Acoustic energy absorption properties of fibrous mater

Composites Part A: Applied Science and Manufacturing 101, 360-380

DOI: 10.1016/j.compositesa.2017.07.002

Citation Report

#	Article	IF	CITATIONS
1	Preparation of soundâ€insulating material based on discarded cow hair. Journal of Applied Polymer Science, 2018, 135, 46332.	1.3	8
2	A study of some airflow resistivity models for multi-component polyester fiber assembly. Applied Acoustics, 2018, 139, 75-81.	1.7	25
3	Research of Acoustic Properties of Materials with the Purpose of Their Use at Design of Special Noise Protective Clothes for Oil and Gas Industry. IOP Conference Series: Earth and Environmental Science, 2018, 115, 012023.	0.2	0
4	Stimuliâ€Responsive Polyurethane Dispersions – Aqueous Autoâ€Dispersion. Israel Journal of Chemistry, 2018, 58, 1338-1346.	1.0	6
5	Sound Absorption Characterization of Natural Materials and Sandwich Structure Composites. Aerospace, 2018, 5, 75.	1.1	45
6	Sound absorption properties of nonwoven fabric based multiâ€layer composites. Polymer Composites, 2019, 40, 2012-2018.	2.3	19
7	Spark Plasma Sintering of Porous Materials Made of 1Kh18N9T Corrosion-Resistant Steel Fibers. Powder Metallurgy and Metal Ceramics, 2019, 58, 23-28.	0.4	2
8	Ultralight and Resilient Electrospun Fiber Sponge with a Lamellar Corrugated Microstructure for Effective Low-Frequency Sound Absorption. ACS Applied Materials & Emp; Interfaces, 2019, 11, 35333-35342.	4.0	66
9	Environmentally-friendly thermal and acoustic insulation materials from recycled textiles. Journal of Environmental Management, 2019, 251, 109536.	3.8	127
10	Glass microspheres strengthened magnetorheological plastomers for sound insulation. Materials Letters, 2019, 256, 126611.	1.3	8
11	Ultralight, superelastic and bendable lashing-structured nanofibrous aerogels for effective sound absorption. Nanoscale, 2019, 11, 2289-2298.	2.8	70
12	Experimental and mathematical survey of sound absorption performance of date palm fibers. Heliyon, 2019, 5, e01977.	1.4	31
13	Substitution of Coarse Aggregates with Mollusk-Shell Waste in Acoustic-Absorbing Concrete. Journal of Materials in Civil Engineering, 2019, 31, 04019077.	1.3	27
14	Sound insulation and hydrophobic properties of phenolic resin modified melamine foam: role of micro-morphology. Materials Research Express, 2019, 6, 075331.	0.8	6
15	Polyurethane/poly(vinylidene fluoride)/MWCNT composite foam for broadband airborne sound absorption. Journal of Applied Polymer Science, 2019, 136, 47868.	1.3	20
16	Acoustic Absorption Characterization and Prediction of Natural Coir Fibers. Acoustics Australia, 2019, 47, 67-77.	1.4	67
17	An inverse method for design and characterisation of acoustic materials. MATEC Web of Conferences, 2019, 304, 02002.	0.1	0
18	Engineered hybrid fibre reinforced composites for sound absorption building applications. Resources, Conservation and Recycling, 2019, 143, 1-14.	5. 3	46

#	Article	IF	CITATIONS
19	New sound absorbent composite materials based on sawdust and polyurethane foam. Composites Part B: Engineering, 2019, 165, 120-130.	5.9	78
20	Damping additives used in cement-matrix composites: A review. Composites Part B: Engineering, 2019, 164, 26-36.	5.9	46
21	Study on the sound absorption behavior of multi-component polyester nonwovens: experimental and numerical methods. Textile Reseach Journal, 2019, 89, 3342-3361.	1.1	36
22	Use of cellulose fibers from wheat straw for sustainable cement mortars. Journal of Sustainable Cement-Based Materials, 2019, 8, 161-179.	1.7	19
23	Multiple regression analysis of a woven fabric sound absorber. Textile Reseach Journal, 2019, 89, 855-866.	1.1	14
24	Influence of designs of weaves on acoustic attenuation of fabrics. Journal of Industrial Textiles, 2019, 49, 33-45.	1.1	15
25	Airflow resistance of acoustical fibrous materials: Measurements, calculations and applications. Journal of Industrial Textiles, 2020, 49, 981-1010.	1.1	9
26	Comparison of acoustic absorption characteristics of coir and date palm fibers: experimental and analytical study of green composites. International Journal of Environmental Science and Technology, 2020, 17, 39-48.	1.8	40
27	A review on the damping properties of fiber reinforced polymer composites. Journal of Industrial Textiles, 2020, 49, 693-721.	1.1	82
28	Investigation of Fiber Surface TreatmentÂEffect on Thermal, Mechanical and Acoustical Properties of Date Palm Fiber-Reinforced Cementitious Composites. Waste and Biomass Valorization, 2020, 11, 4441-4455.	1.8	42
29	Experimental study to measure the transmission loss of double panel natural fibers. Materials Today: Proceedings, 2020, 26, 482-486.	0.9	3
30	Sustainable sound absorbers from fruit stones waste. Applied Acoustics, 2020, 161, 107174.	1.7	15
31	Investigation of the Acoustic Performance of Bagasse. Journal of Materials Research and Technology, 2020, 9, 882-889.	2.6	21
32	Investigation of effective factors of woven structure fabrics for acoustic absorption. Applied Acoustics, 2020, 161, 107081.	1.7	25
33	Gypsum-based sound absorber produced by 3D printing technology. Applied Acoustics, 2020, 161, 107162.	1.7	15
34	Multi-layered sound absorption structure composed of nonwoven fabrics and polyethylene membranes. Journal of Industrial Textiles, 2022, 51, 6195S-6210S.	1.1	6
35	Sound-Absorbing Polymer Composite Materials for Construction Purposes. IOP Conference Series: Materials Science and Engineering, 2020, 753, 052027.	0.3	1
36	Recycling of waste tire fibers into advanced aerogels for thermal insulation and sound absorption applications. Journal of Environmental Chemical Engineering, 2020, 8, 104279.	3.3	45

#	Article	IF	Citations
37	Interlayer Hybridization of Virgin Carbon, Recycled Carbon and Natural Fiber Laminates. Materials, 2020, 13, 4955.	1.3	3
38	Interlocked Dualâ€Network and Superelastic Electrospun Fibrous Sponges for Efficient Lowâ€Frequency Noise Absorption. Small Structures, 2020, 1, 2000004.	6.9	30
39	Towards the Use of Novel Materials in Shipbuilding: Assessing Thermal Performances of Fire-Doors by Self-Consistent Numerical Modelling. Applied Sciences (Switzerland), 2020, 10, 5736.	1.3	4
40	Novel porous fiber-based composites with excellent sound-absorbing and flame-retardant properties. Journal of Wood Chemistry and Technology, 2020, 40, 285-293.	0.9	7
41	Research of the Sound-Absorbing Structureshape Influence on the SAS Acoustic Efficiency in the Nonlinear Operation Mode. IOP Conference Series: Earth and Environmental Science, 2020, 459, 062103.	0.2	0
42	Investigation of the Acoustic and Mechanical Properties of Homogenous and Hybrid Jute and Luffa Bio Composites. Journal of Natural Fibers, 2022, 19, 1217-1225.	1.7	13
43	Sound Absorption of Hemp Fibers ($\langle i \rangle$ Cannabis Sativa L $\langle i \rangle$.) Based Nonwoven Fabrics and Composites: A Review. Journal of Natural Fibers, 2022, 19, 1297-1309.	1.7	47
44	Investigation on the Sound Absorption Properties of Waste Green Tea Residues Covered by Woven Fabric. Journal of Natural Fibers, 2020, , 1-10.	1.7	10
45	Sound absorption performance of needle-punched nonwovens and their composites with perforated rubber. SN Applied Sciences, 2020, 2, 1 .	1.5	4
46	Prediction of flow characteristics in fibrous porous medium using a novel modeling algorithm and lattice Boltzmann method. Chemical Engineering Science, 2020, 221, 115647.	1.9	12
47	Effects of luffa and glass fibers in polyurethane-based ternary sandwich composites for building materials. SN Applied Sciences, 2020, 2, 1.	1.5	10
48	Influence of the shape of the sound-absorbing construction cells on their acoustic efficiency in the linear and nonlinear operation modes. AIP Conference Proceedings, 2020, , .	0.3	0
49	High acoustic absorption properties of hackberry compared to nine different hardwood species: A novel finding for acoustical engineers. Applied Acoustics, 2020, 169, 107475.	1.7	31
50	Transmission loss of nap cores made with cotton (CO) and polylactic acid (PLA) for application in lightweight construction. Materials Today: Proceedings, 2020, 31, S286-S290.	0.9	0
51	Effects of structural design including cellular structure precision controlling and sharp holes introducing on sound absorption behavior of polyimide foam. Polymer Testing, 2020, 84, 106393.	2.3	29
52	Mechanical and Damping Properties of Recycled Aggregate Concrete Modified with Air-Entraining Agent and Polypropylene Fiber. Materials, 2020, 13, 2004.	1.3	9
53	Influence of basalt fibers on the mechanical behavior of concreteâ€"A review. Structural Concrete, 2021, 22, 491-502.	1.5	40
54	A review of the crashworthiness performance of energy absorbing composite structure within the context of materials, manufacturing and maintenance for sustainability. Composite Structures, 2021, 257, 113081.	3.1	94

#	Article	IF	Citations
55	Hygrothermal treated paulownia hardwood reveals enhanced sound absorption coefficient: An effective and facile approach. Applied Acoustics, 2021, 174, 107758.	1.7	23
56	Mathematical and experimental investigation of sound absorption behavior of sustainable kenaf fiber at low frequency. International Journal of Environmental Science and Technology, 2021, 18, 2765-2780.	1.8	17
57	Hierarchical pore structure based on cellulose nanofiber/melamine composite foam with enhanced sound absorption performance. Carbohydrate Polymers, 2021, 255, 117405.	5.1	44
58	Universal law for diffusive mass transport through mycelial networks. Biotechnology and Bioengineering, 2021, 118, 930-943.	1.7	18
59	Wide absorption bandwidth of a light composite absorber based on micro-perforated sandwich panel. Applied Acoustics, 2021, 174, 107735.	1.7	2
60	The effect of the combination of multiple woven fabric and nonwoven on acoustic absorption. Journal of Industrial Textiles, 2021, 50, 1262-1280.	1.1	7
61	Effect of Sodium Hydroxide (NaOH) Treatment on Coconut Coir Fibre and its Effectiveness on Enhancing Sound Absorption Properties. Pertanika Journal of Science and Technology, 2021, 29, .	0.3	3
62	Recent advances on the fabrication methods of nanocomposite yarn-based strain sensor. Nanotechnology Reviews, 2021, 10, 221-236.	2.6	22
63	Mechanical and sound absorption performance of addition type liquid silicone rubber reinforced with halloysite nanotubes. Materials Research Express, 2021, 8, 015309.	0.8	4
64	Improved Mechanical and Sound Absorption Properties of Open Cell Silicone Rubber Foam with NaCl as the Pore-Forming Agent. Materials, 2021, 14, 195.	1.3	12
65	Acoustic Panels Made of Paper Sludge and Clay Composites. Sustainability, 2021, 13, 637.	1.6	12
66	Design and optimization of multi-scale porous sandwich composites with excellent sound absorption and cushioning properties. Journal of Sandwich Structures and Materials, 2021, 23, 4276-4293.	2.0	5
67	Multiscale fibril structure of hollow windmill palm fibers. Textile Reseach Journal, 2021, 91, 2421-2429.	1.1	5
68	Acoustic panels based on recycled paper sludge and lime composites. International Journal of Environmental Science and Technology, 0 , 1 .	1.8	2
69	Exploration of the Damping Characteristics of Basalt Hybrid Composites Reinforced with Natural Fibers and Epoxy Resin. Fibers and Polymers, 2021, 22, 1684-1692.	1.1	7
70	Improving the Sound Absorption of Natural Waste Material-based Sound Absorbers Using Micro-perforated Plates. Journal of Natural Fibers, 2022, 19, 5199-5210.	1.7	4
71	Sustainable Lightweight Insulation Materials from Textile-Based Waste for the Automobile Industry. Materials, 2021, 14, 1241.	1.3	28
72	Fabrication, Thermal and Sound Absorption Properties of Porous Polyimide Reinforcing by SiO ₂ Nanoparticles. Journal of Physics: Conference Series, 2021, 1838, 012008.	0.3	2

#	Article	IF	CITATIONS
73	Green Sound-Absorbing Composite Materials of Various Structure and Profiling. Coatings, 2021, 11, 407.	1.2	7
74	Convolutional neural networks for estimating transport parameters of fibrous materials based on micro-computerized tomography images. Journal of the Acoustical Society of America, 2021, 149, 2813-2828.	0.5	5
75	Assessment of the Measurement and Prediction Methods for the Acoustic Properties of Natural Fiber Samples and Evaluation of Their Properties. Journal of Natural Fibers, 2022, 19, 6283-6311.	1.7	10
76	Jute and Luffa Fiber-Reinforced Biocomposites: Effects of Sample Thickness and Fiber/Resin Ratio on Sound Absorption and Transmission Loss Performance. Journal of Natural Fibers, 0, , 1-16.	1.7	8
77	Nanotechnology and Acoustics in Medicine and Biology. Recent Patents on Nanotechnology, 2022, 16, 198-206.	0.7	8
78	A review on polymer-based materials for underwater sound absorption. Polymer Testing, 2021, 96, 107115.	2.3	60
79	Additive manufacturing of fibrous sound absorbers. Additive Manufacturing, 2021, 41, 101984.	1.7	6
80	Inverse design of a Helmholtz resonator based low-frequency acoustic absorber using deep neural network. Journal of Applied Physics, 2021, 129, .	1.1	22
81	Jute Felt for Noise Reduction: Understanding Effect of Pore Size Distribution. Journal of Natural Fibers, 2022, 19, 6482-6496.	1.7	6
82	Utilization and regeneration of waste sugarcane bagasse as a novel robust aerogel as an effective thermal, acoustic insulator, and oil adsorbent. Journal of Cleaner Production, 2021, 298, 126744.	4.6	46
83	Gradually perforated porous materials backed with Helmholtz resonant cavity for broadband low-frequency sound absorption. Composite Structures, 2021, 263, 113647.	3.1	40
84	Highâ€Performance Voice Recognition Based on Piezoelectric Polyacrylonitrile Nanofibers. Advanced Electronic Materials, 2021, 7, 2100206.	2.6	22
85	Experimental investigation on influence of damping response of composite material by natural fibersa review. Materials Today: Proceedings, 2021, 47, 3035-3042.	0.9	5
86	The influence of structural parameters of acoustic panels textile fronts on their sound absorption properties. Applied Acoustics, 2021, 178, 107964.	1.7	15
87	Comprehensive Insight into Foams Made of Thermomechanical Pulp Fibers and Cellulose Nanofibrils via Microwave Radiation. ACS Sustainable Chemistry and Engineering, 2021, 9, 10113-10122.	3.2	12
88	On Mechanical Behavior of Pine Nut Shell and Polyurethane Derived from Castor Oil Green Composite. Journal of Natural Fibers, 2022, 19, 7454-7469.	1.7	3
89	Acoustics of porous composites. Composites Part B: Engineering, 2021, 220, 109006.	5.9	16
90	Recent progress in acoustic materials and noise control strategies – A review. Applied Materials Today, 2021, 24, 101141.	2.3	40

#	Article	IF	CITATIONS
91	Sound absorption of hollow polyester woven fabric with honeycomb weave. Applied Acoustics, 2021, 180, 108148.	1.7	9
92	Hierarchically maze-like structured nanofiber aerogels for effective low-frequency sound absorption. Journal of Colloid and Interface Science, 2021, 597, 21-28.	5.0	43
93	External mean flow effect on sound transmission through composite sandwich structures filled with porous materials. Applied Mathematical Modelling, 2022, 101, 729-747.	2,2	3
94	Textiles for Noise Control. , 0, , .		2
95	Comparison of Experimental and Empirical Approaches for Determination of Sound Absorption Properties of Bagasse and Cornhusk Fibers. Journal of Natural Fibers, 2022, 19, 9024-9038.	1.7	4
96	Carbon fibre waste recycling into hybrid nonwovens for electromagnetic interference shielding and sound absorption. Journal of Cleaner Production, 2021, 315, 128196.	4.6	33
97	Simulação com painéis de fibra de açaÃ-para melhoria da inteligibilidade da fala em sala de aula. Ambiente ConstruÁdo, 2021, 21, 45-63.	0.2	1
98	Development of hybrid breathing materials for sustainable composite manufacturing. Journal of Cleaner Production, 2021, 321, 129028.	4.6	4
99	An acoustic structure design supported by shear thickening fluid for sound absorption. Applied Acoustics, 2021, 182, 108257.	1.7	3
100	Acoustic Properties of Innovative Concretes: A Review. Materials, 2021, 14, 398.	1.3	66
101	Dynamic flow resistivity and sound absorption of compressed fibrous porous materials: Experimental and theoretical. Physics of Fluids, 2020, 32, 127103.	1.6	5
102	For the mitigation of urban heat island and urban noise island: two simultaneous sides of urban discomfort. Environmental Research Letters, 2020, 15, 103004.	2.2	22
103	The Influence of Physical Properties and Increasing Woven Fabric Layers on the Noise Absorption Capacity. Materials, 2021, 14, 6220.	1.3	4
104	Damping and sound absorption properties of polymer matrix composites: A review. Polymer Testing, 2021, 104, 107388.	2.3	53
105	Acoustical Properties of Secondary Fibre-Based Natural Materials and Their Composites—A Brief Study. Lecture Notes on Multidisciplinary Industrial Engineering, 2020, , 431-448.	0.4	1
106	Fabrication of flexible acoustic metamaterials by growing metal-organic frameworks on fabrics. Cellulose, 2022, 29, 355-365.	2.4	6
107	Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption. Nature Communications, 2021, 12, 6599.	5.8	64
108	Numerical Investigation on the Absorption Characteristics of Helmholtz Resonator Based Absorber with Neck Opening on the Wall. SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	CITATIONS
109	Excellent Wideband Acoustic Absorption of a Multifunctional Composite Fibrous Panel with a Dual-Pore Network from Milled Corrugated Box Wastes. ACS Applied Polymer Materials, 0, , .	2.0	2
111	Experimental Investigation on Environmentally Sustainable Cement Composites Based on Wheat Straw and Perlite. Materials, 2022, 15, 453.	1.3	9
112	Identification of the elastic and damping properties of jute and luffa fiber-reinforced biocomposites., 2022,, 447-473.		0
114	Acoustic and mechanical properties of biofibers and their composites. , 2022, , 407-446.		1
115	Prediction of random incidence sound absorption coefficients of porous materials. Applied Acoustics, 2022, 189, 108625.	1.7	6
116	Synergistically enhanced mechanical, combustion and acoustic properties of biopolymer composite foams reinforcement by kenaf fibre. Composites Part A: Applied Science and Manufacturing, 2022, 155, 106826.	3.8	10
117	Fire-Resistant and Hierarchically Structured Elastic Ceramic Nanofibrous Aerogels for Efficient Low-Frequency Noise Reduction. Nano Letters, 2022, 22, 1609-1617.	4.5	42
118	Research Progress on Sound Absorption of Electrospun Fibrous Composite Materials. Nanomaterials, 2022, 12, 1123.	1.9	13
119	Textile-based directionally antagonistic sound absorber with double gradient structure. Textile Reseach Journal, 0, , 004051752110737.	1.1	1
120	Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature, 2022, 603, 616-623.	13.7	147
121	Improved sound absorption performance of synthetic fiber materials for industrial noise reduction: a review. Journal of Porous Materials, 2022, 29, 869-892.	1.3	17
122	Composite Dash Panel Insulation Characterization and Modelling Methodology for Virtual Simulations. , 0, , .		0
123	Multifunctional Dual-Pore Network Aerogel Composite Material for Broadband Sound Absorption, Thermal Insulation, and Fire Repellent Applications. ACS Applied Polymer Materials, 2022, 4, 2880-2895.	2.0	18
124	Mechanical, acoustic and vibration performance of intraâ€ply <scp>Kevlar</scp> / <scp>PALF</scp> epoxy hybrid composites: Effects of different weaving patterns. Polymer Composites, 2022, 43, 3902-3914.	2.3	14
125	A systematic review of the impact of green walls on urban comfort: temperature reduction and noise attenuation. Renewable and Sustainable Energy Reviews, 2022, 162, 112463.	8.2	31
126	Fiber Electronics Bring a New Generation of Acoustic Fabrics. Advanced Fiber Materials, 2022, 4, 321-323.	7.9	4
127	Sound absorption characteristics of aluminosilicate fibers. International Journal of Environmental Science and Technology, 2022, 19, 10245-10256.	1.8	6
128	Natural fibre-based protective textiles for noise reduction applications. , 2022, , 445-468.		0

#	Article	IF	CITATIONS
129	Morphological analysis of porosity and sound absorption in sustainable materials from rice husk. Building Acoustics, 2022, 29, 387-399.	1.1	2
130	Sound Absorption Behaviour of Vetiver Grass Fibre-based Manufactured Pine Board. Mapan - Journal of Metrology Society of India, 0, , .	1.0	0
131	Sound absorption performance of tea waste reinforced polypropylene and nanoclay biocomposites. Polymer Bulletin, 2023, 80, 5203-5218.	1.7	6
132	Design and thermal conductivity of 3D artificial cross-linked random fiber networks. Materials and Design, 2022, 220, 110800.	3.3	7
133	Parametric Study of different Fiber Parameters and their Influence on Acoustics and Vibration Behavior of Jute Fiber/Polyester resin Composites. Journal of Natural Fibers, 2022, 19, 13063-13075.	1.7	7
134	Agar-Based Composite Films as Effective Biodegradable Sound Absorbers. ACS Sustainable Chemistry and Engineering, 2022, 10, 8242-8253.	3.2	5
135	Acoustic Absorption Research on Woven Structure Fabrics. International Journal of Advanced Research in Science, Communication and Technology, 0, , 63-70.	0.0	0
136	Superhydrophobic hybrid silica-cellulose aerogel for enhanced thermal, acoustic, and oil absorption characteristics. Journal of Materials Science, 2022, 57, 13385-13402.	1.7	10
137	Surface Coating of Needle-Punched Nonwovens with Meltblown Nonwovens to Improve Acoustic Properties. Coatings, 2022, 12, 1092.	1.2	3
138	Noise attenuation inside airplane cabin: Preliminary results on combined porous/nano-fibrous materials. Applied Acoustics, 2022, 199, 109009.	1.7	4
139	Sound absorption characteristics of agro-sourced kapok fibrous materials. Industrial Crops and Products, 2022, 188, 115661.	2.5	5
140	Biometrics in the Era of COVID-19: Challenges and Opportunities. IEEE Transactions on Technology and Society, 2022, 3, 307-322.	2.4	14
141	Factors of Weave Estimation and the Effect of Weave Structure on Fabric Properties: A Review. Fibers, 2022, 10, 74.	1.8	11
142	Sound absorption property of hierarchical three-dimensional flat-knitted spacer fabric with microfiber. Textile Reseach Journal, 0, , 004051752211230.	1.1	1
143	Windmill Palm Waste Fiber Used as a Sustainable Nonwoven Mat with Acoustic Properties. Fibers and Polymers, 2022, 23, 2960-2969.	1.1	1
144	Electrospun Fibrous Sponges: Principle, Fabrication, and Applications. Advanced Fiber Materials, 2022, 4, 1434-1462.	7.9	25
145	A pre-screening study of honeycomb sandwich structure filled with green materials for noise reduction. Composites Part A: Applied Science and Manufacturing, 2022, 163, 107226.	3.8	9
146	Ultralight biomass-derived carbon fibre aerogels for electromagnetic and acoustic noise mitigation. Journal of Materials Chemistry A, 2022, 10, 22771-22780.	5 . 2	14

#	Article	IF	CITATIONS
147	Investigation on the sound absorption of multilayered woven and nonwoven fabrics with different bonding conditions. Polymer Composites, 0 , , .	2.3	0
148	Recent advances on nanofibrous acoustic materials for noise reduction applications. Journal of the Textile Institute, 2023, 114, 1581-1591.	1.0	3
149	Enhancement of the sound absorption coefficient experimental reproducibility for different size samples. Applied Acoustics, 2022, 200, 109072.	1.7	1
150	Sound absorption properties of nanofiber membrane-based multi-layer composites. Applied Acoustics, 2022, 200, 109029.	1.7	8
151	A new acoustically insulating fiber-reinforced lightweight concrete based on local materials and date palm waste. World Journal of Engineering, 2024, 21, 203-214.	1.0	0
152	Using Response Surface for Searching the Nearly Optimal Parameters Combination of the Foam Concrete Muffler. Materials, 2022, 15, 8128.	1.3	1
153	Acoustic Properties of Aerogels: Current Status and Prospects. Advanced Engineering Materials, 2023, 25, .	1.6	14
154	An experimental study on the sound transmission loss of dissimilar fuselage sandwich panels of turbojet aircraft. Thin-Walled Structures, 2023, 184, 110417.	2.7	2
155	The acoustic properties of coir coconut fiber. , 2022, , 359-372.		0
156	Electrospun Sound-Absorbing Nanofibrous Webs from Recycled Poly(vinyl butyral). Polymers, 2022, 14, 5049.	2.0	1
157	Research on the Dynamic Response Properties of Nonlethal Projectiles for Injury Risk Assessment. ACS Omega, 2022, 7, 47129-47147.	1.6	1
158	Giving Shape and Functionality to the Matter: Digital Construction. , 2023, , 33-56.		0
159	Investigating the Potential of Transparent Parallel-Arranged Micro-Perforated Panels (MPPs) as Sound Absorbers in Classrooms. International Journal of Environmental Research and Public Health, 2023, 20, 1445.	1.2	1
160	Multi-chamber micro-perforated panel absorbers optimised for high amplitude broadband absorption using a two-point impedance method. Journal of Sound and Vibration, 2023, 547, 117527.	2.1	8
161	Noise and Vibration in Switched Reluctance Motors: A Review on Structural Materials, Vibration Dampers, Acoustic Impedance, and Noise Masking Methods. IEEE Access, 2023, 11, 27702-27718.	2.6	6
163	New designs of sandwich panels to mitigate high-frequency noise inside space vehicles. Journal of Space Safety Engineering, 2023, 10, 133-143.	0.5	0
164	A deep autoencoder based approach for the inverse design of an acoustic-absorber. Engineering With Computers, 2024, 40, 279-300.	3.5	2
165	Testing and evaluation of technical textiles. , 2023, , 717-756.		0

#	ARTICLE	IF	CITATIONS
166	Maximizing sound absorption, thermal insulation, and mechanical strength of anisotropic pectin cryogels. Chemical Engineering Journal, 2023, 462, 142236.	6.6	5
167	Ultra-Low-Frequency Broadband Sound Absorption Characteristics of an Acoustic Metasurface with Pie-Sliced Unit Cells. Arabian Journal for Science and Engineering, 2023, 48, 12247-12257.	1.7	1
168	Acoustical and Mechanical Characterization of Natural Fibre-Reinforced Composite: A Review. International Journal of Scientific Research in Science, Engineering and Technology, 2023, , 301-316.	0.1	1
169	A Comprehensive Review on Access Control Systems amid Global Pandemic. , 2022, , .		1
170	Gradient Pore Structured Elastic Ceramic Nanofiber Aerogels with Cellulose Nanonets for Noise Absorption. Advanced Functional Materials, 2023, 33, .	7.8	10
171	Applications and Properties of Hemp Stalk-Based Insulating Biomaterials for Buildings: Review. Materials, 2023, 16, 3245.	1.3	6
189	Fabricating and Characterizing Composite Ceramic Foam-Based Porous Material Utilizing a Mixture of Micro Cellulose for Sound Absorber Application. , 2023, , 55-66.		0
192	Physicochemistry properties of water treatment sludge (WTS) as adsorbents for dyes and antibiotics removal. , 0, , .		0
193	Modelling of sound reduction of sound insulating enclosure with recycled rubber covered walls. , 0,		0
198	Fabric Thermal Display using Ultrasonic Waves. , 2023, , .		0
204	Acoustic properties of wool: sound insulation properties of wool fiber. , 2024, , 487-500.		0
208	Acoustic sound absorbing material and mechanical properties made from rice husk ash and bagasse reinforced glutinous glue. AIP Conference Proceedings, 2024, , .	0.3	0