Development of a Novel Lead that Targets M. tubercul

Cell 170, 249-259.e25 DOI: 10.1016/j.cell.2017.06.025

Citation Report

#	Article	IF	CITATIONS
1	Systematic Identification of Mycobacterium tuberculosis Effectors Reveals that BfrB Suppresses Innate Immunity. Molecular and Cellular Proteomics, 2017, 16, 2243-2253.	3.8	18
2	New routes to tuberculosis treatment. Nature Reviews Drug Discovery, 2017, 16, 600-601.	46.4	4
3	Host–pathogen systems for early drug discovery against tuberculosis. Current Opinion in Microbiology, 2017, 39, 143-151.	5.1	8
4	Targeting DNA Replication and Repair for the Development of Novel Therapeutics against Tuberculosis. Frontiers in Molecular Biosciences, 2017, 4, 75.	3.5	42
5	POAP: A GNU parallel based multithreaded pipeline of open babel and AutoDock suite for boosted high throughput virtual screening. Computational Biology and Chemistry, 2018, 74, 39-48.	2.3	60
6	Recent advances of imidazole-containing derivatives as anti-tubercular agents. European Journal of Medicinal Chemistry, 2018, 150, 347-365.	5.5	117
7	Priming the tuberculosis drug pipeline: new antimycobacterial targets and agents. Current Opinion in Microbiology, 2018, 45, 39-46.	5.1	40
8	Structural and genetic analysis of <scp>START</scp> superfamily protein <scp>MSMEG</scp> _0129 from <i>MycobacteriumÂsmegmatis</i> . FEBS Letters, 2018, 592, 1445-1457.	2.8	6
9	Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nature Reviews Microbiology, 2018, 16, 496-507.	28.6	162
10	Metabolism of SKLB-TB1001, a Potent Antituberculosis Agent, in Animals. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	4
11	Palladium atalyzed Regioselective Câ€2 Arylation of Benzofurans with <i>N′</i> â€Acyl Arylhydrazines. European Journal of Organic Chemistry, 2018, 2018, 2774-2779.	2.4	13
12	The Expanding Diversity of <i>Mycobacterium tuberculosis</i> Drug Targets. ACS Infectious Diseases, 2018, 4, 696-714.	3.8	60
13	Identification of Novel Coumestan Derivatives as Polyketide Synthase 13 Inhibitors against <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2018, 61, 791-803.	6.4	56
14	Characterization of Tetrahydrolipstatin and Stereoderivatives on the Inhibition of Essential <i>Mycobacterium tuberculosis </i> Lipid Esterases. Biochemistry, 2018, 57, 2383-2393.	2.5	25
15	Identification of a new series of benzothiazinone derivatives with excellent antitubercular activity and improved pharmacokinetic profiles. RSC Advances, 2018, 8, 11163-11176.	3.6	16
16	An Antibacterial βâ€Lactone Kills Mycobacterium tuberculosis by Disrupting Mycolic Acid Biosynthesis. Angewandte Chemie - International Edition, 2018, 57, 348-353.	13.8	55
17	Ein antibakterielles βâ€Lacton bekänpft <i>Mycobacterium tuberculosis</i> durch Infiltration der Mykolsärebiosynthese. Angewandte Chemie, 2018, 130, 354-359.	2.0	3
18	IMB-T130 targets 3-dehydroquinate synthase and inhibits Mycobacterium tuberculosis. Scientific Reports, 2018, 8, 17439.	3.3	14

#	Article	IF	CITATIONS
19	Biochemical and Structural Characterization of TesA, a Major Thioesterase Required for Outer-Envelope Lipid Biosynthesis in Mycobacterium tuberculosis. Journal of Molecular Biology, 2018, 430, 5120-5136.	4.2	22
20	Design, synthesis and anti-mycobacterial activity evaluation of benzofuran-isatin hybrids. European Journal of Medicinal Chemistry, 2018, 159, 277-281.	5.5	54
21	Strategy for Overcoming Full Reversibility of Intermolecular Radical Addition to Aldehydes: Tandem C–H and C–O Bonds Cleaving Cyclization of (Phenoxymethyl)arenes with Carbonyls to Benzofurans. Organic Letters, 2018, 20, 3310-3313.	4.6	32
22	Recent advances for identification of new scaffolds and drug targets for <i>Mycobacterium tuberculosis</i> . IUBMB Life, 2018, 70, 905-916.	3.4	23
23	Novel T7 Phage Display Library Detects Classifiers for Active Mycobacterium Tuberculosis Infection. Viruses, 2018, 10, 375.	3.3	9
24	The present state of the tuberculosis drug development pipeline. Current Opinion in Pharmacology, 2018, 42, 81-94.	3.5	70
25	Identification of novel scaffolds targeting Mycobacterium tuberculosis. Journal of Molecular Medicine, 2019, 97, 1601-1613.	3.9	18
26	Benzofuran-isatin hybrids and their inÂvitro anti-mycobacterial activities against multi-drug resistant Mycobacterium tuberculosis. European Journal of Medicinal Chemistry, 2019, 183, 111678.	5.5	18
27	An update on benzofuran inhibitors: a patent review. Expert Opinion on Therapeutic Patents, 2019, 29, 841-870.	5.0	39
28	Benzofuran-isatin-imine hybrids tethered via different length alkyl linkers: Design, synthesis and inÂvitro evaluation of anti-tubercular and anti-bacterial activities as well as cytotoxicity. European Journal of Medicinal Chemistry, 2019, 165, 323-331.	5.5	38
29	Design, Synthesis, and Anticancer Activities of Benzofuran–Isatin Hybrids Tethered by Pentylene and Hexylene. Journal of Heterocyclic Chemistry, 2019, 56, 2052-2055.	2.6	8
30	Insights into an alternative benzofuran binding mode and novel scaffolds of polyketide synthase 13 inhibitors. Journal of Molecular Modeling, 2019, 25, 130.	1.8	6
31	Identification of Novel Coumestan Derivatives as Polyketide Synthase 13 Inhibitors against <i>Mycobacterium tuberculosis</i> . Part II. Journal of Medicinal Chemistry, 2019, 62, 3575-3589.	6.4	26
32	Benzofuran-isatin hybrids tethered via different length alkyl linkers and their in vitro anti-mycobacterial activities. Bioorganic and Medicinal Chemistry, 2019, 27, 2652-2656.	3.0	8
33	Benzofuran–isatin Hybrids: Design, Synthesis, and In Vitro Antiâ€cancer Activities. Journal of Heterocyclic Chemistry, 2019, 56, 1687-1693.	2.6	5
34	Recent Progress in Structure-Based Evaluation of Compound Promiscuity. ACS Omega, 2019, 4, 2758-2765.	3.5	17
35	Exploiting the furo[2,3-b]pyridine core against multidrug-resistant Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 974-977.	2.2	12
36	Mycobacterium tuberculosis Mannose-Capped Lipoarabinomannan Induces IL-10-Producing B Cells and Hinders CD4+Th1 Immunity. IScience, 2019, 11, 13-30.	4.1	35

#	Article	IF	CITATIONS
37	Benzofuran derivatives and their anti-tubercular, anti-bacterial activities. European Journal of Medicinal Chemistry, 2019, 162, 266-276.	5.5	93
38	Mycobacterial genomics and structural bioinformatics: opportunities and challenges in drug discovery. Emerging Microbes and Infections, 2019, 8, 109-118.	6.5	26
39	Benzofuran-isatin-hydroxylimine/thiosemicarbazide hybrids: Design, synthesis and in vitro anti-mycobacterial activity evaluation. Chinese Chemical Letters, 2019, 30, 653-655.	9.0	17
40	Design, Synthesis, and In Vitro Antiâ€mycobacterial Activities of Propylene Tethered Benzofuran–Isatin Hybrids. Journal of Heterocyclic Chemistry, 2019, 56, 338-342.	2.6	3
41	Molecular dynamics simulation and binding free energy studies of novel leads belonging to the benzofuran class inhibitors of <i>Mycobacterium tuberculosis</i> Polyketide Synthase 13. Journal of Biomolecular Structure and Dynamics, 2019, 37, 1616-1627.	3.5	36
42	Antibiotics and resistance: the two-sided coin of the mycobacterial cell wall. Cell Surface, 2020, 6, 100044.	3.0	27
43	Structural Basis for Enzymatic Off-Loading of Hybrid Polyketides by Dieckmann Condensation. ACS Chemical Biology, 2020, 15, 2783-2791.	3.4	11
44	Molecular Basis for Extender Unit Specificity of Mycobacterial Polyketide Synthases. ACS Chemical Biology, 2020, 15, 3206-3216.	3.4	2
45	Synthesis and evaluation of thiophene based small molecules as potent inhibitors of Mycobacterium tuberculosis. European Journal of Medicinal Chemistry, 2020, 208, 112772.	5.5	9
46	Chemical Tools for Illumination of Tuberculosis Biology, Virulence Mechanisms, and Diagnosis. Journal of Medicinal Chemistry, 2020, 63, 15308-15332.	6.4	11
47	Cytotoxicity and Antimycobacterial Properties of Pyrrolo[1,2-a]quinoline Derivatives: Molecular Target Identification and Molecular Docking Studies. Antibiotics, 2020, 9, 233.	3.7	30
48	Fragment-Based Design of <i>Mycobacterium tuberculosis</i> InhA Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 4749-4761.	6.4	27
49	Targeting Genome Integrity in Mycobacterium Tuberculosis: From Nucleotide Synthesis to DNA Replication and Repair. Molecules, 2020, 25, 1205.	3.8	13
50	Promiscuous Targets for Antitubercular Drug Discovery: The Paradigm of DprE1 and MmpL3. Applied Sciences (Switzerland), 2020, 10, 623.	2.5	44
51	In Silico Strategies in Tuberculosis Drug Discovery. Molecules, 2020, 25, 665.	3.8	50
52	The quest for the holy grail: new antitubercular chemical entities, targets and strategies. Drug Discovery Today, 2020, 25, 772-780.	6.4	43
53	Design, synthesis, and biological evaluation of novel 4H-chromen-4-one derivatives as antituberculosis agents against multidrug-resistant tuberculosis. European Journal of Medicinal Chemistry, 2020, 189, 112075.	5.5	26
54	Mycobacterial Cell Wall: A Source of Successful Targets for Old and New Drugs. Applied Sciences (Switzerland), 2020, 10, 2278.	2.5	44

#	Article	IF	CITATIONS
55	Lipolytic enzymes inhibitors: A new way for antibacterial drugs discovery. European Journal of Medicinal Chemistry, 2021, 209, 112908.	5.5	7
56	Molecular Docking Suggests the Targets of Anti-Mycobacterial Natural Products. Molecules, 2021, 26, 475.	3.8	19
57	<i>In vitro</i> anti-TB properties, <i>in silico</i> target validation, molecular docking and dynamics studies of substituted 1,2,4-oxadiazole analogues against <i>Mycobacterium tuberculosis</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 869-884.	5.2	19
58	Synthesis, Characterization, and Biological Evaluation of New Derivatives Targeting Mbtl as Antitubercular Agents. Pharmaceuticals, 2021, 14, 155.	3.8	21
59	A random small molecule library screen identifies novel antagonists of the kinin receptor from the cattle fever tick, <i>Rhipicephalus microplus</i> (Acari: Ixodidae). Pest Management Science, 2021, 77, 2238-2251.	3.4	5
60	Contribution of <scp> <i>N</i>â€heterocycles</scp> towards antiâ€tubercular drug discovery (2014–2019); predicted and reengineered molecular frameworks. Drug Development Research, 2021, 82, 767-783.	2.9	15
61	Design and synthesis of mycobacterial pks13 inhibitors: Conformationally rigid tetracyclic molecules. European Journal of Medicinal Chemistry, 2021, 213, 113202.	5.5	15
62	Tuberculosis Drug Discovery: A Decade of Hit Assessment for Defined Targets. Frontiers in Cellular and Infection Microbiology, 2021, 11, 611304.	3.9	38
63	Tuberculosis: An Overview of the Immunogenic Response, Disease Progression, and Medicinal Chemistry Efforts in the Last Decade toward the Development of Potential Drugs for Extensively Drug-Resistant Tuberculosis Strains. Journal of Medicinal Chemistry, 2021, 64, 4359-4395.	6.4	36
64	Therapeutic Potential of Coumestan Pks13 Inhibitors for Tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	12
65	Hybridization Approach to Drug Discovery Inhibiting Mycobacterium tuberculosis-An Overview. Current Topics in Medicinal Chemistry, 2021, 21, 777-788.	2.1	6
66	Screening of Compounds for Anti-tuberculosis Activity, and in vitro and in vivo Evaluation of Potential Candidates. Frontiers in Microbiology, 2021, 12, 658637.	3.5	4
68	The Tuberculosis Drug Accelerator at year 10: what have we learned?. Nature Medicine, 2021, 27, 1333-1337.	30.7	32
69	Identification of inhibitors targeting polyketide synthase 13 of Mycobacterium tuberculosis as antituberculosis drug leads. Bioorganic Chemistry, 2021, 114, 105110.	4.1	9
70	Identification of ruthenium (II) complexes with furanâ€substituted ligands as possible antibacterial agents against Staphylococcus aureus. Chemical Biology and Drug Design, 2021, 98, 885-893.	3.2	2
71	Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. Journal of Molecular Structure, 2022, 1248, 131473.	3.6	25
72	Cell wall inhibitors increase the accumulation of rifampicin in Mycobacterium tuberculosis. Access Microbiology, 2019, 1, e000006.	0.5	16
73	Kinase Targets for Mycolic Acid Biosynthesis in Mycobacterium tuberculosis. Current Molecular Pharmacology, 2019, 12, 27-49.	1.5	15

#	Article	IF	CITATIONS
74	Crystallization and structure analysis of the core motif of the Pks13 acyltransferase domain from <i>Mycobacterium tuberculosis</i> . PeerJ, 2018, 6, e4728.	2.0	6
76	Violet-emitting distributed-feedback laser using a naphtho[2,1- <i>b</i> :6,5- <i>b</i> ′]difuran derivative. Journal of Materials Chemistry C, 2021, 9, 17287-17290.	5.5	1
77	Synthesis, pharmacokinetic and molecular docking studies of new benzohydrazide derivatives possessing anti-tubercular activity against Mycobacterium tuberculosis H37Rv. Journal of Molecular Structure, 2022, 1250, 131884.	3.6	6
78	Infection microenvironment-related antibacterial nanotherapeutic strategies. Biomaterials, 2022, 280, 121249.	11.4	98
79	Thioesterase enzyme families: Functions, structures, and mechanisms. Protein Science, 2022, 31, 652-676.	7.6	18
80	Crystal structures of FadD32 and pks13-ACP domain from Corynebacterium diphtheriae. Biochemical and Biophysical Research Communications, 2022, 590, 152-157.	2.1	1
81	Silver(i)-catalyzed dehydrogenative cross-coupling of 2-aroylbenzofurans with phosphites. New Journal of Chemistry, 2022, 46, 2662-2668.	2.8	3
82	Design, synthesis, and computational studies of benzimidazole derivatives as new antitubercular agents. Journal of Biomolecular Structure and Dynamics, 2023, 41, 2667-2686.	3.5	3
83	Synthesis, antimicrobial, and antitubercular evaluation of new Schiff bases with in silico ADMET and molecular docking studies. European Journal of Chemistry, 2022, 13, 109-116.	0.6	3
84	Mandelic acid-based spirothiazolidinones targeting M. tuberculosis: Synthesis, in vitro and in silico investigations. Bioorganic Chemistry, 2022, 121, 105688.	4.1	6
85	Optimization of TAM16, a Benzofuran That Inhibits the Thioesterase Activity of Pks13; Evaluation toward a Preclinical Candidate for a Novel Antituberculosis Clinical Target. Journal of Medicinal Chemistry, 2022, 65, 409-423.	6.4	15
86	Design, Synthesis and Biological Evaluation of N-phenylindole Derivatives as Pks13 Inhibitors againstMycobacterium tuberculosis. Molecules, 2022, 27, 2844.	3.8	6
87	Overcoming Mycobacterium tuberculosis through small molecule inhibitors to break down cell wall synthesis. Acta Pharmaceutica Sinica B, 2022, 12, 3201-3214.	12.0	11
88	Thietanes and derivatives thereof in medicinal chemistry Current Topics in Medicinal Chemistry, 2022, 22, .	2.1	1
89	Recent Progress in the Development of Novel Mycobacterium Cell Wall Inhibitor to Combat Drug-Resistant Tuberculosis. Microbiology Insights, 2022, 15, 117863612210998.	2.0	7
90	Tuberculosis Drug Discovery: Challenges and New Horizons. Journal of Medicinal Chemistry, 2022, 65, 7489-7531.	6.4	59
91	MolHyb: A Web Server for Structure-Based Drug Design by Molecular Hybridization. Journal of Chemical Information and Modeling, 2022, 62, 2916-2922.	5.4	4
92	Solution structure of the type I polyketide synthase Pks13 from Mycobacterium tuberculosis. BMC Biology, 2022, 20, .	3.8	5

#	Article	IF	CITATIONS
93	Antitubercular, Cytotoxicity, and Computational Target Validation of Dihydroquinazolinone Derivatives. Antibiotics, 2022, 11, 831.	3.7	5
94	Lipid biosynthetic pathways as potential drug targets for emerging mycobacterial pathogens. , 2022, , 27-49.		0
95	Structure of a Promiscuous Thioesterase Domain Responsible for Branching Acylation in Polyketide Biosynthesis. Angewandte Chemie, 0, , .	2.0	0
96	Structure-based design of anti-mycobacterial drug leads that target the mycolic acid transporter MmpL3. Structure, 2022, , .	3.3	2
97	Structure of a Promiscuous Thioesterase Domain Responsible for Branching Acylation in Polyketide Biosynthesis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	4
98	Identification of novel inhibitors for mycobacterial polyketide synthase 13 via in silico drug screening assisted by the parallel compound screening with genetic algorithm-based programs. Journal of Antibiotics, 2022, 75, 552-558.	2.0	5
99	Structure-Based Optimization of Coumestan Derivatives as Polyketide Synthase 13-Thioesterase(Pks13-TE) Inhibitors with Improved hERG Profiles for <i>Mycobacterium tuberculosis</i> Treatment. Journal of Medicinal Chemistry, 2022, 65, 13240-13252.	6.4	8
100	Application of combined CRISPR screening for genetic and chemical-genetic interaction profiling in <i>Mycobacterium tuberculosis</i> . Science Advances, 2022, 8, .	10.3	3
101	Anti-tuberculosis drug development via targeting the cell envelope of Mycobacterium tuberculosis. Frontiers in Microbiology, 0, 13, .	3.5	9
102	Tools and Techniques to Tap the Potential of Himalayan Bioactive Molecules. , 2023, , 157-175.		1
103	Computational characteristics of the structure-activity relationship of inhibitors targeting Pks13-TE domain. Computational Biology and Chemistry, 2023, 104, 107864.	2.3	0
104	Targeting mycobacterial membranes and membrane proteins: Progress and limitations. Bioorganic and Medicinal Chemistry, 2023, 81, 117212.	3.0	9
105	Structure and dynamics of the essential endogenous mycobacterial polyketide synthase Pks13. Nature Structural and Molecular Biology, 2023, 30, 296-308.	8.2	9
106	Tuberculosis: Pathogenesis, Current Treatment Regimens and New Drug Targets. International Journal of Molecular Sciences, 2023, 24, 5202.	4.1	23
107	Natural products and their analogues acting against <i>Mycobacterium tuberculosis</i> : A recent update. Drug Development Research, 2023, 84, 779-804.	2.9	2
108	In Silico Development of Novel Benzofuran-1,3,4-Oxadiazoles as Lead Inhibitors of M. tuberculosis Polyketide Synthase 13. Pharmaceuticals, 2023, 16, 829.	3.8	6
109	Pks 13 inhibitors—a promising target for future antitubercular agents. Medicinal Chemistry Research, 0, , .	2.4	0
110	DAIKON: A Data Acquisition, Integration, and Knowledge Capture Web Application for Target-Based Drug Discovery. ACS Pharmacology and Translational Science, 0, , .	4.9	Ο

#	Article	IF	CITATIONS
111	An integrated computational approach towards novel drugs discovery against polyketide synthase 13 thioesterase domain of Mycobacterium tuberculosis. Scientific Reports, 2023, 13, .	3.3	3
112	MEDICINAL CHEMISTRY ENDEAVORS FOR THE DISCOVERY OF NOVEL TUBERCULOSIS DRUGS. Medicinal Chemistry Reviews, 0, , 337-358.	0.1	0
113	<i>Mycobacterium tuberculosis</i> : Pathogenesis and therapeutic targets. MedComm, 2023, 4, .	7.2	3
114	Investigation of antituberculosis, antimicrobial, anti-inflammatory efficacies of newly synthesized transition metal(II) complexes of hydrazone ligands: structural elucidation and theoretical studies. Scientific Reports, 2023, 13, .	3.3	11
115	Targeting polyketide synthase 13 for the treatment of tuberculosis. European Journal of Medicinal Chemistry, 2023, 259, 115702.	5.5	1
116	Identification of Potent Antitubercular Secondary Metabolites from Kigelia africana: An Inâ€Silico Investigation. ChemistrySelect, 2023, 8, .	1.5	0
117	Identification and Optimization of Novel Inhibitors of the Polyketide Synthase 13 Thioesterase Domain with Antitubercular Activity. Journal of Medicinal Chemistry, 2023, 66, 15380-15408.	6.4	0
118	Unlocking Opportunities for <i>Mycobacterium leprae</i> and <i>Mycobacterium ulcerans</i> . ACS Infectious Diseases, 2024, 10, 251-269.	3.8	0
119	19 Schiff bases as antimycobacterial agents: synthesis, molecular docking and a plausible mechanism of action. Future Medicinal Chemistry, 2024, 16, 453-467.	2.3	0
120	Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nature Reviews Drug Discovery, 2024, 23, 381-403.	46.4	0
121	Synthesis, Solvatochromic Studies, DFT Calculations, Characterization, and <i>In Silico</i> Molecular Docking Studies of Azo Dyes of 3â€Methylâ€1â€phenylâ€1Hâ€pyrazolâ€5â€amine. ChemistrySelect, 2024, 9, .	1.5	0
122	Synthesis, Spectroscopic, Computational, and Biological Evaluation of Pyrazole mono azo dyes. Journal of Molecular Structure, 2024, 1309, 138045.	3.6	0
123	Blunted blades: new CRISPR-derived technologies to dissect microbial multi-drug resistance and biofilm formation. MSphere, 2024, 9, .	2.9	0