Biogeochemical cycling of carbon and nitrogen in cool-s

Urban Forestry and Urban Greening 26, 158-162

DOI: 10.1016/j.ufug.2017.06.001

Citation Report

#	Article	IF	CITATIONS
1	Carbon Sequestration in Zoysiagrass Turf under Different Irrigation and Fertilization Management Regimes., 2019, 2, 1-8.		19
2	Lawn mowing frequency and its effects on biogenic and anthropogenic carbon dioxide emissions. Landscape and Urban Planning, 2019, 182, 114-123.	7.5	30
3	Ecological and economic benefits of lowâ€intensity urban lawn management. Journal of Applied Ecology, 2020, 57, 436-446.	4.0	48
4	A justification for continued management of turfgrass during economic contraction. Agricultural and Environmental Letters, 2020, 5, e20033.	1.2	9
5	Soil physiochemical properties and carbon sequestration of Urban landscapes in Lubbock, TX, USA. Urban Forestry and Urban Greening, 2020, 56, 126847.	5.3	16
6	Biosolids amendments improve an anthropogenically disturbed urban turfgrass system. Crop Science, 2020, 60, 1666-1681.	1.8	3
7	Biogeochemical and socioeconomic drivers of above- and below-ground carbon stocks in urban residential yards of a small city. Landscape and Urban Planning, 2020, 196, 103724.	7. 5	15
8	Greenhouse gas fluxes from turfgrass systems: Species, growth rate, clipping management, and environmental effects. Journal of Environmental Quality, 2021, 50, 547-557.	2.0	9
9	Estimated energy use and greenhouse gas emissions associated with golf course turfgrass maintenance in the Northern USA. Itsrj, 2022, 14, 58-75.	0.3	4
10	Vacant lot plant establishment techniques alter urban soil ecosystem services. Urban Forestry and Urban Greening, 2021, 61, 127096.	5.3	4
11	Investigating Factors Influencing Consumer Adoption of Low-input Turfgrasses. Hortscience: A Publication of the American Society for Hortcultural Science, 2021, 56, 1213-1220.	1.0	3
12	Cultivar blends: A strategy for creating more resilient warm season turfgrass lawns. Urban Ecosystems, 2022, 25, 797-810.	2.4	5
13	A framework for soil microbial ecology in urban ecosystems. Ecosphere, 2022, 13, .	2.2	23
14	Review of coolâ€season turfgrass water use and requirements: I. Evapotranspiration and responses to deficit irrigation. Crop Science, 2022, 62, 1661-1684.	1.8	12
15	Review of coolâ€season turfgrass water use and requirements: II. Responses to drought stress. Crop Science, 2022, 62, 1685-1701.	1.8	17
16	High Soil Carbon Sequestration Rates Persist Several Decades in Turfgrass Systems: A Meta-Analysis. SSRN Electronic Journal, 0, , .	0.4	O
17	Effects of different salt concentrations on the germination in some turfgrass varieties used in landscape applications. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 0, , .	0.0	0
18	Carbon Sequestration in Turfgrass–Soil Systems. Plants, 2022, 11, 2478.	3.5	13

#	Article	IF	CITATIONS
19	Development of an Urban Turfgrass and Tree Carbon Calculator for Northern Temperate Climates. Sustainability, 2022, 14, 12423.	3.2	2
20	High soil carbon sequestration rates persist several decades in turfgrass systems: A meta-analysis. Science of the Total Environment, 2022, , 159974.	8.0	8
21	Strategies for reducing inputs and emissions in turfgrass systems. Crop, Forage and Turfgrass Management, 2023, 9, .	0.6	0
22	Urbanization can accelerate climate change by increasing soil <scp>N₂O</scp> emission while reducing <scp>CH₄</scp> uptake. Global Change Biology, 2023, 29, 3489-3502.	9.5	9
23	Assessing the fertilizer and pesticide input needs of coolâ€season turfgrass species. Crop Science, 2023, 63, 3079-3095.	1.8	1
24	Knowledge Transfer and Innovation: Universities as Catalysts for Sustainable Decision Making in Industry. Sustainability, 2023, 15, 11175.	3.2	0