Quantum Loop Topography for Machine Learning

Physical Review Letters 118, 216401

DOI: 10.1103/physrevlett.118.216401

Citation Report

#	Article	IF	CITATIONS
1	Self-learning Monte Carlo method: Continuous-time algorithm. Physical Review B, 2017, 96, .	1.1	55
2	Machine learning quantum phases of matter beyond the fermion sign problem. Scientific Reports, 2017, 7, 8823.	1.6	252
3	Probing many-body localization with neural networks. Physical Review B, 2017, 95, .	1.1	117
4	Solving the Bose–Hubbard Model with Machine Learning. Journal of the Physical Society of Japan, 2017, 86, 093001.	0.7	97
5	Machine learning <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> quantum spin liquids with quasiparticle statistics. Physical Review B, 2017, 96, .	1.1	99
6	Kernel methods for interpretable machine learning of order parameters. Physical Review B, 2017, 96, .	1.1	99
7	Restricted Boltzmann machine learning for solving strongly correlated quantum systems. Physical Review B, $2017, 96, .$	1.1	198
8	Phase Diagrams of Three-Dimensional Anderson and Quantum Percolation Models Using Deep Three-Dimensional Convolutional Neural Network. Journal of the Physical Society of Japan, 2017, 86, 113704.	0.7	22
9	Principal component analysis for fermionic critical points. Physical Review B, 2017, 96, .	1.1	41
10	Machine learning of explicit order parameters: From the Ising model to SU(2) lattice gauge theory. Physical Review B, 2017, 96, .	1.1	92
11	Distributed secure quantum machine learning. Science Bulletin, 2017, 62, 1025-1029.	4.3	196
12	Quantum information processing with superconducting circuits: a review. Reports on Progress in Physics, 2017, 80, 106001.	8.1	628
13	Neural Networks Identify Topological Phases. Physics Magazine, 0, 10, .	0.1	8
14	Applications of neural networks to the studies of phase transitions of two-dimensional Potts models. Annals of Physics, 2018, 391, 312-331.	1.0	43
15	Neural-network-designed pulse sequences for robust control of singlet-triplet qubits. Physical Review A, 2018, 97, .	1.0	28
16	Machine Learning Topological Invariants with Neural Networks. Physical Review Letters, 2018, 120, 066401.	2.9	185
17	Construction of Hamiltonians by supervised learning of energy and entanglement spectra. Physical Review B, 2018, 97, .	1.1	24
18	Unsupervised machine learning account of magnetic transitions in the Hubbard model. Physical Review E, 2018, 97, 013306.	0.8	84

#	Article	IF	CITATIONS
19	Machine Learning Based Localization and Classification with Atomic Magnetometers. Physical Review Letters, 2018, 120, 033204.	2.9	24
20	Approximating quantum many-body wave functions using artificial neural networks. Physical Review B, 2018, 97, .	1.1	146
21	Machine Learning Technique to Find Quantum Many-Body Ground States of Bosons on a Lattice. Journal of the Physical Society of Japan, 2018, 87, 014001.	0.7	74
22	Identifying product order with restricted Boltzmann machines. Physical Review B, 2018, 97, .	1.1	20
23	Real-space mapping of topological invariants using artificial neural networks. Physical Review B, 2018, 97, .	1.1	44
24	Machine-learning solver for modified diffusion equations. Physical Review E, 2018, 98, .	0.8	24
25	Supervised learning approach for recognizing magnetic skyrmion phases. Physical Review B, 2018, 98, .	1.1	37
26	Extracting many-particle entanglement entropy from observables using supervised machine learning. Physical Review B, 2018, 98, .	1.1	9
27	Decoupling approximation robustly reconstructs directed dynamical networks. New Journal of Physics, 2018, 20, 113003.	1.2	6
28	Analytic continuation via domain knowledge free machine learning. Physical Review B, 2018, 98, .	1.1	46
29	Machine Learning Many-Body Localization: Search for the Elusive Nonergodic Metal. Physical Review Letters, 2018, 121, 245701.	2.9	56
30	Matrix product operators for sequence-to-sequence learning. Physical Review E, 2018, 98, .	0.8	34
31	Machine learning inverse problem for topological photonics. Communications Physics, 2018, 1, .	2.0	110
32	Machine learning the many-body localization transition in random spin systems. Journal of Physics Condensed Matter, 2018, 30, 395902.	0.7	9
33	Smallest neural network to learn the Ising criticality. Physical Review E, 2018, 98, 022138.	0.8	38
34	Self-learning Monte Carlo with deep neural networks. Physical Review B, 2018, 97, .	1.1	65
35	Automatic spin-chain learning to explore the quantum speed limit. Physical Review A, 2018, 97, .	1.0	47
36	Visualizing a neural network that develops quantum perturbation theory. Physical Review A, 2018, 98, .	1.0	9

#	Article	IF	CITATIONS
37	Deep learning topological invariants of band insulators. Physical Review B, 2018, 98, .	1.1	57
38	Machine learning of frustrated classical spin models (II): Kernel principal component analysis. Frontiers of Physics, 2018, 13, 1.	2.4	32
39	Metallic Metal–Organic Frameworks Predicted by the Combination of Machine Learning Methods and Ab Initio Calculations. Journal of Physical Chemistry Letters, 2018, 9, 4562-4569.	2.1	84
40	Topological quantum phase transitions of Chern insulators in disk geometry. Journal of Physics Condensed Matter, 2018, 30, 355502.	0.7	8
41	Learning disordered topological phases by statistical recovery of symmetry. Physical Review B, 2018, 97, .	1.1	58
42	Deep learning and the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>AdS</mml:mi><mml:mo>/</mml:mo><mml:mi>CFT</mml:mi><td>ow<u>l</u>ze/mm</td><td>l:math></td></mml:mrow></mml:math>	ow <u>l</u> ze/mm	l:math>
43	Machine Learning Detection of Bell Nonlocality in Quantum Many-Body Systems. Physical Review Letters, 2018, 120, 240402.	2.9	51
44	Machine Learning Out-of-Equilibrium Phases of Matter. Physical Review Letters, 2018, 120, 257204.	2.9	104
45	Recent advances and applications of machine learning in solid-state materials science. Npj Computational Materials, 2019, 5, .	3.5	1,289
46	Steerability detection of an arbitrary two-qubit state via machine learning. Physical Review A, 2019, 100, .	1.0	18
47	Unsupervised learning eigenstate phases of matter. Physical Review B, 2019, 100, .	1.1	10
48	Emergent SchrĶdinger equation in an introspective machine learning architecture. Science Bulletin, 2019, 64, 1228-1233.	4.3	21
49	Accelerating lattice quantum Monte Carlo simulations using artificial neural networks: Application to the Holstein model. Physical Review B, 2019, 100, .	1.1	23
50	Unveiling phase transitions with machine learning. Physical Review B, 2019, 100, .	1.1	50
51	Identifying quantum phase transitions using artificial neural networks on experimental data. Nature Physics, 2019, 15, 917-920.	6.5	150
52	Revealing ferroelectric switching character using deep recurrent neural networks. Nature Communications, 2019, 10, 4809.	5.8	34
53	Study on estimating quantum discord by neural network with prior knowledge. Quantum Information Processing, 2019, 18, 1.	1.0	1
54	Phase transition encoded in neural network. Progress of Theoretical and Experimental Physics, 2019, 2019, .	1.8	22

#	ARTICLE	IF	Citations
55	When does reinforcement learning stand out in quantum control? A comparative study on state preparation. Npj Quantum Information, 2019, 5 , .	2.8	77
56	Experimental Simultaneous Learning of Multiple Nonclassical Correlations. Physical Review Letters, 2019, 123, 190401.	2.9	25
57	Multifaceted machine learning of competing orders in disordered interacting systems. Physical Review B, 2019, 100, .	1.1	10
58	Disorder induced phase transition in magnetic higher-order topological insulator: A machine learning study. Chinese Physics B, 2019, 28, 117301.	0.7	21
59	Quantum topology identification with deep neural networks and quantum walks. Npj Computational Materials, 2019, 5, .	3.5	32
60	Quantum convolutional neural networks. Nature Physics, 2019, 15, 1273-1278.	6.5	554
61	Unsupervised Machine Learning for Analysis of Phase Separation in Ternary Lipid Mixture. Journal of Chemical Theory and Computation, 2019, 15, 6343-6357.	2.3	18
62	Reconstructing dynamical networks via feature ranking. Chaos, 2019, 29, 093107.	1.0	14
63	Materials informatics: From the atomic-level to the continuum. Acta Materialia, 2019, 168, 473-510.	3.8	108
64	Machine learning in electronic-quantum-matter imaging experiments. Nature, 2019, 570, 484-490.	13.7	133
65	Machine Learning as a universal tool for quantitative investigations of phase transitions. Nuclear Physics B, 2019, 944, 114639.	0.9	35
66	Machine Learning Topological Phases with a Solid-State Quantum Simulator. Physical Review Letters, 2019, 122, 210503.	2.9	47
67	Deriving the order parameters of a spin-glass model using principal component analysis. Physical Review E, 2019, 99, 063304.	0.8	8
68	Inverse design of photonic topological state via machine learning. Applied Physics Letters, 2019, 114, .	1.5	101
69	Recognition of polymer configurations by unsupervised learning. Physical Review E, 2019, 99, 043307.	0.8	12
70	Identifying topological order through unsupervised machine learning. Nature Physics, 2019, 15, 790-795.	6.5	176
71	Probing transport in quantum many-fermion simulations via quantum loop topography. Physical Review B, 2019, 99, .	1.1	3
72	Few-shot machine learning in the three-dimensional Ising model. Physical Review B, 2019, 99, .	1.1	14

#	Article	IF	Citations
73	Machine learning of quantum phase transitions. Physical Review B, 2019, 99, .	1.1	55
74	Machine learning of phase transitions in the percolation and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>X</mml:mi> <mml:mi>Y<td>><!--<b-->ത്ങി:mi</td><td>row68k/mml:n</td></mml:mi></mml:mrow></mml:math>	> <b ത്ങി:mi	row68k/mml:n
75	Quantum Neural Network States: A Brief Review of Methods and Applications. Advanced Quantum Technologies, 2019, 2, 1800077.	1.8	49
76	From DFT to machine learning: recent approaches to materials science–a review. JPhys Materials, 2019, 2, 032001.	1.8	385
77	Machine learning electron correlation in a disordered medium. Physical Review B, 2019, 99, .	1.1	12
78	Application of Convolutional Neural Network to Quantum Percolation in Topological Insulators. Journal of the Physical Society of Japan, 2019, 88, 123704.	0.7	15
79	Machine learning dynamical phase transitions in complex networks. Physical Review E, 2019, 100, 052312.	0.8	25
80	Learning epidemic threshold in complex networks by Convolutional Neural Network. Chaos, 2019, 29, 113106.	1.0	12
81	Machine learning and the physical sciences. Reviews of Modern Physics, 2019, 91, .	16.4	1,245
82	Decoding Phases of Matter by Machine-Learning Raman Spectroscopy. Physical Review Applied, 2019, 12, .	1.5	17
83	Efficient machine-learning representations of a surface code with boundaries, defects, domain walls, and twists. Physical Review A, 2019, 99, .	1.0	20
84	Self-organizing maps as a method for detecting phase transitions and phase identification. Physical Review B, 2019, 99, .	1.1	19
85	Machine Prediction of Topological Transitions in Photonic Crystals. Physical Review Applied, 2020, 14,	1.5	17
86	Topological Quantum Compiling with Reinforcement Learning. Physical Review Letters, 2020, 125, 170501.	2.9	46
87	Machine learning meets quantum foundations: A brief survey. AVS Quantum Science, 2020, 2, 034101.	1.8	30
88	Machine Learning for Many-Body Localization Transition*. Chinese Physics Letters, 2020, 37, 080501.	1.3	6
89	Machine learning for quantum matter. Advances in Physics: X, 2020, 5, 1797528.	1.5	100
90	Far-Field Subwavelength Acoustic Imaging by Deep Learning. Physical Review X, 2020, 10, .	2.8	30

#	Article	IF	CITATIONS
91	Topological quantum phase transitions retrieved through unsupervised machine learning. Physical Review B, 2020, 102 , .	1.1	54
93	Machine learning topological phases in real space. Physical Review B, 2020, 102, .	1.1	26
94	Deep learning of topological phase transitions from entanglement aspects. Physical Review B, 2020, 102, .	1.1	18
95	Unsupervised Manifold Clustering of Topological Phononics. Physical Review Letters, 2020, 124, 185501.	2.9	74
96	Unsupervised Machine Learning and Band Topology. Physical Review Letters, 2020, 124, 226401.	2.9	99
97	Characterization of photoexcited states in the half-filled one-dimensional extended Hubbard model assisted by machine learning. Physical Review B, 2020, 101, .	1.1	4
98	Artificial neural network based computation for out-of-time-ordered correlators. Physical Review B, $2020,101,$	1.1	8
99	Self-learning Monte Carlo method with Behler-Parrinello neural networks. Physical Review B, 2020, 101, .	1.1	19
100	Quantum Overlapping Tomography. Physical Review Letters, 2020, 124, 100401.	2.9	65
101	Predicting Quantum Many-Body Dynamics with Transferable Neural Networks*. Chinese Physics Letters, 2020, 37, 018401.	1.3	4
102	Neural network representation and optimization of thermoelectric states of multiple interacting quantum dots. Physical Chemistry Chemical Physics, 2020, 22, 16165-16173.	1.3	2
103	Identifying Conformation States of Polymer through Unsupervised Machine Learning. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1403-1408.	2.0	9
104	Drawing Phase Diagrams of Random Quantum Systems by Deep Learning the Wave Functions. Journal of the Physical Society of Japan, 2020, 89, 022001.	0.7	39
105	Learning quantum structures in compact localized eigenstates. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 115302.	0.7	1
106	Topological Invariant Prediction via Deep Learning. Journal of the Korean Physical Society, 2020, 76, 401-405.	0.3	3
107	Emerging materials intelligence ecosystems propelled by machine learning. Nature Reviews Materials, 2021, 6, 655-678.	23.3	138
108	Quantum Machine Learning: A Review and Current Status. Advances in Intelligent Systems and Computing, 2021, , 101-145.	0.5	28
109	Scheme for automatic differentiation of complex loss functions with applications in quantum physics. Physical Review E, 2021, 103, 013309.	0.8	13

#	Article	IF	CITATIONS
110	Universal Adversarial Examples and Perturbations for Quantum Classifiers. National Science Review, $0, , .$	4.6	6
111	Machine learning non-Hermitian topological phases. Physical Review B, 2021, 103, .	1.1	13
112	Unsupervised learning of topological phase transitions using the Calinski-Harabaz index. Physical Review Research, 2021, 3, .	1.3	22
113	The 2021 quantum materials roadmap. JPhys Materials, 2020, 3, 042006.	1.8	111
114	Engineering topological phases guided by statistical and machine learning methods. Physical Review Research, 2021, 3, .	1.3	6
115	Unsupervised Learning Universal Critical Behavior via the Intrinsic Dimension. Physical Review X, 2021, 11, .	2.8	26
116	Learning the Fuzzy Phases of Small Photonic Condensates. Physical Review Letters, 2021, 126, 150602.	2.9	4
117	Learning single-particle mobility edges by a neural network based on data compression. Physical Review B, 2021, 103, .	1.1	5
118	Can a CNN trained on the Ising model detect the phase transition of the $\langle i \rangle q \langle i \rangle$ -state Potts model?. Progress of Theoretical and Experimental Physics, 2021, 2021, .	1.8	3
119	Machine Learning of Mirror Skin Effects in the Presence of Disorder. Journal of the Physical Society of Japan, 2021, 90, 053703.	0.7	4
120	Finding Short-Range Parity-Time Phase-Transition Points with a Neural Network. Chinese Physics Letters, 2021, 38, 051101.	1.3	4
121	Unsupervised Learning of Non-Hermitian Topological Phases. Physical Review Letters, 2021, 126, 240402.	2.9	22
122	Deep learning super-diffusion in multiplex networks. Journal of Physics Complexity, 2021, 2, 035011.	0.9	0
123	Entanglement clustering for ground-stateable quantum many-body states. Physical Review Research, 2021, 3, .	1.3	1
124	Rapid Exploration of Topological Band Structures Using Deep Learning. Physical Review X, 2021, 11, .	2.8	12
125	Unsupervised machine learning of topological phase transitions from experimental data. Machine Learning: Science and Technology, 2021, 2, 035037.	2.4	41
126	Analysis of PICC Based on Dysfunction Module Personalized Nursing Treatment in Chemotherapy of Advanced Esophageal Cancer. Journal of Healthcare Engineering, 2021, 2021, 1-10.	1.1	4
127	Identification of Non-Fermi Liquid Physics in a Quantum Critical Metal via Quantum Loop Topography. Physical Review Letters, 2021, 127, 046601.	2.9	3

#	Article	IF	CITATIONS
128	Deep learning of topological phase transitions from the point of view of entanglement for two-dimensional chiral p -wave superconductors. Physical Review B, 2021, 104, .	1.1	3
129	Classification of Strongly Disordered Topological Wires Using Machine Learning. , 2021, , 211-223.		0
130	Dynamical learning of non-Markovian quantum dynamics. Chinese Physics B, 2022, 31, 010314.	0.7	0
131	Analysis of Kohn–Sham Eigenfunctions Using a Convolutional Neural Network in Simulations of the Metal–Insulator Transition in Doped Semiconductors. Journal of the Physical Society of Japan, 2021, 90, 094001.	0.7	0
132	Learning impurity spectral functions from density of states. Journal of Physics Condensed Matter, 2021, 33, 495601.	0.7	0
133	A supervised learning algorithm for interacting topological insulators based on local curvature. SciPost Physics, 2021, 11 , .	1.5	8
134	Machine-learning based design of digital materials for elastic wave control. Extreme Mechanics Letters, 2021, 48, 101372.	2.0	16
135	Machine learning topological invariants of non-Hermitian systems. Physical Review A, 2021, 103, .	1.0	20
136	Unsupervised interpretable learning of topological indices invariant under permutations of atomic bands. Machine Learning: Science and Technology, 2021, 2, 025008.	2.4	5
137	Adversarial learning in quantum artificial intelligence. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 140302.	0.2	3
138	Learning what a machine learns in a many-body localization transition. Journal of Physics Condensed Matter, 2020, 32, 415605.	0.7	4
139	Entanglement area law for shallow and deep quantum neural network states. New Journal of Physics, 2020, 22, 053022.	1.2	6
140	Stochastic replica voting machine prediction of stable cubic and double perovskite materials and binary alloys. Physical Review Materials, 2019, 3, .	0.9	10
141	Artificial intelligence for high-throughput discovery of topological insulators: The example of alloyed tetradymites. Physical Review Materials, 2020, 4, .	0.9	25
142	Active learning algorithm for computational physics. Physical Review Research, 2020, 2, .	1.3	14
143	Unsupervised learning using topological data augmentation. Physical Review Research, 2020, 2, .	1.3	25
144	Hierarchy of energy scales in an O(3) symmetric antiferromagnetic quantum critical metal: A Monte Carlo study. Physical Review Research, 2020, 2, .	1.3	13
145	Interpreting machine learning of topological quantum phase transitions. Physical Review Research, 2020, 2, .	1.3	33

#	Article	IF	CITATIONS
146	Pairwise tomography networks for many-body quantum systems. Physical Review Research, 2020, 2, .	1.3	12
147	Quantum adversarial machine learning. Physical Review Research, 2020, 2, .	1.3	55
148	Casimir effect with machine learning. Physical Review Research, 2020, 2, .	1.3	4
149	Thermodynamics and feature extraction by machine learning. Physical Review Research, 2020, 2, .	1.3	17
150	Discovering symmetry invariants and conserved quantities by interpreting siamese neural networks. Physical Review Research, 2020, 2, .	1.3	40
151	All-optical neural network with nonlinear activation functions. Optica, 2019, 6, 1132.	4.8	222
152	Detecting nematic order in STM/STS data with artificial intelligence. SciPost Physics, 2020, 8, .	1.5	5
153	Optimized observable readout from single-shot images of ultracold atoms via machine learning. Physical Review A, 2021, 104, .	1.0	5
154	Deep learning of topological phase transitions from entanglement aspects: An unsupervised way. Physical Review B, 2021, 104, .	1.1	7
155	Additive manufacturing of channeled acoustic topological insulators. Journal of the Acoustical Society of America, 2021, 150, 2461-2468.	0.5	4
156	Markovian Quantum Neuroevolution for Machine Learning. Physical Review Applied, 2021, 16, .	1.5	13
157	Topological phase transitions in square-octagon lattice with Rashba spin-orbit coupling. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 237101.	0.2	1
159	A comprehensive neural networks study of the phase transitions of Potts model. New Journal of Physics, 2020, 22, 063016.	1,2	18
160	Machine learning on the electron–boson mechanism in superconductors. New Journal of Physics, 2020, 22, 123014.	1.2	3
161	Machine learning phases and criticalities without using real data for training. Physical Review B, 2020, 102, .	1.1	8
162	A universal neural network for learning phases. European Physical Journal Plus, 2021, 136, 1.	1.2	10
163	How To Use Neural Networks To Investigate Quantum Many-Body Physics. PRX Quantum, 2021, 2, .	3.5	25
164	Machine-learning classification of two-dimensional vortex configurations. Physical Review A, 2022, 105, .	1.0	3

#	Article	IF	Citations
165	Deep learning modeling strategy for material science: from natural materials to metamaterials. JPhys Materials, 2022, 5, 014003.	1.8	6
166	Deep learning for topological photonics. Advances in Physics: X, 2022, 7, .	1.5	10
167	Supervised and unsupervised machine learning of structural phases of polymers adsorbed to nanowires. Physical Review E, 2022, 105, 035304.	0.8	5
168	Neural network flows of low q-state Potts and clock models. New Journal of Physics, 2022, 24, 043040.	1.2	8
169	Discovering invariants via machine learning. Physical Review Research, 2021, 3, .	1.3	13
170	Learning ground states of spin-orbit-coupled Bose-Einstein condensates by a theory-guided neural network. Physical Review A, 2021, 104, .	1.0	2
172	Study of many-body localization by principal component analysis. European Physical Journal Plus, 2022, 137, 1.	1.2	2
173	Learning algorithm reflecting universal scaling behavior near phase transitions. Physical Review Research, 2022, 4, .	1.3	5
174	Combining machine learning with physics: A framework for tracking and sorting multiple dark solitons. Physical Review Research, 2022, 4, .	1.3	3
175	Clustering using matrix product states. Physical Review A, 2022, 105, .	1.0	2
176	Search for rogue waves in Bose-Einstein condensates via a theory-guided neural network. Physical Review E, 2022, 106, .	0.8	3
177	Experimental demonstration of adversarial examples in learning topological phases. Nature Communications, 2022, 13, .	5.8	5
179	Machine Learning Spectral Indicators of Topology. Springer Theses, 2022, , 79-93.	0.0	1
180	Provably efficient machine learning for quantum many-body problems. Science, 2022, 377, .	6.0	65
181	Experimental unsupervised learning of non-Hermitian knotted phases with solid-state spins. Npj Quantum Information, 2022, 8, .	2.8	17
182	Ground-state properties via machine learning quantum constraints. Physical Review Research, 2022, 4,	1.3	1
183	Model for Evaluating the Technical and Tactical Effectiveness of Tennis Matches Based on Machine Learning. Mobile Information Systems, 2022, 2022, 1-13.	0.4	1
184	Replacing Neural Networks by Optimal Analytical Predictors for the Detection of Phase Transitions. Physical Review X, 2022, 12, .	2.8	6

#	Article	IF	Citations
185	Machineâ€Learning Spectral Indicators of Topology. Advanced Materials, 2022, 34, .	11.1	10
186	Unsupervised Learning of Rydberg Atom Array Phase Diagram with Siamese Neural Networks. New Journal of Physics, 0, , .	1.2	0
187	Machine Learning of Implicit Combinatorial Rules in Mechanical Metamaterials. Physical Review Letters, 2022, 129, .	2.9	8
188	A perspective on machine learning and data science for strongly correlated electron problems. Carbon Trends, 2022, 9, 100231.	1.4	4
189	A universal training scheme and the resulting universality for machine learning phases. Progress of Theoretical and Experimental Physics, 2023, 2023, .	1.8	3
190	Presence and Absence of Barren Plateaus in Tensor-Network Based Machine Learning. Physical Review Letters, 2022, 129, .	2.9	11
191	Unsupervised learning of interacting topological phases from experimental observables. Fundamental Research, 2023, , .	1.6	1
192	No-go theorem and a universal decomposition strategy for quantum channel compilation. Physical Review Research, 2023, 5, .	1.3	0
193	Topogivity: A Machine-Learned Chemical Rule for Discovering Topological Materials. Nano Letters, 2023, 23, 772-778.	4.5	2
194	Learning of error statistics for the detection of quantum phases. Physical Review B, 2023, 107, .	1.1	0
195	Quaternion-based machine learning on topological quantum systems. Machine Learning: Science and Technology, 2023, 4, 015032.	2.4	1
196	Machine learning nonequilibrium electron forces for spin dynamics of itinerant magnets. Npj Computational Materials, 2023, 9, .	3.5	3
197	Machine Learning Understands Knotted Polymers. Macromolecules, 2023, 56, 2899-2909.	2.2	3
198	Single-shot quantum measurements sketch quantum many-body states. Physical Review B, 2023, 107, .	1.1	1