Comparison of dust emissions, transport, and depositio and Gobi Desert from 2007 to 2011

Science China Earth Sciences 60, 1338-1355 DOI: 10.1007/s11430-016-9051-0

Citation Report

#	Article	IF	CITATIONS
1	The Spatial and Temporal Distributions of Absorbing Aerosols over East Asia. Remote Sensing, 2017, 9, 1050.	4.0	44
2	Dust modeling over East Asia during the summer of 2010 using the WRF-Chem model. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 213, 1-12.	2.3	29
3	First long-term detection of paleo-oceanic signature of dust aerosol at the southern marginal area of the Taklimakan Desert. Scientific Reports, 2018, 8, 6779.	3.3	6
4	Aerosol optical characteristics and their vertical distributions under enhanced haze pollution events: effect of the regional transport of different aerosol types over eastern China. Atmospheric Chemistry and Physics, 2018, 18, 2949-2971.	4.9	69
5	Spatial Variations in the Chemical Composition of Eolian Sediments in Hyperarid Regions: a Case Study from the Badain Jaran Desert, Northwestern China. Journal of Sedimentary Research, 2018, 88, 290-300.	1.6	20
6	The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming. Atmospheric Chemistry and Physics, 2018, 18, 5991-5999.	4.9	79
7	Characteristics of air pollution events over Hotan Prefecture at the southwestern edge of Taklimakan Desert, China. Journal of Arid Land, 2018, 10, 686-700.	2.3	8
8	Differences in Sulfate Aerosol Radiative Forcing between the Daytime and Nighttime over East Asia Using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) Model. Atmosphere, 2018, 9, 441.	2.3	3
9	Evaluation of the BSC-DREAM8b regional dust model using the 3D LIVAS-CALIPSO product. Atmospheric Environment, 2018, 195, 46-62.	4.1	19
10	High Summertime Aerosol Loadings Over the Arabian Sea and Their Transport Pathways. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,568.	3.3	44
11	Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations – Part 1: ATSR (1995–2011) and MODIS C6.1 (2000–2017). Atmospheric Chemistry and Physics, 2018, 18, 11389-11407.	4.9	52
12	Estimation of sampling efficiency of the Big Spring Number Eight (BSNE) sampler at different heights based on sand particle size in the Taklimakan Desert. Geomorphology, 2018, 322, 89-96.	2.6	9
13	Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign. Atmospheric Chemistry and Physics, 2018, 18, 7131-7148.	4.9	76
14	Statistical analysis and estimation of the regional trend of aerosol size over the Arabian Gulf Region during 2002–2016. Scientific Reports, 2018, 8, 9571.	3.3	13
15	East Asian dust storm in May 2017: observations, modelling, and its influence on the Asia-Pacific region. Atmospheric Chemistry and Physics, 2018, 18, 8353-8371.	4.9	61
16	Quantifying contributions of natural and anthropogenic dust emission from different climatic regions. Atmospheric Environment, 2018, 191, 94-104.	4.1	56
17	Geochemical characteristics of the fine-grained component of surficial deposits from dust source areas in northwestern China. Aeolian Research, 2018, 34, 18-26.	2.7	20
18	Long-term variation of satellite-based PM2.5 and influence factors over East China. Scientific Reports, 2018, 8, 11764.	3.3	15

#	Article	IF	CITATIONS
19	Transport pathways of PM10 during the spring in northwest China and its characteristics of potential dust sources. Journal of Cleaner Production, 2019, 237, 117746.	9.3	21
20	Contrasting Influence of Gobi and Taklimakan Deserts on the Dust Aerosols in Western North America. Geophysical Research Letters, 2019, 46, 9064-9071.	4.0	22
21	Mechanism of Spatiotemporal Air Quality Response to Meteorological Parameters: A National-Scale Analysis in China. Sustainability, 2019, 11, 3957.	3.2	26
22	A study on the effects of soil moisture, air humidity, and air temperature on wind speed threshold for dust emissions in the Taklimakan Desert. Natural Hazards, 2019, 97, 1069-1081.	3.4	12
23	Geochemical characteristics of dust aerosol availability in northwestern China. Arabian Journal of Geosciences, 2019, 12, 1.	1.3	1
24	Modelling of nitric acid gas adsorption by atmospheric dust particles. Aerosol Science and Technology, 2019, 53, 381-393.	3.1	6
25	Geochemical characterization of major elements in desert sediments and implications for the Chinese loess source. Science China Earth Sciences, 2019, 62, 1428-1440.	5.2	29
26	Vertical Structures of Dust Aerosols over East Asia Based on CALIPSO Retrievals. Remote Sensing, 2019, 11, 701.	4.0	39
27	Comparisons suggest more efforts are required to parameterize wind flow around shrub vegetation elements for predicting aeolian flux. Scientific Reports, 2019, 9, 3841.	3.3	8
28	On the Recent Amplification of Dust Over the Arabian Peninsula During 2002–2012. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13220-13229.	3.3	24
29	Estimations of indirect and direct anthropogenic dust emission at the global scale. Atmospheric Environment, 2019, 200, 50-60.	4.1	26
30	Contribution of dust in northern China to PM10 concentrations over the Hexi corridor. Science of the Total Environment, 2019, 660, 947-958.	8.0	37
31	Climatology of Asian dust activation and transport potential based on MISR satellite observations and trajectory analysis. Atmospheric Chemistry and Physics, 2019, 19, 363-378.	4.9	50
32	Variation in PM2.5 source over megacities on the ancient Silk Road, northwestern China. Journal of Cleaner Production, 2019, 208, 897-903.	9.3	24
33	Influence of Dynamic and Thermal Forcing on the Meridional Transport of Taklimakan Desert Dust in Spring and Summer. Journal of Climate, 2019, 32, 749-767.	3.2	42
34	Joint influence of surface erosion and high-latitude ice-sheet extent on Asian dust cycle during the last glacial maximum. Geological Magazine, 2020, 157, 777-789.	1.5	4
35	Variation of the summer Asian westerly jet over the last millennium based on the PMIP3 simulations. Holocene, 2020, 30, 332-343.	1.7	7
36	Transport of Asian aerosols to the Pacific Ocean. Atmospheric Research, 2020, 234, 104735.	4.1	10

#	Article	IF	CITATIONS
37	Wind erosion events at different wind speed levels in the Tarim Basin. Geomorphology, 2020, 369, 107386.	2.6	11
38	Using composite fingerprints to quantify the potential dust source contributions in northwest China. Science of the Total Environment, 2020, 742, 140560.	8.0	30
39	Climatology of Dustâ€Forced Radiative Heating Over the Tibetan Plateau and Its Surroundings. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032942.	3.3	22
40	Exploring the spatial-temporal characteristics of the aerosol optical depth (AOD) in Central Asia based on the moderate resolution imaging spectroradiometer (MODIS). Environmental Monitoring and Assessment, 2020, 192, 383.	2.7	19
41	The Regional Impact of Ecological Restoration in the Arid Steppe on Dust Reduction over the Metropolitan Area in Northeastern China. Environmental Science & Technology, 2020, 54, 7775-7786.	10.0	14
42	Distribution and transport characteristics of dust aerosol over Tibetan Plateau and Taklimakan Desert in China using MERRA-2 and CALIPSO data. Atmospheric Environment, 2020, 237, 117670.	4.1	36
43	A transient simulation of precession-scale spring dust activity over northern China and its relation to mid-latitude atmospheric circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 542, 109585.	2.3	10
44	Identification and quantitative analysis of dust trajectories in the Hexi Corridor. Agricultural and Forest Meteorology, 2020, 291, 107987.	4.8	5
45	Insight into the climatology of different sand-dust aerosol types over the Taklimakan Desert based on the observations from radiosonde and A-train satellites. Atmospheric Environment, 2020, 238, 117705.	4.1	13
46	Evaluation of wind erosion in the Tarim Basin based on parameter localization. Theoretical and Applied Climatology, 2020, 140, 1071-1080.	2.8	2
47	Temporal variation of dust aerosol pollution in northern China. Arabian Journal of Geosciences, 2020, 13, 1.	1.3	4
48	Improved parameterization for effect of soil moisture on threshold friction velocity for saltation activity based on observations in the Taklimakan Desert. Geoderma, 2020, 369, 114322.	5.1	8
49	Evaluating and improving the sand storm numerical simulation performance in Northwestern China using WRF-Chem and remote sensing soil moisture data. Atmospheric Research, 2021, 251, 105411.	4.1	8
50	The Indirect Impact of Surface Vegetation Improvement on the Climate Response of Sand-Dust Events in Northern China. Atmosphere, 2021, 12, 339.	2.3	4
51	Tracking prevailing dust aerosol over the air pollution in central China with integrated satellite and ground observations. Atmospheric Environment, 2021, 253, 118369.	4.1	18
52	Comparison of dust emission ability of sand desert, gravel desert (Gobi), and farmland in northern China. Catena, 2021, 201, 105215.	5.0	15
53	Applying a dust index over North China and evaluating the contribution of potential factors to its distribution. Atmospheric Research, 2021, 254, 105515.	4.1	10
54	Effect of stones on the sand saltation threshold during natural sand and dust storms in a stony desert in Tsogt-Ovoo in the Gobi Desert, Mongolia. Journal of Arid Land, 2021, 13, 653-673.	2.3	8

	Сітл	tion Report	
#	Article	IF	Citations
55	Characteristics of Dust Events in China from 2015 to 2020. Atmosphere, 2021, 12, 952.	2.3	14
56	Modeling for the source apportionments of PM10 during sand and dust storms over East Asia in 2020. Atmospheric Environment, 2021, 267, 118768.	4.1	11
57	Water-soluble brown carbon in atmospheric aerosols along the transport pathway of Asian dust: Optical properties, chemical compositions, and potential sources. Science of the Total Environment, 2021, 789, 147971.	8.0	20
58	Seasonal and interannual variations of atmospheric dust aerosols in mid and low latitudes of Asia – A comparative study. Atmospheric Research, 2020, 244, 105036.	4.1	17
59	Desert dust as a significant carrier of atmospheric mercury. Environmental Pollution, 2020, 267, 115442.	7.5	15
60	Desert Environment and Climate Observation Network over the Taklimakan Desert. Bulletin of the American Meteorological Society, 2020, 102, E1172-E1191.	3.3	18
61	Aerosol solar radiative forcing near the Taklimakan Desert based on radiative transfer and regional meteorological simulations during the Dust Aerosol Observation-Kashi campaign. Atmospheric Chemistry and Physics, 2020, 20, 10845-10864.	4.9	17
62	A neglected transport of plastic debris to cities from farmland in remote arid regions. Science of the Total Environment, 2022, 807, 150982.	8.0	14
63	Relationship between the development of a convective mixed layer and dust weather in arid and semiâ€arid regions of East Asia. International Journal of Climatology, 0, , .	3.5	1
64	Characterization of dust activation and their prevailing transport over East Asia based on multi-satellite observations. Atmospheric Research, 2022, 265, 105886.	4.1	12
65	Weakened dust activity over China and Mongolia from 2001 to 2020 associated with climate change and land-use management. Environmental Research Letters, 2021, 16, 124056.	5.2	18
66	What rainfall rates are most important to wet removal of different aerosol types?. Atmospheric Chemistry and Physics, 2021, 21, 16797-16816.	4.9	9
67	Distribution and sources of PM2.5-bound free silica in the atmosphere of hyper-arid regions in Hotan, North-West China. Science of the Total Environment, 2022, 810, 152368.	8.0	7
68	Deciphering the variations and mechanisms of the westerly jets across the Northern Hemisphere during the Last Interglacial based on PMIP4 models. Climate Dynamics, 2022, 58, 3279-3295.	3.8	2
69	Impact of transient eddy fluxes on the dust storm event: Cases study in South Xinjiang, China. Atmospheric Research, 2022, 269, 106054.	4.1	2
70	New insights into the Asian dust cycle derived from CALIPSO lidar measurements. Remote Sensing of Environment, 2022, 272, 112906.	11.0	31
71	Annual and early summer variability in WRF-CHEM simulated West African PM10 during 1960–2016. Atmospheric Environment, 2022, 273, 118957.	4.1	5
72	Dust Characteristics Observed by Unmanned Aerial Vehicle over the Taklimakan Desert. Remote Sensing, 2022, 14, 990.	4.0	6

#	Article	IF	CITATIONS
73	Dynamic Dust Source Regions and the Associated Natural and Anthropogenic Dust Emissions at the Global Scale. Frontiers in Earth Science, 2022, 10, .	1.8	0
74	Implications of North Atlantic warming for a possible increase of dust activity in northern East Asia. Atmospheric Research, 2022, 271, 106092.	4.1	6
75	Dust Aerosol Vertical Profiles in the Hinterland of Taklimakan Desert During Summer 2019. Frontiers in Environmental Science, 2022, 10, .	3.3	2
76	On the Spatio-Temporal Characteristics of Aerosol Optical Depth in the Arabian Gulf Zone. Atmosphere, 2022, 13, 857.	2.3	2
77	Aerosol optical properties and its direct radiative forcing over Tibetan Plateau from 2006 to 2017. Particuology, 2023, 74, 64-73.	3.6	2
78	Effect of Shelterbelt Construction on Soil Water Characteristic Curves in an Extreme Arid Shifting Desert. Water (Switzerland), 2022, 14, 1803.	2.7	3
79	Predominant Type of Dust Storms That Influences Air Quality Over Northern China and Future Projections. Earth's Future, 2022, 10, .	6.3	16
80	Record-breaking dust loading during two mega dust storm events over northern China in March 2021: aerosol optical and radiative properties and meteorological drivers. Atmospheric Chemistry and Physics, 2022, 22, 7905-7932.	4.9	48
81	Pattern Transition of Dust Events over Northern China and Mongolia and Its Modulating Circulation in Spring. Scientific Online Letters on the Atmosphere, 2022, 18, 159-166.	1.4	1
82	Influence of Topographic Relief on Sand Transport in the Near-Surface Layer During Dust Storms in the Taklimakan Desert. Frontiers in Environmental Science, 0, 10, .	3.3	1
83	A novel hybrid sand and dust storm detection method using MODIS data on GEE platform. European Journal of Remote Sensing, 2022, 55, 420-428.	3.5	2
84	Bacterial community structure and functions in microhabitats associated with black stones in Black Gobi desert, China. Ecological Indicators, 2022, 142, 109168.	6.3	4
85	Aerosol Mineralogical Study Using Laboratory and IASI Measurements: Application to East Asian Deserts. Remote Sensing, 2022, 14, 3422.	4.0	3
86	Spatiotemporal distribution of aerosols over the Tibet Plateau and Tarim Basin (1980–2020). Journal of Cleaner Production, 2022, 374, 133958.	9.3	4
87	The Tibetan Plateau as dust aerosol transit station in middle troposphere over northern East Asia: A case study. Atmospheric Research, 2022, 280, 106416.	4.1	3
88	Saltation–Sandblasting Processes Driving Enrichment of Water-Soluble Salts in Mineral Dust. Environmental Science and Technology Letters, 2022, 9, 921-928.	8.7	4
89	Modeling study on the roles of the deposition and transport of PM2.5 in air quality changes over central-eastern China. Journal of Environmental Sciences, 2023, 123, 535-544.	6.1	4
90	Aerosol-cloud interactions over the Tibetan Plateau: An overview. Earth-Science Reviews, 2022, 234, 104216.	9.1	19

#		IF	CITATIONS
π 91	Direct Radiative Effects of Dust Aerosols over Northwest China Revealed by Satellite-Derived Aerosol Three-Dimensional Distribution, Journal of Meteorological Research, 2022, 36, 767-778,	2.4	0
92	Dust pollution in China affected by different spatial and temporal types of El Niño. Atmospheric Chemistry and Physics, 2022, 22, 14489-14502.	4.9	2
93	Assessment of spatiotemporal features and potential sources of atmospheric aerosols over the Tianshan mountains in arid central Asia. Atmospheric Environment, 2022, , 119502.	4.1	1
94	Ecological restoration can enhance the radiation benefit of sand fixation service: A simulated evidence of Xilingol League, China. Journal of Environmental Management, 2023, 328, 116947.	7.8	8
95	A multi-objective framework to select numerical options in air quality prediction models: A case study on dust storm modeling. Science of the Total Environment, 2023, 863, 160681.	8.0	7
96	Mapping land degradation and sand and dust generation hotspots by spatiotemporal data fusion analysis: A caseâ€study in the southern Gobi (Mongolia). Land Degradation and Development, 0, , .	3.9	1
97	Inhalable Saharan dust induces oxidative stress, NLRP3 inflammasome activation, and inflammatory cytokine release. Environment International, 2023, 172, 107732.	10.0	4
98	The Spatiotemporal Characteristics and Driving Factors of Dust Emissions in East Asia (2000–2021). Remote Sensing, 2023, 15, 410.	4.0	1
99	Aerosol Characterization of Northern China and Yangtze River Delta Based on Multi-Satellite Data: Spatiotemporal Variations and Policy Implications. Sustainability, 2023, 15, 2029.	3.2	1
100	Dust emission and potential diffusion process in Mongolia. Land Degradation and Development, 0, , .	3.9	2
101	The changing sulphur content of a northern Chinese dust storm: Initiation, attenuation and culmination. Atmospheric Environment, 2023, 297, 119606.	4.1	3
102	Northward Extent of Atmospheric Mercury Transboundary Transport to the Himalayas and Tibetan Plateau Region. Geophysical Research Letters, 2023, 50, .	4.0	2
103	East Gobi megalake systems reveal East Asian Monsoon dynamics over the last interglacial-glacial cycle. Nature Communications, 2023, 14, .	12.8	8
104	Desert Abiotic Carbon Sequestration Weakening by Precipitation. Environmental Science & Technology, 0, , .	10.0	1
105	Comparative Study of Two Cross-Border Dust Storms in Spring 2021 Based on Lidar and Remote Sensing Data. Geographical Science Research, 2023, 12, 262-273.	0.1	0
107	On the dynamics and air-quality impact of the exceptional East Asian dust outbreak in mid-March 2021. Atmospheric Research, 2023, 292, 106846.	4.1	2
108	Quantifying the contribution of local drivers to observed weakening of spring dust storm frequency over northern China (1982–2017). Science of the Total Environment, 2023, 894, 164923.	8.0	1
109	Summer Extreme Dust Activity in the Taklimakan Desert Regulated by the South Asian High. Remote Sensing, 2023, 15, 2875.	4.0	1

#	Article	IF	CITATIONS
110	Analysis of the Severe Dust Process and Its Impact on Air Quality in Northern China. Atmosphere, 2023, 14, 1071.	2.3	1
111	Positive Feedback of Dust Direct Radiative Effect on Dust Emission in Taklimakan Desert. Geophysical Research Letters, 2023, 50, .	4.0	1
112	A super dust storm enhanced by radiative feedback. Npj Climate and Atmospheric Science, 2023, 6, .	6.8	2
113	Design of a Multi-DOF Structure Based on Dynamic Analysis and Autonomous Operation Algorithm. Journal of Physics: Conference Series, 2023, 2557, 012023.	0.4	0
114	Provenance of Aeolian Dust Revealed by (²³⁴ U/ ²³⁸ U) Activity Ratios in Cryoconites From Highâ€Altitude Glaciers in Western China and Its Transport and Settlement Mechanisms. Journal of Geophysical Research F: Earth Surface, 2023, 128, .	2.8	0
115	Quantifying the contributions of natural and anthropogenic dust sources in Shanxi Province, northern China. Chemosphere, 2023, 344, 140280.	8.2	0
117	Multidecadal variability of dust activity in Gobi desert and its connection with the pacific decadal oscillation. Environmental Research Communications, 2023, 5, 095013.	2.3	1
118	Comparative genomics reveals environmental adaptability and antimicrobial activity of a novel Streptomyces isolated from soil under black Gobi rocks. Antonie Van Leeuwenhoek, 0, , .	1.7	0
119	Analysis of the relationship between dust aerosol and precipitation in spring over East Asia using EOF and SVD methods. Science of the Total Environment, 2024, 908, 168437.	8.0	0
121	Terrain effects of the Tibetan Plateau on dust aerosol distribution over the Tarim Basin, China. Atmospheric Research, 2024, 298, 107143.	4.1	0
122	Three-Dimensional Distribution and Transport Features of Dust and Polluted Dust over China and Surrounding Areas from CALIPSO. Remote Sensing, 2023, 15, 5734.	4.0	0
123	Quantifying Mineral Dust Emissions on the Tibetan Plateau With a Modified Dust Source Map. Geophysical Research Letters, 2024, 51, .	4.0	1
124	Possible impact of North Atlantic sea surface temperature on decadal variability of dust activity in Gobi Desert. Environmental Research Communications, 2024, 6, 011003.	2.3	0
126	Climate factors influencing springtime dust activities over Northern East Asia in 2021 and 2023. Atmospheric Research, 2024, 303, 107342.	4.1	0
127	Optical and physical characteristics of aerosols over Asia: AERONET, MERRA-2 and CAMS. Atmospheric Environment, 2024, 326, 120470.	4.1	0