Land-use futures in the shared socio-economic pathway

Global Environmental Change 42, 331-345 DOI: 10.1016/j.gloenvcha.2016.10.002

Citation Report

#	Article	IF	CITATIONS
2	The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 2016, 9, 3461-3482.	1.3	2,084
3	The SSP4: A world of deepening inequality. Global Environmental Change, 2017, 42, 284-296.	3.6	265
5	How can we feed the world in 2050? A review of the responses from global scenario studies. European Review of Agricultural Economics, 2017, 44, 541-591.	1.5	75
6	Microbes and the Next Nitrogen Revolution. Environmental Science & Technology, 2017, 51, 7297-7303.	4.6	85
7	The future value of ecosystem services: Global scenarios and national implications. Ecosystem Services, 2017, 26, 289-301.	2.3	204
8	Remote sensing approaches for land use and land surface temperature assessment: a review of methods. International Journal of Image and Data Fusion, 0, , 1-23.	0.8	10
9	Mitigation Strategies for Greenhouse Gas Emissions from Agriculture and Land-Use Change: Consequences for Food Prices. Environmental Science & Technology, 2017, 51, 365-374.	4.6	57
10	Reducing greenhouse gas emissions in agriculture without compromising food security?. Environmental Research Letters, 2017, 12, 105004.	2.2	172
11	Livestock production and the water challenge of future food supply: Implications of agricultural management and dietary choices. Global Environmental Change, 2017, 47, 121-132.	3.6	34
12	Responses of crop yield growth to global temperature and socioeconomic changes. Scientific Reports, 2017, 7, 7800.	1.6	146
13	Livestock and human use of land: Productivity trends and dietary choices as drivers of future land and carbon dynamics. Global and Planetary Change, 2017, 159, 1-10.	1.6	44
14	Scarcity-weighted global land and metal footprints. Ecological Indicators, 2017, 83, 323-327.	2.6	39
15	Reactive nitrogen losses from China's food system for the shared socioeconomic pathways (SSPs). Science of the Total Environment, 2017, 605-606, 884-893.	3.9	25
16	Greenhouse gas emission curves for advanced biofuel supply chains. Nature Climate Change, 2017, 7, 920-924.	8.1	57
17	Quantification of uncertainties in global grazing systems assessment. Global Biogeochemical Cycles, 2017, 31, 1089-1102.	1.9	62
18	Future air pollution in the Shared Socio-economic Pathways. Global Environmental Change, 2017, 42, 346-358.	3.6	277
19	Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Global Environmental Change, 2017, 42, 297-315.	3.6	418
20	Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives. Global Environmental Change, 2017, 42, 316-330.	3.6	247

#	Article	IF	CITATIONS
21	Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change, 2017, 42, 237-250.	3.6	523
22	Land cover, land use changes and air pollution in Asia: a synthesis. Environmental Research Letters, 2017, 12, 120201.	2.2	64
23	Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators. Biogeosciences, 2017, 14, 4829-4850.	1.3	33
24	Integrating Modelling Approaches for Understanding Telecoupling: Global Food Trade and Local Land Use. Land, 2017, 6, 56.	1.2	33
25	Assessing the impacts of 1.5â€Â°C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development, 2017, 10, 4321-4345.	1.3	410
26	Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments. Earth System Dynamics, 2017, 8, 369-386.	2.7	69
27	Adaptation of global land use and management intensity to changes in climate and atmospheric carbon dioxide. Global Change Biology, 2018, 24, 2791-2809.	4.2	50
28	Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature Climate Change, 2018, 8, 325-332.	8.1	795
29	Pasture intensification is insufficient to relieve pressure on conservation priority areas in open agricultural markets. Global Change Biology, 2018, 24, 3199-3213.	4.2	22
30	Land use projections in China under global socioeconomic and emission scenarios: Utilizing a scenario-based land-use change assessment framework. Global Environmental Change, 2018, 50, 164-177.	3.6	103
31	Global change effects on land management in the Mediterranean region. Global Environmental Change, 2018, 50, 238-254.	3.6	91
32	Coordinating AgMIP data and models across global and regional scales for 1.5°C and 2.0°C assessments. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160455.	1.6	48
33	Reply to commentary on the special issue Scaling up biofuels? A critical look at expectations, performance and governance. Energy Policy, 2018, 118, 658-665.	4.2	9
34	Bioenergy with carbon capture and storage (BECCS): Global potential, investment preferences, and deployment barriers. Energy Research and Social Science, 2018, 42, 155-165.	3.0	153
35	Measuring longâ€ŧerm sustainability with shared socioeconomic pathways using an inclusive wealth framework. Sustainable Development, 2018, 26, 596-605.	6.9	19
36	Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nature Climate Change, 2018, 8, 391-397.	8.1	455
37	Large uncertainty in carbon uptake potential of landâ€based climateâ€change mitigation efforts. Global Change Biology, 2018, 24, 3025-3038.	4.2	56
38	Farming with crops and rocks to address global climate, food and soil security. Nature Plants, 2018, 4, 138-147.	4.7	226

#	Article	IF	CITATIONS
39	Biogeophysical Impacts of Landâ€Use Change on Climate Extremes in Lowâ€Emission Scenarios: Results From HAPPIâ€Land. Earth's Future, 2018, 6, 396-409.	2.4	31
40	Changing man-land interrelations in China's farming area under urbanization and its implications for food security. Journal of Environmental Management, 2018, 209, 440-451.	3.8	155
41	Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nature Climate Change, 2018, 8, 151-155.	8.1	207
42	Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Global Environmental Change, 2018, 48, 119-135.	3.6	202
43	Grazing systems expansion and intensification: Drivers, dynamics, and trade-offs. Global Food Security, 2018, 16, 93-105.	4.0	69
44	The Biosphere Under Potential Paris Outcomes. Earth's Future, 2018, 6, 23-39.	2.4	12
45	How to spend a dwindling greenhouse gas budget. Nature Climate Change, 2018, 8, 7-10.	8.1	119
46	Pathways limiting warming to 1.5°C: a tale of turning around in no time?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160457.	1.6	84
47	Structural change as a key component for agricultural non-CO2 mitigation efforts. Nature Communications, 2018, 9, 1060.	5.8	52
48	How much do direct livestock emissions actually contribute to global warming?. Global Change Biology, 2018, 24, 1749-1761.	4.2	124
49	Large Ensemble Analytic Framework for Consequenceâ€Driven Discovery of Climate Change Scenarios. Earth's Future, 2018, 6, 488-504.	2.4	54
50	Assessing the Extent of Historical, Current, and Future Land Use Systems in Uganda. Land, 2018, 7, 132.	1.2	26
51	Energy and Environmental Aspects of Using Eucalyptus from Brazil for Energy and Transportation Services in Europe. Sustainability, 2018, 10, 4068.	1.6	22
52	Justifying Soil Protection and Sustainable Soil Management: Creation-Ethical, Legal and Economic Considerations. Sustainability, 2018, 10, 3807.	1.6	8
54	Contribution of jet fuel from forest residues to multiple Sustainable Development Goals. Nature Sustainability, 2018, 1, 799-807.	11.5	37
55	Sensitivity of European Temperature to Albedo Parameterization in the Regional Climate Model COSMO-CLM Linked to Extreme Land Use Changes. Frontiers in Environmental Science, 2018, 6, .	1.5	14
56	Macroeconomic Impacts of Climate Change Driven by Changes in Crop Yields. Sustainability, 2018, 10, 3673.	1.6	27
57	Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13294-13299.	3.3	82

ARTICLE IF CITATIONS # A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized 1.3 61 58 land-use and climate scenarios. Geoscientific Model Development, 2018, 11, 4537-4562. Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways. International 59 1.2 Journal of Environmental Research and Public Health, 2018, 15, 554. Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and 60 4.2 126 carbon storage. Global Change Biology, 2018, 24, 5895-5908. Terrestrial Vertebrate Biodiversity Loss under Future Global Land Use Change Scenarios. Sustainability, 2018, 10, 2764. Identifying effects of land use cover changes and climate change on terrestrial ecosystems and 62 106 3.6 carbon stocks in Mexico. Global Environmental Change, 2018, 53, 12-23. Large-scale bioenergy production: how to resolve sustainability trade-offs?. Environmental Research Letters, 2018, 13, 024011. 2.2 Global economic–biophysical assessment of midterm scenarios for agricultural markets—biofuel policies, dietary patterns, cropland expansion, and productivity growth. Environmental Research 64 2.2 18 Letters, 2018, 13, 025003. Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios. Environmental Research Letters, 2018, 13, 044014. Phosphorus and Nitrogen Yield Response Models for Dynamic Bio-Economic Optimization: An Empirical 1.3 66 6 Approach. Agronomy, 2018, 8, 41. Spatio-temporal variations of the flood mitigation service of ecosystem under different climate scenarios in the Upper Reaches of Hanjiang River Basin, China. Journal of Chinese Geography, 2018, 28, 1.5 1385-1398. Estimating future wood outtakes in the Norwegian forestry sector under the shared socioeconomic 68 3.6 14 pathways. Global Environmental Change, 2018, 50, 15-24. Progress in modelling agricultural impacts of and adaptations to climate change. Current Opinion in 3.5 39 Plant Biology, 2018, 45, 255-261. Unprecedented rates of land-use transformation in modelled climate change mitigation pathways. 70 11.5 46 Nature Sustainability, 2018, 1, 240-245. Swedish Forest Harvest Level Considering Demand of Biomass for Energy Purposes. ForMath, 2018, 17, 0.1 n/a. Comparing impacts of climate change and mitigation on global agriculture by 2050. Environmental 72 2.2 93 Research Letters, 2018, 13, 064021. Negative emissionsâ€"Part 1: Research landscape and synthesis. Environmental Research Letters, 2018, 13, 2.2 498 063001. Risk of increased food insecurity under stringent global climate change mitigation policy. Nature 74 8.1 319 Climate Change, 2018, 8, 699-703. Negative emissionsâ€"Part 2: Costs, potentials and side effects. Environmental Research Letters, 2018, 13, 2.2 063002.

#	Article	IF	CITATIONS
76	Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nature Communications, 2018, 9, 2938.	5.8	194
77	Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160450.	1.6	46
78	Integrated human-earth system modeling—state of the science and future directions. Environmental Research Letters, 2018, 13, 063006.	2.2	72
79	Writing a Recipe for Teaching Sustainable Food Systems: Lessons from Three University Courses. Sustainability, 2018, 10, 1898.	1.6	13
80	Striving towards the Deployment of Bio-Energy with Carbon Capture and Storage (BECCS): A Review of Research Priorities and Assessment Needs. Sustainability, 2018, 10, 2206.	1.6	40
81	Co-producing climate policy and negative emissions: trade-offs for sustainable land-use. Clobal Sustainability, 2018, 1, .	1.6	36
82	Study on the Vertical Linkage of Greenhouse Gas Emission Intensity Change of the Animal Husbandry Sector between China and Its Provinces. Sustainability, 2018, 10, 2492.	1.6	6
83	Quantifying the climate response to extreme land cover changes in Europe with a regional model. Environmental Research Letters, 2018, 13, 074002.	2.2	30
84	The many possible climates from the Paris Agreement's aim of 1.5 °C warming. Nature, 2018, 558, 41-49.	13.7	116
85	Reducing global CHC emissions by replicating successful sector examples: the â€~good practice policies' scenario. Climate Policy, 2018, 18, 1103-1113.	2.6	22
86	Methane and Global Environmental Change. Annual Review of Environment and Resources, 2018, 43, 165-192.	5.6	45
87	Decoupling Livestock from Land Use through Industrial Feed Production Pathways. Environmental Science & Technology, 2018, 52, 7351-7359.	4.6	124
88	Targeted policies can compensate most of the increased sustainability risks in 1.5 °C mitigation scenarios. Environmental Research Letters, 2018, 13, 064038.	2.2	48
89	Economic and Environmental Assessment of Agro-Energy Districts in Northern Greece: a Life Cycle Assessment Approach. Bioenergy Research, 2019, 12, 1145-1162.	2.2	9
90	Spatial Sequential Modeling and Predication of Global Land Use and Land Cover Changes by Integrating a Global Change Assessment Model and Cellular Automata. Earth's Future, 2019, 7, 1102-1116.	2.4	36
91	Transforming agricultural land use through marginal gains in the food system. Global Environmental Change, 2019, 57, 101932.	3.6	29
92	Global mitigation potential of carbon stored in harvested wood products. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14526-14531.	3.3	99
93	Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas. Science Advances, 2019, 5, eaau2406.	4.7	104

# 94	ARTICLE Future Developments Without Targeted Policies. , 2019, , 484-509.	IF	CITATIONS
95	Global modeling of nature's contributions to people. Science, 2019, 366, 255-258.	6.0	279
96	Pathways Toward Sustainable Development. , 2019, , 510-543.		0
97	Negative emissions and international climate goals—learning from and about mitigation scenarios. Climatic Change, 2019, 157, 189-219.	1.7	74
98	A protocol to develop Shared Socio-economic Pathways for European agriculture. Journal of Environmental Management, 2019, 252, 109701.	3.8	26
99	Exploring ecosystem services and scenario simulation in the headwaters of Qiantang River watershed of China. Environmental Science and Pollution Research, 2019, 26, 34905-34923.	2.7	15
100	Integrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge?. Water (Switzerland), 2019, 11, 2223.	1.2	24
101	The role of global dietary transitions for safeguarding biodiversity. Global Environmental Change, 2019, 58, 101956.	3.6	32
102	Multimodel Analysis of Future Land Use and Climate Change Impacts on Ecosystem Functioning. Earth's Future, 2019, 7, 833-851.	2.4	22
103	Projecting socio-economic impacts of bioenergy: Current status and limitations of ex-ante quantification methods. Renewable and Sustainable Energy Reviews, 2019, 115, 109352.	8.2	21
104	A new scenario logic for the Paris Agreement long-term temperature goal. Nature, 2019, 573, 357-363.	13.7	307
105	Reconciling global sustainability targets and local action for food production and climate change mitigation. Global Environmental Change, 2019, 59, 101983.	3.6	36
106	Shared socio-economic pathways extended for the Baltic Sea: exploring long-term environmental problems. Regional Environmental Change, 2019, 19, 1073-1086.	1.4	42
107	Global exposure to rainstorms and the contribution rates of climate change and population change. Science of the Total Environment, 2019, 663, 644-653.	3.9	52
108	MAgPIE 4 – aÂmodular open-source framework for modeling global land systems. Geoscientific Model Development, 2019, 12, 1299-1317.	1.3	56
109	Sustainable intensification in land systems: trade-offs, scales, and contexts. Current Opinion in Environmental Sustainability, 2019, 38, 37-43.	3.1	48
110	Characteristics of human-climate feedbacks differ at different radiative forcing levels. Global and Planetary Change, 2019, 180, 126-135.	1.6	10
111	Land-Management Options for Greenhouse Gas Removal and Their Impacts on Ecosystem Services and the Sustainable Development Goals. Annual Review of Environment and Resources, 2019, 44, 255-286.	5.6	181

	CITATION	REPORT	
#	Article	IF	CITATIONS
112	Key determinants of global land-use projections. Nature Communications, 2019, 10, 2166.	5.8	123
113	Towards an integrated assessment of climate and socio-economic change impacts and implications in New Zealand. Environmental Modelling and Software, 2019, 119, 1-20.	1.9	38
114	The global nexus of food–trade–water sustaining environmental flows by 2050. Nature Sustainability, 2019, 2, 499-507.	11.5	161
115	Projected social costs of CO2 emissions from forest losses far exceed the sequestration benefits of forest gains under global change. Ecosystem Services, 2019, 37, 100935.	2.3	13
116	The future of Southeast Asia's forests. Nature Communications, 2019, 10, 1829.	5.8	136
117	Projecting impacts of global climate and landâ€use scenarios on plant biodiversity using compositionalâ€turnover modelling. Global Change Biology, 2019, 25, 2763-2778.	4.2	76
118	Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific Model Development, 2019, 12, 1443-1475.	1.3	496
119	Advancing the use of scenarios to understand society's capacity to achieve the 1.5 degree target. Global Environmental Change, 2019, 56, 75-85.	3.6	26
120	Making the Paris agreement climate targets consistent with food security objectives. Global Food Security, 2019, 23, 93-103.	4.0	46
121	Risk map for the range expansion of Thrips palmi in Korea under climate change: Combining species distribution models with land-use change. Journal of Asia-Pacific Entomology, 2019, 22, 666-674.	0.4	9
122	Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerging Topics in Life Sciences, 2019, 3, 207-219.	1.1	59
123	Determining sectoral and regional sensitivity to climate and socio-economic change in Europe using impact response surfaces. Regional Environmental Change, 2019, 19, 679-693.	1.4	21
124	GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems. Geoscientific Model Development, 2019, 12, 677-698.	1.3	211
125	Global advanced bioenergy potential under environmental protection policies and societal transformation measures. GCB Bioenergy, 2019, 11, 1041-1055.	2.5	39
126	Reconsidering biodiversity hotspots based on the rate of historical land-use change. Biological Conservation, 2019, 233, 268-275.	1.9	25
127	The Sustainability Conundrum of Fishmeal Substitution by Plant Ingredients in Shrimp Feeds. Sustainability, 2019, 11, 1212.	1.6	87
128	Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nature Climate Change, 2019, 9, 323-329.	8.1	346
129	Characteristics of Transformational Adaptation in Climate-Land-Society Interactions. Sustainability, 2019, 11, 356.	1.6	20

#	Article	IF	CITATIONS
130	Societal decisions about climate mitigation will have dramatic impacts on eutrophication in the 21st century. Nature Communications, 2019, 10, 939.	5.8	61
131	A review of global-local-global linkages in economic land-use/cover change models. Environmental Research Letters, 2019, 14, 053003.	2.2	40
132	Towards the implementation of sustainable biofuel production systems. Renewable and Sustainable Energy Reviews, 2019, 107, 250-263.	8.2	167
133	Achievement of Paris climate goals unlikely due to time lags in the land system. Nature Climate Change, 2019, 9, 203-208.	8.1	61
134	Importance of Cross-Sector Interactions When Projecting Forest Carbon across Alternative Socioeconomic Futures. Journal of Forest Economics, 2019, 34, 205-231.	0.1	4
135	Land cover change effects on land surface temperature trends in an African urbanizing dryland region. City and Environment Interactions, 2019, 4, 100029.	1.8	28
136	Mitigating Climate Change Will Depend on Negative Emissions Technologies. Engineering, 2019, 5, 982-984.	3.2	13
137	Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nature Communications, 2019, 10, 5229.	5.8	188
138	Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation. Nature Communications, 2019, 10, 5240.	5.8	49
139	Building Regional Sustainable Development Scenarios with the SSP Framework. Sustainability, 2019, 11, 5712.	1.6	11
140	Societal breakdown as an emergent property of large-scale behavioural models of land use change. Earth System Dynamics, 2019, 10, 809-845.	2.7	17
141	The Value of BECCS in IAMs: a Review. Current Sustainable/Renewable Energy Reports, 2019, 6, 107-115.	1.2	42
142	Contribution of the land sector to a 1.5 °C world. Nature Climate Change, 2019, 9, 817-828.	8.1	301
143	Shifting the conservation paradigm: a synthesis of options for renovating nature under climate change. Ecological Monographs, 2019, 89, e01333.	2.4	130
144	Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nature Climate Change, 2019, 9, 66-72.	8.1	139
145	Dynamic projection of ecological risk in the Manas River basin based on terrain gradients. Science of the Total Environment, 2019, 653, 283-293.	3.9	81
146	Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Global Environmental Change, 2019, 54, 88-101.	3.6	151
147	Identifying hotspots of land use cover change under socioeconomic and climate change scenarios in Mexico. Ambio, 2019, 48, 336-349.	2.8	40

#	Article	IF	CITATIONS
148	Matching policy and science: Rationale for the â€~4 per 1000 - soils for food security and climate' initiative. Soil and Tillage Research, 2019, 188, 3-15.	2.6	208
149	Characterising the biophysical, economic and social impacts of soil carbon sequestration as a greenhouse gas removal technology. Global Change Biology, 2020, 26, 1085-1108.	4.2	65
150	Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models. Climatic Change, 2020, 163, 1569-1586.	1.7	38
151	Labor supply assumptions - A missing link in food security projections. Global Food Security, 2020, 25, 100328.	4.0	11
152	Projecting terrestrial biodiversity intactness with GLOBIO 4. Global Change Biology, 2020, 26, 760-771.	4.2	94
153	Which practices coâ€deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification?. Clobal Change Biology, 2020, 26, 1532-1575.	4.2	164
154	Humans drive future water scarcity changes across all Shared Socioeconomic Pathways. Environmental Research Letters, 2020, 15, 014007.	2.2	50
155	Challenges in producing policy-relevant global scenarios of biodiversity and ecosystem services. Global Ecology and Conservation, 2020, 22, e00886.	1.0	17
156	China's income gap and inequality under clean energy transformation: A CGE model assessment. Journal of Cleaner Production, 2020, 251, 119626.	4.6	36
157	Afforestation and avoided deforestation in a multi-regional integrated assessment model. Ecological Economics, 2020, 169, 106452.	2.9	3
158	Linking climate change and socioeconomic development to urban land use simulation: Analysis of their concurrent effects on carbon storage. Applied Geography, 2020, 115, 102135.	1.7	76
159	Bringing the sharing-sparing debate down to the ground—Lessons learnt for participatory scenario development. Land Use Policy, 2020, 91, 104262.	2.5	12
160	Are we on the right path to achieve the sustainable development goals?. World Development, 2020, 127, 104749.	2.6	170
161	Techno-Economic and Environmental Assessment of Biomass Gasification and Fischer–Tropsch Synthesis Integrated to Sugarcane Biorefineries. Energies, 2020, 13, 4576.	1.6	42
162	Nordic Bioeconomy Pathways: Future narratives for assessment of water-related ecosystem services in agricultural and forest management. Ambio, 2020, 49, 1710-1721.	2.8	22
163	Mapping global patterns of land use decision-making. Global Environmental Change, 2020, 65, 102170.	3.6	40
164	Study on Taiwania cryptomerioides under climate change: MaxEnt modeling for predicting the potential geographical distribution. Global Ecology and Conservation, 2020, 24, e01313.	1.0	23
165	Recognizing the Value of Collaboration in Delivering Carbon Dioxide Removal. One Earth, 2020, 3, 214-225.	3.6	20

#	Article	IF	CITATIONS
166	Implications of CMIP6 Projected Drying Trends for 21st Century Amazonian Drought Risk. Earth's Future, 2020, 8, e2020EF001608.	2.4	43
167	Global land use for 2015–2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. Scientific Data, 2020, 7, 320.	2.4	89
168	Global priority areas for ecosystem restoration. Nature, 2020, 586, 724-729.	13.7	489
169	Reducing Uncertainties of Future Global Soil Carbon Responses to Climate and Land Use Change With Emergent Constraints. Global Biogeochemical Cycles, 2020, 34, e2020GB006589.	1.9	4
170	Spatial prioritization for biodiversity conservation in a megadiverse country. Anthropocene, 2020, 32, 100267.	1.6	23
171	Shared Socio-economic Pathways for European agriculture and food systems: The Eur-Agri-SSPs. Global Environmental Change, 2020, 65, 102159.	3.6	58
172	Modelling the scaling up of sustainable farming into Agroecology Territories: Potentials and bottlenecks at the landscape level in a Mediterranean case study. Journal of Cleaner Production, 2020, 275, 124043.	4.6	19
173	Climatic Impact Toward Regional Water Allocation and Transfer Strategies from Economic, Social and Environmental Perspectives. Land, 2020, 9, 429.	1.2	1
174	The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection. Scientific Reports, 2020, 10, 19778.	1.6	85
175	Future Socio-Political Scenarios for Aquatic Resources in Europe: An Operationalized Framework for Aquaculture Projections. Frontiers in Marine Science, 2020, 7, .	1.2	8
176	Preliminary Study on Sustainable NPK Slow-Release Fertilizers Based on Byproducts and Leftovers: A Design-of-Experiment Approach. ACS Omega, 2020, 5, 27154-27163.	1.6	13
177	Achievements and needs for the climate change scenario framework. Nature Climate Change, 2020, 10, 1074-1084.	8.1	245
178	Bio-energy and CO2 emission reductions: an integrated land-use and energy sector perspective. Climatic Change, 2020, 163, 1675-1693.	1.7	23
179	Beyond land-use intensity: Assessing future global crop productivity growth under different socioeconomic pathways. Technological Forecasting and Social Change, 2020, 160, 120208.	6.2	21
180	Assessing the impact of increased legume production in Europe on global agricultural emissions. Regional Environmental Change, 2020, 20, 1.	1.4	10
181	Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 2020, 11, 3870.	5.8	192
182	Zoonotic host diversity increases in human-dominated ecosystems. Nature, 2020, 584, 398-402.	13.7	475
183	Are scenario projections overly optimistic about future yield progress?. Global Environmental Change, 2020, 64, 102120.	3.6	11

#	Article	IF	CITATIONS
184	Contextualizing local landscape initiatives in global change: a scenario study for the high forest zone, Ghana. Regional Environmental Change, 2020, 20, 1.	1.4	11
185	Progress and barriers in understanding and preventing indirect landâ€use change. Biofuels, Bioproducts and Biorefining, 2020, 14, 924-934.	1.9	33
186	The value of climate-resilient seeds for smallholder adaptation in sub-Saharan Africa. Climatic Change, 2020, 162, 1213-1229.	1.7	22
187	Food–energy–water implications of negative emissions technologies in a +1.5 °C future. Nature Climate Change, 2020, 10, 920-927.	8.1	117
188	Food security under high bioenergy demand toward long-term climate goals. Climatic Change, 2020, 163, 1587-1601.	1.7	33
189	Land management and climate change determine secondâ€generation bioenergy potential of the US Northern Great Plains. GCB Bioenergy, 2020, 12, 491-509.	2.5	10
190	Early Warning from Space for a Few Key Tipping Points in Physical, Biological, and Social-Ecological Systems. Surveys in Geophysics, 2020, 41, 1237-1284.	2.1	16
191	Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 2020, 585, 551-556.	13.7	413
192	Land suitability for energy crops under scenarios of climate change and landâ€use. GCB Bioenergy, 2020, 12, 648-665.	2.5	19
193	What ecologists should know before using land use/cover change projections for biodiversity and ecosystem service assessments. Regional Environmental Change, 2020, 20, 1.	1.4	17
194	Historical and projected future range sizes of the world's mammals, birds, and amphibians. Nature Communications, 2020, 11, 5633.	5.8	30
195	Potential Effects of Climate and Human Influence Changes on Range and Diversity of Nine Fabaceae Species and Implications for Nature's Contribution to People in Kenya. Climate, 2020, 8, 109.	1.2	8
196	Initial Land Use/Cover Distribution Substantially Affects Global Carbon and Local Temperature Projections in the Integrated Earth System Model. Global Biogeochemical Cycles, 2020, 34, e2019GB006383.	1.9	6
197	Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology. Biogeosciences, 2020, 17, 2107-2133.	1.3	24
198	Population and Economic Projections in the Yangtze River Basin Based on Shared Socioeconomic Pathways. Sustainability, 2020, 12, 4202.	1.6	14
199	Projected land-use changes in the Shared Socioeconomic Pathways: Insights and implications. Ambio, 2020, 49, 1972-1981.	2.8	13
200	The proportion of soil-borne pathogens increases with warming at the global scale. Nature Climate Change, 2020, 10, 550-554.	8.1	254
201	Climate change promotes transitions to tall evergreen vegetation in tropical Asia. Global Change Biology, 2020, 26, 5106-5124.	4.2	35

#	Article	IF	CITATIONS
202	The impact of interventions in the global land and agriâ€food sectors on Nature's Contributions to People and the UN Sustainable Development Goals. Global Change Biology, 2020, 26, 4691-4721.	4.2	70
203	Impacts of changing society and climate on nutrient loading to the Baltic Sea. Science of the Total Environment, 2020, 731, 138935.	3.9	29
204	Challenges and Prospects for Agricultural Greenhouse Gas Mitigation Pathways Consistent With the Paris Agreement. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	54
205	Threshold responses of riverine fish communities to land use conversion across regions of the world. Global Change Biology, 2020, 26, 4952-4965.	4.2	53
206	Downscaling of Long-Term Global Scenarios to Regions with a Forest Sector Model. Forests, 2020, 11, 500.	0.9	7
207	Alternative pathways to a sustainable future lead to contrasting biodiversity responses. Global Ecology and Conservation, 2020, 22, e01028.	1.0	7
208	Adapting global shared socio-economic pathways for national scenarios in Japan. Sustainability Science, 2020, 15, 985-1000.	2.5	30
209	Exploring the impacts of climate change and mitigation policies on UK feed barley supply and implications for national and transnational food security. SN Applied Sciences, 2020, 2, 1.	1.5	3
210	THE CRITICAL ROLE OF CONVERSION COST AND COMPARATIVE ADVANTAGE IN MODELING AGRICULTURAL LAND USE CHANGE. Climate Change Economics, 2020, 11, 2050004.	2.9	14
211	Use It Sustainably or Lose It! The Land Stakes in SDGs for Sub-Saharan Africa. Land, 2020, 9, 63.	1.2	10
212	Exploring the future of land use and food security: A new set of global scenarios. PLoS ONE, 2020, 15, e0235597.	1.1	71
213	Agricultural expansion in Uruguayan grasslands and priority areas for vertebrate and woody plant conservation. Ecology and Society, 2020, 25, .	1.0	28
214	A deep dive into the modelling assumptions for biomass with carbon capture and storage (BECCS): a transparency exercise. Environmental Research Letters, 2020, 15, 084008.	2.2	27
215	Greenhouse gas implications of mobilizing agricultural biomass for energy: a reassessment of global potentials in 2050 under different food-system pathways. Environmental Research Letters, 2020, 15, 034066.	2.2	25
216	A framework for nitrogen futures in the shared socioeconomic pathways. Global Environmental Change, 2020, 61, 102029.	3.6	30
217	The environmental consequences of climate-driven agricultural frontiers. PLoS ONE, 2020, 15, e0228305.	1.1	58
218	A spatial error-based cellular automata approach to reproducing and projecting dynamic urban expansion. Geocarto International, 2022, 37, 560-580.	1.7	6
219	Global projections of future urban land expansion under shared socioeconomic pathways. Nature Communications, 2020, 11, 537.	5.8	336

#	Article	IF	CITATIONS
220	Comparing the impact of future cropland expansion on global biodiversity and carbon storage across models and scenarios. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190189.	1.8	21
221	Population, urbanization and economic scenarios over the Belt and Road region under the Shared Socioeconomic Pathways. Journal of Chinese Geography, 2020, 30, 68-84.	1.5	59
222	Potential biodiversity change in Central Asian grasslands: scenarios for the impact of climate and land-use change. Regional Environmental Change, 2020, 20, 1.	1.4	17
223	On the feasibility of cropland and forest area expansions required to achieve long-term temperature targets. Sustainability Science, 2020, 15, 817-834.	2.5	4
224	Forests: Carbon sequestration, biomass energy, or both?. Science Advances, 2020, 6, eaay6792.	4.7	147
226	The global cropland-sparing potential of high-yield farming. Nature Sustainability, 2020, 3, 281-289.	11.5	121
227	Sustainable food protein supply reconciling human and ecosystem health: A Leibniz Position. Global Food Security, 2020, 25, 100367.	4.0	41
228	Understanding land use volatility and agglomeration in northern Southeast Asia. Journal of Environmental Management, 2021, 278, 111536.	3.8	11
229	Mapping the field: a bibliometric analysis of land use and carbon emissions (LUCE) research from 1987 to 2018. Library Hi Tech, 2021, 39, 396-411.	3.7	8
230	From ecosystems to socio-economic benefits: A systematic review of coastal ecosystem services in the Baltic Sea. Science of the Total Environment, 2021, 755, 142565.	3.9	58
231	Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies. Global Change Biology, 2021, 27, 340-358.	4.2	36
232	Optimal combination of bioenergy and solar photovoltaic for renewable energy production on abandoned cropland. Renewable Energy, 2021, 168, 45-56.	4.3	39
233	System analysis of the bioâ€based economy in Colombia: A bottomâ€up energy system model and scenario analysis. Biofuels, Bioproducts and Biorefining, 2021, 15, 481-501.	1.9	13
234	Future losses of ecosystem services due to coastal erosion in Europe. Science of the Total Environment, 2021, 760, 144310.	3.9	31
235	Overview of recent landâ€cover changes in biodiversity hotspots. Frontiers in Ecology and the Environment, 2021, 19, 91-97.	1.9	36
236	High-resolution wall-to-wall land-cover mapping and land change assessment for Australia from 1985 to 2015. Remote Sensing of Environment, 2021, 252, 112148.	4.6	58
237	Which impacts more seriously on natural habitat loss and degradation? Cropland expansion or urban expansion?. Land Degradation and Development, 2021, 32, 946-964.	1.8	48
238	Carbonâ€dioxide Removal and Biodiversity: A Threat Identification Framework. Global Policy, 2021, 12, 34-44.	1.0	18

#	Article	IF	CITATIONS
239	Réchauffement climatiqueÂÂ: état des connaissances scientifiques, enjeux, risques et options d'action. Comptes Rendus - Geoscience, 2020, 352, 251-277.	0.4	1
240	Impact of climate change on flood inundation in a tropical river basin in Indonesia. Progress in Earth and Planetary Science, 2021, 8, .	1.1	29
241	The role of negative emissions in meeting China's 2060 carbon neutrality goal. Oxford Open Climate Change, 2021, 1, .	0.6	17
242	Who is most vulnerable to climate change induced yield changes? A dynamic long run household analysis in lower income countries. Climate Risk Management, 2021, 33, 100330.	1.6	6
243	Biological diversity and climate change. , 2021, , 541-559.		1
244	Land-based climate change mitigation potentials within the agenda for sustainable development. Environmental Research Letters, 2021, 16, 024006.	2.2	32
245	Terrestrial Biodiversity Hotspots: Challenges and Opportunities. Encyclopedia of the UN Sustainable Development Goals, 2021, , 1-20.	0.0	1
246	Clobal projections of the soil microbiome in the Anthropocene. Clobal Ecology and Biogeography, 2021, 30, 987-999.	2.7	43
247	Change in the Level of Agricultural Development in the Context of Public Institutions' Activities—A Case Study of the NASC Activities in Poland. Land, 2021, 10, 187.	1.2	2
248	Future Socio-Political Scenarios for Aquatic Resources in Europe: A Common Framework Based on Shared-Socioeconomic-Pathways (SSPs). Frontiers in Marine Science, 2021, 7, .	1.2	12
249	Diverging land-use projections cause large variability in their impacts on ecosystems and related indicators for ecosystem services. Earth System Dynamics, 2021, 12, 327-351.	2.7	11
250	Offsetting unabated agricultural emissions with CO2 removal to achieve ambitious climate targets. PLoS ONE, 2021, 16, e0247887.	1.1	5
251	Climate change and specialty coffee potential in Ethiopia. Scientific Reports, 2021, 11, 8097.	1.6	39
252	Identifying suitable areas for expanding sugarcane ethanol production in Brazil under conservation of environmentally relevant habitats. Journal of Cleaner Production, 2021, 292, 125318.	4.6	21
253	Global forest management, carbon sequestration and bioenergy supply under alternative shared socioeconomic pathways. Land Use Policy, 2021, 103, 105302.	2.5	36
254	Subjective Well-Being at the Macro Level—EmpiricsÂand Future Scenarios. Social Indicators Research, 2021, 157, 899-928.	1.4	4
255	Critical adjustment of land mitigation pathways for assessing countries' climate progress. Nature Climate Change, 2021, 11, 425-434.	8.1	61
256	A review on change detection method and accuracy assessment for land use land cover. Remote Sensing Applications: Society and Environment, 2021, 22, 100482.	0.8	68

-			_		
CIT		ON	DE	DO	DT
	AL		IVE	РU	IK I

#	Article	IF	CITATIONS
257	Solar geoengineering can alleviate climate change pressures on crop yields. Nature Food, 2021, 2, 373-381.	6.2	20
258	Patterns and driving factors of biomass carbon and soil organic carbon stock in the Indian Himalayan region. Science of the Total Environment, 2021, 770, 145292.	3.9	56
259	The economics of bioenergy with carbon capture and storage (BECCS) deployment in a 1.5°C or 2°C world. Global Environmental Change, 2021, 68, 102262.	3.6	53
260	Quantifying the effects of multiple land management practices, land cover change, and wildfire on the California landscape carbon budget with an empirical model. PLoS ONE, 2021, 16, e0251346.	1.1	2
261	Transition paths towards a bio-based economy in Germany: A model-based analysis. Biomass and Bioenergy, 2021, 148, 106002.	2.9	9
263	Modelled land use and land cover change emissions – a spatio-temporal comparison of different approaches. Earth System Dynamics, 2021, 12, 635-670.	2.7	29
264	Constraints and enablers for increasing carbon storage in the terrestrial biosphere. Nature Reviews Earth & Environment, 2021, 2, 436-446.	12.2	42
265	Exploring regional land use dynamics under shared socioeconomic pathways: A case study in Inner Mongolia, China. Technological Forecasting and Social Change, 2021, 166, 120606.	6.2	14
266	Bookkeeping estimates of the net land-use change flux – a sensitivity study with the CMIP6 land-use dataset. Earth System Dynamics, 2021, 12, 763-782.	2.7	9
267	What â€~climate positive future'? Emerging sociotechnical imaginaries of negative emissions in Sweden. Energy Research and Social Science, 2021, 76, 102086.	3.0	19
268	Carbon dioxide removal technologies are not born equal. Environmental Research Letters, 2021, 16, 074021.	2.2	45
269	A scenario- and spatial-downscaling-based land-use modeling framework to improve the projections of plausible futures: a case study of the Guangdong–Hong Kong–Macao Greater Bay Area, China. Sustainability Science, 2021, 16, 1977-1998.	2.5	11
270	Regionalized cost supply potential of bioenergy crops and residues in Colombia: A hybrid statistical balance and land suitability allocation scenario analysis. Biomass and Bioenergy, 2021, 150, 106096.	2.9	8
271	Consequences of underexplored variation in biodiversity indices used for landâ€use prioritization. Ecological Applications, 2021, 31, e02396.	1.8	2
272	Bioenergy for climate change mitigation: Scale and sustainability. GCB Bioenergy, 2021, 13, 1346-1371.	2.5	43
273	Impacts of climate change scenarios on European ash tree (Fraxinus excelsior L.) in Turkey. Forest Ecology and Management, 2021, 491, 119199.	1.4	57
274	Climate-Land-Energy-Water Nexus Models Across Scales: Progress, Gaps and Best Accessibility Practices. Frontiers in Environmental Science, 2021, 9, .	1.5	19
276	A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2021, 2, 494-501.	6.2	530

#	Article	IF	CITATIONS
277	Identifying regional drivers of future land-based biodiversity footprints. Global Environmental Change, 2021, 69, 102304.	3.6	10
278	A mixedâ€effect model approach for assessing landâ€based mitigation in integrated assessment models: A regional perspective. Global Change Biology, 2021, 27, 4671-4685.	4.2	4
279	South American fires and their impacts on ecosystems increase with continued emissions. Climate Resilience and Sustainability, 2022, 1, e8.	0.9	15
280	Modelling land system evolution and dynamics of terrestrial carbon stocks in the Luanhe River Basin, China: a scenario analysis of trade-offs and synergies between sustainable development goals. Sustainability Science, 2022, 17, 1323-1345.	2.5	19
281	Modelling the effect of feeding management on greenhouse gas and nitrogen emissions in cattle farming systems. Science of the Total Environment, 2021, 776, 145932.	3.9	18
282	Impact of climate change on global agricultural markets under different shared socioeconomic pathways. Agricultural Economics (United Kingdom), 2021, 52, 963-984.	2.0	9
283	The effect of riparian woodland cover on ecosystem service delivery by river floodplains: a scenario assessment. Ecosphere, 2021, 12, e03716.	1.0	7
284	Future land-use changes and its impacts on terrestrial ecosystem services: A review. Science of the Total Environment, 2021, 781, 146716.	3.9	96
285	Land-use harmonization datasets for annual global carbon budgets. Earth System Science Data, 2021, 13, 4175-4189.	3.7	37
286	Projected impacts of climate and land use changes on the habitat of Atlantic Forest plants in Brazil. Global Ecology and Biogeography, 2021, 30, 2016-2028.	2.7	12
288	Carbon myopia: The urgent need for integrated social, economic and environmental action in the livestock sector. Global Change Biology, 2021, 27, 5726-5761.	4.2	73
289	Agricultural nutrient loading under alternative climate, societal and manure recycling scenarios. Science of the Total Environment, 2021, 783, 146871.	3.9	11
290	Representing responses to climate change in spatial land system models. Land Degradation and Development, 2021, 32, 4954-4973.	1.8	3
291	A critical review of forest biomass estimation equations in India. Trees, Forests and People, 2021, 5, 100098.	0.8	20
292	Reconciling regional nitrogen boundaries with global food security. Nature Food, 2021, 2, 700-711.	6.2	51
293	Land-use change and rodent-borne diseases: hazards on the shared socioeconomic pathways. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200362.	1.8	16
294	How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200452.	1.6	49
295	Coupled social and land use dynamics affect dietary choice and agricultural land-use extent. Communications Earth & Environment, 2021, 2, .	2.6	2

#	Article	IF	CITATIONS
296	Modelling low carbon transition and economic impacts under SSPs and RCPs based on GTIMES. Advances in Climate Change Research, 2021, , .	2.1	3
297	Land-use change from food to energy: meta-analysis unravels effects of bioenergy on biodiversity and cultural ecosystem services. Environmental Research Letters, 2021, 16, 113005.	2.2	13
298	Land cover change in low-warming scenarios may enhance the climate role of secondary organic aerosols. Environmental Research Letters, 0, , .	2.2	1
299	Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on Maxent model. Ecological Informatics, 2021, 64, 101393.	2.3	53
300	Income, consumer preferences, and the future of livestock-derived food demand. Global Environmental Change, 2021, 70, 102343.	3.6	56
301	Equilibrium Modeling for Environmental Science: Exploring the Nexus of Economic Systems and Environmental Change. Earth's Future, 2021, 9, e2020EF001923.	2.4	6
302	GCAP 2.0: a global 3-D chemical-transport model framework for past, present, and future climate scenarios. Geoscientific Model Development, 2021, 14, 5789-5823.	1.3	11
303	Future "local climate zone―spatial change simulation in Greater Bay Area under the shared socioeconomic pathways and ecological control line. Building and Environment, 2021, 203, 108077.	3.0	24
304	How will the progressive global increase of arid areas affect population and land-use in the 21st century?. Global and Planetary Change, 2021, 205, 103597.	1.6	37
305	Quantifying sustainable intensification of agriculture: The contribution of metrics and modelling. Ecological Indicators, 2021, 129, 107870.	2.6	18
306	Exploring the option space for land system futures at regional to global scales: The diagnostic agro-food, land use and greenhouse gas emission model BioBaM-GHG 2.0. Ecological Modelling, 2021, 459, 109729.	1.2	10
307	Radiative effects of reduced aerosol emissions during the COVID-19 pandemic and the future recovery. Atmospheric Research, 2021, 264, 105866.	1.8	7
308	Opportunities and challenges for bioenergy-livestock integrated systems in Brazil. Industrial Crops and Products, 2021, 173, 114091.	2.5	6
309	Unraveling the potential of sugarcane electricity for climate change mitigation in Brazil. Resources, Conservation and Recycling, 2021, 175, 105878.	5.3	11
310	Enhancing LULC scenarios impact assessment in hydrological dynamics using participatory mapping protocols in semiarid regions. Science of the Total Environment, 2022, 803, 149906.	3.9	8
311	Climate Change: Challenges to Reduce Global Warming and Role of Biofuels. , 2020, , 13-54.		4
312	Landscape anthropization shapes the survival of a top avian scavenger. Biodiversity and Conservation, 2020, 29, 1411-1425.	1.2	27
313	Climate change costs more than we think because people adapt less than we assume. Ecological Economics, 2020, 173, 106636.	2.9	19

#	Article	IF	CITATIONS
314	Assessing land-based mitigation implications for biodiversity. Environmental Science and Policy, 2020, 106, 68-76.	2.4	11
315	Meeting the food security challenge for nine billion people in 2050: What impact on forests?. Global Environmental Change, 2020, 62, 102056.	3.6	86
316	Agricultural Development and Land Use Change in India: A Scenario Analysis of Tradeâ€Offs Between UN Sustainable Development Goals (SDGs). Earth's Future, 2020, 8, e2019EF001287.	2.4	66
317	Gridded emissions and land-use data for 2005–2100 under diverse socioeconomic and climate mitigation scenarios. Scientific Data, 2018, 5, 180210.	2.4	39
318	Socioeconomic factors and future challenges of the goal of limiting the increase in global average temperature to 1.5 ŰC. Carbon Management, 2018, 9, 447-457.	1.2	12
319	Global food self-sufficiency in the 21st century under sustainable intensification of agriculture. Environmental Research Letters, 2020, 15, 095004.	2.2	100
320	Peatland protection and restoration are key for climate change mitigation. Environmental Research Letters, 2020, 15, 104093.	2.2	74
324	A socioâ€ecological model for predicting impacts of landâ€use and climate change on regional plant diversity in the Austrian Alps. Global Change Biology, 2020, 26, 2336-2352.	4.2	26
325	Impact of Landuses on Air and Water Quality- A Review. Current World Environment Journal, 2018, 13, 11-21.	0.2	2
326	Food supply and bioenergy production within the global cropland planetary boundary. PLoS ONE, 2018, 13, e0194695.	1.1	38
328	Climate change adaptation cost and residual damage to global crop production. Climate Research, 2020, 80, 203-218.	0.4	15
329	Introducing AlienScenarios: a project to develop scenarios and models of biological invasions for the 21 st century. NeoBiota, 0, 45, 1-17.	1.0	17
330	Impacts of future agricultural change on ecosystem service indicators. Earth System Dynamics, 2020, 11, 357-376.	2.7	13
331	Generating a rule-based global gridded tillage dataset. Earth System Science Data, 2019, 11, 823-843.	3.7	32
332	Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale. Earth System Science Data, 2020, 12, 789-804.	3.7	26
333	MIROC-INTEG-LAND version 1: a global biogeochemical land surface model with human water management, crop growth, and land-use change. Geoscientific Model Development, 2020, 13, 4713-4747.	1.3	14
334	Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development, 2020, 13, 5425-5464.	1.3	408
335	Opportunities and trade-offs for expanding agriculture in Canada's North: an ecosystem service perspective. Facets, 2021, 6, 1728-1752.	1.1	10

#	Article	IF	CITATIONS
336	Nachhaltige Entwicklung in einer Gesellschaft des Umbruchs – Zur Einführung. , 2021, , 1-15.		0
337	Land-based implications of early climate actions without global net-negative emissions. Nature Sustainability, 2021, 4, 1052-1059.	11.5	27
338	Probabilistic Assessment of Extreme Heat Stress on Indian Wheat Yields Under Climate Change. Geophysical Research Letters, 2021, 48, e2021GL094702.	1.5	5
339	Landâ€based measures to mitigate climate change: Potential and feasibility by country. Clobal Change Biology, 2021, 27, 6025-6058.	4.2	114
340	Worldwide Maize and Soybean Yield Response to Environmental and Management Factors Over the 20th and 21st Centuries. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006304.	1.3	9
341	Ecosystem Services Monitoring in the Muthurajawela Marsh and Negombo Lagoon, Sri Lanka, for Sustainable Landscape Planning. Sustainability, 2021, 13, 11463.	1.6	6
344	UNCCD COP 13: From Awareness to Action in a Complex World. International Yearbook of Soil Law and Policy, 2019, , 229-247.	0.2	1
345	The algorithm to ensure and implement the strategy of the effective management of innovation processes. Vestnik Voronežskogo Gosudarstvennogo Universiteta inženernyh Tehnologij, 2019, 80, 436-440.	0.1	1
348	Projections of temperature changes over South America during the twenty-first century using CMIP6 models. Geo Journal, 2022, 87, 739-763.	1.7	1
349	Assessing whether the best land is cultivated first: A quantile analysis. PLoS ONE, 2020, 15, e0242222.	1.1	2
350	Impact of Land Use Land Cover Changes on River Discharge at Brantas Catchment Area using SHETRAN Model. IOP Conference Series: Materials Science and Engineering, 0, 982, 012037.	0.3	1
351	The effects of climate change scenarios on Tilia ssp. in Turkey. Environmental Monitoring and Assessment, 2021, 193, 771.	1.3	32
353	Interdisciplinary Research Maps: A new technique for visualizing research topics. PLoS ONE, 2020, 15, e0242283.	1.1	6
354	Efectos del cambio climático en el recurso hÃdrico de los paÃses andinos. IngenierÃa Del Agua, 2020, 24, 219.	0.2	2
355	Integrated spatial planning for biodiversity conservation and food production. One Earth, 2021, 4, 1635-1644.	3.6	14
356	Toward resilient food systems after COVID-19. Current Research in Environmental Sustainability, 2022, 4, 100110.	1.7	3
357	Can global models provide insights into regional mitigation strategies? A diagnostic model comparison study of bioenergy in Brazil. Climatic Change, 2022, 170, 1.	1.7	7
358	Implication of imposing fertilizer limitations on energy, agriculture, and land systems. Journal of Environmental Management, 2022, 305, 114391.	3.8	13

#	Article	IF	CITATIONS
359	The importance of GHG emissions from land use change for biofuels in Brazil: An assessment for current and 2030 scenarios. Resources, Conservation and Recycling, 2022, 179, 106131.	5.3	20
361	Modeling land use and land cover change: using a hindcast to estimate economic parameters in gcamland v2.0. Geoscientific Model Development, 2022, 15, 429-447.	1.3	3
362	Future greenhouse gas emissions from metal production: gaps and opportunities towards climate goals. Energy and Environmental Science, 2022, 15, 146-157.	15.6	46
363	Urban growth assessment in the Northeastern region of Bangladesh for sustainable landscape management and conservation. , 0, , 1-10.		3
364	The impact of agricultural trade approaches on global economic modeling. Global Environmental Change, 2022, 73, 102413.	3.6	11
365	Integrated assessment of localized SSP–RCP narratives for climate change adaptation in coupled human-water systems. Science of the Total Environment, 2022, 823, 153660.	3.9	16
366	Relative effects of land conversion and land-use intensity on terrestrial vertebrate diversity. Nature Communications, 2022, 13, 615.	5.8	29
367	Defining a sustainable development target space for 2030 and 2050. One Earth, 2022, 5, 142-156.	3.6	54
368	C-LLAMA 1.0: a traceable model for food, agriculture, and land use. Geoscientific Model Development, 2022, 15, 929-949.	1.3	1
369	Including climate change to predict the global suitable area of an invasive pest: Bactrocera correcta (Diptera: Tephritidae). Global Ecology and Conservation, 2022, 34, e02021.	1.0	6
370	Global estimates of stress-reflecting indices reveal key climatic drivers of climate-induced forest range shifts. Science of the Total Environment, 2022, 824, 153697.	3.9	1
371	Tipping point dynamics in global land use. Environmental Research Letters, 2021, 16, 125012.	2.2	23
373	Diversifying models for analysing global change scenarios and sustainability pathways. Global Sustainability, 2022, 5, .	1.6	10
374	Toward sustainable food security. , 2022, , 289-324.		Ο
375	Improving Regional Applicability of the UK Shared Socioeconomic Pathways Through Iterative Participatory Co-Design. SSRN Electronic Journal, 0, , .	0.4	2
376	Combining Biophysical Modeling and Social Theory Pledges for a Re-Embedding of the Agri-Food System in 2050 in Austria. SSRN Electronic Journal, 0, , .	0.4	0
380	Assessment of temperature changes over Iran during the twenty-first century using CMIP6 models under SSP1-26, SSP2-4.5, and SSP5-8.5 scenarios. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	5
381	Land-based climate change mitigation measures can affect agricultural markets and food security. Nature Food, 2022, 3, 110-121.	6.2	61

#	Article	IF	CITATIONS
382	Global impacts of future urban expansion on terrestrial vertebrate diversity. Nature Communications, 2022, 13, 1628.	5.8	103
383	Uncertainties in estimating global potential yields and their impacts for long-term modeling. Food Security, 2022, 14, 1177-1190.	2.4	2
385	Quantifying synergies and trade-offs in the global water-land-food-climate nexus using a multi-model scenario approach. Environmental Research Letters, 2022, 17, 045004.	2.2	11
386	Global land projection based on plant functional types with a 1-km resolution under socio-climatic scenarios. Scientific Data, 2022, 9, 125.	2.4	33
387	Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117297119.	3.3	312
388	Earlier emergence of a temperature response to mitigation by filtering annual variability. Nature Communications, 2022, 13, 1578.	5.8	4
389	Future Climate Change Under SSP Emission Scenarios With GISS‣2.1. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	22
390	China's Socioeconomic and CO2 Status Concerning Future Land-Use Change under the Shared Socioeconomic Pathways. Sustainability, 2022, 14, 3065.	1.6	6
391	Multi-scenario simulation of production-living-ecological space and ecological effects based on shared socioeconomic pathways in Zhengzhou, China. Ecological Indicators, 2022, 137, 108750.	2.6	34
392	Spatio-temporal analysis of dynamics and future scenarios of anthropic pressure on biomes in Brazil. Ecological Indicators, 2022, 137, 108749.	2.6	5
393	Impacts of Extreme Climate Events on Future Rice Yields in Global Major Rice-Producing Regions. International Journal of Environmental Research and Public Health, 2022, 19, 4437.	1.2	7
394	Global simulation of fine resolution land use/cover change and estimation of aboveground biomass carbon under the shared socioeconomic pathways. Journal of Environmental Management, 2022, 312, 114943.	3.8	12
395	Understanding impacts of cropland pattern dynamics on grain production in China: An integrated analysis by fusing statistical data and satellite-observed data. Journal of Environmental Management, 2022, 313, 114988.	3.8	31
396	Impacts of climate and land use change on groundwater recharge under shared socioeconomic pathways: A case of Siem Reap, Cambodia. Environmental Research, 2022, 211, 113070.	3.7	10
397	Food system development pathways for healthy, nature-positive and inclusive food systems. Nature Food, 2021, 2, 928-934.	6.2	24
398	Modelling human–natural systems interactions with implications for twenty-first-century warming. Nature Sustainability, 2022, 5, 263-271.	11.5	11
399	An assessment of the short-term impact of COVID-19 on economics and the environment: A case study of Indonesia. Economia, 2021, 22, 291-313.	0.5	19
400	Knowledge Mapping of Research on Land Use Change and Food Security: A Visual Analysis Using CiteSpace and VOSviewer. International Journal of Environmental Research and Public Health, 2021, 18, 13065.	1.2	40

#	Article	IF	CITATIONS
401	Land Use Effects on Climate: Current State, Recent Progress, and Emerging Topics. Current Climate Change Reports, 2021, 7, 99-120.	2.8	51
402	Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios. Earth System Dynamics, 2022, 13, 779-794.	2.7	8
403	Rebuilding green infrastructure in boreal production forest given future global wood demand. Journal of Applied Ecology, 2022, 59, 1659-1669.	1.9	9
404	New land-use change scenarios for Brazil: Refining global SSPs with a regional spatially-explicit allocation model. PLoS ONE, 2022, 17, e0256052.	1.1	4
406	Climate change increases cross-species viral transmission risk. Nature, 2022, 607, 555-562.	13.7	361
407	Agricultural Land: Crop Production or Photovoltaic Power Plants. Sustainability, 2022, 14, 5099.	1.6	8
408	MESMER-M: an Earth system model emulator for spatially resolved monthly temperature. Earth System Dynamics, 2022, 13, 851-877.	2.7	6
409	Contrasting influences of biogeophysical and biogeochemical impacts of historical land use on global economic inequality. Nature Communications, 2022, 13, 2479.	5.8	16
410	Projected environmental benefits of replacing beef with microbial protein. Nature, 2022, 605, 90-96.	13.7	72
411	Estimating regional timber supply and forest carbon sequestration under shared socioeconomic pathways: A case study of Maine, USA. , 2022, 1, e0000018.		10
412	Assessing the implications of bioenergy deployment in the <scp>EU</scp> in deep decarbonization and climateâ€neutrality context: a scenarioâ€based analysis. Biofuels, Bioproducts and Biorefining, 2022, 16, 1196-1213.	1.9	5
413	Dynamic Simulation of Land Use/Cover Change and Assessment of Forest Ecosystem Carbon Storage under Climate Change Scenarios in Guangdong Province, China. Remote Sensing, 2022, 14, 2330.	1.8	46
414	Future bioenergy expansion could alter carbon sequestration potential and exacerbate water stress in the United States. Science Advances, 2022, 8, eabm8237.	4.7	11
415	Linking SDG 7 to assess the renewable energy footprint of nations by 2030. Applied Energy, 2022, 317, 119167.	5.1	42
416	Development of chemical emission scenarios using the Shared Socio-economic Pathways. Science of the Total Environment, 2022, 836, 155530.	3.9	5
417	Integrating degrowth and efficiency perspectives enables an emission-neutral food system by 2100. Nature Food, 2022, 3, 341-348.	6.2	28
418	South Asian agriculture increasingly dependent on meltwater and groundwater. Nature Climate Change, 2022, 12, 566-573.	8.1	38
419	Techno-economic and environmental assessment of bioenergy and livestock integrated systems in Brazil. Sustainable Production and Consumption, 2022, 32, 580-592.	5.7	6

#	Article	IF	CITATIONS
420	Rural land abandonment is too ephemeral to provide major benefits for biodiversity and climate. Science Advances, 2022, 8, .	4.7	36
421	LCA and negative emission potential of retrofitted cement plants under oxyfuel conditions at high biogenic fuel shares. Scientific Reports, 2022, 12, .	1.6	8
422	Future land-use competition constrains natural climate solutions. Science of the Total Environment, 2022, 838, 156409.	3.9	11
423	Degradation of South American biomes: What to expect for the future?. Environmental Impact Assessment Review, 2022, 96, 106815.	4.4	15
424	StEMAIRF-BGI as a tool for UHI mitigation using land use planning and designing. , 2022, , 177-197.		0
425	Cropland Exposed to Drought Is Overestimated without Considering the CO2 Effect in the Arid Climatic Region of China. Land, 2022, 11, 881.	1.2	2
426	Regionally extended shared socioeconomic pathways for the offshore wind industry in Finland. Energy, Ecology and Environment, 2022, 7, 533-545.	1.9	3
427	The role of food and land use systems in achieving India's sustainability targets Environmental Research Letters, 0, , .	2.2	3
428	Gridded value-added of primary, secondary and tertiary industries in China under Shard Socioeconomic Pathways. Scientific Data, 2022, 9, .	2.4	15
429	Impacts of Different Land Use Scenarios on Future Global and Regional Climate Extremes. Atmosphere, 2022, 13, 995.	1.0	5
430	Unraveling the role of biofuels in road transport under rapid electrification. Biofuels, Bioproducts and Biorefining, 0, , .	1.9	4
431	Integrated analysis of increased bioenergy futures in India. Energy Policy, 2022, 168, 113125.	4.2	7
432	Interactions of Environmental Variables and Water Use Efficiency in the Matopiba Region via Multivariate Analysis. Sustainability, 2022, 14, 8758.	1.6	3
433	Simulation of the Potential Suitable Distribution of the Endangered Cremastra appendiculata in China Under Global Climate Change. Frontiers in Environmental Science, 0, 10, .	1.5	2
434	Reforming China's fertilizer policies: implications for nitrogen pollution reduction and food security. Sustainability Science, 2023, 18, 407-420.	2.5	14
436	Potential of Landâ€Neutral Negative Emissions Through Biochar Sequestration. Earth's Future, 2022, 10,	2.4	9
437	Land use in acid sulphate soils degrades river water quality – Do the biological quality metrics respond?. Ecological Indicators, 2022, 141, 109085.	2.6	1
438	Light-duty vehicle fleet electrification in the United States and its effects on global agricultural markets. Ecological Economics, 2022, 200, 107536.	2.9	3

#	Article	IF	CITATIONS
439	Identifying discrepant regions in urban mapping from historical and projected global urban extents. All Earth, 2022, 34, 167-178.	0.8	2
440	Improving regional applicability of the UK shared socioeconomic Pathways through iterative participatory co-design. Climate Risk Management, 2022, 37, 100452.	1.6	3
441	Projections of atmospheric changes over Iran in 2014–2050 using the CMIP6-HighResMIP experiment. Arabian Journal of Geosciences, 2022, 15, .	0.6	3
442	Interactions Between U.S. Vehicle Electrification, Climate Change, and Global Agricultural Markets. Environmental and Resource Economics, 0, , .	1.5	1
443	Uncertainty Analysis in Multiâ€Sector Systems: Considerations for Risk Analysis, Projection, and Planning for Complex Systems. Earth's Future, 2022, 10, .	2.4	16
444	Simulation of urban land expansion in China at 30 m resolution through 2050 under shared socioeconomic pathways. GIScience and Remote Sensing, 2022, 59, 1301-1320.	2.4	10
446	The Future Climate and Air Quality Response From Different Nearâ€Term Climate Forcer, Climate, and Landâ€Use Scenarios Using UKESM1. Earth's Future, 2022, 10, .	2.4	3
447	Identifying the suitable habitats for Anatolian boxwood (Buxus sempervirens L.) for the future regarding the climate change. Theoretical and Applied Climatology, 2022, 150, 637-647.	1.3	20
448	Fewer Basins Will Follow Their Budyko Curves Under Global Warming and Fossilâ€Fueled Development. Water Resources Research, 2022, 58, .	1.7	13
449	The United States and China on the paths and policies to carbon neutrality. Journal of Environmental Management, 2022, 320, 115785.	3.8	54
450	Climate, Land, Energy and Water systems interactions – From key concepts to model implementation with OSeMOSYS. Environmental Science and Policy, 2022, 136, 696-716.	2.4	18
451	Using the SECLAND model to project future land-use until 2050 under climate and socioeconomic change in the LTSER region Eisenwurzen (Austria). Ecological Economics, 2022, 201, 107559.	2.9	3
452	Applying the open-source climate, land, energy, and water systems (CLEWs) model to Canada. Energy Strategy Reviews, 2022, 44, 100929.	3.3	2
453	Carbonization and agricultural productivity in Bhutan: Investigating the impact of crops production, fertilizer usage, and employment on CO2 emissions. Journal of Cleaner Production, 2022, 375, 134178.	4.6	40
454	Developing context-specific frameworks for integrated sustainability assessment of agricultural intensity change: An application for Europe. Environmental Science and Policy, 2022, 137, 128-142.	2.4	7
455	Integrated High-Resolution, Continental-Scale Land Change Forecasting. SSRN Electronic Journal, O, , .	0.4	0
456	Land use change and carbon emissions of a transformation to timber cities. Nature Communications, 2022, 13, .	5.8	74
457	Simulating Ecological Functions of Vegetation Using a Dynamic Vegetation Model. Forests, 2022, 13, 1464.	0.9	Ο

#	Article	IF	CITATIONS
458	Altitudinal Migration of Species of Fir (Abies spp.) in Adaptation to Climate Change. Water, Air, and Soil Pollution, 2022, 233, .	1.1	26
459	The risks of overstating the climate benefits of ecosystem restoration. Nature, 2022, 609, E1-E3.	13.7	11
460	Advocating afforestation, betting on BECCS: land-based negative emissions technologies (NETs) and agrarian livelihoods in the global South. Journal of Peasant Studies, 2023, 50, 185-214.	3.0	6
461	Pathway to achieve a sustainable food and land-use transition in India. Sustainability Science, 2023, 18, 457-468.	2.5	6
462	How the future of the global forest sink depends on timber demand, forest management, and carbon policies. Global Environmental Change, 2022, 76, 102582.	3.6	35
464	How can diverse national food and land-use priorities be reconciled with global sustainability targets? Lessons from the FABLE initiative. Sustainability Science, 2023, 18, 335-345.	2.5	11
465	Rescaling the land rush? Global political ecologies of land use and cover change in key scenario archetypes for achieving the 1.5â€Â°C Paris agreement target. Journal of Peasant Studies, 2023, 50, 262-294.	3.0	5
466	Agro-Biodiversity Across the Food Chain. , 2023, , 1-40.		0
467	Can Food–Energy–Water Nexus Research Keep Pace with Agricultural Innovation?. Engineering, 2022, , .	3.2	0
468	Global hotspots for soil nature conservation. Nature, 2022, 610, 693-698.	13.7	53
469	Harnessing the indirect effect of urban expansion for mitigating agriculture-environment trade-offs in the Loess Plateau. Land Use Policy, 2022, 122, 106395.	2.5	7
470	Energy potentials, negative emissions, and spatially explicit environmental impacts of perennial grasses on abandoned cropland in Europe. Environmental Impact Assessment Review, 2023, 98, 106942.	4.4	9
471	Management-induced changes in soil organic carbon on global croplands. Biogeosciences, 2022, 19, 5125-5149.	1.3	4
472	Comparing the climate change mitigation potentials of alternative land uses: crops for biofuels or biochar vs. natural regrowth. Geography and Sustainability, 2022, , .	1.9	0
473	Combining biophysical modeling and Polanyian theory pleads for a re-embedding of the agricultural system in 2050 in Austria. Environmental Science and Policy, 2023, 139, 228-239.	2.4	1
474	Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment. Land, 2022, 11, 2153.	1.2	10
475	Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses. Nature Communications, 2022, 13, .	5.8	14
476	Doubling protected land area may be inefficient at preserving the extent of undeveloped land and could cause substantial regional shifts in land use. GCB Bioenergy, 0, , .	2.5	0

#	Article	IF	CITATIONS
477	Estimating cropland requirements for global food system scenario modeling. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	3
478	Surveillance and invasive risk of the red imported fire ant, <i>Solenopsis invicta</i> Buren in China. Pest Management Science, 2023, 79, 1342-1351.	1.7	7
479	Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement. Nature Communications, 2022, 13, .	5.8	6
480	Novel model for NPP prediction based on temperature and land use changes: A case in Sichuan and Chongqing, China. Ecological Indicators, 2022, 145, 109724.	2.6	7
481	Modeling Perennial Bioenergy Crops in the E3SM Land Model (ELMv2). Journal of Advances in Modeling Earth Systems, 2023, 15, .	1.3	5
482	The â€ [~] conflict trap' reduces economic growth in the shared socioeconomic pathways. Environmental Research Letters, 2023, 18, 024028.	2.2	2
483	Future climate or land use? Attribution of changes in surface runoff in a typical Sahelian landscape. Comptes Rendus - Geoscience, 2023, 355, 411-438.	0.4	9
484	Decarbonization. SpringerBriefs in Applied Sciences and Technology, 2023, , 15-101.	0.2	0
485	Climate change multi-model projections in CMIP6 scenarios in Central Hokkaido, Japan. Scientific Reports, 2023, 13, .	1.6	15
486	The value of change: A scenario assessment of the effects of bioeconomy driven land use change on ecosystem service provision. Catena, 2023, 223, 106902.	2.2	5
487	Climateâ€based identification of suitable cropping areas for giant reed and reed canary grass on marginal land in Central and Southern Europe under climate change. GCB Bioenergy, 2023, 15, 424-443.	2.5	4
488	Projected Water Levels and Identified Future Floods: A Comparative Analysis for Mahaweli River, Sri Lanka. IEEE Access, 2023, 11, 8920-8937.	2.6	4
489	The economics of forest carbon sequestration: a bibliometric analysis. Environment, Development and Sustainability, 2024, 26, 2989-3019.	2.7	1
490	Review of Bioenergy Potential in Jordan. Energies, 2023, 16, 1393.	1.6	3
491	Temperature sensitivity of marine macroalgae for aquaculture in China. Aquaculture, 2023, 567, 739262.	1.7	1
492	A decentralized approach to model national and global food and land use systems. Environmental Research Letters, 2023, 18, 045001.	2.2	3
493	Assessment of Shared Socioeconomic Pathway (SSP) climate scenarios and its impacts on the Greater Accra region. Urban Climate, 2023, 49, 101432.	2.4	8
494	Threatened birds face new distribution under future climate change on the Qinghai-Tibet Plateau (QTP). Ecological Indicators, 2023, 150, 110217.	2.6	3

#	Article	IF	CITATIONS
495	Climate policy uncertainty, oil price and agricultural commodity: From quantile and time perspective. Economic Analysis and Policy, 2023, 78, 256-272.	3.2	7
496	Coordination of economic development and ecological conservation during spatiotemporal evolution of land use/cover in eco-fragile areas. Catena, 2023, 226, 107097.	2.2	8
497	Harvesting the benefits of nutritional research to address global challenges in the 21st century. Journal of the World Aquaculture Society, 2023, 54, 343-363.	1.2	10
498	Spatiotemporal foresting of soil erosion for SSP-RCP scenarios considering local vegetation restoration project: A case study in the three gorges reservoir (TGR) area, China. Journal of Environmental Management, 2023, 337, 117717.	3.8	5
499	Soil moisture determines the recovery time of ecosystems fromÂdrought. Global Change Biology, 2023, 29, 3562-3574.	4.2	25
500	River flow decline across the entire Arkansas River Basin in the 21st century. Journal of Hydrology, 2023, 618, 129253.	2.3	2
501	19. Ameliorating the contribution of livestock to global greenhouse gas production: dream or deliverable?. , 2022, , .		0
502	MaxEnt Modeling for Predicting Suitable Habitat for Endangered Tree Keteleeria davidiana (Pinaceae) in China. Forests, 2023, 14, 394.	0.9	4
503	Potential of land-based climate change mitigation strategies on abandoned cropland. Communications Earth & Environment, 2023, 4, .	2.6	12
504	ç¢3è¾¾å3°ç¢3ä¸å'Œç>®æ‡ä¸‹éè—é«~原土地â^©ç"¨åě化趋åŠį. SCIENTIA SINICA Terrae, 2023, , .	0.1	Ο
505	Potential impacts of climate change on the distribution of the relict plant Shaniodendron subaequale. Heliyon, 2023, 9, e14402.	1.4	2
506	Future land-use change and its impact on terrestrial ecosystem carbon pool evolution along the Silk Road under SDG scenarios. Science Bulletin, 2023, 68, 740-749.	4.3	14
507	Potentially suitable habitat prediction of Pinus massoniana Lamb. in China under climate change using Maxent model. Frontiers in Forests and Global Change, 0, 6, .	1.0	3
508	Research needs for a food system transition. Climatic Change, 2023, 176, .	1.7	3
509	Seeking sustainable solutions for human food systems. Geography and Sustainability, 2023, , .	1.9	0
510	Disentangling the impacts of climate and land cover changes on habitat suitability of common pheasant Phasianus colchicus along elevational gradients in Iran. Environmental Science and Pollution Research, 2023, 30, 60958-60966.	2.7	2
511	Current distribution of two species of Chinese macaques (<i>Macaca arctoides</i> and <i>Macaca) Tj ETQq0 0 of Primatology, 2023, 85, .</i>	D rgBT /Ov 0.8	verlock 10 Tf 5 2
512	Sustainable agriculture for food and nutritional security. , 2023, , 25-90.		3

#	Article	IF	Citations
513	Mitigating trade-offs between global food access and net-zero emissions: the potential contribution of direct air carbon capture and storage. Climatic Change, 2023, 176, .	1.7	3
534	Economics and Zero-Carbon. , 2023, , 1-24.		0
590	The interplay between agriculture, greenhouse gases, and climate change in Sub-Saharan Africa. Regional Environmental Change, 2024, 24, .	1.4	1
601	Important distinctiveness of SSP3–7.0 for use in impact assessments. Nature Climate Change, 2023, 13, 1276-1278.	8.1	0
627	Dryland Dynamics and Driving Forces. , 2024, , 23-68.		0
634	Land-Use Implications of Carbon Dioxide Removal: An Emerging Legal Issue?. International Yearbook of Soil Law and Policy, 2024, , 107-121.	0.2	0