High-Mobility InSe Transistors: The Role of Surface Oxi

ACS Nano 11, 7362-7370 DOI: 10.1021/acsnano.7b03531

Citation Report

#	Article	IF	CITATIONS
4	Scalable van der Waals Heterojunctions for High-Performance Photodetectors. ACS Applied Materials & Interfaces, 2017, 9, 36181-36188.	4.0	29
5	The Advent of Indium Selenide: Synthesis, Electronic Properties, Ambient Stability and Applications. Nanomaterials, 2017, 7, 372.	1.9	50
6	Interaction of the O atom with the InSe monolayer: A first-principles study. Vacuum, 2018, 153, 53-61.	1.6	6
7	Effects of graphene/BN encapsulation, surface functionalization and molecular adsorption on the electronic properties of layered InSe: a first-principles study. Physical Chemistry Chemical Physics, 2018, 20, 12939-12947.	1.3	27
8	Pronounced photogating effect in atomically thin WSe2 with a self-limiting surface oxide layer. Applied Physics Letters, 2018, 112, .	1.5	38
9	The role of the intrinsic Se and In vacancies in the interaction of O2 and H2O molecules with the InSe monolayer. Applied Surface Science, 2018, 434, 215-227.	3.1	27
10	Suppressing Ambient Degradation of Exfoliated InSe Nanosheet Devices via Seeded Atomic Layer Deposition Encapsulation. Nano Letters, 2018, 18, 7876-7882.	4.5	54
11	Hole-Doped 2D InSe for Spintronic Applications. ACS Applied Nano Materials, 2018, 1, 6656-6665.	2.4	41
12	Spatially and Precisely Controlled Large-Scale and Persistent Optical Gating in a TiOx–MoS2 Heterostructure. ACS Applied Materials & Interfaces, 2018, 10, 38319-38325.	4.0	2
13	High Mobilities in Layered InSe Transistors with Indiumâ€Encapsulationâ€Induced Surface Charge Doping. Advanced Materials, 2018, 30, e1803690.	11.1	101
14	High-Performance InSe Transistors with Ohmic Contact Enabled by Nonrectifying Barrier-Type Indium Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 33450-33456.	4.0	35
15	Thin EOT MoS2 FET for Efficient Photodetection and Gas Sensing. , 2018, , .		1
16	Producing air-stable InSe nanosheet through mild oxygen plasma treatment. Semiconductor Science and Technology, 2018, 33, 074002.	1.0	24
17	Ultrahigh Conductivity in Two-Dimensional InSe via Remote Doping at Room Temperature. Journal of Physical Chemistry Letters, 2018, 9, 3897-3903.	2.1	23
18	Type-II InSe/MoSe ₂ (WSe ₂) van der Waals heterostructures: vertical strain and electric field effects. Journal of Materials Chemistry C, 2018, 6, 10010-10019.	2.7	59
19	Synthesis of Largeâ€Area InSe Monolayers by Chemical Vapor Deposition. Small, 2018, 14, e1802351.	5.2	81
20	Solutionâ€Based Processing of Optoelectronically Active Indium Selenide. Advanced Materials, 2018, 30, e1802990.	11.1	78
21	Semiconducting edges and flake-shape evolution of monolayer GaSe: role of edge reconstructions. Nanoscale, 2018, 10, 12133-12140.	2.8	10

#	Article	IF	CITATIONS
22	Magnetotransport and lateral confinement in an InSe van der Waals Heterostructure. 2D Materials, 2018, 5, 035040.	2.0	7
23	Many-Body Effect and Device Performance Limit of Monolayer InSe. ACS Applied Materials & Interfaces, 2018, 10, 23344-23352.	4.0	98
24	Stable InSe transistors with high-field effect mobility for reliable nerve signal sensing. Npj 2D Materials and Applications, 2019, 3, .	3.9	31
25	Schottky-barrier thin-film transistors based on HfO2-capped InSe. Applied Physics Letters, 2019, 115, .	1.5	13
26	Plasmonic Transition Metal Carbide Electrodes for High-Performance InSe Photodetectors. ACS Nano, 2019, 13, 8804-8810.	7.3	69
27	Gate-Induced Metal–Insulator Transition in 2D van der Waals Layers of Copper Indium Selenide Based Field-Effect Transistors. ACS Nano, 2019, 13, 13413-13420.	7.3	20
28	Effective Hexagonal Boron Nitride Passivation of Few-Layered InSe and GaSe to Enhance Their Electronic and Optical Properties. ACS Applied Materials & Interfaces, 2019, 11, 43480-43487.	4.0	44
29	Strong Electron-Phonon Coupling and its Influence on the Transport and Optical Properties of Hole-Doped Single-Layer InSe. Physical Review Letters, 2019, 123, 176401.	2.9	37
30	High-Mobility InSe Transistors: The Nature of Charge Transport. ACS Applied Materials & Interfaces, 2019, 11, 35969-35976.	4.0	23
31	Robust trap effect in transition metal dichalcogenides for advanced multifunctional devices. Nature Communications, 2019, 10, 4133.	5.8	39
32	High-performance sub-10 nm monolayer Bi ₂ O ₂ Se transistors. Nanoscale, 2019, 11, 532-540.	2.8	196
33	Highly efficient photogenerated electron transfer at a black phosphorus/indium selenide heterostructure interface from ultrafast dynamics. Journal of Materials Chemistry C, 2019, 7, 1864-1870.	2.7	53
34	Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies. Journal of Materials Chemistry A, 2019, 7, 4291-4312.	5.2	158
35	Absorption and diffusion of lithium on layered InSe. Computational Condensed Matter, 2019, 21, e00404.	0.9	9
36	End-Bonded Metal Contacts on WSe ₂ Field-Effect Transistors. ACS Nano, 2019, 13, 8146-8154.	7.3	44
37	Sn-Doping Enhanced Ultrahigh Mobility In _{1–<i>x</i>} Sn _{<i>x</i>} Se Phototransistor. ACS Applied Materials & Interfaces, 2019, 11, 24269-24278.	4.0	17
38	A homogeneous p–n junction diode by selective doping of few layer MoSe ₂ using ultraviolet ozone for high-performance photovoltaic devices. Nanoscale, 2019, 11, 13469-13476.	2.8	41
39	Thickness-Dependent Resonant Raman and E′ Photoluminescence Spectra of Indium Selenide and Indium Selenide/Graphene Heterostructures. Journal of Physical Chemistry C, 2019, 123, 15345-15353.	1.5	16

#	Article	IF	Citations
40	Determination of Carrier Diffusion Length Using Transient Electron Photoemission Microscopy in the GaAs/InSe Heterojunction. Physica Status Solidi (B): Basic Research, 2019, 256, 1900126.	0.7	1
41	Flexible quantum spin Hall insulator in O-functionalized GaSe monolayer. Journal of Alloys and Compounds, 2019, 788, 1113-1118.	2.8	7
42	Ultrafast Monolayer In/Gr-WS ₂ -Gr Hybrid Photodetectors with High Gain. ACS Nano, 2019, 13, 3269-3279.	7.3	44
43	Crystal structure and optical performance in bulk \hat{I}^3 -InSe single crystals. AIP Advances, 2019, 9, .	0.6	15
44	Lowâ€Voltage Operational, Lowâ€Power Consuming, and High Sensitive Tactile Switch Based on 2D Layered InSe Tribotronics. Advanced Functional Materials, 2019, 29, 1809119.	7.8	28
45	Tuning spin–orbit coupling in 2D materials for spintronics: a topical review. Journal of Physics Condensed Matter, 2019, 31, 193001.	0.7	48
46	Controlled surface oxidation of HfSe2 via oxygen-plasma treatment. Materials Letters, 2019, 243, 96-99.	1.3	12
47	Effect of Sputtering Process Parameters on Optical and Dielectric Properties of Thin Film Indium Selenide. , 2019, , .		0
48	Ultrasensitive Flexible Strain Sensor based on Two-Dimensional InSe for Human Motion Surveillance. , 2019, , .		3
49	Synthesis and emerging properties of 2D layered III–VI metal chalcogenides. Applied Physics Reviews, 2019, 6, 041312.	5.5	89
50	Pressure-induced semiconductor-to-metal phase transition of a charge-ordered indium halide perovskite. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23404-23409.	3.3	45
51	Oxidized-monolayer tunneling barrier for strong Fermi-level depinning in layered InSe transistors. Npj 2D Materials and Applications, 2019, 3, .	3.9	19
52	Recent Advances in Optoelectronic Devices Based on 2D Materials and Their Heterostructures. Advanced Optical Materials, 2019, 7, 1800441.	3.6	229
53	First-principles study of the surface reparation of ultrathin InSe with Se-atom vacancies by thiol chemistry. Applied Surface Science, 2019, 475, 487-493.	3.1	6
54	Hot Carrier and Surface Recombination Dynamics in Layered InSe Crystals. Journal of Physical Chemistry Letters, 2019, 10, 493-499.	2.1	22
55	Two Dimensional β-InSe with Layer-Dependent Properties: Band Alignment, Work Function and Optical Properties. Nanomaterials, 2019, 9, 82.	1.9	43
56	Optical studies of the thermal stability of InSe nanosheets. Applied Surface Science, 2019, 467-468, 860-867.	3.1	6
57	The role of traps in the photocurrent generation mechanism in thin InSe photodetectors. Materials Horizons, 2020, 7, 252-262.	6.4	164

#	Article	IF	CITATIONS
58	Nanowire Grid Polarization and Polarized Excitonic Emission Observed in Multilayer GaTe. Journal of Physical Chemistry Letters, 2020, 11, 608-617.	2.1	20
59	Piezopotential gated two-dimensional InSe field-effect transistor for designing a pressure sensor based on piezotronic effect. Nano Energy, 2020, 70, 104457.	8.2	35
60	Edgeâ€Epitaxial Growth of InSe Nanowires toward Highâ€Performance Photodetectors. Small, 2020, 16, e1905902.	5.2	22
61	Graphene–Transition Metal Dichalcogenide Heterojunctions for Scalable and Low-Power Complementary Integrated Circuits. ACS Nano, 2020, 14, 985-992.	7.3	46
62	Thickness Identification of Thin InSe by Optical Microscopy Methods. Advanced Photonics Research, 2020, 1, 2000025.	1.7	11
63	Optical and structural properties of nâ^' and pâ^'InSe/In2O3 heterostructures. Journal of Luminescence, 2020, 227, 117550.	1.5	1
64	Interfacial Charge Transfer and Gate-Induced Hysteresis in Monochalcogenide InSe/GaSe Heterostructures. ACS Applied Materials & Interfaces, 2020, 12, 46854-46861.	4.0	15
65	Evolutions of morphology and electronic properties of few-layered MoS2 exposed to UVO. Results in Physics, 2020, 19, 103634.	2.0	10
66	Sub-5-nm Monolayer Silicane Transistor: A First-Principles Quantum Transport Simulation. Physical Review Applied, 2020, 14, .	1.5	38
67	Fast growth of large-grain and continuous MoS2 films through a self-capping vapor-liquid-solid method. Nature Communications, 2020, 11, 3682.	5.8	76
68	Ga ₂ Se ₃ Defect Semiconductors: The Study of Direct Band Edge and Optical Properties. ACS Omega, 2020, 5, 18527-18534.	1.6	14
69	The optical properties of few-layer InSe. Journal of Applied Physics, 2020, 128, .	1.1	23
70	Large-area optoelectronic-grade InSe thin films via controlled phase evolution. Applied Physics Reviews, 2020, 7, .	5.5	17
71	Reduction of the ambient effect in multilayer InSe transistors and a strategy toward stable 2D-based optoelectronic applications. Nanoscale, 2020, 12, 18356-18362.	2.8	13
72	All-Dry Transferred ReS ₂ Nanosheets for Ultrasensitive Room-Temperature NO ₂ Sensing under Visible Light Illumination. ACS Sensors, 2020, 5, 3172-3181.	4.0	34
73	Liquid-Phase Exfoliated GeSe Nanoflakes for Photoelectrochemical-Type Photodetectors and Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 48598-48613.	4.0	56
74	Combinatorial Large-Area MoS ₂ /Anatase–TiO ₂ Interface: A Pathway to Emergent Optical and Optoelectronic Functionalities. ACS Applied Materials & Interfaces, 2020, 12, 44345-44359.	4.0	10
75	Enhanced Electrocatalytic Activity in GaSe and InSe Nanosheets: The Role of Surface Oxides. Advanced Functional Materials, 2020, 30, 2005466.	7.8	35

#	Article	IF	Citations
76	Surface-Modified Ultrathin InSe Nanosheets with Enhanced Stability and Photoluminescence for High-Performance Optoelectronics. ACS Nano, 2020, 14, 11373-11382.	7.3	34
77	Ferroelectric-Gated InSe Photodetectors with High On/Off Ratios and Photoresponsivity. Nano Letters, 2020, 20, 6666-6673.	4.5	53
78	Scalable T-Gate Aligned Gr–WS ₂ –Gr Radio-Frequency Field-Effect Transistors. ACS Applied Electronic Materials, 2020, 2, 3898-3905.	2.0	11
79	Electronic Structure and Optical Properties of a Mn-Doped InSe/WSe2 van der Walls Heterostructure: First Principles Calculations. Journal of the Korean Physical Society, 2020, 77, 587-591.	0.3	2
80	InSe Schottky Diodes Based on Van Der Waals Contacts. Advanced Functional Materials, 2020, 30, 2001307.	7.8	44
81	Low Lattice Mismatch InSe–Se Vertical Van der Waals Heterostructure for Highâ€performance Transistors via Strong Fermiâ€Level Depinning. Small Methods, 2020, 4, 2000238.	4.6	22
82	Oxidation-boosted charge trapping in ultra-sensitive van der Waals materials for artificial synaptic features. Nature Communications, 2020, 11, 2972.	5.8	83
83	Ohmic contacts of monolayer Tl2O field-effect transistors. Journal of Materials Science, 2020, 55, 11439-11450.	1.7	9
84	The role of hybrid dielectric interfaces in improving the performance of multilayer InSe transistors. Journal of Materials Chemistry C, 2020, 8, 6701-6709.	2.7	8
85	High-performance Ill–VI monolayer transistors for flexible devices. Physical Chemistry Chemical Physics, 2020, 22, 7039-7047.	1.3	10
86	Contact engineering of single core/shell SiC/SiO ₂ nanowire memory unit with high current tolerance using focused femtosecond laser irradiation. Nanoscale, 2020, 12, 5618-5626.	2.8	11
87	Liquid Phase Exfoliated Indium Selenide Based Highly Sensitive Photodetectors. Advanced Functional Materials, 2020, 30, 1908427.	7.8	42
88	Enormous enhancement in electrical performance of few-layered MoTe2 due to Schottky barrier reduction induced by ultraviolet ozone treatment. Nano Research, 2020, 13, 952-958.	5.8	25
89	Study of Structural, Thermoelectric, and Photoelectric Properties of Layered Tin Monochalcogenides SnX (X = S, Se) for Energy Application. ACS Applied Energy Materials, 2020, 3, 4896-4905.	2.5	22
90	InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics. Nano Research, 2020, 13, 1127-1132.	5.8	48
91	Structural investigation of InSe layered semiconductors. Solid State Communications, 2020, 311, 113855.	0.9	26
92	Performance Limit of Monolayer WSe ₂ Transistors; Significantly Outperform Their MoS ₂ Counterpart. ACS Applied Materials & Interfaces, 2020, 12, 20633-20644.	4.0	39
93	CVD growth of large-area InS atomic layers and device applications. Nanoscale, 2020, 12, 9366-9374.	2.8	9

#	Article	IF	CITATIONS
94	Recent progress in contact, mobility, and encapsulation engineering of InSe and GaSe. InformaÄnÃ- Materiály, 2021, 3, 662-693.	8.5	49
95	Multiterminal Transport Measurements of Multilayer InSe Encapsulated by hBN. ACS Applied Electronic Materials, 2021, 3, 163-169.	2.0	3
96	Atomically Thin Hexagonal Boron Nitride and Its Heterostructures. Advanced Materials, 2021, 33, e2000769.	11.1	71
97	Engineering an Indium Selenide van der Waals Interface for Multilevel Charge Storage. ACS Applied Materials & Interfaces, 2021, 13, 4618-4625.	4.0	12
98	The band-edge excitons observed in few-layer NiPS3. Npj 2D Materials and Applications, 2021, 5, .	3.9	21
99	Heterostructures of titanium-based MXenes in energy conversion and storage devices. Journal of Materials Chemistry C, 2021, 9, 8395-8465.	2.7	30
100	Atomically thin photoanode of InSe/graphene heterostructure. Nature Communications, 2021, 12, 91.	5.8	26
101	Quantum Transport in Monolayer α S Fieldâ€Effect Transistors. Advanced Electronic Materials, 2021, 7, 2001169.	2.6	6
102	Bandgap engineering of layered mono-chalcogenides via pressure. Journal of Applied Physics, 2021, 129, 155703.	1.1	2
103	Oxidations of two-dimensional semiconductors: Fundamentals and applications. Chinese Chemical Letters, 2022, 33, 177-185.	4.8	6
104	Encapsulation strategies on 2D materials for field effect transistors and photodetectors. Chinese Chemical Letters, 2022, 33, 2281-2290.	4.8	17
105	Anisotropic Properties of Quasiâ€1D In ₄ Se ₃ : Mechanical Exfoliation, Electronic Transport, and Polarizationâ€Dependent Photoresponse. Advanced Functional Materials, 2021, 31, 2106459.	7.8	11
106	Sub-10Ânm two-dimensional transistors: Theory and experiment. Physics Reports, 2021, 938, 1-72.	10.3	80
107	Tunable spin-orbit coupling in two-dimensional InSe. Physical Review B, 2021, 104, .	1.1	9
108	Thermodynamic Perspective on the Oxidation of Layered Materials and Surface Oxide Amelioration in 2D Devices. ACS Applied Materials & Interfaces, 2021, 13, 43282-43289.	4.0	10
109	Defects-induced oxidation of two-dimensional β-In2S3 and its optoelectronic properties. Optical Materials, 2021, 119, 111372.	1.7	13
110	Observation of nonvolatile resistive switching behaviors in 2D layered InSe nanosheets through controllable oxidation. Applied Physics Letters, 2021, 119, .	1.5	6
111	Stability studies of few-layer InSe nanosheets by Raman spectroscopy. Solid State Communications, 2021, 336, 114417.	0.9	4

#	Article	IF	CITATIONS
112	Liquidâ€Phase Exfoliated Gallium Selenide for Lightâ€Driven Thinâ€Film Transistors. Advanced Electronic Materials, 2021, 7, 2001080.	2.6	18
113	Silicon-based two-dimensional chalcogenide of p-type semiconducting silicon telluride nanosheets for ultrahigh sensitive photodetector applications. Journal of Materials Chemistry C, 2021, 9, 10478-10486.	2.7	5
114	Contactâ€Barrier Free, High Mobility, Dualâ€Gated Junctionless Transistor Using Tellurium Nanowire. Advanced Functional Materials, 2021, 31, 2006278.	7.8	14
115	Reversible Half Wave Rectifier Based on 2D InSe/GeSe Heterostructure with Nearâ€Broken Band Alignment. Advanced Science, 2021, 8, 1903252.	5.6	38
116	Layered Semiconducting 2D Materials for Future Transistor Applications. Small Structures, 2021, 2, 2000103.	6.9	85
117	Interfaces between MoO _x and MoX ₂ (X = S, Se, and Te)*. Chinese Physics B, 2020, 29, 116802.	0.7	7
118	Nonlinear Optical Properties and Ultrafast Carrier Dynamics of 2D Indium Selenide Nanosheets. Advanced Optical Materials, 2021, 9, 2101432.	3.6	14
119	Promising Properties of a Sub-5-nm Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>Mo</mml:mi> <mml:mi>Si</mml:mi> </mml:mrow> <mml:mi> Mo</mml:mi> <mml:mn>4 </mml:mn> </mml:msub> <td></td><td>ml:ສ໑າ></td></mml:math 		m l:ສ໑ າ>
120	Transistor. Physical Review Applied, 2021, 16, . Doping Engineered InSe Flakes for High Mobility Phototransistor. , 2020, , .		1
121	Tuning Schottky barrier in graphene/InSe van der Waals heterostructures by electric field. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 157302.	0.2	3
122	Charge Transfer at the Heteroâ€Interface of WSe ₂ /InSe Induces Efficient Doping to Achieve Multiâ€Functional Lateral Homoâ€Junctions. Advanced Electronic Materials, 2021, 7, 2100584.	2.6	5
123	Selective crystal growth of indium selenide compounds from saturated solutions grown in a selenium vapor. Results in Materials, 2022, 13, 100253.	0.9	5
124	Two-Dimensional MoSi ₂ N ₄ : An Excellent 2-D Semiconductor for Field-Effect Transistors. IEEE Transactions on Electron Devices, 2022, 69, 406-413.	1.6	28
126	Indium Selenide/Antimonene Heterostructure for Multifunctional Optoelectronics. IEEE Transactions on Electron Devices, 2022, 69, 1155-1161.	1.6	8
127	Highâ€Performance Phototransistors by Alumina Encapsulation of a 2D Semiconductor with Selfâ€Aligned Contacts. Advanced Electronic Materials, 2022, 8, .	2.6	5
128	Construction and physical properties of low-dimensional structures for nanoscale electronic devices. Physical Chemistry Chemical Physics, 2022, 24, 9082-9117.	1.3	3
129	Phase Modulation of Self-Gating in Ionic Liquid-Functionalized InSe Field-Effect Transistors. Nano Letters, 2022, 22, 2270-2276.	4.5	5
130	Degradation Chemistry and Kinetic Stabilization of Magnetic Crl ₃ . Journal of the American Chemical Society, 2022, 144, 5295-5303.	6.6	13

#	Article	IF	CITATIONS
131	Enhancement of InSe Field-Effect-Transistor Performance against Degradation of InSe Film in Air Environment. Nanomaterials, 2021, 11, 3311.	1.9	5
132	Performance Enhancement of SnS/ <i>h</i> -BN Heterostructure p-Type FET via the Thermodynamically Predicted Surface Oxide Conversion Method. ACS Applied Materials & Interfaces, 2022, 14, 19928-19937.	4.0	4
133	Morphotaxy of Layered van der Waals Materials. ACS Nano, 2022, 16, 7144-7167.	7.3	8
134	X-ray diffraction characterization of nanostructured native oxide films on indium selenide by modified Sherrer and Williamson-Hall methods. Journal of Physical Studies, 2022, 26, .	0.2	0
135	Metal chalcogenide-based photoelectrodes for photoelectrochemical water splitting. Journal of Energy Chemistry, 2022, 73, 189-213.	7.1	40
136	Enhancement of Photoresponsivity of β-In ₂ S ₃ /Si Broadband Photodetector by Decorating With Reduced-Graphene Oxide. IEEE Transactions on Electron Devices, 2022, 69, 4355-4361.	1.6	2
137	Large and anisotropic carrier mobility in monolayers of the MA ₂ Z ₄ series (M) Tj ETQq0	00rgBT / 2.8	Overlock 10
138	Polarization-Resolved and Helicity-Resolved Raman Intensity of Monolayer and Bilayer β-InSe. Journal of Physical Chemistry C, 2022, 126, 11219-11228.	1.5	0
139	Highâ€Performance <i>p</i> â€ŧype 2D FET Based on Monolayer GeC with High Hole Mobility: A DFTâ€NEGF Study. Advanced Electronic Materials, 2022, 8, .	2.6	6
140	Properties, Synthesis, and Device Applications of 2D Layered InSe. Advanced Materials Technologies, 2022, 7, .	3.0	23
141	Strong Anisotropy of Multilayer γâ€InSeâ€Enabled Polarization Division Multiplexing Photodetection. Advanced Photonics Research, 2022, 3, .	1.7	3
142	A non-two-dimensional van der Waals InSe semispherical array grown by vapor–liquid–solid method for hydrogen evolution. Chinese Chemical Letters, 2023, 34, 107826.	4.8	0
143	Fully Encapsulated and Stable Black Phosphorus Fieldâ€Effect Transistors. Advanced Materials Technologies, 0, , 2200546.	3.0	4
144	2D Bi \$_{2}\$\$O_{2}\$ Se Based Highly Selective and Sensitive Toxic Non-Condensable Gas Sensor. IEEE Nanotechnology Magazine, 2022, , 1-7.	1.1	1
145	Bandgap engineering of high mobility two-dimensional semiconductors toward optoelectronic devices. Journal of Materiomics, 2022, , .	2.8	1
146	Band Structure and Quantum Conductance of Surface-unsaturated and Hydrogenated Sb and Bi Monolayer Nanoribbons. ECS Journal of Solid State Science and Technology, 2022, 11, 121006.	0.9	0
147	Fast and direct identification of <scp>SARSâ€CoV</scp> â€2 variants via <scp>2D InSe</scp> fieldâ€effect transistors. InformaÄnĂ-Materiály, 2023, 5, .	8.5	4
148	Carrier and phonon transport in 2D InSe and its Janus structures. Journal of Physics Condensed Matter, 2023, 35, 133001.	0.7	4

	Сіт	TATION REPORT	
#	Article	IF	Citations
149	Ultrafast carrier dynamics and layer-dependent carrier recombination rate in InSe. Nanoscale, 0, , .	2.8	0
150	Extreme Anisotropic Dispersion and One-Dimensional Confined Electrons in 2-D SiPâ,, FETs With High Transmission Coefficients. IEEE Transactions on Electron Devices, 2023, 70, 1330-1337.	1.6	2
151	The tunability of electronic and transport properties of InSe/MoSe2 van der Waals heterostructure: A first-principles study. Surfaces and Interfaces, 2023, 36, 102634.	1.5	5
152	Van der Waals Heteroepitaxy of GaSe and InSe, Quantum Wells, and Superlattices. Advanced Functional Materials, 2023, 33, .	7.8	3
153	Highly Stable InSe-FET Biosensor for Ultra-Sensitive Detection of Breast Cancer Biomarker CA125. Biosensors, 2023, 13, 193.	2.3	7
154	A Novel InSeâ€FET Biosensor based on Carrierâ€6cattering Regulation Derived from the DNA Probe Assemblyâ€Determined Electrostatic Potential Distribution. Advanced Functional Materials, 2023, 33,	. 7.8	8
155	Multifunctional indium selenide devices based on van der Waals contacts: High-quality Schottky diodes and optoelectronic memories. Nano Energy, 2023, 108, 108238.	8.2	5
156	Double-Heterostructure Resonant Tunneling Transistors of Surface-Functionalized Sb and Bi Monolayer Nanoribbons. Crystals, 2023, 13, 379.	1.0	Ο
157	Phase Instability in van der Waals In ₂ Se ₃ Determined by Surface Coordination Angewandte Chemie - International Edition, 2023, 62, .	on. 7.2	2
158	Phase Instability in van der Waals In ₂ Se ₃ Determined by Surface Coordination Angewandte Chemie, 2023, 135, .	on. 1.6	Ο
159	Subnanometer-Wide Indium Selenide Nanoribbons. ACS Nano, 2023, 17, 6062-6072.	7.3	5
160	Ballistic two-dimensional InSe transistors. Nature, 2023, 616, 470-475.	13.7	66
161	Long-range electrostatic contribution to electron-phonon couplings and mobilities of two-dimensional and bulk materials. Physical Review B, 2023, 107, .	1.1	6
164	Recent progress in functional two-dimensional photovoltaic photodetectors and related emerging applications. Journal of Materials Chemistry A, 2023, 11, 11548-11571.	5.2	5