Carbonized Cotton Fabric for Highâ€Performance Wear

Advanced Functional Materials 27, 1604795 DOI: 10.1002/adfm.201604795

Citation Report

#	Article	IF	CITATIONS
1	Biomass-derived flexible porous carbon materials and their applications in supercapacitor and gas adsorption. Materials and Design, 2017, 129, 164-172.	3.3	105
2	From wheat bran derived carbonaceous materials to a highly stretchable and durable strain sensor. RSC Advances, 2017, 7, 22619-22626.	1.7	21
3	Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors. Composites Part A: Applied Science and Manufacturing, 2017, 101, 41-49.	3.8	155
4	Intrinsically Stretchable and Conductive Textile by a Scalable Process for Elastic Wearable Electronics. ACS Applied Materials & Interfaces, 2017, 9, 13331-13338.	4.0	111
5	Flexible Sensing Electronics for Wearable/Attachable Health Monitoring. Small, 2017, 13, 1602790.	5.2	690
6	An All-Silk-Derived Dual-Mode E-skin for Simultaneous Temperature–Pressure Detection. ACS Applied Materials & Interfaces, 2017, 9, 39484-39492.	4.0	210
7	Three-Dimensional Flexible All-Organic Conductors for Multifunctional Wearable Applications. ACS Applied Materials & Interfaces, 2017, 9, 40580-40592.	4.0	15
8	Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. Journal of Materials Chemistry A, 2017, 5, 23085-23093.	5.2	158
9	Engineering of carbon nanotube/polydimethylsiloxane nanocomposites with enhanced sensitivity for wearable motion sensors. Journal of Materials Chemistry C, 2017, 5, 11092-11099.	2.7	112
10	High-performance wearable strain sensors based on fragmented carbonized melamine sponges for human motion detection. Nanoscale, 2017, 9, 17948-17956.	2.8	75
11	Highly Stretchable, Ultrasensitive, and Wearable Strain Sensors Based on Facilely Prepared Reduced Graphene Oxide Woven Fabrics in an Ethanol Flame. ACS Applied Materials & Interfaces, 2017, 9, 32054-32064.	4.0	156
12	Advanced carbon materials for flexible and wearable sensors. Science China Materials, 2017, 60, 1026-1062.	3.5	170
13	Pressure responsive PET fabrics via constructing conductive wrinkles at room temperature. Chemical Engineering Journal, 2017, 330, 146-156.	6.6	28
14	Weftâ€Knitted Fabric for a Highly Stretchable and Lowâ€Voltage Wearable Heater. Advanced Electronic Materials, 2017, 3, 1700193.	2.6	133
15	Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. Journal of Materials Chemistry C, 2017, 5, 7604-7611.	2.7	147
16	A flexible and self-formed sandwich structure strain sensor based on AgNW decorated electrospun fibrous mats with excellent sensing capability and good oxidation inhibition properties. Journal of Materials Chemistry C, 2017, 5, 7035-7042.	2.7	100
17	Highly Sensitive and Stretchable Resistive Strain Sensors Based on Microstructured Metal Nanowire/Elastomer Composite Films. Small, 2018, 14, e1704232.	5.2	156
18	Through-Layer Buckle Wavelength-Gradient Design for the Coupling of High Sensitivity and Stretchability in a Single Strain Sensor. ACS Applied Materials & Interfaces, 2018, 10, 9653-9662.	4.0	29

#	Article	IF	CITATIONS
19	Functionalized Cellulose for Water Purification, Antimicrobial Applications, and Sensors. Advanced Functional Materials, 2018, 28, 1800409.	7.8	192
20	Lowering Internal Friction of 0D–1D–2D Ternary Nanocompositeâ€Based Strain Sensor by Fullerene to Boost the Sensing Performance. Advanced Functional Materials, 2018, 28, 1800850.	7.8	179
21	Vertical CNT–Ecoflex nanofins for highly linear broad-range-detection wearable strain sensors. Journal of Materials Chemistry C, 2018, 6, 5132-5139.	2.7	63
22	Mussel-Inspired Cellulose Nanocomposite Tough Hydrogels with Synergistic Self-Healing, Adhesive, and Strain-Sensitive Properties. Chemistry of Materials, 2018, 30, 3110-3121.	3.2	627
23	Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors. Materials and Design, 2018, 143, 214-223.	3.3	126
24	Transparent and stretchable strain sensors based on metal nanowire microgrids for human motion monitoring. Nanotechnology, 2018, 29, 155501.	1.3	30
25	Strain-gauge sensoring composite films with self-restoring water-repellent properties for monitoring human movements. Composites Communications, 2018, 7, 23-29.	3.3	23
26	Transparent Polymeric Strain Sensors for Monitoring Vital Signs and Beyond. ACS Applied Materials & Interfaces, 2018, 10, 3895-3901.	4.0	85
27	Recent biomedical applications of bio-sourced materials. Bio-Design and Manufacturing, 2018, 1, 26-44.	3.9	13
28	A Transferâ€Printed, Stretchable, and Reliable Strain Sensor Using PEDOT:PSS/Ag NW Hybrid Films Embedded into Elastomers. Advanced Materials Technologies, 2018, 3, 1800030.	3.0	42
29	Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Research, 2018, 11, 5799-5811.	5.8	99
30	Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon, 2018, 126, 360-371.	5.4	367
31	Highly sensitive, durable and stretchable plastic strain sensors using sandwich structures of PEDOT:PSS and an elastomer. Materials Chemistry Frontiers, 2018, 2, 355-361.	3.2	58
32	Highly stretchable fiber-shaped e-textiles for strain/pressure sensing, full-range human motions detection, health monitoring, and 2D force mapping. Journal of Materials Science, 2018, 53, 2995-3005.	1.7	70
33	CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Research, 2018, 11, 1124-1134.	5.8	185
34	Flexible strain sensors fabricated using carbon-based nanomaterials: A review. Current Opinion in Solid State and Materials Science, 2018, 22, 213-228.	5.6	161
35	Highly conductive and ultra-durable electronic textiles <i>via</i> covalent immobilization of carbon nanomaterials on cotton fabric. Journal of Materials Chemistry C, 2018, 6, 12273-12282.	2.7	50
36	Cotton fabric and zeolitic imidazolate framework (ZIF-8) derived hierarchical nitrogen-doped porous carbon nanotubes/carbon fabric electrodes for all-solid-state supercapacitors. Journal of Power Sources, 2018, 402, 413-421.	4.0	39

#	Article	IF	CITATIONS
37	Coaxial carbon nanotube/polymer fibers as wearable piezoresistive sensors. Sensors and Actuators A: Physical, 2018, 284, 85-95.	2.0	39
38	Super-compressible, fatigue resistant and anisotropic carbon aerogels for piezoresistive sensors. Cellulose, 2018, 25, 7329-7340.	2.4	46
39	Highly sensitive, stretchable and wearable strain sensors using fragmented conductive cotton fabric. Journal of Materials Chemistry C, 2018, 6, 10524-10531.	2.7	80
40	Comparison of Direct and Indirect Laser Ablation of Metallized Paper for Inexpensive Paper-Based Sensors. ACS Applied Materials & Interfaces, 2018, 10, 36332-36341.	4.0	23
41	A highly stretchable carbon nanotubes/thermoplastic polyurethane fiber-shaped strain sensor with porous structure for human motion monitoring. Composites Science and Technology, 2018, 168, 126-132.	3.8	127
42	Directly printed wearable electronic sensing textiles towards human–machine interfaces. Journal of Materials Chemistry C, 2018, 6, 12841-12848.	2.7	54
43	Flexible and Anisotropic Strain Sensor Based on Carbonized Crepe Paper with Aligned Cellulose Fibers. Advanced Functional Materials, 2018, 28, 1802547.	7.8	228
44	Highly Stretchable Multifunctional Wearable Devices Based on Conductive Cotton and Wool Fabrics. ACS Applied Materials & Interfaces, 2018, 10, 20845-20853.	4.0	128
45	A highly sensitive strain sensor based on a carbonized polyacrylonitrile nanofiber woven fabric. Journal of Materials Science, 2018, 53, 11917-11931.	1.7	36
46	The effect of dual-scale carbon fibre network on sensitivity and stretchability of wearable sensors. Composites Science and Technology, 2018, 165, 131-139.	3.8	31
47	Isotropic Paper Directly from Anisotropic Wood: Top-Down Green Transparent Substrate Toward Biodegradable Electronics. ACS Applied Materials & Interfaces, 2018, 10, 28566-28571.	4.0	79
48	Multilayer Graphene Epidermal Electronic Skin. ACS Nano, 2018, 12, 8839-8846.	7.3	257
49	Polydimethylsiloxane (PDMS)-Based Flexible Resistive Strain Sensors for Wearable Applications. Applied Sciences (Switzerland), 2018, 8, 345.	1.3	170
50	Conductive Cotton Fabrics for Motion Sensing and Heating Applications. Polymers, 2018, 10, 568.	2.0	76
51	Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features. Sensors, 2018, 18, 645.	2.1	258
52	Fibrous strain sensor with ultra-sensitivity, wide sensing range, and large linearity for full-range detection of human motion. Nanoscale, 2018, 10, 17512-17519.	2.8	46
53	3D Graphene Films Enable Simultaneously High Sensitivity and Large Stretchability for Strain Sensors. Advanced Functional Materials, 2018, 28, 1803221.	7.8	89
54	From Wood to Textiles: Topâ€Down Assembly of Aligned Cellulose Nanofibers. Advanced Materials, 2018, 30, e1801347.	11.1	121

#	Article	IF	CITATIONS
55	Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosensors and Bioelectronics, 2019, 123, 167-177.	5.3	274
56	All-Textile Electronic Skin Enabled by Highly Elastic Spacer Fabric and Conductive Fibers. ACS Applied Materials & Interfaces, 2019, 11, 33336-33346.	4.0	81
57	Multicolored Photonic Crystal Carbon Fiber Yarns and Fabrics with Mechanical Robustness for Thermal Management. ACS Applied Materials & amp; Interfaces, 2019, 11, 32261-32268.	4.0	27
58	Porous Fibers Composed of Polymer Nanoball Decorated Graphene for Wearable and Highly Sensitive Strain Sensors. Advanced Functional Materials, 2019, 29, 1903732.	7.8	111
59	Ultraâ€Stretchable Porous Fiberâ€Shaped Strain Sensor with Exponential Response in Full Sensing Range and Excellent Antiâ€Interference Ability toward Buckling, Torsion, Temperature, and Humidity. Advanced Electronic Materials, 2019, 5, 1900538.	2.6	63
60	Polyaniline Nanofiber Wrapped Fabric for High Performance Flexible Pressure Sensors. Polymers, 2019, 11, 1120.	2.0	39
61	Biomimetic printable nanocomposite for healable, ultrasensitive, stretchable and ultradurable strain sensor. Nano Energy, 2019, 63, 103898.	8.2	53
62	One-step firing of cellulose fiber and ceramic precursors for functional electro-thermal composites. Materials and Design, 2019, 181, 107941.	3.3	11
63	Semiliquid Metal Enabled Highly Conductive Wearable Electronics for Smart Fabrics. ACS Applied Materials & Interfaces, 2019, 11, 30019-30027.	4.0	65
64	A numerical calculation method for the precise prediction analysis of relationship between nanostructure and strain sensitivity. AIP Advances, 2019, 9, 065015.	0.6	1
65	PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications. Advanced Science, 2019, 6, 1900813.	5.6	563
66	Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels. Nanomaterials, 2019, 9, 937.	1.9	112
67	Molten Salt Pyrolysis of Melamineâ€Modified Denim Fabric Waste into Nitrogenâ€Doped Activated Carbon for Supercapacitor Applications. ChemistrySelect, 2019, 4, 7649-7658.	0.7	14
68	Turning cotton into tough energy textile via metal oxide assisted carbonization. Carbon, 2019, 153, 257-264.	5.4	12
69	Carbonized Chinese Art Paper-Based High-Performance Wearable Strain Sensor for Human Activity Monitoring. ACS Applied Electronic Materials, 2019, 1, 2415-2421.	2.0	38
70	Conductive Hierarchical Hairy Fibers for Highly Sensitive, Stretchable, and Waterâ€Resistant Multimodal Gestureâ€Ðistinguishable Sensor, VR Applications. Advanced Functional Materials, 2019, 29, 1905808.	7.8	78
71	Multifunctional Micro/Nanoscale Fibers Based on Microfluidic Spinning Technology. Advanced Materials, 2019, 31, e1903733.	11.1	161
72	Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy, 2019, 66, 104134.	8.2	149

#	Article	IF	CITATIONS
73	Inspiration from Daily Goods: A Low-Cost, Facilely Fabricated, and Environment-Friendly Strain Sensor Based on Common Carbon Ink and Elastic Core-Spun Yarn. ACS Sustainable Chemistry and Engineering, 2019, 7, 17474-17481.	3.2	76
74	An ultra-stretchable, highly sensitive and biocompatible capacitive strain sensor from an ionic nanocomposite for on-skin monitoring. Nanoscale, 2019, 11, 1570-1578.	2.8	137
75	Ultrasensitive Anti-Interference Voice Recognition by Bio-Inspired Skin-Attachable Self-Cleaning Acoustic Sensors. ACS Nano, 2019, 13, 13293-13303.	7.3	122
76	Flexible Integrated Sensors: Transverse Piezoresistance and Longitudinal Thermal Resistance of One Single Carbon Fiber Beam. Advanced Materials Technologies, 2019, 4, 1900802.	3.0	15
77	Preparation of a Highly Sensitive and Stretchable Strain Sensor of MXene/Silver Nanocomposite-Based Yarn and Wearable Applications. ACS Applied Materials & Interfaces, 2019, 11, 45930-45938.	4.0	128
78	Carbon Black from Diesel Soot for Highâ€Performance Wearable Pressure Sensors. Advanced Materials Technologies, 2019, 4, 1900475.	3.0	28
79	Willow-like portable triboelectric respiration sensor based on polyethylenimine-assisted CO2 capture. Nano Energy, 2019, 65, 103990.	8.2	23
80	Wearable gas/strain sensors based on reduced graphene oxide/linen fabrics. Frontiers of Materials Science, 2019, 13, 305-313.	1.1	20
81	One-step growth of large-area silicon nanowire fabrics for high-performance multifunctional wearable sensors. Nano Research, 2019, 12, 2723-2728.	5.8	11
82	Highly Stretchable and Sensitive Strain Sensor with Porous Segregated Conductive Network. ACS Applied Materials & Interfaces, 2019, 11, 37094-37102.	4.0	116
83	Reduced Graphene Oxide/Mesoporous ZnO NSs Hybrid Fibers for Flexible, Stretchable, Twisted, and Wearable NO ₂ E-Textile Gas Sensor. ACS Sensors, 2019, 4, 2809-2818.	4.0	114
84	High Temperature Sensitivity Pressure Sensors Based on Filter Paper as a Mold. Journal of the Electrochemical Society, 2019, 166, B1286-B1292.	1.3	6
85	All-printed, low-cost, tunable sensing range strain sensors based on Ag nanodendrite conductive inks for wearable electronics. Journal of Materials Chemistry C, 2019, 7, 809-818.	2.7	82
86	Stretchable and Highly Sensitive Braided Composite Yarn@Polydopamine@Polypyrrole for Wearable Applications. ACS Applied Materials & amp; Interfaces, 2019, 11, 7338-7348.	4.0	88
87	Significant Stretchability Enhancement of a Crack-Based Strain Sensor Combined with High Sensitivity and Superior Durability for Motion Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 7405-7414.	4.0	243
88	Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Materials Horizons, 2019, 6, 219-249.	6.4	289
89	Highly sensitive graphene platelets and multi-walled carbon nanotube-based flexible strain sensor for monitoring human joint bending. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	33
90	A highly sensitive and stress-direction-recognizing asterisk-shaped carbon nanotube strain sensor. Journal of Materials Chemistry C, 2019, 7, 9504-9512.	2.7	26

#	Article	IF	CITATIONS
91	Scalable Manufactured Self-Healing Strain Sensors Based on Ion-Intercalated Graphene Nanosheets and Interfacial Coordination. ACS Applied Materials & Interfaces, 2019, 11, 23527-23534.	4.0	23
92	Hollow core–sheath nanocarbon spheres grown on carbonized silk fabrics for self-supported and nonenzymatic glucose sensing. Nanoscale, 2019, 11, 11856-11863.	2.8	33
93	A bioinspired multi-functional wearable sensor with an integrated light-induced actuator based on an asymmetric graphene composite film. Journal of Materials Chemistry C, 2019, 7, 6879-6888.	2.7	42
94	MoS ₂ -Decorated Laser-Induced Graphene for a Highly Sensitive, Hysteresis-free, and Reliable Piezoresistive Strain Sensor. ACS Applied Materials & Interfaces, 2019, 11, 22531-22542.	4.0	120
95	A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale, 2019, 11, 9949-9957.	2.8	150
96	Mechanically Flexible Conductors for Stretchable and Wearable Eâ€5kin and Eâ€Textile Devices. Advanced Materials, 2019, 31, e1901408.	11.1	313
97	A high-sensitivity and low-hysteresis flexible pressure sensor based on carbonized cotton fabric. Sensors and Actuators A: Physical, 2019, 294, 45-53.	2.0	27
98	Fluorine-free Superhydrophobic and Conductive Rubber Composite with Outstanding Deicing Performance for Highly Sensitive and Stretchable Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 17774-17783.	4.0	78
99	Transfer-Medium-Free Nanofiber-Reinforced Graphene Film and Applications in Wearable Transparent Pressure Sensors. ACS Nano, 2019, 13, 5541-5548.	7.3	96
100	Bioinspired Pretextured Reduced Graphene Oxide Patterns with Multiscale Topographies for High-Performance Mechanosensors. ACS Applied Materials & Interfaces, 2019, 11, 18645-18653.	4.0	15
101	Carbonized cotton fabric-based multilayer piezoresistive pressure sensors. Cellulose, 2019, 26, 5001-5014.	2.4	44
102	Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale, 2019, 11, 5884-5890.	2.8	162
103	Carbon-Based Materials for Humidity Sensing: A Short Review. Micromachines, 2019, 10, 232.	1.4	98
104	Textileâ€Based Wireless Pressure Sensor Array for Humanâ€Interactive Sensing. Advanced Functional Materials, 2019, 29, 1808786.	7.8	122
105	A Wireless Flexible Pressure Sensor for Human Motion Detection. , 2019, , .		2
106	Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Materials Horizons, 2019, 6, 326-333.	6.4	327
107	Design of High-Performance Wearable Energy and Sensor Electronics from Fiber Materials. ACS Applied Materials & Interfaces, 2019, 11, 2120-2129.	4.0	52
108	Bioinspired Ultrasensitive and Stretchable MXene-Based Strain Sensor via Nacre-Mimetic Microscale "Brick-and-Mortar―Architecture. ACS Nano, 2019, 13, 649-659.	7.3	320

#	Article	IF	CITATIONS
109	Adhesionâ€Free Thinâ€Filmâ€Like Curvature Sensors Integrated on Flexible and Wearable Electronics for Monitoring Bending of Joints and Various Body Gestures. Advanced Materials Technologies, 2019, 4, 1800327.	3.0	41
110	Design of Helically Double-Leveled Gaps for Stretchable Fiber Strain Sensor with Ultralow Detection Limit, Broad Sensing Range, and High Repeatability. ACS Applied Materials & Interfaces, 2019, 11, 4345-4352.	4.0	91
111	Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy, 2019, 55, 516-525.	8.2	331
112	Advanced Carbon for Flexible and Wearable Electronics. Advanced Materials, 2019, 31, e1801072.	11.1	779
113	Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chemical Engineering Journal, 2019, 360, 762-777.	6.6	190
114	Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications. Advanced Materials, 2020, 32, e1902532.	11.1	219
115	In situ hydrothermal growth of Cu NPs on knitted fabrics through polydopamine templates for heating and sensing. Chemical Engineering Journal, 2020, 382, 123036.	6.6	63
116	Smart Textileâ€Integrated Microelectronic Systems for Wearable Applications. Advanced Materials, 2020, 32, e1901958.	11.1	427
117	Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability. Advanced Materials, 2020, 32, e1902133.	11.1	232
118	Textileâ€Based Strain Sensor for Human Motion Detection. Energy and Environmental Materials, 2020, 3, 80-100.	7.3	159
119	Environmentallyâ€Friendly and Multifunctional Grapheneâ€6ilk Fabric Strain Sensor for Humanâ€Motion Detection. Advanced Materials Interfaces, 2020, 7, 1901507.	1.9	65
120	A semi-interpenetrating network ionic hydrogel for strain sensing with high sensitivity, large strain range, and stable cycle performance. Chemical Engineering Journal, 2020, 385, 123912.	6.6	128
121	Highly Conductive PVA/Ag Coating by Aqueous in Situ Reduction and Its Stretchable Structure for Strain Sensor. ACS Applied Materials & amp; Interfaces, 2020, 12, 1427-1435.	4.0	36
122	Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application. Progress in Materials Science, 2020, 114, 100617.	16.0	267
123	Effects of carbonization temperature and substrate concentration on the sensing performance of flexible pressure sensor. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	8
124	Physical sensors for skinâ€inspired electronics. InformaÄnÃ-Materiály, 2020, 2, 184-211.	8.5	159
125	Highly sensitive and durable wearable strain sensors from a core-sheath nanocomposite yarn. Composites Part B: Engineering, 2020, 183, 107683.	5.9	38
126	Fabrication, characterization and modelling of triple hierarchic PET/CB/TPU composite fibres for strain sensing. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105724.	3.8	39

#	Article	IF	CITATIONS
127	Highâ€Performance Flexible Sensors of Selfâ€Healing, Reversibly Adhesive, and Stretchable Hydrogels for Monitoring Large and Subtle Strains. Macromolecular Materials and Engineering, 2020, 305, 1900621.	1.7	19
128	Smart Urban Living: Enabling Emotion-Guided Interaction With Next Generation Sensing Fabric. IEEE Access, 2020, 8, 28395-28402.	2.6	7
129	Utilizing human hair for solid-state flexible fiber-based asymmetric supercapacitors. Applied Surface Science, 2020, 508, 145260.	3.1	21
130	Patterned Carbon Nanotube Bundles as Stretchable Strain Sensors for Human Motion Detection. ACS Applied Nano Materials, 2020, 3, 11408-11415.	2.4	13
131	Substrate-Free Multilayer Graphene Electronic Skin for Intelligent Diagnosis. ACS Applied Materials & Interfaces, 2020, 12, 49945-49956.	4.0	43
132	Ultra-sensitive and durable strain sensor with sandwich structure and excellent anti-interference ability for wearable electronic skins. Composites Science and Technology, 2020, 200, 108448.	3.8	85
133	Textile Electronics for VR/AR Applications. Advanced Functional Materials, 2021, 31, 2007254.	7.8	50
134	High-Performance Fiber-Film Hybrid-Structured Wearable Strain Sensor from a Highly Robust and Conductive Carbonized Bamboo Aerogel. ACS Applied Bio Materials, 2020, 3, 8748-8756.	2.3	12
135	A wearable strain sensor based on carbon derived from linen fabrics. New Carbon Materials, 2020, 35, 522-530.	2.9	14
136	Recent Advances of Carbon-Based Flexible Strain Sensors in Physiological Signal Monitoring. ACS Applied Electronic Materials, 2020, 2, 2282-2300.	2.0	64
137	High performance flexible wearable strain sensor based on rGO and AgNWs decorated PBT melt-blown non-woven fabrics. Sensors and Actuators A: Physical, 2020, 315, 112174.	2.0	15
138	Advances in chemical sensing technology for enabling the next-generation self-sustainable integrated wearable system in the IoT era. Nano Energy, 2020, 78, 105155.	8.2	105
139	Highly Filled Glycerol/Graphite Suspensions as Fluidic Soft Sensors and Their Responsive Mechanism to Shear. Advanced Materials Technologies, 2020, 5, 2000508.	3.0	2
140	Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing. Nano Energy, 2020, 78, 105187.	8.2	140
141	A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Science Advances, 2020, 6, eabb7043.	4.7	155
142	Weavable and stretchable piezoresistive carbon nanotubes-embedded nanofiber sensing yarns for highly sensitive and multimodal wearable textile sensor. Carbon, 2020, 170, 464-476.	5.4	94
143	Inorganic Photonic Microspheres with Localized Concentric Ordering for Deep Pattern Encoding and Triple Sensory Microsensor. Small, 2020, 16, e2003638.	5.2	10
144	Multifunctional Wearable Strain Sensor Made with an Elastic Interwoven Fabric for Patients with Motor Dysfunction. Advanced Materials Technologies, 2020, 5, 2000560.	3.0	21

#	Article	IF	Citations
145	Reduced graphene oxide-coated carbonized cotton fabric wearable strain sensors with ultralow detection limit. Journal of Materials Science: Materials in Electronics, 2020, 31, 17233-17248.	1.1	14
146	Contact/Release Coordinated Antibacterial Cotton Fabrics Coated with N-Halamine and Cationic Antibacterial Agent for Durable Bacteria-Killing Application. International Journal of Molecular Sciences, 2020, 21, 6531.	1.8	5
147	Overlarge Gauge Factor Yields a Large Measuring Error for Resistiveâ€īype Stretchable Strain Sensors. Advanced Electronic Materials, 2020, 6, 2000618.	2.6	12
148	Biocompatible, Flexible Strain Sensor Fabricated with Polydopamine-Coated Nanocomposites of Nitrile Rubber and Carbon Black. ACS Applied Materials & Interfaces, 2020, 12, 42140-42152.	4.0	78
149	Mechanically Cloaked Multiphase Magnetic Elastomer Soft Composites for Wearable Wireless Power Transfer. ACS Applied Materials & Interfaces, 2020, 12, 50909-50917.	4.0	21
150	Flexible strain sensor based on biomassâ€derived material. Polymer Composites, 2020, 41, 3459-3467.	2.3	10
151	Highly sensitive and stretchable strain sensors based on serpentine-shaped composite films for flexible electronic skin applications. Composites Science and Technology, 2020, 197, 108215.	3.8	73
152	Strain based electrical resistance behaviour of graphene-coated elastomeric yarns. Materials Letters, 2020, 273, 127948.	1.3	6
153	Graphene decorated carbonized cellulose fabric for physiological signal monitoring and energy harvesting. Journal of Materials Chemistry A, 2020, 8, 12665-12673.	5.2	68
154	Highly Stretchable Sheath–Core Yarns for Multifunctional Wearable Electronics. ACS Applied Materials & Interfaces, 2020, 12, 29717-29727.	4.0	20
155	Sensitive piezoresistive sensors using ink-modified plant fiber sponges. Chemical Engineering Journal, 2020, 401, 126029.	6.6	22
156	Fullyâ€Textile Seamâ€Line Sensors for Facile Textile Integration and Tunable Multiâ€Modal Sensing of Pressure, Humidity, and Wetness. Advanced Materials Technologies, 2020, 5, 2000155.	3.0	14
157	Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications. Advanced Intelligent Systems, 2020, 2, 2000039.	3.3	327
158	Development and fabrication of highly flexible, stretchable, and sensitive strain sensor for long durability based on silver nanoparticles–polydimethylsiloxane composite. Journal of Materials Science: Materials in Electronics, 2020, 31, 11897-11910.	1.1	21
159	Tailoring sensing behavior of Cu@multi-wall carbon nanotubes/polydimethylsiloxane strain sensors through surface Cu geometrical structures. Journal of Materials Chemistry C, 2020, 8, 5202-5210.	2.7	8
160	Highly Air/Water-Permeable Hierarchical Mesh Architectures for Stretchable Underwater Electronic Skin Patches. ACS Applied Materials & Interfaces, 2020, 12, 14425-14432.	4.0	34
161	Highly Tough, Stretchable, Selfâ€Adhesive and Strainâ€Sensitive DNAâ€Inspired Hydrogels for Monitoring Human Motion. Chemistry - A European Journal, 2020, 26, 11604-11613.	1.7	13
162	Linearly Sensitive and Flexible Pressure Sensor Based on Porous Carbon Nanotube/Polydimethylsiloxane Composite Structure. Polymers, 2020, 12, 1499.	2.0	31

#	Article	IF	CITATIONS
163	Kraft lignin-based piezoresistive sensors: Effect of chemical structure on the microstructure of ultrathin carbon fibers. International Journal of Biological Macromolecules, 2020, 151, 730-739.	3.6	13
164	Natural Biopolymers for Flexible Sensing and Energy Devices. Chinese Journal of Polymer Science (English Edition), 2020, 38, 459-490.	2.0	69
165	Molybdenum Disulfide Nanosheets Aligned Vertically on Carbonized Silk Fabric as Smart Textile for Wearable Pressure-Sensing and Energy Devices. ACS Applied Materials & Interfaces, 2020, 12, 11825-11832.	4.0	67
166	Scalable manufacturing of real-time self-healing strain sensors based on brominated natural rubber. Chemical Engineering Journal, 2020, 389, 124448.	6.6	72
167	Solution-Processed Sensing Textiles with Adjustable Sensitivity and Linear Detection Range Enabled by Twisting Structure. ACS Applied Materials & Interfaces, 2020, 12, 12155-12164.	4.0	28
168	Moisture-Resilient Graphene-Dyed Wool Fabric for Strain Sensing. ACS Applied Materials & Interfaces, 2020, 12, 13265-13274.	4.0	60
169	Dynamic Measurement of Legs Motion in Sagittal Plane Based on Soft Wearable Sensors. Journal of Sensors, 2020, 2020, 1-10.	0.6	10
170	Flexible TPU strain sensors with tunable sensitivity and stretchability by coupling AgNWs with rGO. Journal of Materials Chemistry C, 2020, 8, 4040-4048.	2.7	70
171	Superelastic EGaln Composite Fibers Sustaining 500% Tensile Strain with Superior Electrical Conductivity for Wearable Electronics. ACS Applied Materials & Interfaces, 2020, 12, 6112-6118.	4.0	113
172	Growing NiS2 nanosheets on porous carbon microtubes for hybrid sodium-ion capacitors. Journal of Power Sources, 2020, 451, 227737.	4.0	55
173	Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring. Composites Science and Technology, 2020, 189, 108038.	3.8	81
174	Multifunctional Conductive Hydrogel/Thermochromic Elastomer Hybrid Fibers with a Core–Shell Segmental Configuration for Wearable Strain and Temperature Sensors. ACS Applied Materials & Interfaces, 2020, 12, 7565-7574.	4.0	114
175	Mechanically and Electronically Robust Transparent Organohydrogel Fibers. Advanced Materials, 2020, 32, e1906994.	11.1	207
176	Reduced graphene oxide-based highly sensitive pressure sensor for wearable electronics <i>via</i> an ordered structure and enhanced interlayer interaction mechanism. RSC Advances, 2020, 10, 2150-2159.	1.7	33
177	A wearable breathable pressure sensor from metal-organic framework derived nanocomposites for highly sensitive broad-range healthcare monitoring. Nano Energy, 2020, 70, 104560.	8.2	118
178	Fabrication of aramid nanofiber-wrapped graphene fibers by coaxial spinning. Carbon, 2020, 165, 340-348.	5.4	23
179	Facile Fabrication of High-Performance Pen Ink-Decorated Textile Strain Sensors for Human Motion Detection. ACS Applied Materials & Interfaces, 2020, 12, 19874-19881.	4.0	74
180	A highly stretchable strain sensor based on CNT/graphene/fullerene-SEBS. RSC Advances, 2020, 10, 11225-11232.	1.7	45

#	Article	IF	CITATIONS
181	Ultrasensitive micro/nanocrack-based graphene nanowall strain sensors derived from the substrate's Poisson's ratio effect. Journal of Materials Chemistry A, 2020, 8, 10310-10317.	5.2	28
182	Multimodal Capacitive and Piezoresistive Sensor for Simultaneous Measurement of Multiple Forces. ACS Applied Materials & Interfaces, 2020, 12, 22179-22190.	4.0	66
183	Nano Carbon Black-Based High Performance Wearable Pressure Sensors. Nanomaterials, 2020, 10, 664.	1.9	40
184	High-performance ionic conductive poly(vinyl alcohol) hydrogels for flexible strain sensors based on a universal soaking strategy. Materials Chemistry Frontiers, 2021, 5, 315-323.	3.2	51
185	One-pot synthesis of multi-functional cellulose-based ionic conductive organohydrogel with low-temperature strain sensitivity. Carbohydrate Polymers, 2021, 251, 117019.	5.1	27
186	Eco-friendly Strategies for the Material and Fabrication of Wearable Sensors. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 1323-1346.	2.7	35
187	Textile Technology for Soft Robotic and Autonomous Garments. Advanced Functional Materials, 2021, 31, 2008278.	7.8	127
188	Review of flexible strain sensors based on cellulose composites for multi-faceted applications. Cellulose, 2021, 28, 615-645.	2.4	39
189	Unpredictable recombination of PB transposon in Silkworm: a potential risk. Molecular Genetics and Genomics, 2021, 296, 271-277.	1.0	2
190	Multifunctional and Ultrasensitive-Reduced Graphene Oxide and Pen Ink/Polyvinyl Alcohol-Decorated Modal/Spandex Fabric for High-Performance Wearable Sensors. ACS Applied Materials & Interfaces, 2021, 13, 2100-2109.	4.0	43
191	Developing Conductive Fabric Threads for Human Respiratory Rate Monitoring. IEEE Sensors Journal, 2021, 21, 4350-4356.	2.4	20
192	Emerging cellulose-derived materials: a promising platform for the design of flexible wearable sensors toward health and environment monitoring. Materials Chemistry Frontiers, 2021, 5, 2051-2091.	3.2	54
193	Facile fabrication of highly conductive, waterproof, and washable e-textiles for wearable applications. Nano Research, 2021, 14, 1043-1052.	5.8	46
194	Freestanding MoS2@carbonized cellulose aerogel derived from waste cotton for sustainable and highly efficient particulate matter capturing. Separation and Purification Technology, 2021, 254, 117571.	3.9	23
195	Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Chemical Reviews, 2021, 121, 2109-2146.	23.0	199
196	Ultra-sensitive flexible sandwich structural strain sensors based on a silver nanowire supported PDMS/PVDF electrospun membrane substrate. Journal of Materials Chemistry C, 2021, 9, 2752-2762.	2.7	41
197	Anisotropic conductive networks for multidimensional sensing. Materials Horizons, 2021, 8, 2615-2653.	6.4	30
198	Highly Sensitive and Selective Two-Dimensional Resistance Strain Sensor Based on Carbonized Silk Fiber. Material Sciences, 2021, 11, 151-159.	0.0	0

#	Article	IF	CITATIONS
199	Hollow-porous fibers for intrinsically thermally insulating textiles and wearable electronics with ultrahigh working sensitivity. Materials Horizons, 2021, 8, 1037-1046.	6.4	59
200	Anisotropy of resistance-type strain sensing networks based on aligned carbon nanofiber membrane. Journal of Materials Science, 2021, 56, 6292-6305.	1.7	13
201	High sensitivity and flexible fabric strain sensor based on electrochemical graphene. Japanese Journal of Applied Physics, 2021, 60, SCCD04.	0.8	8
202	Flexible and Sensitivity-Adjustable Pressure Sensors Based on Carbonized Bacterial Nanocellulose/Wood-Derived Cellulose Nanofibril Composite Aerogels. ACS Applied Materials & Interfaces, 2021, 13, 8754-8763.	4.0	76
203	Wearable Carbon-Based Resistive Sensors for Strain Detection: A Review. IEEE Sensors Journal, 2021, 21, 4030-4043.	2.4	40
204	High-Performance Wearable Strain Sensor Based on MXene@Cotton Fabric with Network Structure. Nanomaterials, 2021, 11, 889.	1.9	31
205	Self-Restoring Capacitive Pressure Sensor Based on Three-Dimensional Porous Structure and Shape Memory Polymer. Polymers, 2021, 13, 824.	2.0	11
206	High Sensitivity Polyurethaneâ€Based Fiber Strain Sensor with Porous Structure via Incorporation of Bacterial Cellulose Nanofibers. Advanced Electronic Materials, 2021, 7, 2001235.	2.6	27
207	A Highly Stable and Durable Capacitive Strain Sensor Based on Dynamically Superâ€Tough Hydro/Organoâ€Gels. Advanced Functional Materials, 2021, 31, 2010830.	7.8	84
208	High-performance strain sensors based on bilayer carbon black/PDMS hybrids. Advanced Composites and Hybrid Materials, 2021, 4, 514-520.	9.9	70
209	Printable wet-resistive textile strain sensors using bead-blended composite ink for robustly integrative wearable electronics. Composites Part B: Engineering, 2021, 210, 108674.	5.9	29
210	A Sensitive and Response-Stable Strain Sensor with 30% Sensing Regions. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 597-601.	0.1	1
211	Strategies for Scalable Gas-Phase Preparation of Free-Standing Graphene. CCS Chemistry, 2021, 3, 1058-1077.	4.6	7
212	Carbonized Cellulose Nanofibril with Individualized Fibrous Morphology: toward Multifunctional Applications in Polycaprolactone Conductive Composites. ACS Applied Bio Materials, 2021, 4, 5169-5179.	2.3	3
213	Solutionâ€based deposition of nanoâ€embossed metal electrodes on cotton fabrics for wearable heaters and supercapacitors. International Journal of Energy Research, 2021, 45, 15438-15451.	2.2	6
214	Wearable Strain Sensors with Aligned Macro Carbon Cracks Using a Two-Dimensional Triaxial-Braided Fabric Structure for Monitoring Human Health. ACS Applied Materials & Interfaces, 2021, 13, 22926-22934.	4.0	30
215	Anisotropic, Wrinkled, and Crack-Bridging Structure for Ultrasensitive, Highly Selective Multidirectional Strain Sensors. Nano-Micro Letters, 2021, 13, 122.	14.4	74
216	Materials, Electrical Performance, Mechanisms, Applications, and Manufacturing Approaches for Flexible Strain Sensors. Nanomaterials, 2021, 11, 1220.	1.9	35

#	Article	IF	CITATIONS
217	A Novel Oriented CNT fiber/PDMS Elastic Conductive Composite with Reversible Two-Stage Conductivity. Nano, 2021, 16, 2150062.	0.5	0
218	Preparation of Laserâ€Induced Graphene Fabric from Silk and Its Application Examples for Flexible Sensor. Advanced Engineering Materials, 2021, 23, 2100195.	1.6	24
219	Light-weight strain sensor based on carbon nanotube/epoxy composite yarn. Journal of Materials Science, 2021, 56, 13156-13164.	1.7	7
220	Multi-functionalization Strategies Using Nanomaterials: A Review and Case Study in Sensing Applications. International Journal of Precision Engineering and Manufacturing - Green Technology, 2022, 9, 323-347.	2.7	23
221	Flexible Multifunctional Photonic Crystal Fibers with Shape Memory Capability for Optical Waveguides and Electrical Sensors. Industrial & Engineering Chemistry Research, 2021, 60, 8442-8450.	1.8	8
222	Biomassâ€Derived Carbon Materials: Controllable Preparation and Versatile Applications. Small, 2021, 17, e2008079.	5.2	105
223	Reduced graphene oxide decorated amorphous NiS2 nanosheets as high-performance anode materials for enhanced sodium-ion hybrid capacitors. Ionics, 2021, 27, 3315-3325.	1.2	11
224	Eliminating the hairiness of ramie fabrics by micro-dissolution technology in copper ammonia solution. Cellulose, 2021, 28, 8177-8185.	2.4	3
225	Carbonized Cotton Fabric-Based Flexible Capacitive Pressure Sensor Using a Porous Dielectric Layer with Tilted Air Gaps. Sensors, 2021, 21, 3895.	2.1	15
226	A Highly Stretchable and Sensitive Strain Sensor Based on Dopamine Modified Electrospun SEBS Fibers and MWCNTs with Carboxylation. Advanced Electronic Materials, 2021, 7, 2100233.	2.6	97
227	High-Performance Foam-Shaped Strain Sensor Based on Carbon Nanotubes and Ti ₃ C ₂ T _{<i>x</i>} MXene for the Monitoring of Human Activities. ACS Nano, 2021, 15, 9690-9700.	7.3	191
228	Bio-inspired flexible electronics for smart E-skin. Acta Biomaterialia, 2022, 139, 280-295.	4.1	48
229	Stretchable Strain Sensors Based on Two- and Three-Dimensional Carbonized Cotton Fabrics for the Detection of Full Range of Human Motions. ACS Applied Electronic Materials, 2021, 3, 3287-3295.	2.0	14
230	Achieving Super Sensitivity in Capacitive Strain Sensing by Electrode Fragmentation. ACS Applied Materials & Interfaces, 2021, 13, 36062-36070.	4.0	12
231	Graphene Decorated Fiber for Wearable Strain Sensor with High Sensitivity at Tiny Strain. Advanced Materials Technologies, 2021, 6, 2100421.	3.0	24
232	Flexible and Anisotropic Strain Sensors Based on Highly Aligned Carbon Fiber Membrane for Exercise Monitoring. Advanced Materials Technologies, 2021, 6, 2100643.	3.0	19
233	Strain sensors fabricated by surface assembly of nanoparticles. Biosensors and Bioelectronics, 2021, 186, 113268.	5.3	28
234	Polypyrrole-coated copper nanowire-threaded silver nanoflowers for wearable strain sensors with high sensing performance. Chemical Engineering Journal, 2021, 417, 127966.	6.6	20

#	ARTICLE Highly Sensitive and Stretchable c-MWCNTs/PPy Embedded Multidirectional Strain Sensor Based on	IF	CITATIONS
235	Double Elastic Fabric for Human Motion Detection. Nanomaterials, 2021, 11, 2333. Vitrimer-based soft actuators with multiple responsiveness and self-healing ability triggered by	1.9	12
236	multiple stimuli. Matter, 2021, 4, 3354-3365.	5.0	38
237	Bioinspired Multifunctional Photonicâ€Electronic Smart Skin for Ultrasensitive Health Monitoring, for Visual and Selfâ€Powered Sensing. Advanced Materials, 2021, 33, e2102332.	11.1	107
238	Synergistic effect of carbon nanotubes and wood-derived carbon scaffold on natural rubber-based high-performance thermally conductive composites. Composites Science and Technology, 2021, 213, 108963.	3.8	21
239	Wearable and self-healable textile-based strain sensors to monitor human muscular activities. Composites Part B: Engineering, 2021, 220, 108969.	5.9	23
240	Highly stretchable and sensitive strain sensor based on liquid metal composite for wearable sign language communication device. Smart Materials and Structures, 2021, 30, 115005.	1.8	11
241	Digital Process Chain for Processing of Bend-Sensitive Functional Structures on a Flexible Substrate. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 1417-1425.	1.4	1
242	Ti ₃ C ₂ T _x MXene/polyvinyl alcohol decorated polyester warp knitting fabric for flexible wearable strain sensors. Textile Reseach Journal, 2022, 92, 810-824.	1.1	11
243	Flexible and superhydrophobic carbonized cotton fabrics for effective electromagnetic interference shielding. Journal of Magnetism and Magnetic Materials, 2021, 540, 168434.	1.0	4
244	Biomaterials- and biostructures Inspired high-performance flexible stretchable strain sensors: A review. Chemical Engineering Journal, 2021, 425, 129949.	6.6	65
245	A highly sensitive stretchable strain sensor based on multi-functionalized fabric for respiration monitoring and identification. Chemical Engineering Journal, 2021, 426, 130869.	6.6	51
246	Interactively mechanochromic electronic textile sensor with rapid and durable electrical/optical response for visualized stretchable electronics. Chemical Engineering Journal, 2021, 426, 130870.	6.6	31
247	Toward high-performance multifunctional electronics: Knitted fabric-based composite with electrically conductive anisotropy and self-healing capacity. Chemical Engineering Journal, 2021, 426, 131931.	6.6	19
248	Review of Graphene-Based Textile Strain Sensors, with Emphasis on Structure Activity Relationship. Polymers, 2021, 13, 151.	2.0	44
249	Stretchable and highly sensitive strain sensor based on conductive polymer aerogel for human physiological information detection. Nano Select, 2021, 2, 802-809.	1.9	9
250	Underwater, Multifunctional Superhydrophobic Sensor for Human Motion Detection. ACS Applied Materials & Interfaces, 2021, 13, 4740-4749.	4.0	63
251	Mechanical Properties of Hybrid Carbonized Plant Fibers Reinforced Bio-Based Epoxy Laminates. Polymers, 2021, 13, 3435.	2.0	7
252	Fabrication of serpentine and I structured graphene-CNT based highly sensitive and flexible strain sensors. Microelectronic Engineering, 2021, 250, 111631.	1.1	7

#	Article	IF	CITATIONS
253	Bacterial Community under the Influence of Microplastics in Indoor Environment and the Health Hazards Associated with Antibiotic Resistance Genes. Environmental Science & Technology, 2022, 56, 422-432.	4.6	44
254	Potential Application of Graphene-TPE Nanocomposite. Engineering Materials, 2020, , 183-221.	0.3	Ο
255	Research progress of smart response composite hydrogels based on nanocellulose. Carbohydrate Polymers, 2022, 275, 118741.	5.1	23
256	On the Report of Performance Analysis of Electrospun Carbon Nanofibers based Strain Sensor for Applications in Human Motion Monitoring. , 2020, , .		0
257	Superelastic and Fire-Retardant Nano-/Microfibrous Sponges for High-Efficiency Warmth Retention. ACS Applied Materials & Interfaces, 2021, 13, 58027-58035.	4.0	15
259	Vapor-Phase Polymerization of PEDOT for Wearable Fabric Pressure Sensors. Journal of Electronic Materials, 2022, 51, 1128-1136.	1.0	1
260	Flexible carbonized cotton/thermoplastic polyurethane composites with outstanding electric heating and pressure sensing performance. Textile Reseach Journal, 2022, 92, 1760-1770.	1.1	2
261	Flexible strain sensors for wearable applications fabricated using novel functional nanocomposites: A review. Composite Structures, 2022, 284, 115214.	3.1	85
262	A novel method to synthesize high-strength elastic gel and carbonized aerogel. Applied Surface Science, 2022, 580, 152240.	3.1	6
263	Upcycling textile wastes: challenges and innovations. Textile Progress, 2021, 53, 65-122.	1.3	11
264	A Capacitive and Piezoresistive Hybrid Sensor for Longâ€Distance Proximity and Wideâ€Range Force Detection in Human–Robot Collaboration. Advanced Intelligent Systems, 2022, 4, .	3.3	12
265	Stretchable Unsymmetrical Piezoelectric BaTiO ₃ Composite Hydrogel for Triboelectric Nanogenerators and Multimodal Sensors. ACS Nano, 2022, 16, 1661-1670.	7.3	104
266	Metal-free functionalized carbonized cotton for efficient solar steam generation and wastewater treatment. RSC Advances, 2021, 12, 1043-1050.	1.7	11
267	Flexible Strain Sensors for Wearable Hand Gesture Recognition: From Devices to Systems. Advanced Intelligent Systems, 2022, 4, .	3.3	38
268	Boronâ€doped porous carbon material derived from <scp>ZIF</scp> â€11: Investigation of cotton fabric supercapacitor and Liâ€ion battery performances. International Journal of Energy Research, 2022, 46, 7732-7748.	2.2	16
269	Stretchable, Sensitive Strain Sensors with a Wide Workable Range and Low Detection Limit for Wearable Electronic Skins. ACS Applied Materials & Interfaces, 2022, 14, 4562-4570.	4.0	35
270	Cheap, Large-Scale, and High-Performance Graphite-Based Flexible Thermoelectric Materials and Devices with Supernormal Industry Feasibility. ACS Applied Materials & Interfaces, 2022, 14, 8066-8075.	4.0	16
271	Recent Progress on Smart Fiber and Textile Based Wearable Strain Sensors: Materials, Fabrications and Applications. Advanced Fiber Materials, 2022, 4, 361-389.	7.9	136

#	Article	IF	CITATIONS
272	Demonstration of durable electronic textiles via mechanically assisted highly adhesive printing of carbon nanotube-polymer composites on commercial fabrics. Journal of Industrial and Engineering Chemistry, 2022, 108, 508-513.	2.9	4
273	Intelligent and Multifunctional Graphene Nanomesh Electronic Skin with High Comfort. Small, 2022, 18, e2104810.	5.2	42
274	Electronic Textiles for Wearable Point-of-Care Systems. Chemical Reviews, 2022, 122, 3259-3291.	23.0	316
275	Cellulose based flexible and wearable sensors for health monitoring. Materials Advances, 2022, 3, 3766-3783.	2.6	15
276	Functionalized Fiber-Based Strain Sensors: Pathway to Next-Generation Wearable Electronics. Nano-Micro Letters, 2022, 14, 61.	14.4	113
277	Smart textiles for personalized healthcare. Nature Electronics, 2022, 5, 142-156.	13.1	307
278	PDMS-Encapsulated MXene@Polyester Fabric Strain Sensor for Multifunctional Sensing Applications. Nanomaterials, 2022, 12, 871.	1.9	11
279	Stress-deconcentrated ultrasensitive strain sensor with hydrogen-bonding-tuned fracture resilience for robust biomechanical monitoring. Science China Materials, 2022, 65, 2289-2297.	3.5	10
280	Recent progress of fiber-based transistors: materials, structures and applications. Frontiers of Optoelectronics, 2022, 15, 1.	1.9	10
281	Meltâ€Extruded Sensory Fibers for Electronic Textiles. Macromolecular Materials and Engineering, 2022, 307, 2100737.	1.7	0
282	Design of a Superhydrophobic Strain Sensor with a Multilayer Structure for Human Motion Monitoring. ACS Applied Materials & Interfaces, 2022, 14, 1874-1884.	4.0	37
283	Sustainable and Conductive Woodâ€Derived Carbon Framework for Stretchable Strain Sensors. Advanced Sustainable Systems, 2022, 6, .	2.7	7
284	Fabrication of Silver Electrical Circuits on Textile Substrates by Reactive Inkjet Printing. IEEE Sensors Journal, 2022, 22, 11056-11064.	2.4	7
285	An Overview of Hierarchical Design of Textile-Based Sensor in Wearable Electronics. Crystals, 2022, 12, 555.	1.0	6
286	Structure and characterization of carbonized cotton knitted fabric. Textile Reseach Journal, 2022, 92, 3719-3732.	1.1	6
288	Flexible Cotton Fiber-Based Composite Films with Excellent Bending Stability and Conductivity at Cryogenic Temperature. ACS Applied Materials & amp; Interfaces, 2022, 14, 21486-21496.	4.0	5
289	Deep Learning Enabled Neck Motion Detection Using a Triboelectric Nanogenerator. ACS Nano, 2022, 16, 9359-9367.	7.3	39
290	Intelligent Nanomaterials for Wearable and Stretchable Strain Sensor Applications: The Science behind Diverse Mechanisms, Fabrication Methods, and Real-Time Healthcare. Polymers, 2022, 14, 2219.	2.0	5

#	Article	IF	CITATIONS
291	A waterproof and breathable Cotton/rGO/CNT composite for constructing a layer-by-layer structured multifunctional flexible sensor. Nano Research, 2022, 15, 9341-9351.	5.8	26
292	Fibre-based wearable electronic technology for personal protective clothing. , 2022, , 511-547.		2
293	Printable and Wearable Graphene-Based Strain Sensor With High Sensitivity for Human Motion Monitoring. IEEE Sensors Journal, 2022, 22, 13937-13944.	2.4	7
294	Investigating Mechanical Behaviours of PDMS Films under Cyclic Loading. Polymers, 2022, 14, 2373.	2.0	12
295	Stretchable, conductive and porous MXene-based multilevel structured fibers for sensitive strain sensing and gas sensing. Journal of Materials Chemistry A, 2022, 10, 15634-15646.	5.2	19
296	Improving Comprehensive Performance of Strain Flexible Sensors by Electron Irradiation and Temperature Synergy. Journal of Materials Chemistry C, 0, , .	2.7	2
297	Biodegradable Polyurethane Fiber-Based Strain Sensor with a Broad Sensing Range and High Sensitivity for Human Motion Monitoring. ACS Sustainable Chemistry and Engineering, 2022, 10, 8788-8798.	3.2	35
298	Carbon Nanotube Coated Fibrous Tubes for Highly Stretchable Strain Sensors Having High Linearity. Nanomaterials, 2022, 12, 2458.	1.9	6
299	Cotton fabrics with antibacterial and antiviral properties produced by a simple pad-dry-cure process using diphenolic acid. Applied Surface Science, 2022, 600, 154152.	3.1	25
300	¹ CoFe/C Nanosheets on Hollow Carbon Fibers as Composite Fabrics for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2022, 5, 11665-11678.	2.4	7
301	Photonic vitrimer-based electronics with self-healing and ultrastable visual-digital outputs for wireless strain sensing. Chemical Engineering Journal, 2022, 450, 138285.	6.6	16
303	Electronic Fibers/Textiles for Healthâ€Monitoring: Fabrication and Application. Advanced Materials Technologies, 2023, 8, .	3.0	25
304	Functional Fiber Materials to Smart Fiber Devices. Chemical Reviews, 2023, 123, 613-662.	23.0	69
305	Double-Layered Conductive Network Design of Flexible Strain Sensors for High Sensitivity and Wide Working Range. ACS Applied Materials & Interfaces, 2022, 14, 36611-36621.	4.0	26
306	Ramie Fabric Treated with Carboxymethylcellulose and Laser Engraved for Strain and Humidity Sensing. Micromachines, 2022, 13, 1309.	1.4	9
307	Indoor microplastics and bacteria in the atmospheric fallout in urban homes. Science of the Total Environment, 2022, 852, 158233.	3.9	16
308	Lignin-silver triggered multifunctional conductive hydrogels for skinlike sensor applications. International Journal of Biological Macromolecules, 2022, 221, 1282-1293.	3.6	16
309	Vanadium Dioxide Nanosheets Supported on Carbonized Cotton Fabric as Bifunctional Textiles for Flexible Pressure Sensors and Zinc-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 41577-41587.	4.0	7

		CITATION REPORT	
#	Article	IF	CITATIONS
310	A largeâ€scalable sprayingâ€spinning process for multifunctional electronic yarns. SmartMat, 2023, 4, .	6.4	11
311	An ultrasensitive and stretchable strain sensor based on a microcrack structure for motion monitoring. Microsystems and Nanoengineering, 2022, 8, .	3.4	20
312	Degradable Bioinspired Hypersensitive Strain Sensor with High Mechanical Strength Using a Basalt Fiber as a Reinforced Layer. ACS Applied Materials & Interfaces, 2022, 14, 42723-42733.	4.0	7
313	Smart Electronic Textile $\hat{a} {\in} B$ ased Wearable Supercapacitors. Advanced Science, 2022, 9, .	5.6	59
314	Wrinkled, cracked and bridged carbon networks for highly sensitive and stretchable strain sensors. Composites Part A: Applied Science and Manufacturing, 2022, 163, 107221.	3.8	7
315	High Sensitivity, Wide Range Pressure Sensor Based on Layer-by-Layer Self-Assembled MXene/Carbon Black@Polyurethane Sponge for Human Motion Monitoring and Intelligent Vehicle Control. IEEE Sensors Journal, 2022, 22, 21561-21568.	2.4	5
316	Laser-Patterned Hierarchical Aligned Micro-/Nanowire Network for Highly Sensitive Multidimensional Strain Sensor. ACS Applied Materials & Interfaces, 2022, 14, 48276-48284.	4.0	12
317	Advanced Fiber Materials for Wearable Electronics. Advanced Fiber Materials, 2023, 5, 12-35.	7.9	81
318	Elastic Fibers/Fabrics for Wearables and Bioelectronics. Advanced Science, 2022, 9, .	5.6	19
319	Multifunctional hybrid hydrogel with transparency, conductivity, and self-adhesion for soft sensors using hemicellulose-decorated polypyrrole as a conductive matrix. International Journal of Biological Macromolecules, 2022, 223, 1-10.	3.6	7
320	Piezoresistive Sensor Containing Lamellar MXene-Plant Fiber Sponge Obtained with Aqueous MXene Ink. ACS Applied Materials & Interfaces, 2022, 14, 51361-51372.	4.0	12
321	Flexible, recyclable and sensitive piezoresistive sensors enabled by lignin polyurethane-based conductive foam. Materials Advances, 0, , .	2.6	1
322	A low-modulus, adhesive, and highly transparent hydrogel for multi-use flexible wearable sensors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 659, 130752.	2.3	5
323	Highly stretchable and robust textile-based capacitive mechanical sensor for human motion detection. Applied Surface Science, 2023, 613, 155961.	3.1	12
324	Wearable and Flexible Multifunctional Sensor Based on Laser-Induced Graphene for the Sports Monitoring System. ACS Applied Materials & amp; Interfaces, 2022, 14, 54170-54181.	4.0	27
325	Carbonization fabrication of a piezoresistive sensor with improved sensitivity via Ni decoration of carbonized cotton fibers. Science China Technological Sciences, 2022, 65, 3000-3009.	2.0	0
326	Ultra-sensitive and wide applicable strain sensor enabled by carbon nanofibers with dual alignment for human machine interfaces. Nano Research, 2023, 16, 4093-4099.	5.8	9
327	The monitoring of plant physiology and ecology: From materials to flexible devices. Chinese Journal of Analytical Chemistry, 2023, 51, 100211.	0.9	2

#	Article	IF	CITATIONS
328	The mechanical and electrical properties of flexible strain sensors based on carbonized cotton knitted fabric. Textile Reseach Journal, 0, , 004051752211435.	1.1	0
329	Fabrication of Highly Efficient Flame-Retardant and Fluorine-Free Superhydrophobic Cotton Fabric by Constructing Multielement-Containing POSS@ZIF-67@PDMS Micro–Nano Hierarchical Coatings. ACS Applied Materials & Interfaces, 2022, 14, 56027-56045.	4.0	26
330	Fabrication of flexible and sensitive laser-patterned serpentine-structured graphene–CNT paper for strain sensor applications. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	3
331	Utilizing Multilayer Design of Organic-Inorganic Hybrids to Enhance Wearable Strain Sensor in Humid Environment. Chinese Journal of Polymer Science (English Edition), 2023, 41, 1037-1050.	2.0	5
332	Carbonâ€Based Flexible Devices for Comprehensive Health Monitoring. Small Methods, 2023, 7, .	4.6	25
333	Silicone-enhanced polyvinyl alcohol hydrogels for high performance wearable strain sensors. Materials and Design, 2023, 229, 111911.	3.3	12
334	Carbonized biomass cattail for flexible pressure sensor. Materials Today Communications, 2023, 35, 105561.	0.9	1
335	Resonant printing flexible piezoresistive pressure sensor with spherical microstructures. Smart Materials and Structures, 2023, 32, 035020.	1.8	9
336	A Review of Flexible Strain Sensors Based on Natural Fiber Materials. Advanced Materials Technologies, 2023, 8, .	3.0	13
337	Highly Aligned Cellulose/Polypyrrole Composite Nanofibers via Electrospinning and In Situ Polymerization for Anisotropic Flexible Strain Sensor. ACS Applied Materials & Interfaces, 2023, 15, 9820-9829.	4.0	25
338	A Multi-model, Large-range Flexible Strain Sensor Based on Carbonized Silk Habotai for Human Health Monitoring. Chinese Journal of Polymer Science (English Edition), 2023, 41, 1238-1249.	2.0	4
339	Graphitized and flexible porous textile updated from waste cotton for wearable electromagnetic interference shielding. Carbon, 2023, 207, 144-153.	5.4	16
340	MXene Fiber-based Wearable Textiles in Sensing and Energy Storage Applications. Fibers and Polymers, 2023, 24, 1167-1182.	1.1	4
341	Smart Wearable Systems for Health Monitoring. Sensors, 2023, 23, 2479.	2.1	17
342	Progress in physiological textile sensors for biomedical applications. , 2023, , 333-372.		0
343	Multifunctional Flexible Pressure Sensor Based on a Cellulose Fiber-Derived Hierarchical Carbon Aerogel. ACS Applied Electronic Materials, 2023, 5, 1581-1591.	2.0	6
344	Hierarchical Biobased Macroporous/Mesoporous Carbon: Fabrication, Characterization and Electrochemical/Ion Exchange Properties. Materials, 2023, 16, 2101.	1.3	0
345	Cross-Talk Signal Free Recyclable Thermoplastic Polyurethane/Graphene-Based Strain and Pressure Sensor for Monitoring Human Motions. ACS Applied Materials & Interfaces, 2023, 15, 17279-17292.	4.0	14

#	Article	IF	CITATIONS
346	Perspective on Biomass-Based Cotton-Derived Nanocarbon for Multifunctional Energy Storage and Harvesting Applications. ACS Applied Electronic Materials, 2023, 5, 1970-1991.	2.0	3
347	Fiber Crossbars: An Emerging Architecture of Smart Electronic Textiles. Advanced Materials, 2023, 35, .	11.1	5
348	Recent application progress and key challenges of biomass-derived carbons in resistive strain/pressure sensor. Science China Materials, 2023, 66, 1702-1718.	3.5	5
351	Advanced Technology in Apparel Manufacturing. Textile Science and Clothing Technology, 2023, , 177-231.	0.4	1
359	PEDOT:PSS materials for optoelectronics, thermoelectrics, and flexible and stretchable electronics. Journal of Materials Chemistry A, 2023, 11, 18561-18591.	5.2	7
360	Fully Inkjet-Printed Soft Wearable Strain Sensors Based on Metal/Polymer Composite Sensing Films. , 2023, , .		0
366	Fabrication Techniques and Sensing Mechanisms of Textile-Based Strain Sensors: From Spatial 1D and 2D Perspectives. Advanced Fiber Materials, 0, , .	7.9	0
367	Fabrication and Properties of DielectricÂElastomer-Based Nanocomposites. Nanostructure Science and Technology, 2024, , 213-241.	0.1	Ο
380	Scalable Fabrication of Nano-yarn-based Strain Sensor for Motion Sensing. , 2023, , .		0