Extra-terrestrial construction processes $\hat{a} {\ensuremath{\varepsilon}}^{"}$ Advancem

Advances in Space Research 60, 1413-1429 DOI: 10.1016/j.asr.2017.06.038

Citation Report

#	ARTICLE	IF	CITATIONS
1	Materials and design concepts for space-resilient structures. Progress in Aerospace Sciences, 2018, 98, 74-90.	12.1	58
2	A new planetary structure fabrication process using phosphoric acid. Acta Astronautica, 2018, 143, 272-284.	3.2	34
3	Lunar Drilling â \in " Challenges and Opportunities. , 2018, , .		3
4	Mechanical behaviour of additively manufactured lunar regolith simulant components. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233, 1629-1644.	1.1	16
5	Lunar Soil Simulants- An Assessment. , 2019, , .		5
6	Extraterrestrial construction materials. Progress in Materials Science, 2019, 105, 100577.	32.8	84
7	Development and Mechanical Properties of Basalt Fiber-Reinforced Acrylonitrile Butadiene Styrene for In-Space Manufacturing Applications. Journal of Composites Science, 2019, 3, 89.	3.0	11
8	Numerical modelling of the microwave heating behaviour of lunar regolith. Planetary and Space Science, 2019, 179, 104723.	1.7	15
9	Developing a Framework for Autonomous Control Software for a Human Colony on Mars. , 2019, , .		2
10	3D Printing and Solvent Dissolution Recycling of Polylactide–Lunar Regolith Composites by Material Extrusion Approach. Polymers, 2020, 12, 1724.	4.5	12
11	A review towards the design of extraterrestrial structures: From regolith to human outposts. Acta Astronautica, 2020, 175, 540-569.	3.2	39
12	Energy requirements of a thermally processed ISRU radiation shield for a lunar habitat. Advances in Space Research, 2020, 65, 2467-2474.	2.6	7
13	Dense, nano-grained, multi-phase ceramic coatings by dry aerosol deposition of lunar regolith simulant. Additive Manufacturing, 2020, 35, 101304.	3.0	3
14	On possibilities for development of the common-sense concept of habitats beyond the Earth. Acta Astronautica, 2020, 170, 487-498.	3.2	11
15	Regolith-based additive manufacturing for sustainable development of lunar infrastructure – An overview. Acta Astronautica, 2021, 180, 650-678.	3.2	71
16	Robotic tools, native matter: workflow and methods for geomaterial reconstitution using additive manufacturing. Architectural Science Review, 2021, 64, 490-503.	2.2	3
17	Extraterrestrial Construction in Lunar and Martian Environments. , 2021, , .		8
18	Microwave Sintering of Lunar Regolith Simulant for Manufacturing Building Elements. , 2021, , .		2

TATION REPO

CITATION REPORT

#	Article	IF	CITATIONS
19	ISRU technology deployment at a lunar outpost in 2040: A Delphi survey. Acta Astronautica, 2021, 181, 316-324.	3.2	7
20	Understanding the Soil Bearing Resistance in a Different Gravity Environment via Particle Density Scaling. , 2021, , .		0
21	Innovation in Construction Techniques on Earth versus Space: Similarities and Differences. , 2021, , .		0
22	Sintered or melted regolith for lunar construction: state-of-the-art review and future research directions. Construction and Building Materials, 2021, 296, 123627.	7.2	36
23	Microstructural, mechanical, and thermal properties of microwave-sintered KLS-1 lunar regolith simulant. Ceramics International, 2021, 47, 26891-26897.	4.8	22
24	Effects of Ilmenite on the Properties of Microwave-Sintered Lunar Regolith Simulant. Journal of Aerospace Engineering, 2021, 34, .	1.4	7
25	Investigating the microwave heating behaviour of lunar soil simulant JSC-1A at different input powers. Scientific Reports, 2021, 11, 2133.	3.3	21
26	In-situ resource utilization–feasibility of the use of lunar soil to create structures on the moon via sintering based additive manufacturing technology. Aeronautics and Aerospace Open Access Journal, 2018, 2, .	0.2	6
27	Diseño y fabricación de un prototipo a escala de una cámara con variación de humedad y temperatura para curado de concretos de activación alcalina elaborados a partir de mezclas de escoria siderúrgica y cenizas volantes. Respuestas, 2018, 23, 45-51.	0.2	0
28	Technology Trend of Construction Additive Manufacturing. Journal of Korean Powder Metallurgy Institute, 2019, 26, 528-538.	0.3	1
29	Challenges in the microwave heating of lunar regolith – analysis through the design of a Microwave Heating Demonstrator (MHD) payload. Advances in Space Research, 2021, 69, 751-751.	2.6	4
30	Low-temperature thermoplastic welding of metallic glass ribbons for in-space manufacturing. Science China Materials, 2021, 64, 979-986.	6.3	8
31	Development and test of a Lunar Excavation and Size Separation System (LES ³) for the LUVMIâ€X rover platform. Journal of Field Robotics, 2022, 39, 263-280.	6.0	3
32	Lower Cost Lunar Bricks: Energetics of Melting and Sintering Lunar Regolith Simulants. New Space, 2022, 10, 193-204.	0.8	2
33	Review of space resources processing for Mars missions: Martian simulants, regolith bonding concepts and additive manufacturing. Open Ceramics, 2022, 9, 100216.	2.0	18
34	Towards out of earth manufacturing: overview of the ESA materials and processes activities on manufacturing in space. CEAS Space Journal, 2023, 15, 69-75.	2.3	15
35	Lunar shelter construction issues: The state-of-the-art towards 3D printing technologies. Acta Astronautica, 2022, 195, 318-343.	3.2	16
36	Approval for the Construction of the First 3D Printed Detached House in Germany—Significance of Large Scale Element Testing. , 2021, , 144-169.		6

			-		
Сіт	ATL.	ON	DE		DT
	АШ		INE.	РU	K I

#	Article	IF	CITATIONS
37	Lunar soils, simulants and lunar construction materials: An overview. Advances in Space Research, 2022, 70, 762-779.	2.6	16
38	Improving relative density and mechanical strength of lunar regolith structures via DLP-stereolithography integrated with powder surface modification process. Ceramics International, 2022, 48, 26874-26883.	4.8	7
39	Hybrid microwave sintering of a lunar soil simulant: Effects of processing parameters on microstructure characteristics and mechanical properties. Materials and Design, 2022, 220, 110878.	7.0	8
40	Batteries for aeronautics and space exploration: Recent developments and future prospects. , 2022, , 531-595.		2
41	Technical evaluation of additive manufacturing technologies for in-situ fabrication with lunar regolith. Advances in Space Research, 2023, 71, 2656-2668.	2.6	1
42	Cold sintering as a promising ISRU technique: A case study of Mars regolith simulant. Icarus, 2023, 389, 115270.	2.5	5
43	Enabling technologies for planetary exploration. , 2023, , 249-329.		0
44	Vacuum 3D printing of highly filled polymeric matrix composites. Acta Astronautica, 2023, 204, 25-33.	3.2	5
45	Geotechnical and Shear Behavior of Novel Lunar Regolith Simulants TUBS-M, TUBS-T, and TUBS-I. Materials, 2022, 15, 8561.	2.9	2
46	Metamodels for Rapid Analysis of Large Sets of Building Designs for Robotic Constructability: Technology Demonstration Using the NASA 3D Printed Mars Habitat Challenge. , 2023, , .		0
47	Prioritization of habitat construction materials on Mars based on multi-criteria decision-making. Journal of Building Engineering, 2023, 66, 105864.	3.4	1
48	The microstructure and mechanical properties of microwave-heated lunar simulants at different input powers under vacuum. Scientific Reports, 2023, 13, .	3.3	4
49	In-situ visualization of powder wrapping behavior in millimeter-scale-beam lunar regolith powder bed fusion. Powder Technology, 2023, , 118552.	4.2	0
50	Production of a set of lunar regolith simulants based on Apollo and Chinese samples. Advances in Space Research, 2023, 72, 565-576.	2.6	1
51	Overview of the Lunar In Situ Resource Utilization Techniques for Future Lunar Missions. Space: Science & Technology, 2023, 3, .	2.5	5
52	Water extraction from icy lunar simulants using low power microwave heating. Acta Astronautica, 2023, 209, 95-103.	3.2	3
53	Photocatalytic CO2 conversion: Beyond the earth. Chinese Journal of Catalysis, 2023, 50, 1-5.	14.0	4
54	Destructive and non-destructive testing of potential lunar polymer concrete for future lunar habitable infrastructure. Construction and Building Materials, 2023, 405, 133395.	7.2	0

CITATION REPORT

#	Article	IF	CITATIONS
55	Applicability of UV-Curable Binders in High Solid Suspensions for Direct-Ink-Write 3D Printing in Extremely Cold Temperatures. ACS Applied Materials & Interfaces, 0, , .	8.0	0
56	Lunar Resources. Reviews in Mineralogy and Geochemistry, 2023, 89, 829-868.	4.8	5
58	A framework for robotic excavation and dry stone construction using on-site materials. Science Robotics, 2023, 8, .	17.6	2
59	A Survey on Extraterrestrial Habitation Structures with a Focus on Energy-Saving 3D Printing Techniques. Applied Sciences (Switzerland), 2023, 13, 12913.	2.5	0
60	Effect of TiO2 on the Microstructure and Flexural Strength of Lunar Regolith Simulant. Crystals, 2024, 14, 110.	2.2	0
61	Preliminary study on localized microwave sintering of lunar regolith. Acta Astronautica, 2024, 218, 126-136.	3.2	0