Inverse statistical problems: from the inverse Ising prob

Advances in Physics 66, 197-261 DOI: 10.1080/00018732.2017.1341604

Citation Report

#	Article	IF	CITATIONS
1	Generative models for network neuroscience: prospects and promise. Journal of the Royal Society Interface, 2017, 14, 20170623.	3.4	89
2	Inverse Ising problem in continuous time: A latent variable approach. Physical Review E, 2017, 96, 062104.	2.1	10
3	From inverse problems to learning: a Statistical Mechanics approach. Journal of Physics: Conference Series, 2018, 955, 012001.	0.4	3
4	An introduction to the maximum entropy approach and its application to inference problems in biology. Heliyon, 2018, 4, e00596.	3.2	65
5	Uncovering hidden disease patterns by simulating clinical diagnostic processes. Scientific Reports, 2018, 8, 2436.	3.3	4
6	Inferring the parameters of a Markov process from snapshots of the steady state. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018, 023403.	2.3	1
7	Statistical physics of medical diagnostics: Study of a probabilistic model. Physical Review E, 2018, 97, 032118.	2.1	2
8	Inverse statistical physics of protein sequences: a key issues review. Reports on Progress in Physics, 2018, 81, 032601.	20.1	178
9	The stock market learned as Ising model. Journal of Physics: Conference Series, 2018, 1113, 012009.	0.4	3
10	From statistical inference to a differential learning rule for stochastic neural networks. Interface Focus, 2018, 8, 20180033.	3.0	2
11	An Analytic Solution to the Inverse Ising Problem in the Tree-reweighted Approximation. , 2018, , .		0
12	Spontaneous activity emerging from an inferred network model captures complex spatio-temporal dynamics of spike data. Scientific Reports, 2018, 8, 17056.	3.3	10
13	The Role of Data in Model Building and Prediction: A Survey Through Examples. Entropy, 2018, 20, 807.	2.2	15
14	Active image restoration. Physical Review E, 2018, 98, .	2.1	1
15	Effects of hidden nodes on the reconstruction of bidirectional networks. Physical Review E, 2018, 98, .	2.1	13
16	Enhancing the efficiency of quantum annealing via reinforcement: A path-integral Monte Carlo simulation of the quantum reinforcement algorithm. Physical Review A, 2018, 98, .	2.5	5
17	Inverse Ising inference, hyperuniformity, and absorbing states in the Manna model. Physical Review E, 2018, 98, .	2.1	0
18	Partisan Intuition Belies Strong, Institutional Consensus and Wide Zipf's Law for Voting Blocs in US Supreme Court. Journal of Statistical Physics, 2018, 173, 1722-1733.	1.2	11

# 19	ARTICLE Information Perspective to Probabilistic Modeling: Boltzmann Machines versus Born Machines. Entropy, 2018, 20, 583.	IF 2.2	Citations
20	Separating intrinsic interactions from extrinsic correlations in a network of sensory neurons. Physical Review E, 2018, 98, .	2.1	15
21	Correlation-compressed direct-coupling analysis. Physical Review E, 2018, 98, .	2.1	11
22	Dilution of Ferromagnets via a Random Graph-Based Strategy. Complexity, 2018, 2018, 1-11.	1.6	6
23	Inverse finite-size scaling for high-dimensional significance analysis. Physical Review E, 2018, 97, 062112.	2.1	9
24	Limits on inferring the past. Physical Review E, 2018, 97, 062155.	2.1	2
25	Assessing the interdependencies between scientific disciplinary profiles. Scientometrics, 2018, 116, 1785-1803.	3.0	6
26	From Real Materials to Model Hamiltonians With Density Matrix Downfolding. Frontiers in Physics, 2018, 6, .	2.1	19
27	Trans-Allelic Model for Prediction of Peptide:MHC-II Interactions. Frontiers in Immunology, 2018, 9, 1410.	4.8	14
28	Expansion of the effective action around non-Gaussian theories. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 375004.	2.1	5
29	Learning Compositional Representations of Interacting Systems with Restricted Boltzmann Machines: Comparative Study of Lattice Proteins. Neural Computation, 2019, 31, 1671-1717.	2.2	20
30	Memory-free dynamics for the Thouless-Anderson-Palmer equations of Ising models with arbitrary rotation-invariant ensembles of random coupling matrices. Physical Review E, 2019, 99, 062140.	2.1	13
31	Predicting Antigenicity of Influenza A Viruses Using biophysical ideas. Scientific Reports, 2019, 9, 10218.	3.3	6
32	The statistical mechanics of Twitter communities. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 093406.	2.3	4
33	Selection of sequence motifs and generative Hopfield-Potts models for protein families. Physical Review E, 2019, 100, 032128.	2.1	22
34	Phylogenetic correlations can suffice to infer protein partners from sequences. PLoS Computational Biology, 2019, 15, e1007179.	3.2	25
35	Enhancing the predictability and retrodictability of stochastic processes. Communications Physics, 2019, 2, .	5.3	1
36	Network Reconstruction and Community Detection from Dynamics. Physical Review Letters, 2019, 123, 128301.	7.8	87

#	Article	IF	CITATIONS
37	DCA for genome-wide epistasis analysis: the statistical genetics perspective. Physical Biology, 2019, 16, 026002.	1.8	14
38	Restricted Boltzmann machines in quantum physics. Nature Physics, 2019, 15, 887-892.	16.7	117
39	Learning the Formation Mechanism of Domain-Level Chromatin States with Epigenomics Data. Biophysical Journal, 2019, 116, 2047-2056.	0.5	28
40	110th Anniversary: Molecular Thermodynamics: An Endless Frontier. Industrial & Engineering Chemistry Research, 2019, 58, 9707-9708.	3.7	2
41	Market basket analysis by solving the inverse Ising problem: Discovering pairwise interaction strengths among products. Physica A: Statistical Mechanics and Its Applications, 2019, 524, 36-44.	2.6	5
42	Ensemble inhibition and excitation in the human cortex: An Ising-model analysis with uncertainties. Physical Review E, 2019, 99, 032408.	2.1	9
43	Solving Statistical Mechanics Using Variational Autoregressive Networks. Physical Review Letters, 2019, 122, 080602.	7.8	107
44	A high-bias, low-variance introduction to Machine Learning for physicists. Physics Reports, 2019, 810, 1-124.	25.6	607
45	Network inference in stochastic systems from neurons to currencies: Improved performance at small sample size. Physical Review E, 2019, 99, 023311.	2.1	14
46	Toward Inferring Potts Models for Phylogenetically Correlated Sequence Data. Entropy, 2019, 21, 1090.	2.2	18
47	Ising Model Parameter Estimation with Confidence Evaluation Using the Exchange Monte Carlo Method. Journal of the Physical Society of Japan, 2019, 88, 064802.	1.6	2
48	A Comparison of the Maximum Entropy Principle Across Biological Spatial Scales. Entropy, 2019, 21, 1009.	2.2	13
49	Research on influence spread of scientific research team based on scientific factor quantification of big data. International Journal of Distributed Sensor Networks, 2019, 15, 155014771984215.	2.2	3
50	Machine learning and the physical sciences. Reviews of Modern Physics, 2019, 91, .	45.6	1,245
51	Parameter inference in a probabilistic model using clustered data. Physica A: Statistical Mechanics and Its Applications, 2019, 513, 112-125.	2.6	0
52	Statistical Mechanics of Deep Learning. Annual Review of Condensed Matter Physics, 2020, 11, 501-528.	14.5	117
53	Global analysis of more than 50,000 SARS-CoV-2 genomes reveals epistasis between eight viral genes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31519-31526.	7.1	50
54	Statistical Physics for Medical Diagnostics: Learning, Inference, and Optimization Algorithms. Diagnostics, 2020, 10, 972.	2.6	3

#	Article	IF	CITATIONS
55	Building General Langevin Models from Discrete Datasets. Physical Review X, 2020, 10, .	8.9	17
56	Inferring entropy from structure. Physical Review E, 2020, 102, 022110.	2.1	7
59	Reconstructing Nonparametric Productivity Networks. Entropy, 2020, 22, 1401.	2.2	5
60	Higher-order interactions in statistical physics and machine learning: A model-independent solution to the inverse problem at equilibrium. Physical Review E, 2020, 102, 053314.	2.1	14
61	Mean-field inference methods for neural networks. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 223002.	2.1	18
62	Dynamic Network Community Detection With Coherent Neighborhood Propinquity. IEEE Access, 2020, 8, 27915-27926.	4.2	8
63	Inference of compressed Potts graphical models. Physical Review E, 2020, 101, 012309.	2.1	14
64	Erasure machine: Inverse Ising inference from reweighting of observation frequencies. Physical Review E, 2020, 101, 032107.	2.1	3
65	Assessing the accuracy of direct-coupling analysis for RNA contact prediction. Rna, 2020, 26, 637-647.	3.5	20
66	Clustering of Neural Activity: A Design Principle for Population Codes. Frontiers in Computational Neuroscience, 2020, 14, 20.	2.1	9
67	Direct coupling analysis of epistasis in allosteric materials. PLoS Computational Biology, 2020, 16, e1007630.	3.2	14
68	Correspondence between temporal correlations in time series, inverse problems, and the spherical model. Physical Review E, 2020, 102, 012112.	2.1	1
69	Quantitative immunology for physicists. Physics Reports, 2020, 849, 1-83.	25.6	39
70	Analysis of dynamic Ising model by a variational approximate method: Estimation of transfer entropy. Physical Review E, 2020, 101, 042102.	2.1	1
71	Statistical physics of interacting proteins: Impact of dataset size and quality assessed in synthetic sequences. Physical Review E, 2020, 101, 032413.	2.1	8
72	The Bayesian inversion problem for thermal average sampling of quantum systems. Journal of Computational Physics, 2020, 413, 109448.	3.8	1
73	Stability of Imbalanced Triangles in Gene Regulatory Networks of Cancerous and Normal Cells. Frontiers in Physiology, 2020, 11, 573732.	2.8	9
74	Evolution of frustrated and stabilising contacts in reconstructed ancient proteins. European Biophysics Journal, 2021, 50, 699-712.	2.2	1

#	Article	IF	Citations
75	Revealing the mechanism of lymphoid and myeloid cell differentiation and transdifferentiation through landscape quantification. Physical Review Research, 2021, 3, .	3.6	2
76	Watch and learn—a generalized approach for transferrable learning in deep neural networks via physical principles. Machine Learning: Science and Technology, 2021, 2, 02LT02.	5.0	4
77	Exact solution to the random sequential dynamics of a message passing algorithm. Physical Review E, 2021, 103, L030101.	2.1	1
78	A density consistency approach to the inverse Ising problem. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 033416.	2.3	1
79	Belief propagation for networks with loops. Science Advances, 2021, 7, .	10.3	26
80	Detecting Many-Body Bell Nonlocality by Solving Ising Models. Physical Review Letters, 2021, 126, 140504.	7.8	9
81	Structure learning in inverse Ising problems using â"" 2-regularized linear estimator. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 053403.	2.3	1
82	Principles and open questions in functional brain network reconstruction. Human Brain Mapping, 2021, 42, 3680-3711.	3.6	33
83	Energy landscape analysis elucidates the multistability of ecological communities across environmental gradients. Ecological Monographs, 2021, 91, e01469.	5.4	15
84	Unraveling hidden interactions in complex systems with deep learning. Scientific Reports, 2021, 11, 12804.	3.3	14
85	Inverse Problem for Ising Connection Matrix with Long-Range Interaction. Mathematics, 2021, 9, 1624.	2.2	2
86	Global multivariate model learning from hierarchically correlated data. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 073501.	2.3	3
87	Optimal Entanglement Witnesses: A Scalable Data-Driven Approach. Physical Review Letters, 2021, 127, 040401.	7.8	2
88	Inferring epistasis from genomic data with comparable mutation and outcrossing rate. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 083501.	2.3	4
89	Genome-wide covariation in SARS-CoV-2. Mathematical Biosciences, 2021, 341, 108678.	1.9	2
90	Inference of stochastic time series with missing data. Physical Review E, 2021, 104, 024119.	2.1	3
91	Topological analysis of interaction patterns in cancer-specific gene regulatory network: persistent homology approach. Scientific Reports, 2021, 11, 16414.	3.3	11
92	Sparse generative modeling via parameter reduction of Boltzmann machines: Application to protein-sequence families. Physical Review E, 2021, 104, 024407.	2.1	15

#	Article	IF	CITATIONS
93	Understanding protein-complex assembly through grand canonical maximum entropy modeling. Physical Review Research, 2021, 3, .	3.6	2
94	Spatially explicit modeling of community occupancy using Markov Random Field models with imperfect observation: Mesocarnivores in Apostle Islands National Lakeshore. Ecological Modelling, 2021, 459, 109712.	2.5	2
95	Reconstruction and uncertainty quantification of lattice Hamiltonian model parameters from observations of microscopic degrees of freedom. Journal of Applied Physics, 2020, 128, 214103.	2.5	2
96	Machine learning for condensed matter physics. Journal of Physics Condensed Matter, 2021, 33, 053001.	1.8	47
97	Learning performance in inverse Ising problems with sparse teacher couplings. Journal of Statistical Mechanics: Theory and Experiment, 2020, 2020, 073402.	2.3	4
100	Inferring genetic fitness from genomic data. Physical Review E, 2020, 101, 052409.	2.1	6
101	Aligning biological sequences by exploiting residue conservation and coevolution. Physical Review E, 2020, 102, 062409.	2.1	12
102	Learning the Ising model with generative neural networks. Physical Review Research, 2020, 2, .	3.6	18
103	Inferring a network from dynamical signals at its nodes. PLoS Computational Biology, 2020, 16, e1008435.	3.2	7
104	Unsupervised inference approach to facial attractiveness. PeerJ, 2020, 8, e10210.	2.0	3
105	Equity Market Description under High and Low Volatility Regimes Using Maximum Entropy Pairwise Distribution. Entropy, 2021, 23, 1307.	2.2	5
106	Inferring microscale properties of interacting systems from macroscale observations. Physical Review Research, 2021, 3, .	3.6	0
107	Inverse problems for structured datasets using parallel TAP equations and restricted Boltzmann machines. Scientific Reports, 2021, 11, 19990.	3.3	5
108	Nonequilibrium thermodynamics of self-supervised learning. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 419, 127756.	2.1	1
110	Improved pseudolikelihood regularization and decimation methods on non-linearly interacting systems with continuous variables. SciPost Physics, 2018, 5, .	4.9	5
112	Brain Dynamics Through the Lens of Statistical Mechanics by Unifying Structure and Function. Lecture Notes in Computer Science, 2019, , 503-511.	1.3	7
118	Inverse Ising techniques to infer underlying mechanisms from data*. Chinese Physics B, 2020, 29, 080201.	1.4	3
119	Quantum Machine-Learning for Eigenstate Filtration in Two-Dimensional Materials. Journal of the American Chemical Society, 2021, 143, 18426-18445.	13.7	22

#	Article	IF	CITATIONS
120	Binary Random Fields. Advances in Geographic Information Science, 2020, , 645-688.	0.6	0
121	Occupancy patterns in superorganisms: a spin-glass approach to ant exploration. Royal Society Open Science, 2020, 7, 201250.	2.4	2
125	Ancestral sequence reconstruction for co-evolutionary models. Journal of Statistical Mechanics: Theory and Experiment, 2022, 2022, 013502.	2.3	0
126	Temperature-dependent performance of the erasure machine. Journal of the Korean Physical Society, 0, , 1.	0.7	0
127	Renewal Model for Dependent Binary Sequences. Journal of Statistical Physics, 2022, 187, 1.	1.2	0
128	A noniterative solution to the inverse Ising problem using a convex upper bound on the partition function. Journal of Statistical Mechanics: Theory and Experiment, 2022, 2022, 023406.	2.3	1
129	Inferring excitation-inhibition dynamics using a maximum entropy model unifying brain structure and function. Network Neuroscience, 2022, 6, 420-444.	2.6	8
130	Quantification of Kuramoto Coupling Between Intrinsic Brain Networks Applied to fMRI Data in Major Depressive Disorder. Frontiers in Computational Neuroscience, 2022, 16, 729556.	2.1	1
131	Integration of machine learning and first principles models. AICHE Journal, 2022, 68, .	3.6	23
132	Eye-tracking as a proxy for coherence and complexity of texts. PLoS ONE, 2021, 16, e0260236.	2.5	5
133	Quantifying relevance in learning and inference. Physics Reports, 2022, 963, 1-43.	25.6	10
135	Programmable Quantum Annealers as Noisy Gibbs Samplers. PRX Quantum, 2022, 3, .	9.2	7
136	Optimal regularizations for data generation with probabilistic graphical models. Journal of Statistical Mechanics: Theory and Experiment, 2022, 2022, 053502.	2.3	1
137	Correlations from structure and phylogeny combine constructively in the inference of protein partners from sequences. PLoS Computational Biology, 2022, 18, e1010147.	3.2	6
138	Inferring couplings in networks across order-disorder phase transitions. Physical Review Research, 2022, 4, .	3.6	3
140	The backbone of the financial interaction network using a maximum entropy distribution. International Journal of Modeling, Simulation, and Scientific Computing, 0, , .	1.4	0
141	A new approach for extracting information from protein dynamics. Proteins: Structure, Function and Bioinformatics, 2023, 91, 183-195.	2.6	1
142	The cavity method to protein design problem. Journal of Statistical Mechanics: Theory and Experiment, 2022, 2022, 103403.	2.3	0

#	ARTICLE	IF	CITATIONS
143	Temporal epistasis inference from more than 3Â500Â000 SARS-CoV-2 genomic sequences. Physical Review E, 2022, 106, .	2.1	1
144	Statistical inference links data and theory in network science. Nature Communications, 2022, 13, .	12.8	20
145	Tackling the subsampling problem to infer collective properties from limited data. Nature Reviews Physics, 2022, 4, 770-784.	26.6	8
146	Ising model selection using â"" ₁ -regularized linear regression: a statistical mechanics analysis*. Journal of Statistical Mechanics: Theory and Experiment, 2022, 2022, 114006.	2.3	0
147	Thermodynamics of the Ising Model Encoded in Restricted Boltzmann Machines. Entropy, 2022, 24, 1701.	2.2	2
148	Data-driven stochastic simulation leading to the allometric scaling laws in complex systems. Physical Review E, 2022, 106, .	2.1	1
149	Model Selection in the World of Maximum Entropy. , 0, , .		0
150	Inferring Cultural Landscapes with the Inverse Ising Model. Entropy, 2023, 25, 264.	2.2	4
151	Quantifying heterogeneity to drug response in cancer–stroma kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	1
152	A maximum entropy approach for the modelling of car-sharing parking dynamics. Scientific Reports, 2023, 13, .	3.3	1
153	Quantum approximate optimization algorithm applied to the binary perceptron. Physical Review B, 2023, 107, .	3.2	3
154	Statistical genetics in and out of quasi-linkage equilibrium. Reports on Progress in Physics, 2023, 86, 052601.	20.1	3
156	Financial price dynamics and phase transitions in the stock markets. European Physical Journal B, 2023, 96, .	1.5	0
157	Inference of interactions between players based on asynchronously updated evolutionary game data. Chinese Physics B, O, , .	1.4	0
158	Higher-Order Interactions and Their Duals Reveal Synergy and Logical Dependence beyond Shannon-Information. Entropy, 2023, 25, 648.	2.2	1
160	Inverse problem beyond two-body interaction: The cubic mean-field Ising model. Physical Review E, 2023, 107, .	2.1	1
161	Scale-free correlations and potential criticality in weakly ordered populations of brain cancer cells. Science Advances, 2023, 9, .	10.3	2
162	Biases in inverse Ising estimates of near-critical behavior. Physical Review E, 2023, 108, .	2.1	2

~			-			
Сіт	ΔΤΙ	ON	R	FP	O	DL

#	Article	IF	CITATIONS
163	Statistical models of complex brain networks: a maximum entropy approach. Reports on Progress in Physics, 2023, 86, 102601.	20.1	2
164	A Perspective on Lindblad's <i>Non-Equilibrium Entropy</i> . Open Systems and Information Dynamics, 2023, 30, .	1.2	0
165	Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction. Biophysical Journal, 2023, , .	0.5	1
166	Inverse problem for the quartic mean-field Ising model. European Physical Journal Plus, 2023, 138, .	2.6	Ο
167	Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 200701.	0.5	0
168	Learning phase transitions from regression uncertainty: a new regression-based machine learning approach for automated detection of phases of matter. New Journal of Physics, 2023, 25, 083037.	2.9	1
169	RNA contact prediction by data efficient deep learning. Communications Biology, 2023, 6, .	4.4	0
170	The autoregressive neural network architecture of the Boltzmann distribution of pairwise interacting spins systems. Communications Physics, 2023, 6, .	5.3	0
171	Quantitative approaches for decoding the specificity of the human T cell repertoire. Frontiers in Immunology, 0, 14, .	4.8	2
172	Accelerating convergence of inference in the inverse Ising problem. Physica A: Statistical Mechanics and Its Applications, 2023, 632, 129348.	2.6	0
173	Does the brain behave like a (complex) network? I. Dynamics. Physics of Life Reviews, 2024, 48, 47-98.	2.8	3
176	LoopSage: An energy-based Monte Carlo approach for the loop extrusion modeling of chromatin. Methods, 2024, 223, 106-117.	3.8	0
177	Simplicity science. Indian Journal of Physics, 0, , .	1.8	0
178	Ising game on graphs. Chaos, Solitons and Fractals, 2024, 180, 114540.	5.1	0
179	Ising-like model replicating time-averaged spiking behaviour of in vitro neuronal networks. Scientific Reports, 2024, 14, .	3.3	0