.		5
562	Identification of m6A methyltransferase-related IncRNA signature for predicting immunotherapy and prognosis in patients with hepatocellular carcinoma. Bioscience Reports, 2021, 41, .	1.1	39
563	(Epi)Genetic Mechanisms Underlying the Evolutionary Success of Eusocial Insects. Insects, 2021, 12, 498.	1.0	20
564	Emerging Role of m6 A Methylome in Brain Development: Implications for Neurological Disorders and Potential Treatment. Frontiers in Cell and Developmental Biology, 2021, 9, 656849.	1.8	15
565	Loss of m6A demethylase ALKBH5 promotes postâ€ischemic angiogenesis via postâ€transcriptional stabilization of WNT5A. Clinical and Translational Medicine, 2021, 11, e402.	1.7	47
566	ConsRM: collection and large-scale prediction of the evolutionarily conserved RNA methylation sites, with implications for the functional epitranscriptome. Briefings in Bioinformatics, 2021, 22, .	3.2	34
567	The m6A-epitranscriptome in brain plasticity, learning and memory. Seminars in Cell and Developmental Biology, 2022, 125, 110-121.	2.3	15
568	The evolving landscape of N6-methyladenosine modification in the tumor microenvironment. Molecular Therapy, 2021, 29, 1703-1715.	3.7	69
569	Potential Therapeutic Targeting of IncRNAs in Cholesterol Homeostasis. Frontiers in Cardiovascular Medicine, 2021, 8, 688546.	1.1	9
571	Inhibition of CMP-sialic acid transport by endogenous 5-methyl CMP. PLoS ONE, 2021, 16, e0249905.	1.1	2

#	Article	IF	CITATIONS
572	The METTL3-m6A Epitranscriptome: Dynamic Regulator of Epithelial Development, Differentiation, and Cancer. Genes, 2021, 12, 1019.	1.0	15
573	Learning the Regulatory Code of Gene Expression. Frontiers in Molecular Biosciences, 2021, 8, 673363.	1.6	17
574	Programmable RNA <i>N</i> ¹ â€Methyladenosine Demethylation by a Cas13dâ€Đirected Demethylase. Angewandte Chemie - International Edition, 2021, 60, 19592-19597.	7.2	21
575	YTHDF1-regulated expression of TEAD1 contributes to the maintenance of intestinal stem cells. Biochemical and Biophysical Research Communications, 2021, 557, 85-89.	1.0	5
576	Crystallin gene expression: Insights from studies of transcriptional bursting. Experimental Eye Research, 2021, 207, 108564.	1.2	11
577	m5C-Related IncRNAs Predict Overall Survival of Patients and Regulate the Tumor Immune Microenvironment in Lung Adenocarcinoma. Frontiers in Cell and Developmental Biology, 2021, 9, 671821.	1.8	38
578	Immune Infiltrates of m6A RNA Methylation-Related IncRNAs and Identification of PD-L1 in Patients With Primary Head and Neck Squamous Cell Carcinoma. Frontiers in Cell and Developmental Biology, 2021, 9, 672248.	1.8	28
579	Understanding the roles of N6-methyladenosine writers, readers and erasers in breast cancer. Neoplasia, 2021, 23, 551-560.	2.3	11
580	Arginine methylation of METTL14 promotes RNA N6-methyladenosine modification and endoderm differentiation of mouse embryonic stem cells. Nature Communications, 2021, 12, 3780.	5.8	34
581	RNA N6-Methyladenosine Responds to Low-Temperature Stress in Tomato Anthers. Frontiers in Plant Science, 2021, 12, 687826.	1.7	24
582	METTL16 promotes cell proliferation by upâ€regulating cyclin D1 expression in gastric cancer. Journal of Cellular and Molecular Medicine, 2021, 25, 6602-6617.	1.6	50
584	A natural riboswitch scaffold with self-methylation activity. Nature Communications, 2021, 12, 3877.	5.8	24
585	METTL3 promotes tumour development by decreasing APC expression mediated by APC mRNA N6-methyladenosine-dependent YTHDF binding. Nature Communications, 2021, 12, 3803.	5.8	74
586	Identification of Critical m6A RNA Methylation Regulators with Prognostic Value in Lower-Grade Glioma. BioMed Research International, 2021, 2021, 1-17.	0.9	13
587	Programmable RNA N 1 â€Methyladenosine Demethylation by a Cas13dâ€Directed Demethylase. Angewandte Chemie, 2021, 133, 19744-19749.	1.6	3
588	N6-Methylandenosine-Related IncRNAs in Tumor Microenvironment Are Potential Prognostic Biomarkers in Colon Cancer. Frontiers in Oncology, 2021, 11, 697949.	1.3	12
589	m ⁶ A demethylase ALKBH5 controls CD4 ⁺ T cell pathogenicity and promotes autoimmunity. Science Advances, 2021, 7, .	4.7	92
590	<scp>RNA</scp> methyltransferase <scp>METTL16</scp> : Targets and function. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1681.	3.2	47

#	Article	IF	CITATIONS
591	ALKBH7-mediated demethylation regulates mitochondrial polycistronic RNA processing. Nature Cell Biology, 2021, 23, 684-691.	4.6	41
592	Epitranscriptomic Analysis of m6A Methylome After Peripheral Nerve Injury. Frontiers in Genetics, 2021, 12, 686000.	1.1	10
593	N6-methyladenosine promotes induction of ADAR1-mediated A-to-I RNA editing to suppress aberrant antiviral innate immune responses. PLoS Biology, 2021, 19, e3001292.	2.6	20
594	Mutually exclusive substrate selection strategy by human m3C RNA transferases METTL2A and METTL6. Nucleic Acids Research, 2021, 49, 8309-8323.	6.5	21
595	The N6-methyladenosine modification posttranscriptionally regulates hepatic UGT2B7 expression. Biochemical Pharmacology, 2021, 189, 114402.	2.0	16
596	Controlling Siteâ€Directed RNA Editing by Chemically Induced Dimerization. Chemistry - A European Journal, 2021, 27, 12300-12304.	1.7	6
598	Role of m6A methylation in occurrence and progression of digestive system malignancies. World Chinese Journal of Digestology, 2021, 29, 747-757.	0.0	0
599	Genetic drivers of m6A methylation in human brain, lung, heart and muscle. Nature Genetics, 2021, 53, 1156-1165.	9.4	57
600	m6A Modification: A Double-Edged Sword in Tumor Development. Frontiers in Oncology, 2021, 11, 679367.	1.3	41
601	METTL3 Inhibitors for Epitranscriptomic Modulation of Cellular Processes. ChemMedChem, 2021, 16, 3035-3043.	1.6	87
602	N6-Methyladenosine Modification Opens a New Chapter in Circular RNA Biology. Frontiers in Cell and Developmental Biology, 2021, 9, 709299.	1.8	25
603	Hub Long Noncoding RNAs with m6A Modification for Signatures and Prognostic Values in Kidney Renal Clear Cell Carcinoma. Frontiers in Molecular Biosciences, 2021, 8, 682471.	1.6	11
604	HIV Modifies the m6A and m5C Epitranscriptomic Landscape of the Host Cell. Frontiers in Virology, 2021, 1, .	0.7	6
606	m6A Regulator-Associated Modification Patterns and Immune Infiltration of the Tumor Microenvironment in Hepatocarcinoma. Frontiers in Cell and Developmental Biology, 2021, 9, 687756.	1.8	17
607	The potential roles of m6A modification in regulating the inflammatory response in microglia. Journal of Neuroinflammation, 2021, 18, 149.	3.1	26
608	A critical role of nuclear m6A reader YTHDC1 in leukemogenesis by regulating MCM complex–mediated DNA replication. Blood, 2021, 138, 2838-2852.	0.6	83
609	Nanotechnologyâ€Assisted RNA Delivery: From Nucleic Acid Therapeutics to COVIDâ€19 Vaccines. Small Methods, 2021, 5, 2100402.	4.6	45
610	METTL14 facilitates global genome repair and suppresses skin tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	61

#	Article	IF	CITATIONS
611	NAT10 as a potential prognostic biomarker and therapeutic target for HNSCC. Cancer Cell International, 2021, 21, 413.	1.8	28
612	RNA modifications in cardiovascular diseases, the potential therapeutic targets. Life Sciences, 2021, 278, 119565.	2.0	37
613	Gene Model Related to m6A Predicts the Prognostic Effect of Immune Infiltration on Head and Neck Squamous Cell Carcinoma. Journal of Oncology, 2021, 2021, 1-11.	0.6	1
614	N6-Methyladenosine Related Long Non-Coding RNAs and Immune Cell Infiltration in the Tumor Microenvironment of Gastric Cancer. Biological Procedures Online, 2021, 23, 15.	1.4	10
615	<scp>N1</scp> â€methyladenosine profiling of long <scp>nonâ€coding RNA</scp> in colorectal cancer. IUBMB Life, 2021, 73, 1235-1243.	1.5	12
616	Krüppelâ€Like Factor 15/Interleukin 11 Axisâ€Mediated Adventitial Remodeling Depends on Extracellular Signalâ€Regulated Kinases 1 and 2 Activation in Angiotensin II–Induced Hypertension. Journal of the American Heart Association, 2021, 10, e020554.	1.6	8
617	Advances in Computational Methodologies for Classification and Sub-Cellular Locality Prediction of Non-Coding RNAs. International Journal of Molecular Sciences, 2021, 22, 8719.	1.8	15
618	Epitranscriptomic Approach: To Improve the Efficacy of ICB Therapy by Co-Targeting Intracellular Checkpoint CISH. Cells, 2021, 10, 2250.	1.8	6
619	The Zebrafish Model to Understand Epigenetics in Renal Diseases. International Journal of Molecular Sciences, 2021, 22, 9152.	1.8	2
620	Characterization of the m6A-Associated Tumor Immune Microenvironment in Prostate Cancer to Aid Immunotherapy. Frontiers in Immunology, 2021, 12, 735170.	2.2	31
621	Methyltransferase-like 3 Modulates Severe Acute Respiratory Syndrome Coronavirus-2 RNA N6-Methyladenosine Modification and Replication. MBio, 2021, 12, e0106721.	1.8	53
622	M6A methylation of DECS2, a key ceramide-synthesizing enzyme, is involved in colorectal cancer progression through ceramide synthesis. Oncogene, 2021, 40, 5913-5924.	2.6	19
623	Novel insights into the pervasive role of RNA structure in post-transcriptional regulation of gene expression in plants. Biochemical Society Transactions, 2021, 49, 1829-1839.	1.6	8
624	<i>m6A-express</i> : uncovering complex and condition-specific m6A regulation of gene expression. Nucleic Acids Research, 2021, 49, e116-e116.	6.5	24
625	Aging-Associated Differences in Epitranscriptomic m6A Regulation in Response to Acute Cardiac Ischemia/Reperfusion Injury in Female Mice. Frontiers in Pharmacology, 2021, 12, 654316.	1.6	25
627	m5C-Related Signatures for Predicting Prognosis in Cutaneous Melanoma with Machine Learning. Journal of Oncology, 2021, 2021, 1-14.	0.6	8
628	m6A writer complex promotes timely differentiation and survival of retinal progenitor cells in zebrafish. Biochemical and Biophysical Research Communications, 2021, 567, 171-176.	1.0	3
629	Next-generation sequencing-based analysis of the effect of N6-methyldeoxyadenosine modification on DNA replication in human cells. Chinese Chemical Letters, 2022, 33, 2077-2080.	4.8	6

#	Article	IF	CITATIONS
630	METTL3 Is Involved in the Development of Graves' Disease by Inducing SOCS mRNA m6A Modification. Frontiers in Endocrinology, 2021, 12, 666393.	1.5	7
631	RNA m1A Methyltransferase TRMT6 Predicts Poorer Prognosis and Promotes Malignant Behavior in Glioma. Frontiers in Molecular Biosciences, 2021, 8, 692130.	1.6	28
632	m6A methylation promotes whiteâ€ŧoâ€beige fat transition by facilitating Hif1a translation. EMBO Reports, 2021, 22, e52348.	2.0	26
633	Comprehensive Analysis of Clinical Significance, Immune Infiltration and Biological Role of m6A Regulators in Early-Stage Lung Adenocarcinoma. Frontiers in Immunology, 2021, 12, 698236.	2.2	4
634	Single-molecule RNA sequencing for simultaneous detection of m6A and 5mC. Scientific Reports, 2021, 11, 19304.	1.6	16
635	Characterization of m6A-Related Genes Landscape in Skin Cutaneous Melanoma to Aid Immunotherapy and Assess Prognosis. International Journal of General Medicine, 2021, Volume 14, 5345-5361.	0.8	7
636	Roles of N6â€Methyladenosine Demethylase FTO in Malignant Tumors Progression. OncoTargets and Therapy, 2021, Volume 14, 4837-4846.	1.0	12
638	A prion accelerates proliferation at the expense of lifespan. ELife, 2021, 10, .	2.8	12
639	The m6A methyltransferase METTL3 modifies PGC- $1\hat{l}\pm$ mRNA promoting mitochondrial dysfunction and oxLDL-induced inflammation in monocytes. Journal of Biological Chemistry, 2021, 297, 101058.	1.6	51
640	The YTHDF proteins ECT2 and ECT3 bind largely overlapping target sets and influence target mRNA abundance, not alternative polyadenylation. ELife, 2021, 10, .	2.8	33
641	Multiplexed profiling facilitates robust m6A quantification at site, gene and sample resolution. Nature Methods, 2021, 18, 1060-1067.	9.0	57
642	NSUN2 modified by SUMO-2/3 promotes gastric cancer progression and regulates mRNA m5C methylation. Cell Death and Disease, 2021, 12, 842.	2.7	67
643	METTL3-dependent MALAT1 delocalization drives c-Myc induction in thymic epithelial tumors. Clinical Epigenetics, 2021, 13, 173.	1.8	21
644	LncAY controls BMI1 expression and activates BMI1/Wnt/β-catenin signaling axis in hepatocellular carcinoma. Life Sciences, 2021, 280, 119748.	2.0	20
645	METTL3 promotes the initiation and metastasis of ovarian cancer by inhibiting CCNG2 expression via promoting the maturation of pri-microRNA-1246. Cell Death Discovery, 2021, 7, 237.	2.0	31
646	The Landscape of IFN/ISG Signaling in HIV-1-Infected Macrophages and Its Possible Role in the HIV-1 Latency. Cells, 2021, 10, 2378.	1.8	8
647	Secret messengers: Extracellular RNA communication in the immune system*. Immunological Reviews, 2021, 304, 62-76.	2.8	12
648	OsEDM2L mediates m ⁶ A of <i>EAT1</i> transcript for proper alternative splicing and polyadenylation regulating rice tapetal degradation. Journal of Integrative Plant Biology, 2021, 63, 1982-1994	4.1	17

#	Article	IF	CITATIONS
649	The Prognostic Value of the m6A Score in Multiple Myeloma Based on Machine Learning. BioMedInformatics, 2021, 1, 77-87.	1.0	0
650	Gamma-irradiation fluctuates the mRNA N6-methyladenosine (m6A) spectrum of bone marrow in hematopoietic injury. Environmental Pollution, 2021, 285, 117509.	3.7	3
651	METTL3 Regulates Liver Homeostasis, Hepatocyte Ploidy, and Circadian Rhythm–Controlled Gene Expression in Mice. American Journal of Pathology, 2022, 192, 56-71.	1.9	26
652	Quantifying RNA modifications by mass spectrometry: a novel source of biomarkers in oncology. Critical Reviews in Clinical Laboratory Sciences, 2022, 59, 1-18.	2.7	14
653	Integrative Analysis of m6A Regulator-Mediated RNA Methylation Modification Patterns and Immune Characteristics in Lupus Nephritis. Frontiers in Cell and Developmental Biology, 2021, 9, 724837.	1.8	15
654	METTL3-mediated m6A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nature Communications, 2021, 12, 5522.	5.8	96
655	METTL3-mediated m6A modification of KIF3C-mRNA promotes prostate cancer progression and is negatively regulated by miR-320d. Aging, 2021, 13, 22332-22344.	1.4	20
656	Multi-omic analysis of altered transcriptome and epigenetic signatures in the UV-induced DNA damage response. DNA Repair, 2021, 106, 103172.	1.3	8
657	Decoding m6A mRNA methylation by reader proteins in cancer. Cancer Letters, 2021, 518, 256-265.	3.2	12
658	Programmable technologies to manipulate gene expression at the RNA level. Current Opinion in Chemical Biology, 2021, 64, 27-37.	2.8	2
659	N6-methyladenosine modification underlies messenger RNA metabolism and plant development. Current Opinion in Plant Biology, 2021, 63, 102047.	3.5	44
660	Repeated mild traumatic brain injuries perturb the mitochondrial biogenesis via DNA methylation in the hippocampus of rat. Mitochondrion, 2021, 61, 11-24.	1.6	10
661	N6-methyladenosine modification regulates ferroptosis through autophagy signaling pathway in hepatic stellate cells. Redox Biology, 2021, 47, 102151.	3.9	117
662	METTL3-mediated m6A mRNA modification promotes esophageal cancer initiation and progression via Notch signaling pathway. Molecular Therapy - Nucleic Acids, 2021, 26, 333-346.	2.3	37
663	R-2HG downregulates ERα to inhibit cholangiocarcinoma via the FTO/m6A-methylated ERα/miR16-5p/YAP1 signal pathway. Molecular Therapy - Oncolytics, 2021, 23, 65-81.	2.0	14
664	Silencing the epitranscriptomic writer METTL3 in Hepatocellular carcinoma cells: A prospective therapeutic approach. Gene Reports, 2021, 25, 101359.	0.4	1
665	Mettl3 inhibits the apoptosis and autophagy of chondrocytes in inflammation through mediating Bcl2 stability via Ythdf1-mediated m6A modification. Bone, 2022, 154, 116182.	1.4	57
667	The Complex Roles and Therapeutic Implications of m6A Modifications in Breast Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 615071.	1.8	9

#	Article	IF	CITATIONS
668	Detection of locus-specific <i>N</i> ⁶ -methyladenosine modification based on Ag ⁺ -assisted ligation and supersandwich signal amplification. Analyst, The, 2021, 146, 1355-1360.	1.7	6
669	RNA m ⁶ A methylation regulates virus–host interaction and EBNA2 expression during Epstein–Barr virus infection. Immunity, Inflammation and Disease, 2021, 9, 351-362.	1.3	28
670	Ythdf is a N6â€methyladenosine reader that modulates Fmr1 target mRNA selection and restricts axonal growth in <i>Drosophila</i> . EMBO Journal, 2021, 40, e104975.	3.5	56
671	Prognostic Roles of N6-Methyladenosine METTL3 in Different Cancers: A System Review and Meta-Analysis. Cancer Control, 2021, 28, 107327482199745.	0.7	7
672	YTHDF2 Suppresses Notch Signaling through Post-transcriptional Regulation on Notch1. International Journal of Biological Sciences, 2021, 17, 3776-3785.	2.6	7
673	TS-m6A-DL: Tissue-specific identification of N6-methyladenosine sites using a universal deep learning model. Computational and Structural Biotechnology Journal, 2021, 19, 4619-4625.	1.9	23
674	KIAA1429 regulates cell proliferation by targeting câ€Jun messenger RNA directly in gastric cancer. Journal of Cellular Physiology, 2020, 235, 7420-7432.	2.0	67
675	From transcriptional complexity to cellular phenotypes: Lessons from yeast. Yeast, 2017, 34, 475-482.	0.8	4
676	Halophilic Microbes from Plant Growing Under the Hypersaline Habitats and Their Application for Plant Growth and Mitigation of Salt Stress. Sustainable Development and Biodiversity, 2020, , 317-349.	1.4	5
677	RNA N 6-Methyladenosine Modification in Normal and Malignant Hematopoiesis. Advances in Experimental Medicine and Biology, 2019, 1143, 75-93.	0.8	35
678	Circadian Clock and CYP Metabolism. , 2020, , 65-87.		1
679	Epigenetic regulation of cancer stem cell and tumorigenesis. Advances in Cancer Research, 2020, 148, 1-26.	1.9	12
680	Reading the Epitranscriptome. The Enzymes, 2017, 41, 269-298.	0.7	19
681	N6-methyladenosine regulates glycolysis of cancer cells through PDK4. Nature Communications, 2020, 11, 2578.	5.8	163
682	m6A RNA methylation regulators can contribute to malignant progression and impact the prognosis of bladder cancer. Bioscience Reports, 2019, 39, .	1.1	95
683	Evaluation of different computational methods on 5-methylcytosine sites identification. Briefings in Bioinformatics, 2020, 21, 982-995.	3.2	115
684	AMPK facilitates intestinal longâ€chain fatty acid uptake by manipulating CD36 expression and translocation. FASEB Journal, 2020, 34, 4852-4869.	0.2	33
685	Identification of <i>FoxP</i> circuits involved in locomotion and object fixation in <i>Drosophila</i> . Open Biology, 2020, 10, 200295.	1.5	5

ARTICLE IF CITATIONS # m⁶A demethylase ALKBH5 promotes proliferation of esophageal squamous cell carcinoma 698 0.5 37 associated with poor prognosis. Genes To Cells, 2020, 25, 547-561. Gene Alterations of N6-Methyladenosine (m6A) Regulators in Colorectal Cancer: A TCGA Database 699 Study. BioMed Research International, 2020, 2020, 1-13. Excessive BCAA regulates fat metabolism partially through the modification of m6A RNA methylation 700 1.3 18 in weanling piglets. Nutrition and Metabolism, 2020, 17, 10. RNA N6-methyladenosine reader IGF2BP3 regulates cell cycle and angiogenesis in colon cancer. Journal of Experimental and Clinical Cancer Research, 2020, 39, 203. Identification of m⁶A residues at single-nucleotide resolution using eCLIP and an 702 10 1.6 accessible custom analysis pipeline. Rna, 2021, 27, 527-541. RNA modifications go viral. PLoS Pathogens, 2017, 13, e1006188. 2.1 RNA secondary structure dependence in METTL3–METTL14 mRNA methylation is modulated by the 704 1.2 21 N-terminal domain of METTL3. Biological Chemistry, 2020, 402, 89-98. Epitranscriptome of the ventral tegmental area in a deep brain-stimulated chronic unpredictable mild stress mouse model. Translational Neuroscience, 2020, 11, 402-418. Altered Expression of the m6A Methyltransferase METTL3 in Alzheimer's Disease. ENeuro, 2020, 7, 706 0.9 92 ENEURO.0125-20.2020. Overexpression of METTL3 attenuates high-glucose induced RPE cell pyroptosis by regulating 1.4 miR-25-3p/PTEN/Akt signaling cascade through DGCR8. Aging, 2020, 12, 8137-8150. Comprehensive analysis of m6A regulators prognostic value in prostate cancer. Aging, 2020, 12, 708 1.4 45 14863-14884. YTHDF2 correlates with tumor immune infiltrates in lower-grade glioma. Aging, 2020, 12, 18476-18500. 1.4 The immune and metabolic changes with age in giant panda blood by combined transcriptome and DNA 710 1.4 4 methylation analysis. Aging, 2020, 12, 21777-21797. Dissecting the role of RNA modification regulatory proteins in melanoma. Oncotarget, 2019, 10, 3745-3759. 0.8 Long nonâ€'coding RNA FEZF1â€'AS1 facilitates nonâ€'small cell lung cancer progression via the 712 1.4 27 ITGĂ11/miR‑516Ď‑5p axis. International Journal of Oncology, 2020, 57, 1333-1347. Epitranscriptomic regulation of transcriptome plasticity in development and diseases of the brain. 1.1 BMB Reports, 2020, 53, 551-564. The importance of methionine metabolism. ELife, 2019, 8, . 714 2.8 28 Emerging Roles of N6-Methyladenosine Modification in Neurodevelopment and Neurodegeneration. 1.8 Cells, 2021, 10, 2694.

#	Article	IF	CITATIONS
716	Evolutionary Implications of the RNA <i>N</i> 6-Methyladenosine Methylome in Plants. Molecular Biology and Evolution, 2022, 39, .	3.5	26
717	Novel evidence for m6A methylation regulators as prognostic biomarkers and FTO as a potential therapeutic target in gastric cancer. British Journal of Cancer, 2022, 126, 228-237.	2.9	25
718	Messenger RNA modifications: clinical clarification and significance. Epigenomics, 2021, 13, 1901-1903.	1.0	0
719	A photoregulatory mechanism of the circadian clock in Arabidopsis. Nature Plants, 2021, 7, 1397-1408.	4.7	76
720	m6A regulatorâ€mediated RNA methylation modification patterns and immune microenvironment infiltration characterization in severe asthma. Journal of Cellular and Molecular Medicine, 2021, 25, 10236-10247.	1.6	16
721	Methylation Modification, Alternative Splicing, and Noncoding RNA Play a Role in Cancer Metastasis through Epigenetic Regulation. BioMed Research International, 2021, 2021, 1-13.	0.9	9
722	ALKBH5 Facilitates Hypoxia-Induced Paraspeckle Assembly and IL8 Secretion to Generate an Immunosuppressive Tumor Microenvironment. Cancer Research, 2021, 81, 5876-5888.	0.4	101
723	RBM15 promotes hepatocellular carcinoma progression by regulating N6-methyladenosine modification of YES1 mRNA in an IGF2BP1-dependent manner. Cell Death Discovery, 2021, 7, 315.	2.0	35
728	Immunoprecipitation and Sequencing of Acetylated RNA. Bio-protocol, 2019, 9, e3278.	0.2	11
729	m6A mRNA Methylation in the Mammalian Brain: Distribution, Function and Implications for Brain Functions. RNA Technologies, 2019, , 377-398.	0.2	0
733	N6-methyladenosine could indirectly modulate translation in human cancer cells via cis-elements. Translational Cancer Research, 2019, 8, 1931-1938.	0.4	1
737	ALKBH5 Regulates Stat3 Activity to Affect the Proliferation and Tumorigenicity of Osteosarcoma via an m6A-YTHDF2-Dependent Manner. SSRN Electronic Journal, 0, , .	0.4	0
738	Multipl miyelomda N6-metiladenozin modifiye edici enzimlerin düzensizliği. Turkish Journal of Clinics and Laboratory, 2020, 11, 18-23.	0.2	0
742	m6A-Mediated Tumor Invasion and Methylation Modification in Breast Cancer Microenvironment. Journal of Oncology, 2021, 2021, 1-17.	0.6	10
743	Relationships of N6-Methyladenosine-Related Long Non-Coding RNAs With Tumor Immune Microenvironment and Clinical Prognosis in Lung Adenocarcinoma. Frontiers in Genetics, 2021, 12, 714697.	1.1	16
744	Construction of Prognostic Risk Model of 5-Methylcytosine-Related Long Non-Coding RNAs and Evaluation of the Characteristics of Tumor-Infiltrating Immune Cells in Breast Cancer. Frontiers in Genetics, 2021, 12, 748279.	1.1	13
745	Comprehensive of N1-Methyladenosine Modifications Patterns and Immunological Characteristics in Ovarian Cancer. Frontiers in Immunology, 2021, 12, 746647.	2.2	35
746	High-Throughput-Methyl-Reading (HTMR) assay: a solution based on nucleotide methyl-binding proteins enables large-scale screening for DNA/RNA methyltransferases and demethylases. Nucleic Acids Research, 2022, 50, e9-e9.	6.5	12

#		IF	CITATIONS
747	mice with pressure overload-induced heart failure. Signal Transduction and Targeted Therapy, 2021, 6, 377.	7.1	31
749	An introduction to the themed issue on RNA biology in China. Essays in Biochemistry, 2020, 64, 863-866.	2.1	0
751	Regeneration of Retinal Ganglion Cell Axons. , 2020, , 630-641.		0
752	Regulation of Synthesis of Coenzyme Q10. , 2020, , 113-127.		0
753	RNA-Binding Proteins and Their Targets in Trypanosoma brucei: Single Nucleotide Resolution Using iCLIP and iCLAP. Methods in Molecular Biology, 2020, 2116, 303-323.	0.4	0
754	Linking Features of Genomic Function to Fundamental Features of Learned Vocal Communication. Springer Handbook of Auditory Research, 2020, , 211-244.	0.3	1
758	The m ⁶ A reader MhYTP2 regulates <i>MdMLO19</i> mRNA stability and antioxidant genes translation efficiency conferring powdery mildew resistance in apple. Plant Biotechnology Journal, 2022, 20, 511-525.	4.1	35
759	Integration Analysis of m6A Related Genes in Skin Cutaneous Melanoma and the Biological Function Research of the SPRR1B. Frontiers in Oncology, 2021, 11, 729045.	1.3	7
760	N6-Methyladenosine Methylomic Landscape of Lung Tissues in Murine Acute Allergic Asthma. Frontiers in Immunology, 2021, 12, 740571.	2.2	9
761	Construction of an N6-methyladenosine IncRNA- and immune cell infiltration-related prognostic model in colorectal cancer. Protoplasma, 2022, 259, 1029-1045.	1.0	3
762	Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2020. Chinese Chemical Letters, 2022, 33, 1650-1658.	4.8	47
763	A regulatory role of circRNA-miRNA-mRNA network in osteoblast differentiation. Biochimie, 2022, 193, 137-147.	1.3	24
764	Gene Signatures and Cancer-Immune Phenotypes Based on m6A Regulators in Breast Cancer. Frontiers in Oncology, 2021, 11, 756412.	1.3	3
765	m6A-mediated upregulation of AC008 promotes osteoarthritis progression through the miR-328-3p‒AQP1/ANKH axis. Experimental and Molecular Medicine, 2021, 53, 1723-1734.	3.2	35
772	Dissecting the role of RNA modification regulatory proteins in melanoma. Oncotarget, 2019, 10, 3745-3759.	0.8	4
773	Gene signatures of m5C regulators may predict prognoses of patients with head and neck squamous cell carcinoma. American Journal of Translational Research (discontinued), 2020, 12, 6841-6852.	0.0	22
774	Identification of an m6A Regulators-Mediated Prognosis Signature For Survival Prediction and Its Relevance to Immune Infiltration in Melanoma. Frontiers in Cell and Developmental Biology, 2021, 9, 718912.	1.8	6
775	Integrating m6A Regulators-Mediated Methylation Modification Models and Tumor Immune Microenvironment Characterization in Caucasian and Chinese Low-Grade Gliomas. Frontiers in Cell and Developmental Biology, 2021, 9, 725764.	1.8	6

#	Article	IF	CITATIONS
776	m6A-Maize: Weakly supervised prediction of m6A-carrying transcripts and m6A-affecting mutations in maize (Zea mays). Methods, 2022, 203, 226-232.	1.9	13
777	Epigenetic regulation of dental pulp stem cells and its potential in regenerative endodontics. World Journal of Stem Cells, 2021, 13, 1650-1669.	1.3	0
778	LuHui Derivative, A Novel Compound That Inhibits the Fat Mass and Obesity-Associated (FTO), Alleviates the Inflammatory Response and Injury in Hyperlipidemia-Induced Cardiomyopathy. Frontiers in Cell and Developmental Biology, 2021, 9, 731365.	1.8	14
779	RNA m6A methylation regulators in ovarian cancer. Cancer Cell International, 2021, 21, 609.	1.8	27
780	Methylation and Expression of Mutant FUS in Motor Neurons Differentiated From Induced Pluripotent Stem Cells From ALS Patients. Frontiers in Cell and Developmental Biology, 2021, 9, 774751.	1.8	1
781	Function of N6-Methyladenosine Modification in Tumors. Journal of Oncology, 2021, 2021, 1-10.	0.6	45
782	m6A Regulator-Mediated Methylation Modification Patterns and Tumor Microenvironment Infiltration Characterization in Acute Myeloid Leukemia. Frontiers in Immunology, 2021, 12, 789914.	2.2	15
783	Comprehensive Analysis of m6A Regulators Characterized by the Immune Cell Infiltration in Head and Neck Squamous Cell Carcinoma to Aid Immunotherapy and Chemotherapy. Frontiers in Oncology, 2021, 11, 764798.	1.3	12
784	YTH domain family: potential prognostic targets and immune-associated biomarkers in hepatocellular carcinoma. Aging, 2021, 13, 24205-24218.	1.4	14
785	RNA m6A Methylation Regulators Multi-Omics Analysis in Prostate Cancer. Frontiers in Genetics, 2021, 12, 768041.	1.1	10
786	Integrated Analysis of the m6A-Related IncRNA Identified IncRNA ABALON/miR-139-3p/NOB1 Axis Was Involved in the Occurrence of Lung Cancer. Cancer Management and Research, 2021, Volume 13, 8707-8722.	0.9	5
787	Characterization of N6-Methyladenosine in Domesticated Yak Testes Before and After Sexual Maturity. Frontiers in Cell and Developmental Biology, 2021, 9, 755670.	1.8	7
789	Epigenetic regulation of dental pulp stem cells and its potential in regenerative endodontics. World Journal of Stem Cells, 2021, 13, 1647-1666.	1.3	18
790	In Vitro Assessment of the Role of p53 on Chemotherapy Treatments in Neuroblastoma Cell Lines. Pharmaceuticals, 2021, 14, 1184.	1.7	3
791	The m6A mRNA demethylase FTO regulates GnRH secretion in Mn-induced precocious puberty. Molecular and Cellular Endocrinology, 2022, 542, 111523.	1.6	5
792	The Programmed Cell Death of Macrophages, Endothelial Cells, and Tubular Epithelial Cells in Sepsis-AKI. Frontiers in Medicine, 2021, 8, 796724.	1.2	23
793	Structural basis for METTL6-mediated m3C RNA methylation. Biochemical and Biophysical Research Communications, 2022, 589, 159-164.	1.0	5
794	ROR2 Downregulation Activates the MSX2/NSUN2/p21 Regulatory Axis and Promotes Dental Pulp Stem Cell Senescence. Stem Cells, 2022, 40, 290-302.	1.4	7

#	Article	IF	CITATIONS
795	METTL3 promotes colorectal carcinoma progression by regulating the m6A–CRB3–Hippo axis. Journal of Experimental and Clinical Cancer Research, 2022, 41, 19.	3.5	37
797	Novel insights into the interaction between N6-methyladenosine modification and circular RNA. Molecular Therapy - Nucleic Acids, 2022, 27, 824-837.	2.3	19
798	WTAP-mediated m6A modification of lncRNA DIAPH1-AS1 enhances its stability to facilitate nasopharyngeal carcinoma growth and metastasis. Cell Death and Differentiation, 2022, 29, 1137-1151.	5.0	66
799	METTL3-mediated m6A modification of TIMP2 mRNA promotes podocyte injury in diabetic nephropathy. Molecular Therapy, 2022, 30, 1721-1740.	3.7	61
800	Comprehensive analysis of N6-methylandenosine regulators and m6A-related RNAs as prognosis factors in colorectal cancer. Molecular Therapy - Nucleic Acids, 2022, 27, 598-610.	2.3	27
801	Signal pathways of melanoma and targeted therapy. Signal Transduction and Targeted Therapy, 2021, 6, 424.	7.1	115
802	The Non-N6-Methyladenosine Epitranscriptome Patterns and Characteristics of Tumor Microenvironment Infiltration and Mesenchymal Transition in Glioblastoma. Frontiers in Immunology, 2021, 12, 809808.	2.2	11
803	N6-Methyladenosine Modifications in the Female Reproductive System: Roles in Gonad Development and Diseases. International Journal of Biological Sciences, 2022, 18, 771-782.	2.6	12
804	The Role of N6-Methyladenosine (m6A) Methylation Modifications in Hematological Malignancies. Cancers, 2022, 14, 332.	1.7	12
805	Characterization of m6A regulatorâ€mediated methylation modification patterns and tumor microenvironment infiltration in acute myeloid leukemia. Cancer Medicine, 2022, , .	1.3	5
806	The methylation modification of m6A regulators contributes to the prognosis of ovarian cancer. Annals of Translational Medicine, 2022, 10, 59-59.	0.7	7
807	FIONA1â€Mediated m ⁶ A Modification Regulates the Floral Transition in <i>Arabidopsis</i> . Advanced Science, 2022, 9, e2103628.	5.6	34
808	Emerging role of m6A modification in osteogenesis of stem cells. Journal of Bone and Mineral Metabolism, 2022, 40, 177-188.	1.3	6
809	m6A Regulators Mediated Methylation Modification Patterns and Tumor Microenvironment Infiltration Characterization In Nasopharyngeal Carcinoma. Frontiers in Immunology, 2021, 12, 762243.	2.2	11
810	Glucose Regulates m6A Methylation of RNA in Pancreatic Islets. Cells, 2022, 11, 291.	1.8	16
811	Methylation Pattern Mediated by m6A Regulator and Tumor Microenvironment Invasion in Lung Adenocarcinoma. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-15.	1.9	25
812	Analysis of N6-Methyladenosine Methylome in Adenocarcinoma of Esophagogastric Junction. Frontiers in Genetics, 2021, 12, 787800.	1.1	1
813	How paediatric drug development and use could benefit from OMICs: A c4c expert group white paper. British Journal of Clinical Pharmacology, 2022, , .	1.1	3

#	Article	IF	CITATIONS
814	N6-Methyladenosine-Related lncRNAs as potential biomarkers for predicting prognoses and immune responses in patients with cervical cancer. BMC Genomic Data, 2022, 23, 8.	0.7	9
815	RNA-Based Strategies for Cell Reprogramming toward Pluripotency. Pharmaceutics, 2022, 14, 317.	2.0	7
816	Engineering synthetic RNA devices for cell control. Nature Reviews Genetics, 2022, 23, 215-228.	7.7	43
817	RNA N6-methyladenosine reader IGF2BP2 promotes lymphatic metastasis and epithelial-mesenchymal transition of head and neck squamous carcinoma cells via stabilizing slug mRNA in an m6A-dependent manner. Journal of Experimental and Clinical Cancer Research, 2022, 41, 6.	3.5	48
818	METTL3 facilitates multiple myeloma tumorigenesis by enhancing YY1 stability and pri-microRNA-27 maturation in m6A-dependent manner. Cell Biology and Toxicology, 2023, 39, 2033-2050.	2.4	11
819	The role of m6A RNA methylation in cancer metabolism. Molecular Cancer, 2022, 21, 14.	7.9	194
820	Discovery of substituted indole derivatives as allosteric inhibitors of <scp>m⁶Aâ€RNA</scp> methyltransferase, <scp>METTL3</scp> â€14 complex. Drug Development Research, 2022, , .	1.4	9
821	Crosstalk Between Four Types of RNA Modification Writers Characterizes the Tumor Immune Microenvironment Infiltration Patterns in Skin Cutaneous Melanoma. Frontiers in Cell and Developmental Biology, 2022, 10, 821678.	1.8	0
822	LncRNA LINC00942 promotes chemoresistance in gastric cancer by suppressing MSI2 degradation to enhance <i>câ€Myc</i> mRNA stability. Clinical and Translational Medicine, 2022, 12, e703.	1.7	46
823	The Identification of Two RNA Modification Patterns and Tumor Microenvironment Infiltration Characterization of Lung Adenocarcinoma. Frontiers in Genetics, 2022, 13, 761681.	1.1	0
824	Emerging Roles of m6A RNA Methylation Regulators in Gynecological Cancer. Frontiers in Oncology, 2022, 12, 827956.	1.3	16
825	Characterization of m6A Regulator-Mediated Methylation Modification Patterns and Tumor Microenvironment Infiltration in Ovarian Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 794801.	1.8	4
826	The CAR–mRNA Interaction Surface Is a Zipper Extension of the Ribosome A Site. International Journal of Molecular Sciences, 2022, 23, 1417.	1.8	0
827	Deficiency of TRDMT1 impairs exogenous RNA-based response and promotes retrotransposon activity during long-term culture of osteosarcoma cells. Toxicology in Vitro, 2022, 80, 105323.	1.1	6
828	Towards SINEUP-based therapeutics: Design of an inÂvitro synthesized SINEUP RNA. Molecular Therapy - Nucleic Acids, 2022, 27, 1092-1102.	2.3	4
829	Analysis of m6A Methylation Modification Patterns and Tumor Immune Microenvironment in Breast Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, 785058.	1.8	9
830	N6-Methyladenosine-Related IncRNAs Are Potential Prognostic Biomarkers and Correlated With Tumor Immune Microenvironment in Osteosarcoma. Frontiers in Genetics, 2021, 12, 805607.	1.1	8
831	Activation of osteoblast ferroptosis via the METTL3/ASK1â€p38 signaling pathway in high glucose and high fat (HGHF)â€induced diabetic bone loss. FASEB Journal, 2022, 36, e22147.	0.2	60

#	Article	IF	CITATIONS
832	Interplay Between m6A RNA Methylation and Regulation of Metabolism in Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, 813581.	1.8	7
833	The Emerging Role of RNA Modifications in the Regulation of Antiviral Innate Immunity. Frontiers in Microbiology, 2022, 13, 845625.	1.5	17
834	The role of m6A modification in pediatric cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188691.	3.3	16
835	Involvement of N6-methyladenosine modifications of long noncoding RNAs in systemic lupus erythematosus. Molecular Immunology, 2022, 143, 77-84.	1.0	13
836	Progress on <italic>N</italic> ⁶ -methyladenosine regulation of immune homeostasis. Scientia Sinica Vitae, 2023, 53, 334-346.	0.1	1
837	Structural effects of m6A modification of the Xist A-repeat AUCG tetraloop and its recognition by YTHDC1. Nucleic Acids Research, 2022, 50, 2350-2362.	6.5	17
838	Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. Journal of Hematology and Oncology, 2022, 15, 13.	6.9	34
839	m6A Regulator-Mediated Methylation Modification Patterns and Tumor Microenvironment Cell-Infiltration Characterization in Head and Neck Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 803141.	1.8	4
840	M6A demethylase FTO-mediated downregulation of DACT1 mRNA stability promotes Wnt signaling to facilitate osteosarcoma progression. Oncogene, 2022, 41, 1727-1741.	2.6	28
841	YTHDF3 modulates hematopoietic stem cells by recognizing RNA m ⁶ A modification on <i>Ccnd1</i> . Haematologica, 2022, 107, 2381-2394.	1.7	10
843	Comprehensive analysis of N6-methyladenosine regulators with the tumor immune landscape and correlation between the insulin-like growth factor 2 mRNA-binding protein 3 and programmed death ligand 1 in bladder cancer. Cancer Cell International, 2022, 22, 72.	1.8	8
844	The Reversible Methylation of m6A Is Involved in Plant Virus Infection. Biology, 2022, 11, 271.	1.3	14
845	Comprehensive Analyses of the Expression, Genetic Alteration, Prognosis Significance, and Interaction Networks of m6A Regulators Across Human Cancers. Frontiers in Genetics, 2021, 12, 771853.	1.1	3
846	YTHDC1 gene polymorphisms and neuroblastoma susceptibility in Chinese children. Aging, 2021, 13, 25426-25439.	1.4	10
847	Prognostic Risk Model and Tumor Immune Environment Modulation of m5C-Related LncRNAs in Pancreatic Ductal Adenocarcinoma. Frontiers in Immunology, 2021, 12, 800268.	2.2	40
848	Approaching Sites of Action of Temozolomide for Pharmacological and Clinical Studies in Glioblastoma. Biomedicines, 2022, 10, 1.	1.4	17
849	Genome-wide identification of m6A-associated functional SNPs as potential functional variants for thyroid cancer. American Journal of Cancer Research, 2021, 11, 5402-5414.	1.4	0
850	AÂm6Avalue predictive of prostate cancer stemness, tumor immune landscape and immunotherapy response. NAR Cancer, 2022, 4, zcac010.	1.6	7

#	Article	IF	CITATIONS
851	The role of Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) as m ⁶ A readers in cancer. International Journal of Biological Sciences, 2022, 18, 2744-2758.	2.6	30
852	YTHDC2 Inhibits Rat Bone Mesenchymal Stem Cells Osteogenic Differentiation by Accelerating RUNX2 mRNA Degradation Via m6A Methylation. SSRN Electronic Journal, 0, , .	0.4	0
853	m6A methyltransferase KIAA1429 acts as an oncogenic factor in colorectal cancer by regulating SIRT1 in an m6A-dependent manner. Cell Death Discovery, 2022, 8, 83.	2.0	15
854	Versatile functions of RNA m6A machinery on chromatin. Journal of Molecular Cell Biology, 2022, 14, .	1.5	2
855	Molecular Characterization of m6A Modifications in Non-Clear Cell Renal Cell Carcinoma and Potential Relationship with Pathological Types. International Journal of General Medicine, 2022, Volume 15, 1595-1608.	0.8	0
856	Establishment and Validation of a 5 m6A RNA Methylation Regulatory Gene Prognostic Model in Low-Grade Glioma. Frontiers in Genetics, 2022, 13, 655169.	1.1	6
857	5-methylcytosine modification by <i>Plasmodium</i> NSUN2 stabilizes mRNA and mediates the development of gametocytes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
858	CPEB1 directs muscle stem cell activation by reprogramming the translational landscape. Nature Communications, 2022, 13, 947.	5.8	16
859	AS3MT facilitates NLRP3 inflammasome activation by m6A modification during arsenic-induced hepatic insulin resistance. Cell Biology and Toxicology, 2023, 39, 2165-2181.	2.4	16
860	Comprehensive Analysis of the Transcriptome-Wide m6A Methylation in Mouse Pachytene Spermatocytes and Round Spermatids. Frontiers in Genetics, 2022, 13, 832677.	1.1	3
861	Transcriptome-wide analysis of glioma stem cell specific m6A modifications in long-non-coding RNAs. Scientific Reports, 2022, 12, 5431.	1.6	6
862	Abnormal expression and the significant prognostic value of aquaporins in clear cell renal cell carcinoma. PLoS ONE, 2022, 17, e0264553.	1.1	9
863	Comprehensive Analysis Revealed the Potential Implications of m6A Regulators in Lung Adenocarcinoma. Frontiers in Molecular Biosciences, 2022, 9, 806780.	1.6	2
864	Methyltransferase-like 3 induces the development of cervical cancer by enhancing insulin-like growth factor 2 mRNA-binding proteins 3-mediated apoptotic chromatin condensation inducer 1 mRNA stability. Bioengineered, 2022, 13, 7034-7048.	1.4	6
865	FTO promotes multiple myeloma progression by posttranscriptional activation of HSF1 in an m6A-YTHDF2-dependent manner. Molecular Therapy, 2022, 30, 1104-1118.	3.7	28
866	Integrated Analysis of IncRNA and mRNA Expression Profiles Indicates Age-Related Changes in Meniscus. Frontiers in Cell and Developmental Biology, 2022, 10, 844555.	1.8	3
867	METTL3 modulates m6A modification of CDC25B and promotes head and neck squamous cell carcinoma malignant progression. Experimental Hematology and Oncology, 2022, 11, 14.	2.0	14
869	LncRNA NEAT1 sponges miR-214 to promoted tumor growth in hepatocellular carcinoma. Mammalian Genome, 2022, 33, 525-533.	1.0	9

#	Article	IF	CITATIONS
870	N6-Methyladenosine Regulators Promote Malignant Progression of Gastric Adenocarcinoma. Frontiers in Oncology, 2021, 11, 726018.	1.3	10
871	Machine learning algorithm for precise prediction of 2′-O-methylation (Nm) sites from experimental RiboMethSeq datasets. Methods, 2022, 203, 311-321.	1.9	4
872	FTO in cancer: functions, molecular mechanisms, and therapeutic implications. Trends in Cancer, 2022, 8, 598-614.	3.8	61
873	Comprehensive Analysis of Key m6A Modification Related Genes and Immune Infiltrates in Human Aortic Dissection. Frontiers in Cardiovascular Medicine, 2022, 9, 831561.	1.1	2
874	Comprehensive characterization of m6A methylation and its impact on prognosis, genome instability, and tumor microenvironment in hepatocellular carcinoma. BMC Medical Genomics, 2022, 15, 53.	0.7	8
875	Emerging Roles and Mechanism of m6A Methylation in Cardiometabolic Diseases. Cells, 2022, 11, 1101.	1.8	19
876	Identification of Significant Modules and Targets of Xian-Lian-Jie-Du Decoction Based on the Analysis of Transcriptomics, Proteomics and Single-Cell Transcriptomics in Colorectal Tumor. Journal of Inflammation Research, 2022, Volume 15, 1483-1499.	1.6	10
877	Secondary structure prediction for RNA sequences including N6-methyladenosine. Nature Communications, 2022, 13, 1271.	5.8	27
878	Roles of RNA-binding proteins in immune diseases and cancer. Seminars in Cancer Biology, 2022, 86, 310-324.	4.3	14
879	m6A hypomethylation of DNMT3B regulated by ALKBH5 promotes intervertebral disc degeneration via E4F1 deficiency. Clinical and Translational Medicine, 2022, 12, e765.	1.7	27
880	rtcisE2F promotes the self-renewal and metastasis of liver tumor-initiating cells via N6-methyladenosine-dependent E2F3/E2F6 mRNA stability. Science China Life Sciences, 2022, 65, 1840-1854.	2.3	12
881	The Role of m5C-Related IncRNAs in Predicting Overall Prognosis and Regulating the Lower Grade Glioma Microenvironment. Frontiers in Oncology, 2022, 12, 814742.	1.3	11
883	m ⁶ Aâ€mediated regulation of PBX1â€GCH1 axis promotes gastric cancer proliferation and metastasis by elevating tetrahydrobiopterin levels. Cancer Communications, 2022, 42, 327-344.	3.7	18
884	Identification of N6-Methyladenosine-Related IncRNAs as a Prognostic Signature in Glioma. Frontiers in Oncology, 2022, 12, 789283.	1.3	8
885	Setd2 determines distinct properties of intestinal ILC3 subsets to regulate intestinal immunity. Cell Reports, 2022, 38, 110530.	2.9	10
886	Loss of Wtap results in cerebellar ataxia and degeneration of Purkinje cells. Journal of Genetics and Genomics, 2022, 49, 847-858.	1.7	5
887	Identification of Inosine and 2′- <i>O</i> -Methylinosine Modifications in Yeast Messenger RNA by Liquid Chromatography–Tandem Mass Spectrometry Analysis. Analytical Chemistry, 2022, 94, 4747-4755.	3.2	22
888	WTAP-mediated m6A modification of lncRNA NORAD promotes intervertebral disc degeneration. Nature Communications, 2022, 13, 1469.	5.8	55

	CHAHON	REPORT	
#		IE	CITATIONS
11		11	CHATIONS
889	YIHDF1 promotes intrahepatic cholangiocarcinoma progression via regulating EGFR mRNA translation. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 1156-1168.	1.4	14
890	Identification and Characterization of BmNPV m6A Sites and Their Possible Roles During Viral Infection. Frontiers in Immunology, 2022, 13, 869313.	2.2	4
891	m6A Regulator-Mediated Methylation Modification Patterns and Characterisation of Tumour Microenvironment Infiltration in Non-Small Cell Lung Cancer. Journal of Inflammation Research, 2022, Volume 15, 1969-1989.	1.6	14
892	Epigenetic activation of RBM15 promotes clear cell renal cell carcinoma growth, metastasis and macrophage infiltration by regulating the m6A modification of CXCL11. Free Radical Biology and Medicine, 2022, 184, 135-147.	1.3	24
893	Eltrombopag as an Allosteric Inhibitor of the METTL3-14 Complex Affecting the m6A Methylation of RNA in Acute Myeloid Leukemia Cells. Pharmaceuticals, 2022, 15, 440.	1.7	24
894	YTHDF1 Negatively Regulates Treponema pallidum-Induced Inflammation in THP-1 Macrophages by Promoting SOCS3 Translation in an m6A-Dependent Manner. Frontiers in Immunology, 2022, 13, 857727.	2.2	26
895	Deadenylase-dependent mRNA decay of GDF15 and FGF21 orchestrates food intake and energy expenditure. Cell Metabolism, 2022, 34, 564-580.e8.	7.2	21
896	RNA 2'-O-Methyltransferase Fibrillarin Facilitates Virus Entry Into Macrophages Through Inhibiting Type I Interferon Response. Frontiers in Immunology, 2022, 13, 793582.	2.2	7
897	The emerging roles of the interaction between m6A modification and câ€Myc in driving tumorigenesis and development. Journal of Cellular Physiology, 2022, 237, 2758-2769.	2.0	6
898	Nuclear Aurora kinase A switches m6A reader YTHDC1 to enhance an oncogenic RNA splicing of tumor suppressor RBM4. Signal Transduction and Targeted Therapy, 2022, 7, 97.	7.1	32
899	Analysis of the function and mechanism of DIRAS1 in osteosarcoma. Tissue and Cell, 2022, 76, 101794.	1.0	6
900	New advances of DNA/RNA methylation modification in liver fibrosis. Cellular Signalling, 2022, 92, 110224.	1.7	3
901	Quantitative proteomics and phosphoproteomics elucidate the molecular mechanism of nanostructured TiO2-stimulated biofilm formation. Journal of Hazardous Materials, 2022, 432, 128709.	6.5	4
902	The molecular characteristics in different procedures of spermatogenesis. Gene, 2022, 826, 146405.	1.0	5
903	N6-methyladenosine (m ⁶ A) depletion regulates pluripotency exit by activating signaling pathways in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
904	METTL14 benefits the mesenchymal stem cells in patients with steroid-associated osteonecrosis of the femoral head by regulating the m6A level of PTPN6. Aging, 2021, 13, 25903-25919.	1.4	12
905	Epigenetic function in neurodevelopment and cognitive impairment. Neuroforum, 2022, 28, 41-53.	0.2	0
907	Insights into roles of METTL14 in tumors. Cell Proliferation, 2022, 55, e13168.	2.4	21

#	Article	IF	CITATIONS
908	The Role of Critical N6-Methyladenosine-Related Long Non-Coding RNAs and Their Correlations with Immune Checkpoints in Renal Clear Cell Carcinoma. International Journal of General Medicine, 2021, Volume 14, 9773-9787.	0.8	5
909	Identification of m6A Regulator-Associated Methylation Modification Clusters and Immune Profiles in Melanoma. Frontiers in Cell and Developmental Biology, 2021, 9, 761134.	1.8	6
910	METTL3 inhibition ameliorates liver damage in mouse with hepatitis B virus-associated acute-on-chronic liver failure by regulating miR-146a-5p maturation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, 1865, 194782.	0.9	7
911	Transcriptome-wide N6-Methyladenosine Methylome Profiling Reveals m6A Regulation of Skeletal Myoblast Differentiation in Cattle (Bos taurus). Frontiers in Cell and Developmental Biology, 2021, 9, 785380.	1.8	10
912	Identification and Validation of a Prognostic Prediction Model of m6A Regulator-Related LncRNAs in Hepatocellular Carcinoma. Frontiers in Molecular Biosciences, 2021, 8, 784553.	1.6	10
913	Novel Insights Into the Multifaceted Functions of RNA n6-Methyladenosine Modification in Degenerative Musculoskeletal Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 766020.	1.8	13
914	m6A Modification-Mediated DUXAP8 Regulation of Malignant Phenotype and Chemotherapy Resistance of Hepatocellular Carcinoma Through miR-584-5p/MAPK1/ERK Pathway Axis. Frontiers in Cell and Developmental Biology, 2021, 9, 783385.	1.8	17
915	Influence of N6-Methyladenosine Modification Gene HNRNPC on Cell Phenotype in Parkinson's Disease. Parkinson's Disease, 2021, 2021, 1-10.	0.6	8
916	Attention-Based Deep Multiple-Instance Learning for Classifying Circular RNA and Other Long Non-Coding RNA. Genes, 2021, 12, 2018.	1.0	4
917	Comprehensive profiling and evaluation of the alteration of RNA modifications in thyroid carcinoma by liquid chromatography-tandem mass spectrometry. Chinese Chemical Letters, 2022, 33, 3772-3776.	4.8	30
918	Low Expression of YTH Domain-Containing 1 Promotes Microglial M1 Polarization by Reducing the Stability of Sirtuin 1 mRNA. Frontiers in Cellular Neuroscience, 2021, 15, 774305.	1.8	20
919	Characterization of m6A RNA Methylation Regulators Predicts Survival and Immunotherapy in Lung Adenocarcinoma. Frontiers in Immunology, 2021, 12, 782551.	2.2	7
920	Development and clinical advancement of small molecules for exÂvivo expansion of hematopoietic stem cell. Acta Pharmaceutica Sinica B, 2022, 12, 2808-2831.	5.7	9
921	Integrated Study of Transcriptome-wide m6A Methylome Reveals Novel Insights Into the Character and Function of m6A Methylation During Yak Adipocyte Differentiation. Frontiers in Cell and Developmental Biology, 2021, 9, 689067.	1.8	7
922	RNA N6-methyladenosine demethylase FTO promotes pancreatic cancer progression by inducing the autocrine activity of PDGFC in an m6A-YTHDF2-dependent manner. Oncogene, 2022, 41, 2860-2872.	2.6	21
923	m ⁶ A RNA demethylase FTO promotes the growth, migration and invasion of pancreatic cancer cells through inhibiting TFPI-2. Epigenetics, 2022, 17, 1738-1752.	1.3	15
924	The Potential Role of m6A RNA Methylation in the Aging Process and Aging-Associated Diseases. Frontiers in Genetics, 2022, 13, 869950.	1.1	19
925	Primary sequence-assisted prediction of m6A RNA methylation sites from Oxford nanopore direct RNA sequencing data. Methods, 2022, 203, 62-69.	1.9	7

#	Article	IF	CITATIONS
926	Lipopolysaccharide facilitates immune escape of hepatocellular carcinoma cells via m6A modification of lncRNAÂMIR155HG to upregulate PD-L1 expression. Cell Biology and Toxicology, 2022, 38, 1159-1173.	2.4	41
927	Experimental demonstration and pan-structurome prediction of climate-associated riboSNitches in Arabidopsis. Genome Biology, 2022, 23, 101.	3.8	10
975	YTHDF1 upregulation mediates hypoxia-dependent breast cancer growth and metastasis through regulating PKM2 to affect glycolysis. Cell Death and Disease, 2022, 13, 258.	2.7	35
976	29 m6A-RNA Methylation (Epitranscriptomic) Regulators Are Regulated in 41 Diseases including Atherosclerosis and Tumors Potentially via ROS Regulation – 102 Transcriptomic Dataset Analyses. Journal of Immunology Research, 2022, 2022, 1-42.	0.9	19
977	Signature of m5C-Related lncRNA for Prognostic Prediction and Immune Responses in Pancreatic Cancer. Journal of Oncology, 2022, 2022, 1-16.	0.6	11
978	N6-Methyladenosine-Related LncRNAs Are Potential Remodeling Indicators in the Tumor Microenvironment and Prognostic Markers in Osteosarcoma. Frontiers in Immunology, 2021, 12, 806189.	2.2	9
979	Transcriptome-Wide Dynamics of m6A Methylation in Tumor Livers Induced by ALV-J Infection in Chickens. Frontiers in Immunology, 2022, 13, 868892.	2.2	2
980	Emerging Roles of FTO in Neuropsychiatric Disorders. BioMed Research International, 2022, 2022, 1-9.	0.9	8
981	Methyltransferase-Like 3 Rescues the Amyloid-beta protein-Induced Reduction of Activity-Regulated Cytoskeleton Associated Protein Expression via YTHDF1-Dependent N6-Methyladenosine Modification. Frontiers in Aging Neuroscience, 2022, 14, 890134.	1.7	13
982	Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance. Nature, 2022, 605, 372-379.	13.7	35
983	Role of main RNA modifications in cancer: N6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduction and Targeted Therapy, 2022, 7, 142.	7.1	62
984	N6-Methyladenosine RNA Methylation in Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2022, 9, 887838.	1.1	15
985	Essential m6A Methylation Regulator HNRNPC Serves as a Targetable Biomarker for Papillary Renal Cell Carcinoma. Journal of Oncology, 2022, 2022, 1-29.	0.6	0
986	Editorial: Epigenetic Regulation and Tumor Immunotherapy. Frontiers in Oncology, 2022, 12, .	1.3	2
987	Global N6-methyladenosine methylation analysis reveals the positive correlation between m6A modification and mRNA abundance during Apostichopus japonicus disease development. Developmental and Comparative Immunology, 2022, 133, 104434.	1.0	3
988	Identification and validation of an epigenetically regulated long noncoding RNA model for breast cancer metabolism and prognosis. BMC Medical Genomics, 2022, 15, 105.	0.7	1
989	FTO mediated ERBB2 demethylation promotes tumor progression in esophageal squamous cell carcinoma cells. Clinical and Experimental Metastasis, 2022, 39, 623-639.	1.7	10
990	M5C-Related IncRNA Predicts Lung Adenocarcinoma and Tumor Microenvironment Remodeling: Computational Biology and Basic Science. Frontiers in Cell and Developmental Biology, 2022, 10, 885568.	1.8	9

#	Article	IF	CITATIONS
991	Identification of m6A-Related IncRNA to Predict the Prognosis of Patients with Hepatocellular Carcinoma. BioMed Research International, 2022, 2022, 1-19.	0.9	2
992	Maternal Oxidized Soybean Oil Administration in Rats during Pregnancy and Lactation Alters the Intestinal DNA Methylation in Offspring. Journal of Agricultural and Food Chemistry, 2022, 70, 6224-6238.	2.4	6
993	A systematic dissection of determinants and consequences of snoRNA-guided pseudouridylation of human mRNA. Nucleic Acids Research, 2022, 50, 4900-4916.	6.5	11
994	Characteristics of <i>N</i> 6 -Methyladenosine Modification During Sexual Reproduction of <i>Chlamydomonas Reinhardtii</i> . Genomics, Proteomics and Bioinformatics, 2023, 21, 756-768.	3.0	4
995	Exploring molecular biology in sequence space: The road to next-generation single-molecule biophysics. Molecular Cell, 2022, 82, 1788-1805.	4.5	3
996	ALKBH5 regulates STAT3 activity to affect the proliferation and tumorigenicity of osteosarcoma via an m6A-YTHDF2-dependent manner. EBioMedicine, 2022, 80, 104019.	2.7	34
997	Uncovering early thyroid hormone signalling events through temperature-mediated activation of molecular memory in the cultured bullfrog tadpole tail fin. General and Comparative Endocrinology, 2022, 323-324, 114047.	0.8	2
998	MEF2C Expression Is Regulated by the Post-transcriptional Activation of the METTL3-m6A-YTHDF1 Axis in Myoblast Differentiation. Frontiers in Veterinary Science, 2022, 9, 900924.	0.9	8
999	Potential Misidentification of Natural Isomers and Mass-Analogs of Modified Nucleosides by Liquid Chromatography–Triple Quadrupole Mass Spectrometry. Genes, 2022, 13, 878.	1.0	3
1000	N6-methyladenosine modifications of mRNAs and long noncoding RNAs in oxygen-induced retinopathy in mice. Experimental Eye Research, 2022, 220, 109114.	1.2	7
1001	METTL3-mediated m6A RNA methylation regulates dorsal lingual epithelium homeostasis. International Journal of Oral Science, 2022, 14, 26.	3.6	6
1002	Development of Mild Chemical Catalysis Conditions for m ¹ A-to-m ⁶ A Rearrangement on RNA. ACS Chemical Biology, 2022, , .	1.6	4
1003	The potential role of N7-methylguanosine (m7G) in cancer. Journal of Hematology and Oncology, 2022, 15, 63.	6.9	94
1004	The m6A methylation regulates gonadal sex differentiation in chicken embryo. Journal of Animal Science and Biotechnology, 2022, 13, 52.	2.1	11
1005	The importance of N6-methyladenosine modification in tumor immunity and immunotherapy. Experimental Hematology and Oncology, 2022, 11, 30.	2.0	8
1006	3D-Printed β-Tricalcium Phosphate Scaffolds Promote Osteogenic Differentiation of Bone Marrow-Deprived Mesenchymal Stem Cells in an N6-methyladenosineDependent Manner. International Journal of Bioprinting, 2022, 8, 544.	1.7	9
1007	m1A RNA Modification in Gene Expression Regulation. Genes, 2022, 13, 910.	1.0	28
1009	The epigenetic regulation of the germinal center response. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, 1865, 194828.	0.9	3

#	Article	IF	CITATIONS
1010	RBM15 Protects Cardiomyocytes Apoptosis Under Myocardial Infarction Through Stabilizing NAE1. SSRN Electronic Journal, 0, , .	0.4	0
1012	Systematic evaluation of parameters in RNA bisulfite sequencing data generation and analysis. NAR Genomics and Bioinformatics, 2022, 4, .	1.5	6
1013	N6-Methyladenosine-Related IncRNAs Are Anticipated Biomarkers for Sarcoma Patients. Journal of Oncology, 2022, 2022, 1-10.	0.6	2
1014	Gene product diversity: adaptive or not?. Trends in Genetics, 2022, 38, 1112-1122.	2.9	9
1015	Emerging role of RNA m6A modification in aging regulation. , 2022, 1, .		5
1016	Bioinformatics Analysis of the Characteristics and Correlation of m6A Methylation in Breast Cancer Progression. Contrast Media and Molecular Imaging, 2022, 2022, 1-15.	0.4	1
1017	Mettl14 mediates the inflammatory response of macrophages in atherosclerosis through the NF-κB/IL-6 signaling pathway. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	59
1018	Recent Advances of m6A Demethylases Inhibitors and Their Biological Functions in Human Diseases. International Journal of Molecular Sciences, 2022, 23, 5815.	1.8	25
1019	Setting the clock of neural progenitor cells during mammalian corticogenesis. Seminars in Cell and Developmental Biology, 2023, 142, 43-53.	2.3	6
1020	Nsun4 and Mettl3 mediated translational reprogramming of Sox9 promotes BMSC chondrogenic differentiation. Communications Biology, 2022, 5, .	2.0	13
1021	Emerging Regulatory Mechanisms of N6-Methyladenosine Modification in Cancer Metastasis. Phenomics, 2023, 3, 83-100.	0.9	9
1022	N6-methyladenosine methylation modification patterns reveal immune profiling in pancreatic adenocarcinoma. Cancer Cell International, 2022, 22, .	1.8	7
1023	Transcriptome-Wide m6A Methylome and m6A-Modified Gene Analysis in Asthma. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	4
1024	The Key Role of RNA Modification in Breast Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	4
1025	On demand CRISPR-mediated RNA N6-methyladenosine editing. Genes and Diseases, 2022, 9, 1389-1390.	1.5	3
1026	m6A RNA methylation: A dynamic regulator of cardiac muscle and extracellular matrix. Current Opinion in Physiology, 2022, , 100561.	0.9	2
1028	Transcriptomic analysis and laboratory experiments reveal potential critical genes and regulatory mechanisms in sepsis-associated acute kidney injury. Annals of Translational Medicine, 2022, 10, 737-737.	0.7	17
1030	Integrated Analyses Reveal Potential Functional N6-Methyladenosine-Related Long Noncoding RNAs in Adrenocortical Adenocarcinoma. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2

#	Article	IF	CITATIONS
1032	METTL3 Inhibits Antitumor Immunity by Targeting m6A-BHLHE41-CXCL1/CXCR2 Axis to Promote Colorectal Cancer. Gastroenterology, 2022, 163, 891-907.	0.6	75
1033	ZNF677 suppresses renal cell carcinoma progression through N6â€methyladenosine and transcriptional repression of CDKN3. Clinical and Translational Medicine, 2022, 12, .	1.7	21
1034	Ubiquitin specific peptidase 11 as a novel therapeutic target for cancer management. Cell Death Discovery, 2022, 8, .	2.0	8
1035	Tracing New Landscapes in the Arena of Nanoparticle-Based Cancer Immunotherapy. Frontiers in Nanotechnology, 0, 4, .	2.4	3
1037	N6-Methyladenosine Modification Patterns and Tumor Microenvironment Immune Characteristics Associated With Clinical Prognosis Analysis in Stomach Adenocarcinoma. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	7
1039	Regulation and roles of <scp>RNA</scp> modifications in agingâ€related diseases. Aging Cell, 2022, 21, .	3.0	22
1040	Mettl14-mediated m6A modification is essential for visual function and retinal photoreceptor survival. BMC Biology, 2022, 20, .	1.7	10
1041	Dihydrouridine in the Transcriptome: New Life for This Ancient RNA Chemical Modification. ACS Chemical Biology, 2022, 17, 1638-1657.	1.6	9
1042	Crosstalk Between Histone and m6A Modifications and Emerging Roles of m6A RNA Methylation. Frontiers in Genetics, 0, 13, .	1.1	4
1043	Predictive value of N6-methyladenosine (m6A)-related genes for prognosis and correlation with tumor microenvironment in gastric cancer. Chinese Medical Journal, 0, Publish Ahead of Print, .	0.9	0
1044	A Cross-Tissue Investigation of Molecular Targets and Physiological Functions of Nsun6 Using Knockout Mice. International Journal of Molecular Sciences, 2022, 23, 6584.	1.8	4
1045	Comprehensive Analysis of m5C Methylation Regulatory Genes and Tumor Microenvironment in Prostate Cancer. Frontiers in Immunology, 0, 13, .	2.2	12
1046	Hypoxia induced ALKBH5 prevents spontaneous abortion by mediating m6A-demethylation of SMAD1/5 mRNAs. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119316.	1.9	12
1048	Epitranscriptomics Changes the Play: m6A RNA Modifications in Apoptosis. Advances in Experimental Medicine and Biology, 2022, , 163-171.	0.8	3
1049	RNA Epigenetics and Epitranscriptomics: The Emerging Gene Regulatory Landscape Through RNA Modifications. , 2022, , .		0
1050	m6A Methylation in Cardiovascular Diseases: From Mechanisms to Therapeutic Potential. Frontiers in Genetics, 0, 13, .	1.1	11
1051	Crosstalk of RNA Adenosine Modification-Related Subtypes, Establishment of a Prognostic Model, and Immune Infiltration Characteristics in Ovarian Cancer. Frontiers in Immunology, 0, 13, .	2.2	8
1052	Methyladenosine Modification in RNAs: From Regulatory Roles to Therapeutic Implications in Cancer. Cancers, 2022, 14, 3195.	1.7	8

# 1053	ARTICLE CREB Ameliorates Osteoarthritis Progression Through Regulating Chondrocytes Autophagy via the miR-373/METTL3/TFEB Axis, Frontiers in Cell and Developmental Biology, O. 9	IF 1.8	Citations 9
1055	Research advances of <scp>N6</scp> â€methyladenosine in diagnosis and therapy of pancreatic cancer. Journal of Clinical Laboratory Analysis, 2022, 36, .	0.9	12
1056	Alternative Splicing and Its Roles in Plant Metabolism. International Journal of Molecular Sciences, 2022, 23, 7355.	1.8	20
1057	The Role of RNA Modification in HIV-1 Infection. International Journal of Molecular Sciences, 2022, 23, 7571.	1.8	7
1058	Epitranscriptomics in myeloid malignancies. Blood Science, 0, Publish Ahead of Print, .	0.4	0
1059	Correlative Study on the Relationship between the Expression of m6a-Related Genes and the Prognosis and Immunotherapy of Soft Tissue Sarcoma. BioMed Research International, 2022, 2022, 1-35.	0.9	1
1060	mRNAs sequestered in stress granules recover nearly completely for translation. RNA Biology, 2022, 19, 877-884.	1.5	9
1061	TTC22 promotes m6A-mediated WTAP expression and colon cancer metastasis in an RPL4 binding-dependent pattern. Oncogene, 2022, 41, 3925-3938.	2.6	10
1062	Progress and application of epitranscriptomic m ⁶ A modification in gastric cancer. RNA Biology, 2022, 19, 885-896.	1.5	5
1063	The Maternal Microbiome Programs the m6A Epitranscriptome of the Mouse Fetal Brain and Intestine. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
1064	Dysregulated minor intron splicing in cancer. Cancer Science, 2022, 113, 2934-2942.	1.7	7
1065	Methylated RNA Immunoprecipitation Sequencing Reveals the m6A Landscape in Oral Squamous Cell Carcinoma. Journal of Immunology Research, 2022, 2022, 1-13.	0.9	1
1066	NAT10-mediated <i>N</i> 4-acetylcytidine modification is required for meiosis entry and progression in male germ cells. Nucleic Acids Research, 2022, 50, 10896-10913.	6.5	20
1067	METTL14-mediated epitranscriptome modification of MN1 mRNA promote tumorigenicity and all-trans-retinoic acid resistance in osteosarcoma. EBioMedicine, 2022, 82, 104142.	2.7	19
1068	N6-methyladenosine modification and metabolic reprogramming of digestive system malignancies. Cancer Letters, 2022, 544, 215815.	3.2	13
1069	Research Progress for RNA Modifications in Physiological and Pathological Angiogenesis. Frontiers in Genetics, 0, 13, .	1.1	4
1070	Study on the Correlation Between Regulatory Proteins of N6-methyladenosine and Oxidative Damage in Cadmium-induced Renal Injury. Biological Trace Element Research, 2023, 201, 2294-2302.	1.9	6
1071	Mitochondrial RNA methyltransferase TRMT61B is a new, potential biomarker and therapeutic target for highly aneuploid cancers. Cell Death and Differentiation, 2023, 30, 37-53.	5.0	4

#	Article	IF	CITATIONS
1072	Roles of Epigenetics in Cardiac Fibroblast Activation and Fibrosis. Cells, 2022, 11, 2347.	1.8	10
1073	Alternative splicing of METTL3 explains apparently METTL3-independent m6A modifications in mRNA. PLoS Biology, 2022, 20, e3001683.	2.6	31
1074	<scp>IGF2BP2</scp> promotes pancreatic carcinoma progression by enhancing the stability of <scp>B3GNT6 mRNA</scp> via <scp>m6A</scp> methylation. Cancer Medicine, 2023, 12, 4405-4420.	1.3	5
1075	Comprehensive analysis of the m6A-related molecular patterns and diagnostic biomarkers in osteoporosis. Frontiers in Endocrinology, 0, 13, .	1.5	7
1076	Light, chromatin, action: nuclear events regulating light signaling in Arabidopsis. New Phytologist, 2022, 236, 333-349.	3.5	7
1078	The role, mechanism, and application of RNA methyltransferase METTL14 in gastrointestinal cancer. Molecular Cancer, 2022, 21, .	7.9	15
1079	Effects of N6-Methyladenosine Regulators on LAG3 and Immune Infiltrates in Lung Adenocarcinoma. Disease Markers, 2022, 2022, 1-24.	0.6	0
1080	Mettl3-mediated mRNA m6A modification controls postnatal liver development by modulating the transcription factor Hnf4a. Nature Communications, 2022, 13, .	5.8	20
1081	Alteration of m6A epitranscriptomic tagging of ribonucleic acids after spinal cord injury in mice. Frontiers in Neuroscience, 0, 16, .	1.4	1
1083	M6A-related IncRNAs predict clinical outcome and regulate the tumor immune microenvironment in hepatocellular carcinoma. BMC Cancer, 2022, 22, .	1.1	6
1084	YTHDC1 is downregulated by the YY1/HDAC2 complex and controls the sensitivity of ccRCC to sunitinib by targeting the ANXA1-MAPK pathway. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	3.5	19
1085	Inhibition of the m6A reader IGF2BP2 as a strategy against T-cell acute lymphoblastic leukemia. Leukemia, 2022, 36, 2180-2188.	3.3	17
1086	m6A regulator-based methylation modification patterns and characterization of tumor microenvironment in acute myeloid leukemia. Frontiers in Genetics, 0, 13, .	1.1	2
1087	N6-adenomethylation of GsdmC is essential for Lgr5+ stem cell survival to maintain normal colonic epithelial morphogenesis. Developmental Cell, 2022, 57, 1976-1994.e8.	3.1	12
1088	A m6A methyltransferase-mediated immune signature determines prognosis, immune landscape and immunotherapy efficacy in patients with lung adenocarcinoma. Cellular Oncology (Dordrecht), 2022, 45, 931-949.	2.1	3
1089	RNA binding proteins in osteoarthritis. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
1090	Dysregulation and implications of N6-methyladenosine modification in renal cell carcinoma. Current Urology, 2023, 17, 45-51.	0.4	1
1091	Comprehensive analysis of molecular features, prognostic values, and immune landscape association of m6A-regulated immune-related lncRNAs in smoking-associated lung squamous cell carcinoma. Frontiers in Genetics, 0, 13, .	1.1	3

#	Article	IF	CITATIONS
1092	mRNA m5C inhibits adipogenesis and promotes myogenesis by respectively facilitating YBX2 and SMO mRNA export in ALYREF-m5C manner. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	5
1093	m6A regulator-mediated methylation modification highlights immune infiltration patterns for predicting risk in hepatocellular carcinoma. Journal of Cancer Research and Clinical Oncology, 0, , .	1.2	0
1094	RNA Modifications in Gastrointestinal Cancer: Current Status and Future Perspectives. Biomedicines, 2022, 10, 1918.	1.4	5
1095	METTL3 promotes prostatic hyperplasia by regulating PTEN expression in an m6A-YTHDF2-dependent manner. Cell Death and Disease, 2022, 13, .	2.7	10
1096	Identification and Validation of Immune Markers in Coronary Heart Disease. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-18.	0.7	3
1097	Sex-specific transcriptomic and epitranscriptomic signatures of PTSD-like fear acquisition. IScience, 2022, 25, 104861.	1.9	3
1098	Hepatic RNA adduction derived from metabolic activation of retrorsine in vitro and in vivo. Chemico-Biological Interactions, 2022, 365, 110047.	1.7	2
1099	Integrative pan-cancer analysis and clinical characterization of the N7-methylguanosine (m7G) RNA modification regulators in human cancers. Frontiers in Genetics, 0, 13, .	1.1	4
1100	A bibliometric analysis of RNA methylation in diabetes mellitus and its complications from 2002 to 2022. Frontiers in Endocrinology, 0, 13, .	1.5	10
1101	Functional Characterization of Two RNA Methyltransferase Genes METTL3 and METTL14 Uncovers the Roles of m6A in Mediating Adaptation of Plutella xylostella to Host Plants. International Journal of Molecular Sciences, 2022, 23, 10013.	1.8	2
1102	Role of <scp>m6A</scp> RNA methylation in the development of hepatitis B virusâ€associated hepatocellular carcinoma. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 2039-2050.	1.4	3
1103	NAD-capped RNAs – a redox cofactor meets RNA. Trends in Biochemical Sciences, 2023, 48, 142-155.	3.7	9
1104	A potential biomarker of esophageal squamous cell carcinoma WTAP promotes the proliferation and migration of ESCC. Pathology Research and Practice, 2022, 238, 154114.	1.0	3
1105	The role of IncRNA just proximal to XIST (JPX) in human disease phenotypes and RNA methylation: The novel biomarker and therapeutic target potential. Biomedicine and Pharmacotherapy, 2022, 155, 113753.	2.5	1
1106	The m6A methyltransferase METTL3 promotes trophoblast cell invasion by regulating MYLK expression. Placenta, 2022, 129, 1-6.	0.7	8
1107	MiR-590-3p affects the function of adipose-derived stem cells (ADSCs) on the survival of skin flaps by targeting VEGFA. Regenerative Therapy, 2022, 21, 322-330.	1.4	3
1108	RNA methylation in immune cells. Advances in Immunology, 2022, , 39-94.	1.1	4
1109	Epigenetic and epitranscriptomic mechanisms of chromium carcinogenesis. Advances in Pharmacology, 2023, , 241-265.	1.2	5

#	Article	IF	CITATIONS
1110	N6-methyladenosine of <i>Socs1</i> modulates macrophage inflammatory response in different stiffness environments. International Journal of Biological Sciences, 2022, 18, 5753-5769.	2.6	10
1111	Targeting N6-methyladenosine RNA modification combined with immune checkpoint Inhibitors: A new approach for cancer therapy. Computational and Structural Biotechnology Journal, 2022, 20, 5150-5161.	1.9	5
1112	Transcriptome-wide profiling of <i>N</i> ⁶ -methyladenosine <i>via</i> a selective chemical labeling method. Chemical Science, 2022, 13, 12149-12157.	3.7	5
1113	KRAS Promoter Methylation Status and miR-18a-3p and miR-143 Expression in Patients With Wild-type KRAS Gene in Colorectal Cancer. Cancer Diagnosis & Prognosis, 2022, 2, 576-584.	0.3	0
1114	Cotton (Gossypium hirsutum) VIRMA as an N6-Methyladenosine RNA Methylation Regulator Participates in Controlling Chloroplast-Dependent and Independent Leaf Development. International Journal of Molecular Sciences, 2022, 23, 9887.	1.8	2
1115	Pan-cancer analysis identifies YTHDF2 as an immunotherapeutic and prognostic biomarker. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
1116	Research Progress on the Role of RNA m6A Modification in Glial Cells in the Regulation of Neurological Diseases. Biomolecules, 2022, 12, 1158.	1.8	10
1117	Prediction and Motif Analysis of 2'-O-methylation Using a Hybrid Deep Learning Model from RNA Primary Sequence and Nanopore Signals. Current Bioinformatics, 2022, 17, 873-882.	0.7	0
1121	METTL3 Attenuates Inflammation in <i>Fusarium solani</i> –Induced Keratitis via the PI3K/AKT Signaling Pathway. , 2022, 63, 20.		5
1123	The role and regulatory mechanism of m6A methylation in the nervous system. Frontiers in Genetics, 0, 13, .	1.1	3
1124	Identification of molecular patterns and diagnostic biomarkers in juvenile idiopathic arthritis based on the gene expression of m6A regulators. Frontiers in Pediatrics, 0, 10, .	0.9	1
1125	ALKBH5-Mediated m6A Demethylation of GLUT4 mRNA Promotes Glycolysis and Resistance to HER2-Targeted Therapy in Breast Cancer. Cancer Research, 2022, 82, 3974-3986.	0.4	23
1126	Geographic encoding of transcripts enabled high-accuracy and isoform-aware deep learning of RNA methylation. Nucleic Acids Research, 2022, 50, 10290-10310.	6.5	12
1128	The effects of <scp>RNA</scp> methylation on immune cells development and function. FASEB Journal, 2022, 36, .	0.2	5
1129	Analysis of the role of m6A and lncRNAs in prognosis and immunotherapy of hepatocellular carcinoma. Heliyon, 2022, 8, e10612.	1.4	3
1130	Targeted Quantitative Profiling of Epitranscriptomic Reader, Writer, and Eraser Proteins Using Stable Isotope-Labeled Peptides. Analytical Chemistry, 2022, 94, 12559-12564.	3.2	4
1131	The role of RNA modification in hepatocellular carcinoma. Frontiers in Pharmacology, 0, 13, .	1.6	6
1132	Impact of N6-methyladenosine (m6A) modification on immunity. Cell Communication and Signaling, 2022, 20, .	2.7	11

#	Article	IF	CITATIONS
1133	N6-methyladenosine modification: A potential regulatory mechanism in spinal cord injury. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	5
1134	Immune dysregulation and <scp>RNA N6</scp> â€methyladenosine modification in sepsis. Wiley Interdisciplinary Reviews RNA, 2023, 14, .	3.2	4
1135	Prognostic N6-methyladenosine (m6A)-related IncRNA patterns to aid therapy in pancreatic ductal adenocarcinoma. Frontiers in Genetics, 0, 13, .	1.1	1
1136	NAMPT is a metabolic checkpoint of IFNÎ ³ -producing CD4+ TÂcells in lupus nephritis. Molecular Therapy, 2023, 31, 193-210.	3.7	6
1137	The regulation and potential roles of m6A modifications in early embryonic development and immune tolerance at the maternal-fetal interface. Frontiers in Immunology, 0, 13, .	2.2	5
1138	Ferredoxin 1 is a cuproptosis-key gene responsible for tumor immunity and drug sensitivity: A pan-cancer analysis. Frontiers in Pharmacology, 0, 13, .	1.6	21
1139	Construction and validation of prognostic prediction established on N6-methyladenosine related genes in cervical squamous cell carcinoma. Translational Cancer Research, 2022, 11, 3064-3079.	0.4	1
1140	Inhibition of CEBPB Attenuates Lupus Nephritis via Regulating Pim-1 Signaling. Mediators of Inflammation, 2022, 2022, 1-14.	1.4	4
1141	Epigenetic Dysregulations in Arsenic-Induced Carcinogenesis. Cancers, 2022, 14, 4502.	1.7	10
1142	DLm6Am: A Deep-Learning-Based Tool for Identifying N6,2′-O-Dimethyladenosine Sites in RNA Sequences. International Journal of Molecular Sciences, 2022, 23, 11026.	1.8	14
1143	Mettl3-dependent m6A modification attenuates the brain stress response in Drosophila. Nature Communications, 2022, 13, .	5.8	17
1144	RNA modifications in aging-associated cardiovascular diseases. Aging, 2022, 14, 8110-8136.	1.4	2
1145	N6-methyladenosine-related microRNAs risk model trumps the isocitrate dehydrogenase mutation status as a predictive biomarker for the prognosis and immunotherapy in lower grade gliomas. Exploration of Targeted Anti-tumor Therapy, 0, , 553-569.	0.5	1
1146	Cross-talk of four types of RNA modification proteins with adenosine reveals the landscape of multivariate prognostic patterns in breast cancer. Frontiers in Genetics, 0, 13, .	1.1	3
1147	The m6A-methylated mRNA pattern and the activation of the Wnt signaling pathway under the hyper-m6A-modifying condition in the keloid. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
1148	Autophagy induction promoted by m6A reader YTHDF3 through translation upregulation of FOXO3 mRNA. Nature Communications, 2022, 13, .	5.8	29
1149	Leucine zipper protein 2 serves as a prognostic biomarker for prostate cancer correlating with immune infiltration and epigenetic regulation. Heliyon, 2022, 8, e10750.	1.4	3
1151	RNA m6A modifications in mammalian gametogenesis and pregnancy. Reproduction, 2023, 165, R1-R8.	1.1	5

#	Article	IF	CITATIONS
1152	The nudibranch Berghia stephanieae (Valdés, 2005) is not able to initiate a functional symbiosome-like environment to maintain Breviolum minutum (J.E.Parkinson & LaJeunesse 2018). Frontiers in Marine Science, 0, 9, .	1.2	4
1153	RNA secondary structure packages evaluated and improved by high-throughput experiments. Nature Methods, 2022, 19, 1234-1242.	9.0	33
1154	N6-methyladenosine long non-coding RNAs reveal novel tool to implicate overall survival and immune microenvironment in renal clear cell carcinoma. Journal of Cancer Research and Clinical Oncology, 0, , .	1.2	0
1155	Expression pattern and clinical value of Key RNA methylation modification regulators in ischemic stroke. Frontiers in Genetics, 0, 13, .	1.1	Ο
1156	Modulation of DNA/RNA Methylation by Small-Molecule Modulators and Their Implications in Cancer. Sub-Cellular Biochemistry, 2022, , 557-579.	1.0	0
1157	Research progress of m ⁶ A methylation in prostate cancer. Asian Journal of Andrology, 2022, .	0.8	2
1158	RNA Metabolism in T Lymphocytes. Immune Network, 2022, 22, .	1.6	3
1159	METTL3 mediates chemoresistance by enhancing AML homing and engraftment via ITGA4. Leukemia, 2022, 36, 2586-2595.	3.3	17
1160	Identification of N7-methylguanosine related subtypes and construction of prognostic model in gastric cancer. Frontiers in Immunology, 0, 13, .	2.2	1
1161	The Mechanism and Role of N6-Methyladenosine (m6A) Modification in Atherosclerosis and Atherosclerotic Diseases. Journal of Cardiovascular Development and Disease, 2022, 9, 367.	0.8	3
1162	CircDDX17 enhances coxsackievirus B3 replication through regulating miR-1248/NOTCH receptor 2 axis. Frontiers in Microbiology, 0, 13, .	1.5	1
1164	<scp>m⁶A</scp> demethylase Fto regulates the <scp>TNF</scp> â€i±â€induced inflammatory response in cementoblasts. Oral Diseases, 2023, 29, 2806-2815.	1.5	1
1166	lncRNAs AC156455.1 and AC104532.2 as Biomarkers for Diagnosis and Prognosis in Colorectal Cancer. Disease Markers, 2022, 2022, 1-13.	0.6	2
1167	Mettl14-mediated m6A modification enhances the function of Foxp3+ regulatory T cells and promotes allograft acceptance. Frontiers in Immunology, 0, 13, .	2.2	3
1168	METTL3/m6A/IFIT2 regulates proliferation, invasion and immunity in esophageal squamous cell carcinoma. Frontiers in Pharmacology, 0, 13, .	1.6	11
1169	Reduction of Methyltransferase-like 3-Mediated RNA N6-Methyladenosine Exacerbates the Development of Psoriasis Vulgaris in Imiquimod-Induced Psoriasis-like Mouse Model. International Journal of Molecular Sciences, 2022, 23, 12672.	1.8	3
1170	The Epitranscriptomic Mechanism of Metal Toxicity and Carcinogenesis. International Journal of Molecular Sciences, 2022, 23, 11830.	1.8	13
1171	5-methylcytosine (m ⁵ C) RNA modification controls the innate immune response to virus infection by regulating type I interferons. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1172	BRANEnet: embedding multilayer networks for omics data integration. BMC Bioinformat	cics, 2022, 23, .	1.2	1
1173	Glycolysis-Related SLC2A1 Is a Potential Pan-Cancer Biomarker for Prognosis and Immur Cancers, 2022, 14, 5344.	notherapy.	1.7	11
1174	Comprehensive analysis of m5C-Related lncRNAs in the prognosis and immune landscap hepatocellular carcinoma. Frontiers in Genetics, 0, 13, .	ie of	1.1	4
1175	N6-methyladenine RNA Methylation Epigenetic Modification and Kidney Diseases. Kidne Reports, 2023, 8, 36-50.	y International	0.4	3
1176	<scp>DDX60</scp> selectively reduces translation off viral type <scp>II</scp> internal r sites. EMBO Reports, 2022, 23, .	ibosome entry	2.0	6
1177	N6-methyladenosine demethylase FTO enhances chemo-resistance in colorectal cancer t SIVA1-mediated apoptosis. Molecular Therapy, 2023, 31, 517-534.	through	3.7	15
1178	The development and validation of a m6A-lncRNAs based prognostic model for overall su squamous cell carcinoma. Journal of Thoracic Disease, 2022, 14, 4055-4072.	urvival in lung	0.6	2
1179	METTL3 regulates m6A methylation of PTCH1 and GLI2 in Sonic hedgehog signaling to p progression in SHH-medulloblastoma. Cell Reports, 2022, 41, 111530.	promote tumor	2.9	22
1181	METTL3-mediated N6-methyladenosine modification and HDAC5/YY1 promote IFFO1 do tumor development and chemo-resistance. Cancer Letters, 2023, 553, 215971.	wnregulation in	3.2	14
1182	Voyages to map unexplored parts of the epitranscriptomic world. Experimental and Mol Medicine, 0, , .	ecular	3.2	0
1183	RNA m6A methylation regulators in endometrial cancer (Review). International Journal o 2022, 61, .	f Oncology,	1.4	3
1184	Modulation of gene expression by YTH domain family (YTHDF) proteins in human physio pathology. Journal of Cellular Physiology, 2023, 238, 5-31.	logy and	2.0	5
1185	Recent Advances and Application of CRISPR Base Editors for Improvement of Various Tra 2022, , 105-131.	aits in Crops. ,		0
1186	The m6A methylation profiles of immune cells in type 1 diabetes mellitus. Frontiers in Im 13, .	ımunology, 0,	2.2	4
1187	Exploring the role of m6A modification in cancer. Proteomics, 2023, 23, .		1.3	4
1188	The emerging roles of N6-methyladenosine in osteoarthritis. Frontiers in Molecular Neur 15, .	oscience, 0,	1.4	4
1189	M7G-Related IncRNAs predict prognosis and regulate the immune microenvironment in cell carcinoma. BMC Cancer, 2022, 22, .	lung squamous	1.1	3
1190	The RNA demethylase ALKBH5 promotes the progression and angiogenesis of lung canc the stability of the LncRNA PVT1. Cancer Cell International, 2022, 22, .	er by regulating	1.8	14

#	Article	IF	Citations
1191	Fat mass and obesityâ€associated protein alleviates Aβ _{1–40} induced retinal pigment epithelial cells degeneration via PKA/CREB signaling pathway. Cell Biology International, 2023, 47, 584-597.	1.4	8
1192	The biological function of m6A methyltransferase KIAA1429 and its role in human disease. PeerJ, 0, 10, e14334.	0.9	7
1193	FMR1 promotes the progression of colorectal cancer cell by stabilizing EGFR mRNA in an m6A-dependent manner. Cell Death and Disease, 2022, 13, .	2.7	5
1194	YTHDF1 regulates endoplasmic reticulum stress, NF-κB, MAPK and PI3K-AKT signaling pathways in inflammatory osteoclastogenesis. Archives of Biochemistry and Biophysics, 2022, 732, 109464.	1.4	6
1196	HNRNPA2B1-mediated m6A modification of TLR4 mRNA promotes progression of multiple myeloma. Journal of Translational Medicine, 2022, 20, .	1.8	6
1197	METTL3-mediated m6A modification stabilizes TERRA and maintains telomere stability. Nucleic Acids Research, 2022, 50, 11619-11634.	6.5	27
1198	N6-methyladenosine (m6A) RNA methylation mediated by methyltransferase complex subunit WTAP regulates amelogenesis. Journal of Biological Chemistry, 2022, 298, 102715.	1.6	3
1199	The Heterochromatin protein 1 is a regulator in RNA splicing precision deficient in ulcerative colitis. Nature Communications, 2022, 13, .	5.8	4
1200	RNA methyltransferases in plants: Breakthroughs in function and evolution. Plant Physiology and Biochemistry, 2023, 194, 449-460.	2.8	1
1201	Stabilization of IGF2BP1 by USP10 promotes breast cancer metastasis via CPT1A in an m6A-dependent manner. International Journal of Biological Sciences, 2023, 19, 449-464.	2.6	11
1202	Epigenetic modifications and metabolic memory in diabetic retinopathy: beyond the surface. Neural Regeneration Research, 2023, 18, 1441.	1.6	5
1203	m6A contributes to a pro-survival state in GC-2 cells by facilitating DNA damage repair: Novel perspectives on the mechanism underlying DEHP genotoxicity in male germ cells. Science of the Total Environment, 2023, 859, 160432.	3.9	6
1205	Targeting FTO Suppresses Pancreatic Carcinogenesis via Regulating Stem Cell Maintenance and EMT Pathway. Cancers, 2022, 14, 5919.	1.7	6
1206	Arabidopsis <i>N</i> 6-methyladenosine methyltransferase FIONA1 regulates floral transition by affecting the splicing of <i>FLC</i> and the stability of floral activators <i>SPL3</i> and <i>SEP3</i> . Journal of Experimental Botany, 2023, 74, 864-877.	2.4	10
1207	Long Noncoding RNA and mRNA m6A Modification Analyses of Periodontal Ligament Stem Cells from the Periodontitis Microenvironment Exposed to Static Mechanical Strain. Stem Cells International, 2022, 2022, 1-18.	1.2	4
1208	RNA methylation in vascular disease: a systematic review. Journal of Cardiothoracic Surgery, 2022, 17, .	0.4	1
1209	The regulation of m ⁶ A-related proteins during whole-body freezing of the freeze-tolerant wood frog. Biochemistry and Cell Biology, 2023, 101, 77-86.	0.9	1
1210	Eukaryotic translation initiation factor <scp>elF4G2</scp> opens novel paths for protein synthesis in development, apoptosis and cell differentiation. Cell Proliferation, 2023, 56, .	2.4	4

ARTICLE IF CITATIONS # Catalysis medicine: Participating in the chemical networks of living organisms through catalysts. 1212 1.0 0 Tetrahedron, 2022, , 133227. BTG2 suppresses renal cell carcinoma progression through N6-methyladenosine. Frontiers in 1213 1.3 Oncology, 0, 12, . 1214 RNA Epigenetics in Chronic Lung Diseases. Genes, 2022, 13, 2381. 1.0 3 Fibroblast growth factor 23 level modulates the hepatocyte's alpha-2-HS-glycoprotein transcription 1.2 through the inflammatory pathway TNFα/NFκB. Frontiers in Medicine, 0, 9, . METTL3 promotes glycolysis and cholangiocarcinoma progression by mediating the m6A modification 1216 1.8 6 of AKR1B10. Cancer Cell International, 2022, 22, . The m6A-methylome in major depression: A bioinformatic analysis of publicly available datasets. 0.2 Psychiatry Research Communications, 2022, 2, 100089. Acetyltransferase NAT10 regulates the Wnt/l2-catenin signaling pathway to promote colorectal cancer progression via ac4C acetylation of KIF23 mRNA. Journal of Experimental and Clinical Cancer Research, 1218 3.5 27 2022, 41, . m6A epitranscriptomic modification regulates neural progenitor-to-glial cell transition in the retina. 2.8 ELife, Ò, 11, . Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nature 1220 39 7.7 Reviews Genetics, 2023, 24, 251-269. The regulatory role of N6-methyladenosine RNA modification in gastric cancer: Molecular 1221 1.3 mechanisms and potential therapeutic targets. Frontiers in Oncology, 0, 12, Comprehensive analysis of ERCC3 prognosis value and ceRNA network in AML. Clinical and 1222 1.2 1 Translational Oncology, 2023, 25, 1053-1066. Amentoflavone and methyl hesperidin, novel lead molecules targeting epitranscriptomic modulator in acute myeloid leukemia: in silico drug screening and molecular dynamics simulation approach. Journal 0.8 of Molecular Modeling, 2023, 29, . Peptides Targeting RNA m⁶A Methylations Influence the Viability of Cancer Cells. 1224 1.6 1 ChemMedChem, 2023, 18, . Development of the expression and prognostic significance of <scp>m⁵C</scp>â€related <scp>LncRNAs</scp> in breast cancer. Cancer Medicine, 2023, 12, 7667-7681. 1.3 Joint analysis of m6A and mRNA expression profiles in the testes of idiopathic nonobstructive 1226 1.5 1 azoospermia patients. Frontiers in Endocrinology, 0, 13, . Prognostic potential of METTL3 expression in patients with gastric cancer. Oncology Letters, 2022, 25, LAFITE Reveals the Complexity of Transcript Isoforms in Subcellular Fractions. Advanced Science, 2023, 1228 5.6 2 10, . GMEB2 Promotes the Growth of Colorectal Cancer by Activating ADRM1 Transcription and NF-^î^eB 1229 Signalling and Is Positively Regulated by the m6A Reader YTHDF1. Cancers, 2022, 14, 6046.

#	Article	IF	CITATIONS
1230	Diagnostic gene signatures and aberrant pathway activation based on m6A methylation regulators in rheumatoid arthritis. Frontiers in Immunology, 0, 13, .	2.2	7
1231	Dynamic regulation and key roles of ribonucleic acid methylation. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	1
1232	Constructing and validating of m6a-related genes prognostic signature for stomach adenocarcinoma and immune infiltration: Potential biomarkers for predicting the overall survival. Frontiers in Oncology, 0, 12, .	1.3	7
1233	Proteomic Signature and mRNA Expression in Hippocampus of SAMP8 and SAMR1 Mice during Aging. International Journal of Molecular Sciences, 2022, 23, 15097.	1.8	5
1234	Impact of m6A demethylase (ALKBH5, FTO) genetic polymorphism and expression levels on the development of pulmonary tuberculosis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	4
1235	ALKBH5 promotes PD-L1-mediated immune escape through m6A modification of ZDHHC3 in glioma. Cell Death Discovery, 2022, 8, .	2.0	15
1236	BID-seq: The Quantitative and Base-Resolution Sequencing Method for RNA Pseudouridine. ACS Chemical Biology, 2023, 18, 4-6.	1.6	5
1237	mRNA Metabolism and Hypertension. Biomedicines, 2023, 11, 118.	1.4	0
1238	Metformin Induces Apoptosis in Human Pancreatic Cancer (PC) Cells Accompanied by Changes in the Levels of Histone Acetyltransferases (Particularly, p300/CBP-Associated Factor (PCAF) Protein Levels). Pharmaceuticals, 2023, 16, 115.	1.7	5
1239	DUSP10 upregulation is a poor prognosticator and promotes cell proliferation and migration in glioma. Frontiers in Oncology, 0, 12, .	1.3	0
1240	Cancer plasticity: Investigating the causes for this agility. Seminars in Cancer Biology, 2023, 88, 138-156.	4.3	8
1241	Yth m6A RNA-Binding Protein 1 Regulates Osteogenesis of MC3T3-E1 Cells under Hypoxia via Translational Control of Thrombospondin-1. International Journal of Molecular Sciences, 2023, 24, 1741.	1.8	2
1242	The regulation of <scp>N6</scp> â€methyladenosine modification in <scp>PD‣1</scp> â€induced antiâ€ŧumo immunity. Immunology and Cell Biology, 0, , .	r 1.0	2
1243	The function and clinical implication of YTHDF1 in the human system development and cancer. Biomarker Research, 2023, 11, .	2.8	6
1244	LncRNA CRNDE binds hnRNPA1 to facilitate carbon monoxide poisoning-induced delayed encephalopathy via inhibiting UCHL5-mediated SMO deubiquitination. Metabolic Brain Disease, 0, , .	1.4	2
1245	Transcriptional and post-transcriptional control of autophagy and adipogenesis by YBX1. Cell Death and Disease, 2023, 14, .	2.7	5
1247	Potential medicinal value of m6A in autoimmune diseases and tumours. British Journal of Pharmacology, 0, , .	2.7	0
1248	Ferroptosis-related genes with post-transcriptional regulation mechanisms in hepatocellular carcinoma determined by bioinformatics and experimental validation. Annals of Translational Medicine, 2022, 10, 1390-1390.	0.7	5

#	Article	IF	CITATIONS
1249	5-Methylcytosine (m5C) Modification Patterns and Tumor Immune Infiltration Characteristics in Clear Cell Renal Cell Carcinoma. Current Oncology, 2023, 30, 559-574.	0.9	2
1250	lncRNA ZNRD1-AS1 promotes malignant lung cell proliferation, migration, and angiogenesis via the miR-942/TNS1 axis and is positively regulated by the m6A reader YTHDC2. Molecular Cancer, 2022, 21, .	7.9	15
1251	m6A RNA methylation regulator-based signature for prognostic prediction and its potential immunological role in uterine corpus endometrial carcinoma. BMC Cancer, 2022, 22, .	1.1	3
1253	The miR-27a-3p/FTO axis modifies hypoxia-induced malignant behaviors of glioma cells. Acta Biochimica Et Biophysica Sinica, 2023, , .	0.9	0
1254	Gene expression databases for physiologically based pharmacokinetic modeling of humans and animal species. CPT: Pharmacometrics and Systems Pharmacology, 2023, 12, 311-319.	1.3	3
1255	Genetic and Epigenetic Biomarkers Related to 2-Oxoglutarate/Fe(II)-Dependent Oxygenases and Implications for Disease and Toxicology. Biomarkers in Disease, 2023, , 323-349.	0.0	0
1256	YTHDF2 Regulates Cell Growth and Cycle by Facilitating KDM1A mRNA Stability. American Journal of Pathology, 2023, 193, 442-455.	1.9	0
1257	Dynamic epiâ€transcriptomic landscape mapping with disease progression in estrogen receptorâ€positive breast cancer. Cancer Communications, 2023, 43, 615-619.	3.7	1
1258	CCL3 secreted by hepatocytes promotes the metastasis of intrahepatic cholangiocarcinoma by VIRMA-mediated N6-methyladenosine (m6A) modification. Journal of Translational Medicine, 2023, 21, .	1.8	10
1259	Important Requirements for Desorption/Ionization Mass Spectrometric Measurements of Temozolomide-Induced 2′-Deoxyguanosine Methylations in DNA. Cancers, 2023, 15, 716.	1.7	1
1260	DNA methylome and transcriptome identified Key genes and pathways involved in Speckled Eggshell formation in aged laying hens. BMC Genomics, 2023, 24, .	1.2	6
1261	Expression Pattern and Prognostic Value of Key Regulators for N7-methylguanosine RNA Modification in Prostate Cancer. Acta Biochimica Et Biophysica Sinica, 2023, , .	0.9	0
1262	Current Insights into m6A RNA Methylation and Its Emerging Role in Plant Circadian Clock. Plants, 2023, 12, 624.	1.6	1
1263	RNA N6-methyladenosine modification in female reproductive biology and pathophysiology. Cell Communication and Signaling, 2023, 21, .	2.7	3
1264	<scp>N6</scp> â€methyladenosine <scp>RNA</scp> modification regulates cotton drought response in a Ca ²⁺ and <scp>ABA</scp> â€dependent manner. Plant Biotechnology Journal, 2023, 21, 1270-1285.	4.1	6
1265	METTL14/YTHDF1 axis-modified UCHL5 aggravates atherosclerosis by activating the NLRP3 inflammasome. Experimental Cell Research, 2023, 427, 113587.	1.2	2
1266	Noncatalytic regulation of 18 <i>S</i> rRNA methyltransferase DIMT1 in acute myeloid leukemia. Genes and Development, 0, , .	2.7	0
1267	Profiling of N6-methyladenosine methylation in porcine longissimus dorsi muscle and unravelling the hub gene ADIPOQ promotes adipogenesis in an m6A-YTHDF1–dependent manner. Journal of Animal Science and Biotechnology, 2023, 14, .	2.1	0

#	Article	IF	CITATIONS
1268	FTO-mediated m6A demethylation of pri-miR-3591 alleviates osteoarthritis progression. Arthritis Research and Therapy, 2023, 25, .	1.6	3
1269	Research progress on the role of RNA N6-methyladenosine methylation in HCV infection. Virology, 2023, 582, 35-42.	1.1	1
1270	Role of miR-300-3p in Leydig cell function and differentiation: A therapeutic target for obesity-related testosterone deficiency. Molecular Therapy - Nucleic Acids, 2023, 32, 879-895.	2.3	2
1273	Characterization of circSCL38A1 as a novel oncogene in bladder cancer via targeting ILF3/TGF-β2 signaling axis. Cell Death and Disease, 2023, 14, .	2.7	12
1274	FTO-dependent m6A modification of Plpp3 in circSCMH1-regulated vascular repair and functional recovery following stroke. Nature Communications, 2023, 14, .	5.8	19
1275	Global Trends of Lipid Metabolism Research in Epigenetics Field: A Bibliometric Analysis from 2012–2021. International Journal of Environmental Research and Public Health, 2023, 20, 2382.	1.2	2
1276	IGF2BP1-mediated N6-methyladenosine modification promotes intrahepatic cholangiocarcinoma progression. Cancer Letters, 2023, 557, 216075.	3.2	3
1277	Substrate Stiffness Regulates the Proliferation and Apoptosis of Periodontal Ligament Cells through Integrin-Linked Kinase ILK. ACS Biomaterials Science and Engineering, 2023, 9, 662-670.	2.6	1
1278	Determining RNA Natural Modifications and Nucleoside Analog-Labeled Sites by a Chemical/Enzyme-Induced Base Mutation Principle. Molecules, 2023, 28, 1517.	1.7	3
1279	RBM3 suppresses stemness remodeling of prostate cancer in bone microenvironment by modulating N6-methyladenosine on CTNNB1 mRNA. Cell Death and Disease, 2023, 14, .	2.7	6
1280	Epitranscriptomic regulation of cortical neurogenesis via Mettl8-dependent mitochondrial tRNA m3C modification. Cell Stem Cell, 2023, 30, 300-311.e11.	5.2	10
1281	RBM15 Promates the Proliferation, Migration and Invasion of Pancreatic Cancer Cell Lines. Cancers, 2023, 15, 1084.	1.7	6
1282	Splicing factor SRSF1 deficiency in the liver triggers NASH-like pathology and cell death. Nature Communications, 2023, 14, .	5.8	8
1283	Role of NAT10-mediated ac4C-modified HSP90AA1 RNA acetylation in ER stress-mediated metastasis and lenvatinib resistance in hepatocellular carcinoma. Cell Death Discovery, 2023, 9, .	2.0	14
1284	Metformin attenuates multiple myeloma cell proliferation and encourages apoptosis by suppressing METTL3-mediated m6A methylation of THRAP3, RBM25, and USP4. Cell Cycle, 2023, 22, 986-1004.	1.3	6
1285	A Prognostic Signature for Colon Adenocarcinoma Patients Based on m6A-Related IncRNAs. Journal of Oncology, 2023, 2023, 1-13.	0.6	3
1286	Ribosome profiling analysis reveals the roles of DDX41 in translational regulation. International Journal of Hematology, 2023, 117, 876-888.	0.7	2
1287	Advances in DNA, histone, and RNA methylation mechanisms in the pathophysiology of alcohol use disorder. Advances in Drug and Alcohol Research, 0, 3, .	2.5	0

#	Article	IF	CITATIONS
1288	m6A demethylase ALKBH5 attenuates doxorubicin-induced cardiotoxicity via posttranscriptional stabilization of Rasal3. IScience, 2023, 26, 106215.	1.9	1
1289	Clinical and biological significance of RNA N6-methyladenosine regulators in Alzheimer disease. Medicine (United States), 2023, 102, e32945.	0.4	1
1290	Emerging roles of m6A RNA modification in cancer therapeutic resistance. Experimental Hematology and Oncology, 2023, 12, .	2.0	7
1291	Hypoxia induces alterations in tRNA modifications involved in translational control. BMC Biology, 2023, 21, .	1.7	5
1292	Conserved reduction of m ⁶ A RNA modifications during aging and neurodegeneration is linked to changes in synaptic transcripts. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	20
1293	N6-methyladenosine RNA Methylation Correlates with Immune Microenvironment and Immunotherapy Response of Melanoma. Journal of Investigative Dermatology, 2023, 143, 1579-1590.e5.	0.3	1
1294	Molecular phenotypic linkage between N6-methyladenosine methylation and tumor immune microenvironment in hepatocellular carcinoma. Journal of Cancer Research and Clinical Oncology, 0, , .	1.2	0
1295	m6A methylation: a process reshaping the tumour immune microenvironment and regulating immune evasion. Molecular Cancer, 2023, 22, .	7.9	14
1296	LINC00659 cooperated with ALKBH5 to accelerate gastric cancer progression by stabilising JAK1 mRNA in an m ⁶ Aâ€YTHDF2â€dependent manner. Clinical and Translational Medicine, 2023, 13, .	1.7	7
1297	Loss of the m6A methyltransferase METTL3 in monocyte-derived macrophages ameliorates Alzheimer's disease pathology in mice. PLoS Biology, 2023, 21, e3002017.	2.6	12
1298	Identification and Validation of a m5C RNA Modification-Related Gene Signature for Predicting Prognosis and Immunotherapeutic Efficiency of Gastric Cancer. Journal of Oncology, 2023, 2023, 1-17.	0.6	2
1300	NAT10 Drives Cisplatin Chemoresistance by Enhancing ac4C-Associated DNA Repair in Bladder Cancer. Cancer Research, 2023, 83, 1666-1683.	0.4	29
1302	Application and Prospect between m6A and LncRNA in Pancreatic Cancer. Advances in Clinical Medicine, 2023, 13, 3883-3888.	0.0	0
1303	<i> N ⁶ </i> ―Methyladenosine defines a new checkpoint in γδT cell development. BioEssays, 2023, 45, .	1.2	0
1304	<scp>DNER</scp> and <scp>GNL2</scp> are differentially <scp>m6A</scp> methylated in periodontitis in comparison with periodontal health revealed by <scp>m6A</scp> microarray of human gingival tissue and transcriptomic analysis. Journal of Periodontal Research, 2023, 58, 529-543.	1.4	4
1305	Systematic pan-cancer analysis of the potential tumor diagnosis and prognosis biomarker P4HA3. Frontiers in Genetics, 0, 14, .	1.1	2
1306	Bibliometric analysis of METTL3: Current perspectives, highlights, and trending topics. Open Life Sciences, 2023, 18, .	0.6	0
1307	The essential roles of m6A modification in osteogenesis and common bone diseases. Genes and Diseases, 2024, 11, 335-345.	1.5	1

#	Article	IF	CITATIONS
1308	METTL3 relieved the injury of SH‣Y5Y cells treated with lipopolysaccharide and exposed to sevoflurane through regulating the m6A levels of Sox2. Brain and Behavior, 2023, 13, .	1.0	3
1309	The critical roles of m6A RNA methylation in lung cancer: from mechanism to prognosis and therapy. British Journal of Cancer, 2023, 129, 8-23.	2.9	6
1310	Bibliometric and visual analysis of RAN methylation in cardiovascular disease. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	0
1311	Identification of osteosarcoma m6A-related prognostic biomarkers using artificial intelligence: RBM15. Scientific Reports, 2023, 13, .	1.6	1
1312	The importance of pseudouridylation: human disorders related to the fifth nucleoside. Biologia Futura, 2023, 74, 3-15.	0.6	1
1313	Impact of the RNA allosteric effect triggered by single nucleotide polymorphisms on the splicing process. Human Molecular Genetics, 0, , .	1.4	0
1314	m6A epitranscriptomic regulation of tissue homeostasis during primate aging. Nature Aging, 2023, 3, 705-721.	5.3	16
1315	SINEUP non-coding RNA activity depends on specific N6-methyladenosine nucleotides. Molecular Therapy - Nucleic Acids, 2023, 32, 402-414.	2.3	2
1316	A pan-cancer analysis of DDR1 in prognostic signature and tumor immunity, drug resistance. Scientific Reports, 2023, 13, .	1.6	1
1317	METTL3 enhances dentinogenesis differentiation of dental pulp stem cells via increasing GDF6 and STC1 mRNA stability. BMC Oral Health, 2023, 23, .	0.8	2
1319	Decoding m6A mRNA methylation by reader proteins in liver diseases. Genes and Diseases, 2024, 11, 711-726.	1.5	1
1320	m7Gâ€related genes— <i>NCBP2</i> and <i>EIF4E3</i> determine immune contexture in head and neck squamous cell carcinoma by regulating <i>CCL4</i> / <i>CCL5</i> expression. Molecular Carcinogenesis, 2023, 62, 1091-1106.	1.3	4
1321	The functional roles of m6A modification in prostate cancer. Proteomics - Clinical Applications, 2023, 17, .	0.8	1
1322	Identification of a m6A-related ferroptosis signature as a potential predictive biomarker for lung adenocarcinoma. BMC Pulmonary Medicine, 2023, 23, .	0.8	1
1323	Biomarkers of aging. Science China Life Sciences, 2023, 66, 893-1066.	2.3	60
1325	The RNA m6A landscape of mouse oocytes and preimplantation embryos. Nature Structural and Molecular Biology, 2023, 30, 703-709.	3.6	5
1326	O-GlcNAcylation promotes the cytosolic localization of the m6A reader YTHDF1 and colorectal cancer tumorigenesis. Journal of Biological Chemistry, 2023, 299, 104738.	1.6	7
1327	ZFP36-mediated mRNA decay regulates metabolism. Cell Reports, 2023, 42, 112411.	2.9	4

#	Article	IF	CITATIONS
1332	Covalent Modifications of Nucleic Acids and Their Repair. , 2022, , 421-476.		0
1345	Novel mechanisms for gene regulation: Chemical tags on RNA molecules. , 2023, , 193-206.		0
1359	Deciphering glioma epitranscriptome: focus on RNA modifications. Oncogene, 2023, 42, 2197-2206.	2.6	3
1370	Decoding the â€~Fifth' Nucleotide: Impact of RNA Pseudouridylation on Gene Expression and Human Disease. Molecular Biotechnology, 0, , .	1.3	4
1377	Coordination of RNA modifications in the brain and beyond. Molecular Psychiatry, 2023, 28, 2737-2749.	4.1	2
1384	iR1mA-LSTM: Identifying N\$\$^{1}\$\$-Methyladenosine Sites in Human Transcriptomes Using Attention-Based Bidirectional Long Short-Term Memory. Studies in Computational Intelligence, 2023, , 53-63.	0.7	0
1394	Quantitative base-resolution sequencing technology for mapping pseudouridines in mammalian mRNA. Methods in Enzymology, 2023, , .	0.4	0
1416	N6-methyladenosine RNA modifications: a potential therapeutic target for AML. Annals of Hematology, 0, , .	0.8	0
1422	Editorial: Community series in epigenetics of the immune component of inflammation-volume II. Frontiers in Immunology, 0, 14, .	2.2	0
1426	Epigenetic regulation in major depression and other stress-related disorders: molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	5
1431	Double blocking gap-filling-ligation coupled with cascade isothermal amplification for ultrasensitive quantification of <i>N</i> ⁶ -methyladenosine. Chemical Communications, 2023, 59, 10769-10772.	2.2	2
1447	Design principles for synthetic control systems to engineer plants. Plant Cell Reports, 2023, 42, 1875-1889.	2.8	1
1458	Base-resolution quantitative DAMM-seq for mapping RNA methylations in tRNA and mitochondrial polycistronic RNA. Methods in Enzymology, 2023, , .	0.4	0
1459	Neoantigen identification: Technological advances and challenges. Methods in Cell Biology, 2023, , .	0.5	0
1463	Epigenetic regulation: Histone modifying enzymes as targets for novel therapeutics. , 2024, , 430-452.		0
1518	Clinical Studies and Epi-Drugs in Various Cancer Types. Epigenetics and Human Health, 2023, , 165-212.	0.2	0
1520	Advances in brain epitranscriptomics research and translational opportunities. Molecular Psychiatry, 0, , .	4.1	0
1549	N6-Methyladenosine RNA Modification in Normal and Malignant Hematopoiesis. Advances in Experimental Medicine and Biology, 2023, , 105-123.	0.8	0

#	Article	IF	CITATIONS
1561	Ubiquitination and deubiquitination in the regulation of N6-methyladenosine functional molecules. Journal of Molecular Medicine, 2024, 102, 337-351.	1.7	0
1570	Emerging role of RNA modification and long noncoding RNA interaction in cancer. Cancer Gene Therapy, 0, , .	2.2	0
1573	The evolutionary significance of post-transcriptional gene regulation. Heredity, 2024, 132, 117-119.	1.2	0