Ultrafast water sensing and thermal imaging by a metal switchable luminescence

Nature Communications 8, 15985

DOI: 10.1038/ncomms15985

Citation Report

#	Article	IF	CITATIONS
1	Ambipolar chemical sensors based on the self-assembled film of an amphiphilic (phthalocyaninato) (porphyrinato) europium complex. Inorganic Chemistry Communication, 2017, 86, 1-5.	1.8	14
2	Aggregation-induced phosphorescence emission and pH recognition properties of an Iridium (III) complex. Inorganic Chemistry Communication, 2017, 86, 54-57.	1.8	1
3	Syntheses, structures and photoluminescence properties of two 2D Cd(II) coordination polymers based on a semirigid tridentate N-donor ligand. Inorganic Chemistry Communication, 2017, 86, 204-208.	1.8	4
4	Harnessing Surface-Functionalized Metal–Organic Frameworks for Selective Tumor Cell Capture. Chemistry of Materials, 2017, 29, 8052-8056.	3.2	38
5	Zinc Coordination Polymers Containing Isomeric Forms of <i>p</i> à€(Thiazolyl)benzoic Acid: Blueâ€Emitting Materials with a Solvatochromic Response to Water. European Journal of Inorganic Chemistry, 2017, 2017, 4909-4918.	1.0	9
6	Detection of hydrogen sulfide by a novel quinolone-based "turn-on―chemosensor in aqueous solution. Inorganic Chemistry Communication, 2017, 84, 237-240.	1.8	1
7	Three Cadmium Coordination Polymers with Carboxylate and Pyridine Mixed Ligands: Luminescent Sensors for Fe ^{III} and Cr ^{VI} lons in an Aqueous Medium. Inorganic Chemistry, 2017, 56, 11768-11778.	1.9	167
8	Design, structure and magnetic properties of a novel one-dimensional Mn(II) coordination polymer constructed from 4-pyridyl-NH-1,2,3-triazole. Inorganic Chemistry Communication, 2017, 84, 182-185.	1.8	7
9	Ratiometric Fluorescence Sensing and Real-Time Detection of Water in Organic Solvents with One-Pot Synthesis of Ru@MIL-101(Al)–NH ₂ . Analytical Chemistry, 2017, 89, 13434-13440.	3.2	187
10	Cage-opening supramolecular isomerism in Cu(II) complexes. Inorganic Chemistry Communication, 2017, 86, 223-226.	1.8	4
11	A Twoâ€Photon Luminescent Dyeâ€Loaded Metal–Organic Framework for Physiological Temperature Sensing within Biological Windows. ChemPlusChem, 2017, 82, 1320-1325.	1.3	16
12	Efficient Capture and Effective Sensing of Cr ₂ O ₇ ^{2–} from Water Using a Zirconium Metal–Organic Framework. Inorganic Chemistry, 2017, 56, 14178-14188.	1.9	189
13	Solvent-induced single crystal to single crystal transformation and "turn-on―fluorescence based on a dynamic 3D metal-organic framework. Inorganic Chemistry Communication, 2017, 86, 249-252.	1.8	3
14	Hydrothermal Preparation of a Series of Luminescent Cadmium(II) and Zinc(II) Coordination Complexes and Enhanced Realâ€time Photoâ€luminescent Sensing for Benzaldehyde. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 357-366.	0.6	5
15	A stable electron-deficient metal–organic framework for colorimetric and luminescence sensing of phenols and anilines. Journal of Materials Chemistry A, 2018, 6, 9236-9244.	5.2	127
16	Solvent Relaxation Accompanied Ultrafast Excited State Proton Transfer Dynamics Revealed in a Salicylideneaniline Derivative. ChemistrySelect, 2018, 3, 3787-3796.	0.7	8
17	Luminescent metal–organic frameworks as chemical sensors: common pitfalls and proposed best practices. Inorganic Chemistry Frontiers, 2018, 5, 1493-1511.	3.0	129
18	High-performance H2 sensors with selectively hydrophobic micro-plate for self-aligned upload of Pd nanodots modified mesoporous In2O3 sensing-material. Sensors and Actuators B: Chemical, 2018, 267, 83-92.	4.0	55

#	Article	IF	CITATIONS
19	A coumarin Schiff's base two-photon fluorescent probe for hypochlorite in living cells and zebrafish. RSC Advances, 2018, 8, 6904-6909.	1.7	27
20	Functionalization of Metal–Organic Frameworks for Photoactive Materials. Advanced Materials, 2018, 30, e1705634.	11.1	133
21	An amino-functionalized magnetic framework composite of type Fe $3O4$ -NH2@MIL- 101 (Cr) for extraction of pyrethroids coupled with GC-ECD. Mikrochimica Acta, 2018 , 185 , 125 .	2.5	33
22	Terphenyltetracarboxylate acid based 3D modular cobalt(II) coordination polymer with highly sensitive luminescent sensing of chromate anions. Inorganic Chemistry Communication, 2018, 89, 32-36.	1.8	8
23	Two 3-hydroxyflavone derivatives as two-photon fluorescence turn-on chemosensors for cysteine and homocysteine in living cells. Talanta, 2018, 181, 118-124.	2.9	18
24	Chalcone based ion-pair recognition towards nitrates and the application for the colorimetric and fluorescence turn-on determination of water content in organic solvents. Sensors and Actuators B: Chemical, 2018, 260, 727-735.	4.0	32
25	The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent. Journal of Materials Chemistry A, 2018, 6, 2184-2192.	5.2	214
26	A copper based metal-organic framework: Synthesis, modification and VOCs adsorption. Inorganic Chemistry Communication, 2018, 92, 1-4.	1.8	26
27	[C ₆ H ₁₄ N]PbBr ₃ : An ABX ₃ â€Type Semiconducting Perovskite Hybrid with Aboveâ€Roomâ€Temperature Phase Transition. Chemistry - an Asian Journal, 2018, 13, 982-988.	1.7	20
28	The impact of metal ions on photoinduced electron-transfer properties: four photochromic metal–organic frameworks based on a naphthalenediimide chromophore. CrystEngComm, 2018, 20, 2430-2439.	1.3	33
29	A cationic metal-organic framework based on {Zn4} cluster for rapid and selective adsorption of dyes. Chinese Chemical Letters, 2018, 29, 857-860.	4.8	38
30	A highly porous polyhedron-based metal-organic framework exhibiting large C2H2 storage capability. Inorganic Chemistry Communication, 2018, 87, 17-19.	1.8	4
31	Three zinc coordination polymers constructed from 5-(4-carboxybenzyloxy)isophthalic acid: Synthesis, structures, and luminescence sensing. Inorganic Chemistry Communication, 2018, 87, 12-16.	1.8	8
32	An imidazole based ESIPT molecule for fluorescent detection of explosives. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 377-381.	2.0	40
33	A four-state fluorescent molecular switch. Chemical Communications, 2018, 54, 12041-12044.	2.2	4
34	A highly emissive fluorescent Zn-MOF: molecular decoding strategies for solvents and trace detection of dunnite in water. Journal of Materials Chemistry A, 2018, 6, 21274-21279.	5.2	38
35	Highly Sensitive Luminescent Probe of Aniline and Trace Water in Organic Solvents Based on Covalently Modified Lanthanide Metal–Organic Frameworks. Industrial & Discreting Chemistry Research, 2018, 57, 16564-16571.	1.8	38
36	A new Cd based metal–organic framework for quick and convenient detection of trace water in isopropanol and 1,4-dioxane. Journal of Materials Chemistry C, 2018, 6, 12341-12346.	2.7	29

#	Article	IF	Citations
37	Low Amplified Spontaneous Emission Threshold and Efficient Electroluminescence from a Carbazole Derivatized Excited-State Intramolecular Proton Transfer Dye. ACS Photonics, 2018, 5, 4447-4455.	3.2	47
38	Encapsulation of Phosphotungstic Acid into Metal–Organic Frameworks with Tunable Window Sizes: Screening of PTA@MOF Catalysts for Efficient Oxidative Desulfurization. Inorganic Chemistry, 2018, 57, 13009-13019.	1.9	100
39	Metal-containing crystalline luminescent thermochromic materials. Coordination Chemistry Reviews, 2018, 377, 307-329.	9.5	108
40	User-Tailored Metal–Organic Frameworks as Supports for Carbonic Anhydrase. ACS Applied Materials & Interfaces, 2018, 10, 41326-41337.	4.0	49
41	Metal-Organic Frameworks for the Development of Biosensors: A Current Overview. Biosensors, 2018, 8, 92.	2.3	100
42	Solid-state preparation of mixed metal-oxides nanostructure from anionic metal-organic framework via cation exchange process. Inorganic Chemistry Communication, 2018, 97, 144-148.	1.8	12
43	Largeâ€Scale Synthesis of Flexible, Stable, and Transparent MoS ₂ Quantum Dotsâ€Polyvinyl Alcohol Sensing Film. Particle and Particle Systems Characterization, 2018, 35, 1800189.	1.2	3
44	Synthesis, Crystal Structure and Theoretical Calculations of Two Zn (II) Coordination Polymers Based on 2,5-Dihydroxyterephthalic Acid. Journal of Cluster Science, 2018, 29, 1275-1283.	1.7	4
45	Utilizing an effective framework to dye energy transfer in a carbazole-based metal–organic framework for high performance white light emission tuning. Inorganic Chemistry Frontiers, 2018, 5, 2868-2874.	3.0	38
46	Synthesis, Structure, and Properties of Coordination Polymers Based on 1,4-Bis((2-methyl-1H-imidazol-1-yl)methyl)benzene and Different Carboxylate Ligands. Crystals, 2018, 8, 288.	1.0	2
47	Aqueous detection of antibiotics with a Cd(II)-based metal-organic framework constructed by a tetra(1,2,4-triazole)-functionalized-bis(triphenylamine) ligand. Inorganic Chemistry Communication, 2018, 96, 202-205.	1.8	22
48	Host–Guest Interaction Optimization through Cavity Functionalization for Ultra-Fast and Efficient Water Purification by a Metal–Organic Framework. Inorganic Chemistry, 2018, 57, 11578-11587.	1.9	41
49	Anomalous thermally-activated NIR emission of ESIPT modulated Nd-complexes for optical fiber sensing devices. Chemical Communications, 2018, 54, 6304-6307.	2.2	24
50	Post-synthetic exchange (PSE) of UiO-67 frameworks with Ru/Rh half-sandwich units for visible-light-driven H ₂ evolution and CO ₂ reduction. Journal of Materials Chemistry A, 2018, 6, 11337-11345.	5.2	86
51	ESIPTâ€Modulated Emission of Lanthanide Complexes: Different Energyâ€Transfer Pathways and Multiple Responses. Chemistry - A European Journal, 2018, 24, 10091-10098.	1.7	34
52	Ratiometric fluorescence detection of trace water in organic solvents based on aggregation-induced emission enhanced Cu nanoclusters. Analyst, The, 2018, 143, 3068-3074.	1.7	51
53	Molecular Conformation―and Packingâ€Controlled Excited State Intramolecular Proton Transfer Induced Solid‧tate Fluorescence and Reversible Mechanofluorochromism. ChemistrySelect, 2018, 3, 7340-7345.	0.7	14
54	Excitationâ€Wavelengthâ€Dependent Emission and Delayed Fluorescence in a Protonâ€Transfer System. Chemistry - A European Journal, 2018, 24, 12790-12795.	1.7	45

#	Article	IF	CITATIONS
55	Hybrid Polymer/Metal–Organic Framework Films for Colorimetric Water Sensing over a Wide Concentration Range. ACS Applied Materials & Interfaces, 2018, 10, 24201-24208.	4.0	46
56	Brønsted Basicity in Metal–Organic Framework-808 and Its Application in Base-Free Catalysis. Inorganic Chemistry, 2018, 57, 8033-8036.	1.9	42
57	Feasible organic films using noninterfering emitters for sensitive and spatial high-temperature sensing. Journal of Materials Chemistry C, 2018, 6, 8115-8121.	2.7	16
58	Controllable synthesis and magnetic properties of two stable cobalt-organic frameworks based on 5-(4-carboxybenzyloxy)isophthalic acid. Inorganic Chemistry Communication, 2018, 95, 27-31.	1.8	3
59	1D helical silver(I)-based coordination polymer containing pyridyl diimide ligand for Fe(III) ions detection. Inorganic Chemistry Communication, 2018, 96, 30-33.	1.8	13
60	Amino-Modified Fe-Terephthalate Metal–Organic Framework as an Efficient Catalyst for the Selective Oxidation of H ₂ S. Inorganic Chemistry, 2018, 57, 10081-10089.	1.9	106
61	Advances of metal–organic frameworks for gas sensing. Polyhedron, 2018, 154, 83-97.	1.0	95
62	Photonic functional metal–organic frameworks. Chemical Society Reviews, 2018, 47, 5740-5785.	18.7	528
63	Two new alkaline earth metal organic frameworks with the diamino derivative of biphenyl-4,4′-dicarboxylate as bridging ligand: Structures, fluorescence and quenching by gas phase aldehydes. Polyhedron, 2018, 153, 173-180.	1.0	8
64	Self-Quenched Metal–Organic Particles as Dual-Mode Therapeutic Agents for Photoacoustic Imaging-Guided Second Near-Infrared Window Photochemotherapy. ACS Applied Materials & Interfaces, 2018, 10, 25203-25212.	4.0	63
65	Perspective: Interfacial materials at the interface of energy and water. Journal of Applied Physics, 2018, 124, .	1.1	106
66	A Biocompatible Zinc(II)â€based Metalâ€organic Framework for pH Responsive Drug Delivery and Antiâ€Lung Cancer Activity. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 877-882.	0.6	9
67	MOF-808: A Metal–Organic Framework with Intrinsic Peroxidase-Like Catalytic Activity at Neutral pH for Colorimetric Biosensing. Inorganic Chemistry, 2018, 57, 9096-9104.	1.9	258
68	A Trichromatic and Whiteâ€Lightâ€Emitting MOF Composite for Multiâ€Dimensional and Multiâ€Response Ratiometric Luminescent Sensing. Chemistry - A European Journal, 2018, 24, 9555-9564.	1.7	33
69	Single-Phase White-Light-Emitting and Photoluminescent Color-Tuning Coordination Assemblies. Chemical Reviews, 2018, 118, 8889-8935.	23.0	444
70	A stable metal cluster-metalloporphyrin MOF with high capacity for cationic dye removal. Journal of Materials Chemistry A, 2018, 6, 17698-17705.	5.2	102
71	Structural diversity and luminescent sensing of three coordination polymers based on the Structure, 2018, 1171, 54-61.	1.8	4
72	Tunable luminescence and white light emission of porphyrin-zinc coordination assemblies. Journal of Porphyrins and Phthalocyanines, 2018, 22, 821-830.	0.4	2

#	Article	IF	CITATIONS
73	Phosphorescence emission and fine structures observed respectively under ambient conditions and at $\langle i \rangle$ ca. $\langle i \rangle$ 55 K in a coordination polymer of lead($\langle scp \rangle ii \langle scp \rangle$)-thiophenedicarboxylate. Dalton Transactions, 2018, 47, 9334-9340.	1.6	12
74	Multiresponsive UV-One-Photon Absorption, Near-Infrared-Two-Photon Absorption, and X/γ-Photoelectric Absorption Luminescence in One [Cu ₄ 1 ₄] Compound. Inorganic Chemistry, 2019, 58, 10736-10742.	1.9	27
75	Ni 1â€x Co x O y , Ni 1â€x Co x S y and Ni 1â€x Co x P y Catalysts Prepared from Ni 1â€x Co x â€ZIFâ€67 for Production by Electrolysis in Alkaline Media. ChemCatChem, 2019, 11, 5131-5138.	Hydrogen 1.8	8
76	Benzimidazole and benzothiazole fluorophores with large Stokes shift and intense sky-blue emission in aggregation as Al3+ and Pb2+ sensors. Journal of Luminescence, 2019, 215, 116688.	1.5	12
77	Core-shell upconversion nanoparticles of type NaGdF4:Yb,Er@NaGdF4:Nd,Yb and sensitized with a NIR dye are a viable probe for luminescence determination of the fraction of water in organic solvents. Mikrochimica Acta, 2019, 186, 630.	2.5	16
78	A Perylene Bisimideâ€Contained Molecular Dyad with Highâ€Efficient Charge Separation: Switchability, Tunability, and Applicability in Moisture Detection. Advanced Functional Materials, 2019, 29, 1905295.	7.8	39
79	A naphthalenediimide-based Co-MOF as naked-eye colorimetric sensor to humidity. Journal of Solid State Chemistry, 2019, 277, 658-664.	1.4	18
80	A Collection of Recent Examples of Catalysis Using Carboxylate-Based Metalâ^Organic Frameworks. ACS Symposium Series, 2019, , 167-197.	0.5	1
81	Regular tuning of the ESIPT reaction of 3-hydroxychromone-based derivatives by substitution of functional groups. Organic Chemistry Frontiers, 2019, 6, 3093-3100.	2.3	32
82	p-Terphenyl-2,2″,5‴,5‴-tetracarboxylate acid based bifunctional 1D Zinc(II) metal-organic platform for luminescent sensing and gas adsorption. Inorganic Chemistry Communication, 2019, 107, 107463.	1.8	5
83	A series of Cu(II) based di-hydrazide complexes obtained through solvent exchange: Their efficient dye degradation and magnetic study. Polyhedron, 2019, 171, 249-259.	1.0	2
84	Aggregation-induced red shift in N,S-doped chiral carbon dot emissions for moisture sensing. New Journal of Chemistry, 2019, 43, 13240-13248.	1.4	45
85	Pressureâ€Induced Multiphoton Excited Fluorochromic Metal–Organic Frameworks for Improving MPEF Properties. Angewandte Chemie, 2019, 131, 14517-14523.	1.6	12
86	Pressureâ€Induced Multiphoton Excited Fluorochromic Metal–Organic Frameworks for Improving MPEF Properties. Angewandte Chemie - International Edition, 2019, 58, 14379-14385.	7.2	53
87	Metal–Organic Frameworks for Food Safety. Chemical Reviews, 2019, 119, 10638-10690.	23.0	366
88	Modulating Excitation Energy of Luminescent Metal–Organic Frameworks for Detection of Cr(VI) in Water. ACS Applied Nano Materials, 2019, 2, 4646-4654.	2.4	68
89	Persistent luminescent metal-organic frameworks with long-lasting near infrared emission for tumor site activated imaging and drug delivery. Biomaterials, 2019, 217, 119332.	5.7	85
90	Concurrent Modulation of Competitive Mechanisms to Design Stimuliâ€Responsive Lnâ€MOFs: A Lightâ€Operated Dualâ€Mode Assay for Oxidative DNA Damage. Advanced Functional Materials, 2019, 29, 1903058.	7.8	42

#	Article	IF	CITATIONS
91	Polarityâ€Induced Excitedâ€State Intramolecular Proton Transfer (ESIPT) in a Pair of Supramolecular Isomeric Multifunctional Dynamic Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 12196-12205.	1.7	30
92	Synthesis, structure and dual-stimulus-responsive luminescence switching of a new platinum(II) complex based on 3-trimethylsilylethynyl-1,10-phenanthroline. Journal of Organometallic Chemistry, 2019, 897, 155-160.	0.8	1
93	Biomimetic mineralization of nanoscale lanthanide metal-organic frameworks with thermo-sensitive polymer as organic ligands for solvent recognition and water detection. Journal of Solid State Chemistry, 2019, 277, 594-601.	1.4	11
94	Review of advanced sensor devices employing nanoarchitectonics concepts. Beilstein Journal of Nanotechnology, 2019, 10, 2014-2030.	1.5	37
95	Selfâ€Generation of Surface Roughness by Lowâ€Surfaceâ€Energy Alkyl Chains for Highly Stable Superhydrophobic/Superoleophilic MOFs with Multiple Functionalities. Angewandte Chemie - International Edition, 2019, 58, 17033-17040.	7.2	71
96	Selfâ€Generation of Surface Roughness by Lowâ€Surfaceâ€Energy Alkyl Chains for Highly Stable Superhydrophobic/Superoleophilic MOFs with Multiple Functionalities. Angewandte Chemie, 2019, 131, 17189-17196.	1.6	21
97	Cation-induced chirality in a bifunctional metal-organic framework for quantitative enantioselective recognition. Nature Communications, 2019, 10, 5117.	5.8	150
98	Sterically Controlled Excited-State Intramolecular Proton Transfer Dynamics in Solution. Journal of Physical Chemistry C, 2019, 123, 29116-29125.	1.5	5
99	Metal-organic frameworks as an emerging tool for sensing various targets in aqueous and biological media. TrAC - Trends in Analytical Chemistry, 2019, 120, 115654.	5.8	47
100	A simple colorimetric sensor for the detection of moisture in organic solvents and building materials: applications in rewritable paper and fingerprint imaging. Analyst, The, 2019, 144, 594-601.	1.7	58
101	A pH-sensitive excited state intramolecular proton transfer fluorescent probe for imaging mitochondria and Helicobacter pylori. Sensors and Actuators B: Chemical, 2019, 286, 148-153.	4.0	30
102	Reversible Specific Vapoluminescence Behavior in Pure Organic Crystals through Hydrogenâ€Bonding Docking Strategy. Advanced Optical Materials, 2019, 7, 1801549.	3.6	37
103	Mechanochromism induced through the interplay between excimer reaction and excited state intramolecular proton transfer. Communications Chemistry, 2019, 2, .	2.0	28
104	Anion-directed structures and luminescences of two Cu(I) coordination polymers based on bipyrazole. Inorganic Chemistry Communication, 2019, 101, 121-124.	1.8	6
105	Multiple-color aggregation-induced emission-based Schiff base sensors for ultrafast dual recognition of Hg2+ and pH integrating Boolean logic operations. Journal of Coordination Chemistry, 2019, 72, 102-118.	0.8	6
106	Four new Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) coordination polymers using two amide-like aromatic multi-carboxylate ligands: synthesis, structures and lithium–selenium batteries application. RSC Advances, 2019, 9, 14750-14757.	1.7	9
107	Hierarchical nanotubes constructed from CoSe2 nanorods with an oxygen-rich surface for an efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15073-15078.	5.2	47
108	Temperature-Induced Single-Crystal-to-Single-Crystal Transformations with Consequential Changes in the Magnetic Properties of Fe(III) Complexes. ACS Omega, 2019, 4, 8731-8738.	1.6	3

#	Article	IF	CITATIONS
109	Rational Construction of Breathing Metal–Organic Frameworks through Synergy of a Stretchy Ligand and Highly Variable π–π Interaction. ACS Applied Materials & Interfaces, 2019, 11, 20995-21003.	4.0	13
110	Interacting Metal–Insulator–Metal Resonator by Nanoporous Silver and Silk Protein Nanomembranes and Its Water-Sensing Application. ACS Omega, 2019, 4, 9010-9016.	1.6	17
111	Sensitive detection of glyphosate based on a Cu-BTC MOF/g-C3N4 nanosheet photoelectrochemical sensor. Electrochimica Acta, 2019, 317, 341-347.	2.6	93
112	Fluorescent Zr(IV) Metal–Organic Frameworks Based on an Excited-State Intramolecular Proton Transfer-Type Ligand. Inorganic Chemistry, 2019, 58, 6918-6926.	1.9	13
113	Ratiometric fluorescence detection of trace water in an organic solvent based on bimetallic lanthanide metal–organic frameworks. Chemical Communications, 2019, 55, 6926-6929.	2.2	63
114	Preparation of Composite Filters Based on Porous Coordination Polymers by Using a Vacuum Filtration Method for Highly Efficient Removal of Particulate Matters. Chemistry - an Asian Journal, 2019, 14, 2291-2301.	1.7	9
115	Chirality and Excited State Proton Transfer: From Sensing to Asymmetric Synthesis. ChemPhotoChem, 2019, 3, 580.	1.5	9
116	Real-time colorimetric water content monitoring of organic solvents by an azo dye incorporated into AlPO ₄ -5 nanochannel. Journal of Materials Chemistry C, 2019, 7, 7336-7343.	2.7	22
117	A Pyrene-Functionalized Metal–Organic Framework for Nonenzymatic and Ratiometric Detection of Uric Acid in Biological Fluid via Conformational Change. Inorganic Chemistry, 2019, 58, 5654-5663.	1.9	42
118	Structural Engineering of Lowâ€Dimensional Metal–Organic Frameworks: Synthesis, Properties, and Applications. Advanced Science, 2019, 6, 1802373.	5.6	214
119	Stable Lanthanide–Organic Framework as a Luminescent Probe To Detect Both Histidine and Aspartic Acid in Water. Inorganic Chemistry, 2019, 58, 6356-6362.	1.9	80
120	Tuning the Solid-State White Light Emission of Postsynthetic Lanthanide-Encapsulated Double-Layer MOFs for Three-Color Luminescent Thermometry Applications. Inorganic Chemistry, 2019, 58, 4524-4533.	1.9	92
121	Highly Selective and Sensitive Turn-Off–On Fluorescent Probes for Sensing Al ³⁺ lons Designed by Regulating the Excited-State Intramolecular Proton Transfer Process in Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2019, 11, 11338-11348.	4.0	163
122	Ratiometric and Turn-On Luminescence Detection of Water in Organic Solvents Using a Responsive Europium-Organic Framework. Analytical Chemistry, 2019, 91, 4845-4851.	3.2	93
123	A multifunctional Zn(II)-based four-fold interpenetrated metal-organic framework for highly sensitive sensing 2,4,6-trinitrophenol (TNP), nitrofurazone (NFZ) and nitrofurantoin (NFT). Inorganic Chemistry Communication, 2019, 103, 21-24.	1.8	15
124	Humidity- and Temperature-Tunable Multicolor Luminescence of Cucurbit[8]uril-Based Supramolecular Assembly. ACS Applied Materials & Supramolecular Assembly.	4.0	55
125	A ratiometric fluorescent thermometer based on amphiphilic alkynylpyrene derivatives. New Journal of Chemistry, 2019, 43, 6461-6464.	1.4	21
126	Low-Lying Excited States of hqxcH and Zn–hqxc Complex: Toward Understanding Intramolecular Proton Transfer Emission. Inorganic Chemistry, 2019, 58, 4686-4698.	1.9	10

#	Article	IF	CITATIONS
127	A Reusable MOFâ€Supported Singleâ€Site Zinc(II) Catalyst for Efficient Intramolecular Hydroamination of <i>o</i> àêAlkynylanilines. Angewandte Chemie - International Edition, 2019, 58, 7687-7691.	7.2	78
128	A Reusable MOFâ€Supported Singleâ€Site Zinc(II) Catalyst for Efficient Intramolecular Hydroamination of o â€Alkynylanilines. Angewandte Chemie, 2019, 131, 7769-7773.	1.6	11
129	A Water Stable Cd ^{II} â€based Metalâ€Organic Framework as a Multifunctional Sensor for Selective Detection of Cu ²⁺ and Cr ₂ O ₇ ^{2–} lons. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 484-489.	0.6	10
130	General Strategy for in Situ Generation of a Coumarin-Cu ²⁺ Complex for Fluorescent Water Sensing. Analytical Chemistry, 2019, 91, 5817-5823.	3.2	55
131	Syntheses, structures and photoluminescence of three Zn(II) coordination polymers based on N-containing heterocyclic ligand and varied auxiliary ligands. Inorganic Chemistry Communication, 2019, 102, 229-232.	1.8	4
132	Structural tuning of coordination polymers by 4-connecting metal node and secondary building process. Chinese Chemical Letters, 2019, 30, 1297-1301.	4.8	1
133	Selective, Fast-Response, and Regenerable Metal–Organic Framework for Sampling Excess Fluoride Levels in Drinking Water. Journal of the American Chemical Society, 2019, 141, 3052-3058.	6.6	84
134	Luminescent Metal–Organic Framework for Lithium Harvesting Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 6561-6568.	3.2	21
135	A Highly Redâ€Emissive Leadâ€Free Indiumâ€Based Perovskite Single Crystal for Sensitive Water Detection. Angewandte Chemie - International Edition, 2019, 58, 5277-5281.	7.2	310
136	Highly selective turn-on fluorogenic chemosensor for Zn2+ based on chelation enhanced fluorescence. Inorganic Chemistry Communication, 2019, 102, 171-179.	1.8	54
137	A Highly Redâ€Emissive Leadâ€Free Indiumâ€Based Perovskite Single Crystal for Sensitive Water Detection. Angewandte Chemie, 2019, 131, 5331-5335.	1.6	57
138	Syntheses, structures and properties of structural diversity of 3D coordination polymers based on bis (imidazole) and dicarboxylate. Polyhedron, 2019, 162, 303-310.	1.0	14
139	Aggregation-induced photodimerization of an alkynylpyrene derivative as a photoresponsive fluorescent ink. Journal of Materials Chemistry C, 2019, 7, 13786-13793.	2.7	23
140	Steric-Hindrance-Controlled Laser Switch Based on Pure Metal–Organic Framework Microcrystals. Journal of the American Chemical Society, 2019, 141, 19959-19963.	6.6	57
141	Hydrochromic carbon dots as smart sensors for water sensing in organic solvents. Nanoscale Advances, 2019, 1, 4258-4267.	2.2	36
142	Development of an intramolecular charge transfer-type colorimetric and fluorescence sensor for water by fusion with a juloidine structure and complexation with boron trifluoride. RSC Advances, 2019, 9, 31466-31473.	1.7	24
143	Strong dual emission in covalent organic frameworks induced by ESIPT. Chemical Science, 2019, 10, 11103-11109.	3.7	107
144	Chromium-Doped Zinc Gallogermanate@Zeolitic Imidazolate Framework-8: A Multifunctional Nanoplatform for Rechargeable In Vivo Persistent Luminescence Imaging and pH-Responsive Drug Release. ACS Applied Materials & Drug 11, 1907-1916.	4.0	95

#	Article	IF	CITATIONS
145	Cellulose nanopaper with controllable optical haze and high efficiency ultraviolet blocking for flexible optoelectronics. Cellulose, 2019, 26, 2201-2208.	2.4	20
146	Versatile and Switchable Responsive Properties of a Lanthanideâ€Viologen Metal–Organic Framework. Small, 2019, 15, e1803468.	5.2	88
147	Cyclodextrin-metal–organic framework (CD-MOF): From synthesis to applications. Journal of Industrial and Engineering Chemistry, 2019, 72, 50-66.	2.9	153
148	Structure and Emission Modulation of a Series of Cd(II) Luminescent Coordination Polymers through Guest Dependent Donor–Acceptor Interaction. Crystal Growth and Design, 2019, 19, 1391-1398.	1.4	27
150	Metal-Organic Frameworks: New Functional Materials and Applications. , 2019, , 35-54.		2
151	Co(II) and Cd(II) metal-organic frameworks with a linear 1,4-di(1H-imidazol-1-yI) benzene and V-shaped polycarboxylate acid ligands: Synthesis, magnetic property and discriminating Fe3†+†ion in aqueous solution. Polyhedron, 2019, 159, 78-83.	1.0	5
152	Hydrationâ€Facilitated Fineâ€Tuning of the AIE Amphiphile Color and Application as Erasable Materials with Hot/Cold Dual Writing Modes. Angewandte Chemie - International Edition, 2020, 59, 10081-10086.	7.2	26
153	Hydrationâ€Facilitated Fineâ€Tuning of the AIE Amphiphile Color and Application as Erasable Materials with Hot/Cold Dual Writing Modes. Angewandte Chemie, 2020, 132, 10167-10172.	1.6	2
154	Lanthanide complexes supported via benzimidazole carboxylic acid ligand: Synthesis, luminescence and magnetic properties. Journal of Molecular Structure, 2020, 1202, 127345.	1.8	6
155	Unravelling the mechanism of water sensing by the Mg ²⁺ dihydroxy-terephthalate MOF (AEMOF- 1′). Molecular Systems Design and Engineering, 2020, 5, 461-468.	1.7	14
156	Breathing-Ignited Long Persistent Luminescence in a Resilient Metal–Organic Framework. Chemistry of Materials, 2020, 32, 841-848.	3.2	87
157	Solvothermal synthesis, structural characterization and photocatalysis of fibrous cobalt(II) diphenylphosphinate. Polyhedron, 2020, 178, 114339.	1.0	3
158	Four New Luminescent Metal–Organic Frameworks as Multifunctional Sensors for Detecting Fe ³⁺ , Cr ₂ O ₇ ^{2–} and Nitromethane. Crystal Growth and Design, 2020, 20, 1898-1904.	1.4	45
159	Structural Diversity of Zinc(II), Manganese(II), and Gadolinium(III) Coordination Polymers Based on Two Isomeric <i>N</i> Heteroaromatic Polycarboxylate Ligands: Structures and Their Derived Mn ₂ O ₃ for Lithium Storage Applications. Inorganic Chemistry, 2020, 59, 460-471.	1.9	9
160	Two novel 3D MOFs based on the flexible (E)-1,4-di(1H-imidazol-1-yl)but-2-ene and multi-carboxylate ligands: Synthesis, structural diversity and luminescence property. Inorganic Chemistry Communication, 2020, 111, 107641.	1.8	4
161	Functionalized Dynamic Metal–Organic Frameworks as Smart Switches for Sensing and Adsorption Applications. Topics in Current Chemistry, 2020, 378, 5.	3.0	14
162	Double-Color Lanthanide Metal–Organic Framework Based Logic Device and Visual Ratiometric Fluorescence Water Microsensor for Solid Pharmaceuticals. Analytical Chemistry, 2020, 92, 1402-1408.	3.2	72
163	Ratiometric dual fluorescence tridurylboron thermometers with tunable measurement ranges and colors. Talanta, 2020, 210, 120630.	2.9	12

#	Article	IF	Citations
164	The advanced sensing systems for NO based on metal-organic frameworks: Applications and future opportunities. TrAC - Trends in Analytical Chemistry, 2020, 122, 115730.	5.8	26
165	Aggregation-Induced Emission-Responsive Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 6706-6720.	3.2	81
166	Humidity-Sensing Properties of a BiOCl-Coated Quartz Crystal Microbalance. ACS Omega, 2020, 5, 18818-18825.	1.6	25
167	Covalent Organic Frameworks with Electronâ€Rich and Electronâ€Deficient Structures as Water Sensing Scaffolds. Macromolecular Rapid Communications, 2020, 41, e2000003.	2.0	29
168	A Robust Titanium Isophthalate Metal-Organic Framework for Visible-Light Photocatalytic CO2 Methanation. CheM, 2020, 6, 3409-3427.	5.8	41
169	Controlling information duration on rewritable luminescent paper based on hybrid antimony (III) chloride/small-molecule absorbates. Science Advances, 2020, 6, .	4.7	61
170	Naked eye detection of moisture in organic solvents and development of alginate polymer beads and test cassettes as a portable kit. Analytica Chimica Acta, 2020, 1136, 178-186.	2.6	17
171	A lanthanide doped metal-organic framework demonstrated as naked eye detector of a trace of water in organic solvents including alcohols by monitoring the turn-on of luminescence. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 402, 112830.	2.0	13
172	Intramolecular charge transfer ampholytes with water-induced pendulum-type fluorescence variation. Chemical Communications, 2020, 56, 10702-10705.	2.2	6
173	Visualized Realâ€Time and Spatial Highâ€Temperature Sensing in Airâ€Stable Organic Films. Advanced Materials Technologies, 2020, 5, 1901035.	3.0	9
174	Luminescent metal–organic frameworks and their potential applications. Journal of Chemical Sciences, 2020, 132, 1.	0.7	34
175	Postmodified Dual Functional UiO Sensor for Selective Detection of Ozone and Tandemly Derived Sensing of Al ³⁺ . Analytical Chemistry, 2020, 92, 11600-11606.	3.2	22
176	Temperature and humidity sensors based on luminescent metal-organic frameworks. Polyhedron, 2020, 179, 114413.	1.0	23
177	Amino Acid Residues Determine the Response of Flexible Metal–Organic Frameworks to Guests. Journal of the American Chemical Society, 2020, 142, 14903-14913.	6.6	29
178	Thermo-responsive light-emitting metal complexes and related materials. Inorganic Chemistry Frontiers, 2020, 7, 3258-3281.	3.0	32
179	Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chemical Society Reviews, 2020, 49, 6364-6401.	18.7	784
180	Dual Function Based on Switchable Colorimetric Luminescence for Water and Temperature Sensing in Two-Dimensional Metal–Organic Framework Nanosheets. ACS Applied Materials & Los & (2020, 12, 41776-41784.	4.0	41
181	Synthesis, Structural Features, and Hydrogen Adsorption Properties of Three New Flexible Sulfur-Containing Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 6707-6714.	1.4	6

#	Article	IF	CITATIONS
182	Design and properties of multiple-emitter luminescent metal–organic frameworks. Chemical Communications, 2020, 56, 12290-12306.	2.2	78
183	Monitoring of reaction kinetics and determination of trace water in hydrophobic organic solvents by a smartphone-based ratiometric fluorescence device. Mikrochimica Acta, 2020, 187, 564.	2.5	9
184	Crystal Structure, Synthesis and Luminescence Sensing of a Zn(II) Coordination Polymer with 2,5-Dihydroxy-1,4-Terephthalic Acid and 2,2′-Bipyridine as Ligands. Crystals, 2020, 10, 1105.	1.0	5
185	Reverse photoluminescence responses of Ln(<scp>iii</scp>) complexes to methanol vapor clarify the differentiated energy transfer pathway and potential for methanol detection and encryption. Journal of Materials Chemistry C, 2020, 8, 16907-16914.	2.7	6
186	Efficient Identification for Alcohol Homologues and Hyperthermy Based on Coordination Polymer Multiple Structural Transformations. ACS Applied Materials & Samp; Interfaces, 2020, 12, 24141-24148.	4.0	8
187	Exploring a lead-free organic–inorganic semiconducting hybrid with above-room-temperature dielectric phase transition. RSC Advances, 2020, 10, 17492-17496.	1.7	11
188	Multivalued Logic Assay of the Disease Marker of \hat{l}_{\pm} -Ketoglutaric Acid by a Luminescent MOF-Based Biosensor. ACS Applied Bio Materials, 2020, 3, 3792-3799.	2.3	14
189	Vapor-phase linker exchange of metal-organic frameworks. Science Advances, 2020, 6, eaax7270.	4.7	76
190	Ultrafast scale-up synthesis of calcium rod/layer MOFs and luminescence detection of water in organic solvents. Materials Advances, 2020, 1, 689-697.	2.6	2
191	Structural Transformation and Spatial Defect Formation of a Co(II) MOF Triggered by Varied Metal-Center Coordination Configuration. Inorganic Chemistry, 2020, 59, 9005-9013.	1.9	19
192	Two Zn(II) coordination polymers for highly selective detection of phenol based nitroaromatics and removal of water soluble organic dyes. Journal of Solid State Chemistry, 2020, 289, 121481.	1.4	11
193	Solvent triggering structural changes for two terbium-based metal–organic frameworks and their photoluminescence sensing. Chemical Communications, 2020, 56, 4320-4323.	2.2	28
194	Three coordination polymers with regulated coordination interactions as fluorescent sensors for monitoring purine metabolite uric acid. Dalton Transactions, 2020, 49, 4343-4351.	1.6	14
195	Single Bimetallic Lanthanide-Based Metal–Organic Frameworks for Visual Decoding of a Broad Spectrum of Molecules. Analytical Chemistry, 2020, 92, 5500-5508.	3.2	35
196	Controlled dye release from a metal–organic framework: a new luminescent sensor for water. RSC Advances, 2020, 10, 2722-2726.	1.7	8
197	In Situ H ₂ 0 Meter by Visualization in Hydrogels. ACS Applied Materials & Amp; Interfaces, 2020, 12, 19307-19312.	4.0	0
198	Dynamic Coordination Chemistry of Fluorinated Zrâ€MOFs: Synthetic Control and Reassembly/Disassembly Beyond de Novo Synthesis to Tune the Structure and Property. Chemistry - A European Journal, 2020, 26, 8254-8261.	1.7	16
199	Synthesis, structure, and luminescence of a new 3D Cd-MOF based on three mixed organic linkers. Inorganic and Nano-Metal Chemistry, 2020, 50, 699-704.	0.9	2

#	Article	IF	CITATIONS
200	Luminescent macrocyclic Sm(III) complex probe for turn-off fluorescent and colorimetric water detection in organic solvents and liquid fuels. Sensors and Actuators B: Chemical, 2020, 311, 127887.	4.0	30
201	Pure Metal–Organic Framework Microlasers with Controlled Cavity Shapes. Nano Letters, 2020, 20, 2020-2025.	4.5	31
202	Copper nanowires and copper foam multifunctional bridges in zeolitic imidazolate framework–derived anode material for superior lithium storage. Journal of Colloid and Interface Science, 2020, 565, 156-166.	5.0	15
203	Highly Stable Zinc-Based Metal–Organic Frameworks and Corresponding Flexible Composites for Removal and Detection of Antibiotics in Water. ACS Applied Materials & Interfaces, 2020, 12, 8650-8662.	4.0	108
204	Analytical supramolecular chemistry: Colorimetric and fluorimetric chemosensors. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 42, 100340.	5.6	79
205	Rational combination of azo moiety and pyridine radical for the construction of photochromic metal-organic frameworks. Journal of Solid State Chemistry, 2020, 287, 121374.	1.4	1
206	Structure Engineering of a Lanthanideâ€Based Metal–Organic Framework for the Regulation of Dynamic Ranges and Sensitivities for Pheochromocytoma Diagnosis. Advanced Materials, 2020, 32, e2000791.	11.1	33
207	Fluorometric detection of iodine by MIL-53(Al)-TDC. Dalton Transactions, 2020, 49, 6572-6577.	1.6	19
208	Highly Uniform Alkali Doped Cobalt Oxide Derived from Anionic Metal-Organic Framework: Improving Activity and Water Tolerance for CO Oxidation. Chemical Research in Chinese Universities, 2020, 36, 946-954.	1.3	6
209	Fluorescent chemo-sensors based on "dually smart―optical micro/nano-waveguides lithographically fabricated with AIE composite resins. Materials Horizons, 2020, 7, 1782-1789.	6.4	19
210	Flexible Luminescent MOF: Trapping of Less Stable Conformation of Rotational Isomers, In Situ Guest-Responsive Turn-Off and Turn-On Luminescence and Mechanistic Study. ACS Applied Materials & Amp; Interfaces, 2020, 12, 22335-22346.	4.0	42
211	Water-stimuli-responsive dynamic fluorescent switch from Kasha's rule to anti-Kasha's rule based on a tetraphenylethene substituted Schiff base. Chemical Engineering Journal, 2021, 405, 127000.	6.6	22
212	Multianalytes Sensing Probe: Fluorescent Moisture Detection, Smartphone Assisted Colorimetric Phosgene recognition and Colorimetric Discrimination of Cu2+and Fe3+ ions. Sensors and Actuators B: Chemical, 2021, 328, 129026.	4.0	33
213	Luminescent sensors based on coordination polymers with adjustable emissions for detecting biomarker of pollutant ethylbenzene and styrene. Applied Organometallic Chemistry, 2021, 35, .	1.7	9
214	A Zn-based coordination compound for fluorescence detection of Fe3+, Cu2+, Ni2+ and CrO42â^' ions. Polyhedron, 2021, 193, 114868.	1.0	7
215	Construction, structure diversity, luminescent and dye absorption properties of coordination polymers comprising semi-rigid 6-(carboxymethoxy)-2-naphthoic acid. Journal of Solid State Chemistry, 2021, 293, 121773.	1.4	3
216	Blue luminescent N,S-doped carbon dots encapsulated in red emissive Eu-MOF to form dually emissive composite for reversible anti-counterfeit ink. Dalton Transactions, 2021, 50, 1690-1696.	1.6	19
217	Controlled Shape Evolution of Pureâ€MOF 1D Microcrystals towards Efficient Waveguide and Laser Applications. Chemistry - A European Journal, 2021, 27, 3297-3301.	1.7	14

#	Article	IF	CITATIONS
218	Mechanistic insights of evaporation-induced actuation in supramolecular crystals. Nature Materials, 2021, 20, 403-409.	13.3	44
219	Novel anti-Kasha fluorophores exhibiting dual emission with thermally activated delayed fluorescence through detouring triplet manifolds. Journal of Materials Chemistry C, 2021, 9, 7083-7093.	2.7	18
220	Tuning the excited-state intramolecular proton transfer (ESIPT)-based luminescence of metal–organic frameworks by metal nodes toward versatile photoluminescent applications. Dalton Transactions, 2021, 50, 6901-6912.	1.6	22
221	An inquisitive fluorescence method for the real-time detection of trace moisture in polar aprotic solvents with the application of water rancidity in foodstuffs. New Journal of Chemistry, 2021, 45, 4574-4583.	1.4	6
222	Applications of nanoscale metal–organic frameworks as imaging agents in biology and medicine. Journal of Materials Chemistry B, 2021, 9, 3423-3449.	2.9	61
223	Dynamic tuning of metal–ligand coordination through water molecules to induce multicolor fluorescence variations for humidity monitoring and anti-counterfeiting applications. Journal of Materials Chemistry C, 2021, 9, 5945-5951.	2.7	11
224	An excellent thermostable dual-functionalized 3D <i>fsx</i> -type Cd(<scp>ii</scp>) MOF for the highly selective detection of Fe ³⁺ ions and ten nitroaromatic explosives. CrystEngComm, 2021, 23, 6171-6179.	1.3	6
225	Enhanced stability and colorimetric detection on Ag(<scp>i</scp>) ions of a methylthio-functionalized Zn(<scp>ii</scp>) metal–organic framework. Journal of Materials Chemistry C, 2021, 9, 5088-5092.	2.7	9
226	Nanocage-Based N-Rich Metal–Organic Framework for Luminescence Sensing toward Fe ³⁺ and Cu ²⁺ lons. Inorganic Chemistry, 2021, 60, 671-681.	1.9	97
227	Theoretical study of a water sensor based on a single upconversion microrod. Journal Physics D: Applied Physics, 2021, 54, 165103.	1.3	2
228	In Situ Tracking of Wettingâ€Front Transient Heat Release on a Surfaceâ€Mounted Metal–Organic Framework. Advanced Materials, 2021, 33, 2006980.	11.1	7
229	MIL-100(Fe) decorated on graphene using as wideband microwave absorption material. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 767-772.	1.0	7
230	Excitedâ€State Intramolecular Proton Transfer (ESIPT) for Optical Sensing in Solid State. Advanced Optical Materials, 2021, 9, 2001952.	3.6	78
231	Photoresponse within dye-incorporated metal-organic architectures. Coordination Chemistry Reviews, 2021, 430, 213648.	9.5	21
232	Buffered Coordination Modulation as a Means of Controlling Crystal Morphology and Molecular Diffusion in an Anisotropic Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 5044-5052.	6.6	35
233	A Fluorescent Metal–Organic Framework for Food Realâ€Time Visual Monitoring. Advanced Materials, 2021, 33, e2008020.	11.1	139
234	Excited-State Intramolecular Proton Transfer: A Short Introductory Review. Molecules, 2021, 26, 1475.	1.7	101
235	Two novel LMOFs based on the flexible 1, 3-bis(imidazol-1-ylmethyl)benzene: The synthesis, crystal structures and temperature sensing applications. Journal of Molecular Structure, 2021, 1229, 129800.	1.8	4

#	Article	IF	CITATIONS
236	CHCl3-Dependent Emission Color and Jumping Behavior of Cyclic Chalcone Single Crystals: The Halogen Bond Network Effect. Crystals, 2021, 11, 530.	1.0	4
237	Retention of a Four-Fold Interpenetrating Cadmium–Organic Framework through a Three-Step Single Crystal Transformation. Inorganic Chemistry, 2021, 60, 8331-8338.	1.9	4
238	Carbon dots-based room-temperature phosphorescent test strip: Visual and convenient water detection in organic solvents. Dyes and Pigments, 2021, 189, 109226.	2.0	22
239	Hydrogen-Bonded Organic Framework Microlasers with Conformation-Induced Color-Tunable Output. ACS Applied Materials & Samp; Interfaces, 2021, 13, 28662-28667.	4.0	39
240	Theoretical study on the ESIPT processes and fluorescence properties of 2-(1H-Benzimidazol-2-yl)phenol-based derivatives. Journal of Molecular Structure, 2021, 1236, 130370.	1.8	13
241	Multifunctional red-emission graphene quantum dots with tunable light emissions for trace water sensing, WLEDs and information encryption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126593.	2.3	18
242	Efficient C ₂ H ₂ /CO ₂ Separation in Ultramicroporous Metal–Organic Frameworks with Record C ₂ H ₂ Storage Density. Journal of the American Chemical Society, 2021, 143, 14869-14876.	6.6	101
243	Imidazole-based solid-state fluorophores with combined ESIPT and AIE features as self-absorption-free non-doped emitters for electroluminescent devices. Dyes and Pigments, 2021, 193, 109488.	2.0	38
244	Enhancing fluorescence of benzimidazole derivative via solvent-regulated ESIPT and TICT process: A TDDFT study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 258, 119862.	2.0	23
245	Ratiometric recognition of humidity by a europium-organic framework equipped with quasi-open metal site. Science China Chemistry, 2021, 64, 1723-1729.	4.2	7
246	Microcellular sensing media with ternary transparency states for fast and intuitive identification of unknown liquids. Science Advances, 2021, 7, eabg8013.	4.7	3
247	Structural design of metal–organic frameworks with tunable colorimetric responses for visual sensing applications. Coordination Chemistry Reviews, 2021, 446, 214102.	9.5	67
248	ZIF-8@GMP-Tb nanocomplex for ratiometric fluorescent detection of alkaline phosphatase activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120230.	2.0	15
249	Chemical Sensors for Water Detection in Organic Solvents and their Applications. ChemistrySelect, 2021, 6, 820-842.	0.7	46
250	Controllable selfâ€assembly from homonuclear Mn (II)â€MOF to heteronuclear Mn (II)â€K(I)â€MOF by alkaliâ€regulation: A novel mode of structural and luminescent regulation for off–on sensing ascorbic acid. Applied Organometallic Chemistry, 2021, 35, e6160.	1.7	0
251	Effects of substituent groups on the crystal structures and luminescence properties of zero-/two-dimensional Zn(II) complexes. Inorganic Chemistry Communication, 2019, 102, 57-60.	1.8	7
252	Metal–Organic Frameworks with Multiple Luminescence Emissions: Designs and Applications. Accounts of Chemical Research, 2020, 53, 485-495.	7.6	355
253	Dual-Channel Luminescent Signal Readout Strategy for Classifying Aprotic/Protic Polar Organic Medium and Naked-Eye Monitoring of Water in Organic Solvents. Analytical Chemistry, 2020, 92, 8974-8982.	3.2	44

#	Article	IF	CITATIONS
254	Vibrational Paddlewheel Cu–Cu Node in Metal–Organic Frameworks: Probe of Nonradiative Relaxation. Journal of Physical Chemistry C, 2020, 124, 13187-13195.	1.5	10
255	Competitive formation between 2D and 3D metal-organic frameworks: insights into the selective formation and lamination of a 2D MOF. IUCrJ, 2019, 6, 681-687.	1.0	11
256	A cationic thorium–organic framework with triple single-crystal-to-single-crystal transformation peculiarities for ultrasensitive anion recognition. Chemical Science, 2021, 12, 15833-15842.	3.7	20
257	Dehydration of Electrochemically Protonated Oxide: SrCoO ₂ with Square Spin Tubes. Journal of the American Chemical Society, 2021, 143, 17517-17525.	6.6	15
258	Dual-Emission Carbon Dots for Ratiometric Fluorescent Water Sensing, Relative Humidity Sensing, and Anticounterfeiting Applications. ACS Applied Nano Materials, 2021, 4, 10674-10681.	2.4	34
259	Ultra-Sensitive Water Detection Based on NaErF4@NaYF4 High-Level-Doping Upconversion Nanoparticles. Applied Surface Science, 2021, 575, 151701.	3.1	7
260	Logic operation for differentiation and speciation of Fe ³⁺ and Fe ²⁺ based on twoâ€dimensional metal–organic frameworks with tunable emissions. Applied Organometallic Chemistry, 2021, 35, .	1.7	5
261	A Cd-MOF fluorescence sensor with dual functional sites for efficient detection of metal ions in multifarious water environments. CrystEngComm, 2021, 23, 8392-8403.	1.3	20
262	Room-temperature phosphorescence based on chitosan carbon dots for trace water detection in organic solvents and anti-counterfeiting application. Dyes and Pigments, 2022, 197, 109923.	2.0	20
263	Tactfully unveiling the effect of solvent polarity on the ESIPT mechanism and photophysical property of the 3-hydroxylflavone derivative. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120496.	2.0	8
264	PB@UiO-67-CDC-(CH ₃) ₂ as an Ultrasensitive Ratiometric Fluorescence Sensor: Visible "Turn-On―Effect for Detecting Preservatives and Amino Acids. Crystal Growth and Design, 2021, 21, 7218-7229.	1.4	10
265	Tailoring Oxygen Vacancy of Co ₃ O ₄ Microcubes by Annealing Co ₃ [Co(CN) ₆] ₂ Template in Air for Ultrasensitive Humidity Mapping. Small Structures, 2022, 3, .	6.9	10
266	Thermally Activated Fluorescence vs Long Persistent Luminescence in ESIPT-Attributed Coordination Polymer. Journal of the American Chemical Society, 2022, 144, 2726-2734.	6.6	57
267	Robust Al ³⁺ MOF with Selective As(V) Sorption and Efficient Luminescence Sensing Properties toward Cr(VI). Inorganic Chemistry, 2022, 61, 2017-2030.	1.9	18
268	Our journey of developing dualâ€emitting metalâ€organic frameworkâ€based fluorescent sensors. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	0.6	8
269	Metal–Organic Frameworks for NO <i>_x</i> Adsorption and Their Applications in Separation, Sensing, Catalysis, and Biology. Small, 2022, 18, e2105484.	5.2	29
270	Unveiling the new function of uranyl molecular clusters as fluorometric sensors for UV and X-ray dosimetry. Dalton Transactions, 2022, 51, 3041-3045.	1.6	2
271	Dual-functional ratiometric fluorescent sensor based on mixed-lanthanide metal–organic frameworks for the detection of trace water and temperature. Inorganic Chemistry Frontiers, 2022, 9, 1406-1415.	3.0	27

#	Article	IF	Citations
272	Multiâ€Emission from Single Metal–Organic Frameworks under Single Excitation. Small, 2022, 18, e2106587.	5.2	44
273	An excited-state intramolecular proton-transfer responsive nanoscale MOF for dual sensing of water and chromate ions. Journal of Materials Chemistry C, 2022, 10, 7558-7566.	2.7	11
274	Subtle Ligand Spacer Change in 2D Metal–Organic Framework Sheets for Dual Turn-On/Turn-Off Sensing of Acetylacetone and Turn-On Sensing of Water in Organic Solvents. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 16357-16368.	4.0	21
275	Engineering of Metal–Organic Frameworks as Ratiometric Sensors. Crystal Growth and Design, 2022, 22, 3518-3564.	1.4	45
276	A Rare Flexible Metal–Organic Framework Based on a Tailorable Mn ₈ â€Cluster Showing Smart Responsiveness to Aromatic Guests and Capacity for Gas Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
277	Bifunctionalized Metal–Organic Frameworks for Poreâ€Sizeâ€Dependent Enantioselective Sensing. Angewandte Chemie - International Edition, 2022, 61, .	7.2	57
278	Bifunctionalized Metal–Organic Frameworks for Poreâ€Sizeâ€Dependent Enantioselective Sensing. Angewandte Chemie, 0, , .	1.6	1
279	A Rare Flexible Metal–Organic Framework Based on a Tailorable Mn ₈ â€Cluster Showing Smart Responsiveness to Aromatic Guests and Capacity for Gas Separation. Angewandte Chemie, 2022, 134, .	1.6	2
280	Synthesis, characterization, and luminescent temperature sensing of two resorcin[4]arene-based Zn(II) coordination polymers. Inorganica Chimica Acta, 2022, 537, 120930.	1.2	1
281	A Thermally Stable Undulated Coordination Layer Showing a Sequentially Interweaving 2D → 3D Net as a Turn-On Sensor for Luminescence Detection of Al ³⁺ in Water. Crystal Growth and Design, 2022, 22, 228-236.	1.4	8
282	Framework-Shrinkage-Induced Wavelength-Switchable Lasing from a Single Hydrogen-Bonded Organic Framework Microcrystal. Journal of Physical Chemistry Letters, 2022, 13, 130-135.	2.1	24
283	Confinement of Luminescent Guests in Metal–Organic Frameworks: Understanding Pathways from Synthesis and Multimodal Characterization to Potential Applications of LG@MOF Systems. Chemical Reviews, 2022, 122, 10438-10483.	23.0	106
284	A DFT/TD-DFT Study on the ESIPT-Type Flavonoid Derivatives with High Emission Intensity. Materials, 2022, 15, 2896.	1.3	8
285	Electrically responsive structural transformations triggered by vapour and temperature in a series of pleochroic bis(oxalato)chromium(<scp>iii</scp>) complex salts. Journal of Materials Chemistry C, 2022, 10, 8024-8033.	2.7	3
286	Detection and Sorption of Heavy Metal Ions in Aqueous Media by a Fluorescent Zr(IV) Metal–Organic Framework Functionalized with 2-Picolylamine Receptor Groups. Inorganic Chemistry, 2022, 61, 7847-7858.	1.9	16
287	Moisture-Sensitive Ratiometric Color-Changing Response: a Useful Tool for Precision Farming. ACS Agricultural Science and Technology, 2022, 2, 546-554.	1.0	5
288	<i>N</i> -Hydroxy– <i>N</i> -oxide photoinduced tautomerization and excitation wavelength dependent luminescence of ESIPT-capable zinc(<scp>ii</scp>) complexes with a rationally designed 1-hydroxy-2,4-di(pyridin-2-yl)-1 <i>H</i> -imidazole ESIPT-ligand. Dalton Transactions, 2022, 51, 9818-9835.	1.6	13
289	Colorâ€Tunable Multifunctional Excitedâ€State Intramolecular Proton Transfer Emitter: Stimulated Emission of a Single Dye. Chemistry - A European Journal, 2022, 28, .	1.7	9

#	Article	IF	CITATIONS
290	The modulation effect of an electron-rich guest on the luminescence of naphthalene diimide-based metal–organic frameworks. Inorganic Chemistry Frontiers, 2022, 9, 3898-3906.	3.0	12
291	Ultraâ€Sensitive, Selective and Repeatable Fluorescence Sensor for Methanol Based on a Highly Emissive OD Hybrid Leadâ€Free Perovskite. Angewandte Chemie, 2022, 134, .	1.6	8
292	Ultraâ€Sensitive, Selective and Repeatable Fluorescence Sensor for Methanol Based on a Highly Emissive OD Hybrid Leadâ€Free Perovskite. Angewandte Chemie - International Edition, 2022, 61, .	7.2	48
293	Concentrationâ€Induced Phase Separation to Suppress Energy Transfer for Highâ€Temperature Ratiometric Sensing in Organic Films. Advanced Optical Materials, 2022, 10, .	3.6	2
294	Singleâ€crystalâ€toâ€singleâ€crystal transformation and alcohols enantioseparation of homochiral Ir(III)â€metallohelixâ€based porous molecular crystal European Journal of Inorganic Chemistry, 0, , .	1.0	0
295	Ligand Tailoring Strategy of a Metal–Organic Framework for Optimizing Methane Storage Working Capacities. Inorganic Chemistry, 2022, 61, 10417-10424.	1.9	5
296	Reversible Triple-Mode Switching in Photoluminescence from OD Hybrid Antimony Halides. Chemistry of Materials, 2022, 34, 6985-6995.	3.2	52
297	Water-Sensitive Mixed-Phase PEA ₆ Snl ₈ Perovskite Derivative Single Crystal for Humidity Detection. Crystal Growth and Design, 0, , .	1.4	2
298	Modulator-directed assembly of hybrid composites based on metal-organic frameworks and upconversion nanoparticles. Nano Research, 2023, 16, 1482-1490.	5.8	4
299	Structural, Photophysical, and Water Sensing Properties of Pyrazolo[1,5â€ <i>a</i>]pyrimidineâ€Triphenylamine Hybrid Systems. ChemPhotoChem, 2022, 6, .	1.5	3
300	Anomalous emission of an ESIPT-capable zinc(II) complex: An interplay of TADF, TICT and anti-Kasha behaviour. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 433, 114195.	2.0	10
301	Triazole-Based Cu(I) Cationic Metal–Organic Frameworks with Lewis Basic Pyridine Sites for Selective Detection of Ce ³⁺ Ions. Inorganic Chemistry, 2022, 61, 14778-14786.	1.9	7
302	On-site marine pathogen (Vibrio parahaemolyticus) rapid colorimetric determination based on modified-free aptamer and metal-organic frameworks with simple washing step. Sensors and Actuators B: Chemical, 2022, 372, 132695.	4.0	3
303	Tuning ESIPT-coupled luminescence by expanding π-conjugation of a proton acceptor moiety in ESIPT-capable zinc(<scp>ii</scp>) complexes with 1-hydroxy-1 <i>H</i> -imidazole-based ligands. Dalton Transactions, 2022, 51, 15166-15188.	1.6	11
304	Metal-organic frameworks for detection and adsorptive removal of pesticides. , 2022, , 329-340.		3
305	Coexistence of ground and excited state intramolecular proton transfer of the Schiff base 2-((E)-(naphthalene-3-ylimino)-methyl)phenol: A combined experimental and computational study. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 435, 114296.	2.0	2
306	Switching from Oxygen Quenching Resistance to Linear Response by Smart Luminescent Iridium(III)-Based Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2022, 14, 41208-41214.	4.0	5
307	Metal–organic frameworks (MOFs) as fluorescence sensors: principles, development and prospects. CrystEngComm, 2022, 24, 7881-7901.	1.3	29

#	Article	IF	CITATIONS
308	Crystallographic Mapping and Tuning of Water Adsorption in Metal–Organic Frameworks Featuring Distinct Open Metal Sites. Journal of the American Chemical Society, 2022, 144, 19567-19575.	6.6	6
309	MOF/Polymer-Integrated Multi-Hotspot Mid-Infrared Nanoantennas for Sensitive Detection of CO2 Gas. Nano-Micro Letters, 2022, 14, .	14.4	20
310	Humidity visualization through a simple thermally activated delayed fluorescent emitter: The role of hydrogen bonding. Chemical Engineering Journal, 2023, 454, 140182.	6.6	7
311	Highly sensitive temperature probe fabricated by high aspect ratio Eu-BTC nanowire. Sensors and Actuators A: Physical, 2022, 347, 113948.	2.0	1
312	Decoration and utilization of a special class of metal–organic frameworks containing the fluorine moiety. Coordination Chemistry Reviews, 2023, 476, 214876.	9.5	15
313	Mixed-Valent Stellated Cuboctahedral Cu(2,4-Imdb)-MOF for Trace Water Detection. Inorganic Chemistry, 2022, 61, 18340-18345.	1.9	6
314	Theoretically unveiling the effect of solvent polarities on ESDPT mechanisms and photophysical properties of hydroxyanthraquinones. Journal of Molecular Modeling, 2022, 28, .	0.8	0
315	Hydration-Facilitated Coordination Tuning of Metal–Organic Frameworks toward Water-Responsive Fluorescence and Proton Conduction. Inorganic Chemistry, 2022, 61, 18789-18794.	1.9	4
316	Metal–organic framework (MOF)-based fluorescence "turn-on―sensors. Materials Chemistry Frontiers, 2023, 7, 405-441.	3.2	38
317	Robust solvatochromic carbon quantum dots for selective detection of water and Sn4+ and specific lipid imaging. Journal of Hazardous Materials, 2023, 445, 130456.	6.5	6
318	Humidity Sensors Based on Metal–Organic Frameworks. Nanomaterials, 2022, 12, 4208.	1.9	5
319	Reticular Chemistry with Art: A Case Study of Olympic Rings-Inspired Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 22170-22177.	6.6	12
320	Citrate Functionalized Zirconium-Based Metal Organic Framework for the Fluorescent Detection of Ciprofloxacin in Aqueous Media. Micromachines, 2022, 13, 2097.	1.4	4
321	High-Performance Turn-On Fluorescent Metal–Organic Framework for Detecting Trace Water in Organic Solvents Based on the Excited-State Intramolecular Proton Transfer Mechanism. ACS Applied Materials & Detection (1988) According to the Excited State Intramolecular Proton Transfer Mechanism. ACS Applied Materials (1988) According to the Excited State Intramolecular Proton Transfer Mechanism. ACS Applied Materials (1988) According to the Excited State Intramolecular Proton Transfer Mechanism. ACS Applied Materials (1988) According to the Excited State Intramolecular Proton Transfer Mechanism. ACS Applied Materials (1988) According to the Excited State Intramolecular Proton Transfer Mechanism. ACS Applied Materials (1988) According to the Excited State Intramolecular Proton Transfer Mechanism. ACS Applied Materials (1988) According to the Excited State Intramolecular Proton Transfer Mechanism. ACS Applied Materials (1988) According to the Excited State Intramolecular Proton Transfer Mechanism. ACS Applied Materials (1988) According to the Excited State Intramolecular Proton Transfer Mechanism. ACS Applied Materials (1988) According to the Excited State Intramolecular Proton Transfer Mechanism. ACS Applied Materials (1988) According to the Excited State Intramolecular Proton Transfer Mechanism. ACS Applied Materials (1988) According to the Excited State Intramolecular Proton Transfer Mechanism. ACS Applied Materials (1988) According to the Excited State Intramolecular Proton Transfer Mechanism. ACS Applied Materials (1988) According to the Excited State Intramolecular Proton Transfer Mechanism. ACS Applied Materials (1988) According to the Excited State Intramolecular Proton Transfer Mechanism. ACS Applied Materials (1988) According to the Excited State Intramolecular Proton Transfer Mechanism. ACS Applied Materials (1988) According to the Excited State Intramolecular Proton Transfer Mechanism. ACS Applied Materials (1988) According to the Excited State Intramolecular Proton Transfer Mechanism (1988) According to	4.0	14
322	Recent Advances in Luminescent Metal-Organic Frameworks for Detection of Gas and Volatile Organic Molecules. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-12.	2.4	0
323	Dye-Encapsulated Metal–Organic Frameworks for the Multi-Parameter Detection of Temperature. Molecules, 2023, 28, 729.	1.7	4
324	Interplay of Dual-Proton Transfer Relay to Achieve Full-Color Panel Luminescence in Excited-State Intramolecular Proton Transfer (ESIPT) Fluorophores. ACS Applied Materials & Samp; Interfaces, 2023, 15, 3172-3181.	4.0	6
325	Flexible fluorescent metal-organic frameworks towards highly stable optical fibers and biocompatible cell platforms. Science China Materials, 2023, 66, 1659-1669.	3.5	1

#	Article	IF	CITATIONS
326	From isostructural to hetero-structural one-dimensional coordination polymers adjusted by changing the ligand substituent group from pyrazine to furan. Journal of Coordination Chemistry, 2023, 76, 279-291.	0.8	0
327	Carbon–Carbon Linked Organic Frameworks: An Explicit Summary and Analysis. Macromolecular Rapid Communications, 2023, 44, .	2.0	3
328	MOF-derived Co3O4/Nitrogen-doped Carbon Composite for Chlorine-assisted Production of Ethylene Oxide. Green Chemistry, $0, \dots$	4.6	2
329	ZIF-derived nanoparticles modified ZnO nanorods hierarchical structure for conductometric NO2 gas sensor. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	2
330	Thermal-Response Proton Conduction in Schiff Base-Incorporated Metal–Organic Framework Hybrid Membranes under Low Humidity Based on the Excited-State Intramolecular Proton Transfer Mechanism. ACS Applied Materials & Diterfaces, 2023, 15, 10064-10074.	4.0	4
331	A multicenter lanthanide coordination polymer for ratiometric pesticide monitoring. Sensors and Actuators B: Chemical, 2023, 383, 133593.	4.0	2
332	Diphenyl imidazole-based fluorescent chemosensor for Al3+ and its Al3+ complex toward water detection in food products. Food Chemistry, 2023, 420, 136138.	4.2	4
333	Metal–organic framework-derived photoelectrochemical sensors: structural design and biosensing technology. Journal of Materials Chemistry C, 2023, 11, 3692-3709.	2.7	17
334	Preparation and quantitative analysis of multicenter luminescence materials for sensing function. Nature Protocols, 2023, 18, 1621-1640.	5. 5	28
335	Metal–Organic Framework Flowers as a Naked-Eye Colorimetric Indicator of Trace Water. ACS Applied Materials & Colorimetric Indicator of Trace Water. ACS	4.0	4
336	Dual emission and its λ-ratiometric detection in analytical fluorimetry. Pt. I. Basic mechanisms of generating the reporter signal. Methods and Applications in Fluorescence, 2023, 11, 033002.	1.1	15
337	Regulating the photophysical properties of ESIPT-based fluorescent probes by functional group substitution: a DFT/TDDFT study. Journal of Molecular Modeling, 2023, 29, .	0.8	1
348	Photonic Artifacts in Ratiometric Luminescence Nanothermometry. Nano Letters, 2023, 23, 6560-6566.	4.5	11
357	Linker engineering toward near-infrared-l emissive metal–organic frameworks for amine detection. Dalton Transactions, 2023, 52, 12198-12202.	1.6	O