Challenges in the Greener Production of Formates/Form Heterogeneously Catalyzed CO₂Hydrogen

Chemical Reviews 117, 9804-9838

DOI: 10.1021/acs.chemrev.6b00816

Citation Report

#	Article	IF	CITATIONS
1	Synthesis, Characterization and Catalytic Application of Pyridineâ€Bridged Nâ€Heterocyclic Carbene–Ruthenium Complexes in the Hydrogenation of Carbonates. Chemistry - an Asian Journal, 2017, 12, 2809-2812.	1.7	12
2	Efficient production of formic acid by simultaneous photoreduction of bicarbonate and oxidation of glycerol on gold-TiO 2 composite under solar light. Journal of CO2 Utilization, 2017, 22, 117-123.	3.3	22
3	CO ₂ Activation over Catalytic Surfaces. ChemPhysChem, 2017, 18, 3135-3141.	1.0	228
4	Recent Progress in Photocatalytic CO ₂ Reduction Over Perovskite Oxides. Solar Rrl, 2017, 1, 1700126.	3.1	224
5	Introduction: Carbon Capture and Separation. Chemical Reviews, 2017, 117, 9521-9523.	23.0	157
6	Hydrogen Storage in Formic Acid: A Comparison of Process Options. Energy & Fuels, 2017, 31, 12603-12611.	2.5	94
7	Formic Acid Synthesis by CO ₂ Hydrogenation over Singleâ€Atom Catalysts Based on Ru and Cu Embedded in Graphene. ChemistrySelect, 2018, 3, 2631-2637.	0.7	31
8	Thermodynamic Analysis of Chemical and Phase Equilibria in CO ₂ Hydrogenation to Methanol, Dimethyl Ether, and Higher Alcohols. Industrial & Engineering Chemistry Research, 2018, 57, 4081-4094.	1.8	109
9	Theoretical study of methanol synthesis from CO2 and CO hydrogenation on the surface of ZrO2 supported In2O3 catalyst. Surface Science, 2018, 672-673, 7-12.	0.8	39
10	Nitrogen-rich graphitic carbon stabilized cobalt nanoparticles as an effective heterogeneous catalyst for hydrogenation of CO2 to formate. Journal of CO2 Utilization, 2018, 25, 310-314.	3.3	20
11	Conversion of CO ₂ into Organic Carbonates over a Fiber-Supported Ionic Liquid Catalyst in Impellers of the Agitation System. ACS Sustainable Chemistry and Engineering, 2018, 6, 7119-7127.	3.2	28
12	Influence of Filler Pore Structure and Polymer on the Performance of MOFâ€Based Mixedâ€Matrix Membranes for CO ₂ Capture. Chemistry - A European Journal, 2018, 24, 7949-7956.	1.7	44
13	Homogeneous Lightâ€Driven Catalytic Direct Carboxylation with CO ₂ . Chinese Journal of Chemistry, 2018, 36, 545-554.	2.6	53
14	Pd@TiO ₂ /carbon nanohorn electrocatalysts: reversible CO ₂ hydrogenation to formic acid. Energy and Environmental Science, 2018, 11, 1571-1580.	15.6	47
15	Design Strategy toward Recyclable and Highly Efficient Heterogeneous Catalysts for the Hydrogenation of CO ₂ to Formate. ACS Catalysis, 2018, 8, 4346-4353.	5.5	89
16	Remarkable Carbon Dioxide Hydrogenation to Ethanol on a Palladium/Iron Oxide Singleâ€Atom Catalyst. ChemCatChem, 2018, 10, 2365-2369.	1.8	82
17	Homogeneous Palladium atalyzed Transfer Hydrogenolysis of Benzylic Alcohols Using Formic Acid as Reductant. Chemistry - A European Journal, 2018, 24, 12259-12263.	1.7	24
18	Rationalizing the Reactivity of Bimetallic Molecular Catalysts for CO ₂ Hydrogenation. ACS Catalysis, 2018, 8, 4955-4968.	5.5	39

#	Article	IF	CITATIONS
19	DFT study of In ₂ O ₃ -catalyzed methanol synthesis from CO ₂ and CO hydrogenation on the defective site. New Journal of Chemistry, 2018, 42, 3293-3300.	1.4	33
20	Pd-doped Ni nanoparticle-modified N-doped carbon nanocatalyst with high Pd atom utilization for the transfer hydrogenation of nitroarenes. Green Chemistry, 2018, 20, 1121-1130.	4.6	92
21	Formic Acidâ€Based Liquid Organic Hydrogen Carrier System with Heterogeneous Catalysts. Advanced Sustainable Systems, 2018, 2, 1700161.	2.7	141
22	Facile synthesis of PEI-GO@ZIF-8 hybrid material for CO2 capture. International Journal of Hydrogen Energy, 2018, 43, 2224-2231.	3.8	54
23	Selective Carbon Dioxide Hydrogenation Driven by Ferromagnetic RuFe Nanoparticles in Ionic Liquids. ACS Catalysis, 2018, 8, 1621-1627.	5.5	77
24	Towards Sustainable Production of Formic Acid. ChemSusChem, 2018, 11, 821-836.	3.6	257
25	Photocathode Chromophore–Catalyst Assembly via Layer-By-Layer Deposition of a Low Band-Gap Isoindigo Conjugated Polyelectrolyte. ACS Applied Energy Materials, 2018, 1, 62-67.	2.5	12
26	Carbonate-Promoted Hydrogenation of Carbon Dioxide to Multicarbon Carboxylates. ACS Central Science, 2018, 4, 606-613.	5.3	30
27	Transformation of CO2 by using nanoscale metal catalysts: cases studies on the formation of formic acid and dimethylether. Current Opinion in Chemical Engineering, 2018, 20, 86-92.	3.8	37
28	CO ₂ -based hydrogen storage: CO ₂ hydrogenation to formic acid, formaldehyde and methanol. ChemistrySelect, 2018, 3, .	0.7	12
29	An etching-assisted route for fast and large-scale fabrication of non-layered palladium nanosheets. Nanoscale, 2018, 10, 7505-7510.	2.8	16
30	Mechanism and microkinetics of methanol synthesis via CO2 hydrogenation on indium oxide. Journal of Catalysis, 2018, 361, 313-321.	3.1	216
31	Methanol synthesis <i>via</i> CO ₂ hydrogenation over CuO–ZrO ₂ prepared by two-nozzle flame spray pyrolysis. Catalysis Science and Technology, 2018, 8, 2056-2060.	2.1	45
32	Continuous CO2 capture and reduction in one process: CO2 methanation over unpromoted and promoted Ni/ZrO2. Journal of CO2 Utilization, 2018, 25, 323-329.	3.3	92
33	Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chemical Reviews, 2018, 118, 434-504.	23.0	1,571
34	The Catalytic Reduction of Carboxylic Acid Derivatives and CO ₂ by Metal Nanoparticles on Lewisâ€Acidic Supports. Chemical Record, 2018, 18, 1374-1393.	2.9	18
35	TiO ₂ -based heterojunction photocatalysts for photocatalytic reduction of CO ₂ into solar fuels. Journal of Materials Chemistry A, 2018, 6, 22411-22436.	5.2	195
36	Towards a continuous formic acid synthesis: a two-step carbon dioxide hydrogenation in flow. Reaction Chemistry and Engineering, 2018, 3, 912-919.	1.9	23

|--|

#	ARTICLE	IF	CITATIONS
37	2. CO2-based hydrogen storage: CO2 hydrogenation to formic acid, formaldehyde and methanol. , 2018, , 35-56.		0
38	3. CO2-based hydrogen storage – formic acid dehydrogenation. , 2018, , 57-94.		1
39	Homogeneous Catalytic Hydrogenation of CO ₂ to Methanol – Improvements with Tailored Ligands. Advanced Synthesis and Catalysis, 2019, 361, 374-379.	2.1	58
40	Unraveling Metal/Pincer Ligand Effects in the Catalytic Hydrogenation of Carbon Dioxide to Formate. Organometallics, 2018, 37, 4568-4575.	1.1	32
41	Ionic Liquid-Promoted Three-Component Domino Reaction of Propargyl Alcohols, Carbon Dioxide and 2-Aminoethanols: A Thermodynamically Favorable Synthesis of 2-Oxazolidinones. Molecules, 2018, 23, 3033.	1.7	14
42	Catalytic Processes Combining CO2 and Alkenes into Value-Added Chemicals. Topics in Organometallic Chemistry, 2018, , 17-38.	0.7	3
43	Orbital Interactions in Bi‣n Bimetallic Electrocatalysts for Highly Selective Electrochemical CO ₂ Reduction toward Formate Production. Advanced Energy Materials, 2018, 8, 1802427.	10.2	259
44	Decisive Role of Perimeter Sites in Silica-Supported Ag Nanoparticles in Selective Hydrogenation of CO ₂ to Methyl Formate in the Presence of Methanol. Journal of the American Chemical Society, 2018, 140, 13884-13891.	6.6	37
45	Tandem copper hydride–Lewis pair catalysed reduction of carbon dioxide into formate with dihydrogen. Nature Catalysis, 2018, 1, 743-747.	16.1	88
46	CO2-based hydrogen storage $\hat{a} \in $ formic acid dehydrogenation. Physical Sciences Reviews, 2018, 3, .	0.8	6
47	Mechanistic Insight into the Modification of the Surface Stability of In2O3 Catalyst Through Metal Oxide Doping. Catalysis Letters, 2018, 148, 3723-3731.	1.4	14
48	Computation-Aided Design of Single-Atom Catalysts for One-Pot CO ₂ Capture, Activation, and Conversion. ACS Applied Materials & amp; Interfaces, 2018, 10, 36866-36872.	4.0	70
49	Hydrotalcite Anchored Ruthenium Catalyst for CO2 Hydrogenation Reaction. Open Chemistry, 2018, 16, 853-863.	1.0	1
50	Metal-Catalysed Hydrogenation of CO2 into Methanol. Topics in Organometallic Chemistry, 2018, , 1-16.	0.7	1
51	Structure Property–CO ₂ Capture Performance Relations of Amine-Functionalized Porous Silica Composite Adsorbents. ACS Applied Materials & Interfaces, 2018, 10, 34340-34354.	4.0	47
52	Homogeneous Catalytic Formic Acid Dehydrogenation in Aqueous Solution using Ruthenium Arene Phosphine Catalysts. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 740-744.	0.6	8
53	In Situ Characterization of Cu/CeO ₂ Nanocatalysts for CO ₂ Hydrogenation: Morphological Effects of Nanostructured Ceria on the Catalytic Activity. Journal of Physical Chemistry C, 2018, 122, 12934-12943.	1.5	145
54	Effect of Ag loading on CO2-to-methanol hydrogenation over Ag/CuO/ZrO2. Catalysis Communications, 2018, 113, 41-45.	1.6	42

ARTICLE IF CITATIONS # Efficient Way of Carbon Dioxide Utilization in a Gas-to-Methanol Process: From Fundamental Research 1.3 16 55 to Industrial Demonstration. Topics in Catalysis, 2018, 61, 1794-1809. Bimetallic catalysts for green methanol production <i>via</i> CO₂ and renewable 2.1 104 hydrogen: a mińi-review and prospects. Catalysis Science and Technology, 2018, 8, 3450-3464. Heterogeneous catalysts for hydrogenation of CO₂ and bicarbonates to formic acid and 57 5.7 113 formates. Catalysis Reviews - Science and Engineering, 2018, 60, 566-593. Mechanisms of catalytic reduction of CO₂ with heme and nonheme metal complexes. Chemical Science, 2018, 9, 6017-6034. Surface Engineering of a Supported PdAg Catalyst for Hydrogenation of CO₂ to Formic Acid: Elucidating the Active Pd Atoms in Alloy Nanoparticles. Journal of the American Chemical 59 202 6.6 Society, 2018, 140, 8902-8909. Hydrogenation of Carbon Dioxide with Organic Base by PC^{II}P-Ir Catalysts. Organometallics, 2018, 37, 3001-3009. 1.1 Influence of size and nature of the aryl diborate spacer on the intrinsic microporosity of Iron(II) 61 1.8 16 clathrochelate polymers. Polymer, 2018, 151, 164-170. Enhanced Baseâ€Free Formic Acid Production from CO₂ on 3.6 47 Pd/gâ€C₃N₄ by Tuning of the Carrier Defects. ChemSusChem, 2018, 11, 2859-2869. Ethanol-mediated <i>N</i>-formylation of amines with CO₂/H₂ over cobalt 63 19 1.4 catalysts. New Journal of Chemistry, 2018, 42, 13933-13937. Thermochemical CO₂ Hydrogenation to Single Carbon Products: Scientific and 64 8.8 Technological Challenges. ACS Energy Letters, 2018, 3, 1938-1966. TiO2@PEI-Grafted-MWCNTs Hybrids Nanocomposites Catalysts for CO2ÂPhotoreduction. Materials, 65 1.3 11 2018, 11, 307. An efficient and stable Cu/SiO 2 catalyst for the syntheses of ethylene glycol and methanol via 6.9 chemoselective hydrogenation of ethýlene carbonate. Chinese Journal of Catalysis, 2018, 39, 1283-1293. Design of Interfacial Sites between Cu and Amorphous ZrO₂ Dedicated to 67 5.5 159 CO₂-to-Methanol Hydrogenation. ACS Catalysis, 2018, 8, 7809-7819. Isolated Zr Surface Sites on Silica Promote Hydrogenation of CO₂ to CH₃OH 6.6 170 in Supported Cu Catalysts. Journal of the American Chemical Society, 2018, 140, 10530-10535. Combined Steam Reforming of Methane and Formic Acid To Produce Syngas with an Adjustable 69 1.8 37 H₂:CO Ratio. Industrial & amp; Engineering Chemistry Research, 2018, 57, 10663-10674. Functionalized Hydrotalcite Tethered Ruthenium Catalyst for Carbon Sequestration Reaction. 1.4 Catalysis Letters, 2018, 148, 1879-1892. N-doped carbon supported Pd catalysts for N-formylation of amines with CO2/H2. Science China 71 4.2 34 Chemistry, 2018, 61, 725-731. Closing the carbon cycle to maximise climate change mitigation: power-to-methanol<i>vs.</i>power-to-direct air capture. Sustainable Energy and Fuels, 2018, 2, 1153-1169.

#	Article	IF	CITATIONS
73	Direct synthesis of dimethyl ether from CO2 and H2 over novel bifunctional catalysts containing CuO-ZnO-ZrO2 catalyst admixed with WOx/ZrO2 catalysts. Chemical Engineering Journal, 2018, 348, 713-722.	6.6	36
74	Recent Progress in the Production, Application and Evaluation of Oxymethylene Ethers. Chemie-Ingenieur-Technik, 2018, 90, 1520-1528.	0.4	59
75	Rhodium-Catalyzed Formylation of Aryl Halides with CO ₂ and H ₂ . Organic Letters, 2018, 20, 5130-5134.	2.4	37
76	CO2 Recycling to Dimethyl Ether: State-of-the-Art and Perspectives. Molecules, 2018, 23, 31.	1.7	133
77	Metal Organic Framework-Derived Iron Catalysts for the Direct Hydrogenation of CO ₂ to Short Chain Olefins. ACS Catalysis, 2018, 8, 9174-9182.	5.5	155
78	Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds. Catalysis Science and Technology, 2018, 8, 3428-3449.	2.1	89
79	Investigation of the Phase Equilibria of CO 2 /CH 3 OH/H 2 O and CO 2 /CH 3 OH/H 2 O/H 2 Mixtures. Chemical Engineering and Technology, 2019, 42, 2386-2392.	0.9	0
80	Recent Progress on Transition Metal Nitrides Nanoparticles as Heterogeneous Catalysts. Nanomaterials, 2019, 9, 1111.	1.9	63
81	CO2 adsorption on hydroxylated In2O3(110). Physical Chemistry Chemical Physics, 2019, 21, 21698-21708.	1.3	23
82	Mesoporous Silicaâ€Encaged Ultrafine Bimetallic Nanocatalysts for CO ₂ Hydrogenation to Formates. ChemCatChem, 2019, 11, 5093-5097.	1.8	35
83	Topotactic Synthesis of Phosphabenzeneâ€Functionalized Porous Organic Polymers: Efficient Ligands in CO 2 Conversion. Angewandte Chemie, 2019, 131, 13901-13905.	1.6	3
84	CO ₂ Hydrogenation to Methanol over ZrO ₂ -Containing Catalysts: Insights into ZrO ₂ 2 Induced Synergy. ACS Catalysis, 2019, 9, 7840-7861.	5.5	253
85	Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization. ACS Catalysis, 2019, 9, 7937-7956.	5.5	271
86	Structural Evolution and Dynamics of an In ₂ O ₃ Catalyst for CO ₂ Hydrogenation to Methanol: An Operando XAS-XRD and In Situ TEM Study. Journal of the American Chemical Society, 2019, 141, 13497-13505.	6.6	204
87	Topotactic Synthesis of Phosphabenzeneâ€Functionalized Porous Organic Polymers: Efficient Ligands in CO ₂ Conversion. Angewandte Chemie - International Edition, 2019, 58, 13763-13767.	7.2	32
88	Support-dependent rate-determining step of CO2 hydrogenation to formic acid on metal oxide supported Pd catalysts. Journal of Catalysis, 2019, 376, 57-67.	3.1	83
89	CO2 Adsorption Capacities in Zeolites and Layered Double Hydroxide Materials. Frontiers in Chemistry, 2019, 7, 551.	1.8	63
90	CO ₂ Hydrogenation on Cu/Al ₂ O ₃ : Role of the Metal/Support Interface in Driving Activity and Selectivity of a Bifunctional Catalyst. Angewandte Chemie, 2019, 131, 14127-14134	1.6	21

#	Article	IF	CITATIONS
91	CO ₂ Hydrogenation on Cu/Al ₂ O ₃ : Role of the Metal/Support Interface in Driving Activity and Selectivity of a Bifunctional Catalyst. Angewandte Chemie - International Edition, 2019, 58, 13989-13996.	7.2	112
92	Facile Process for Metallizing DNA in a Multitasking Deep Eutectic Solvent for Ecofriendly C–C Coupling Reaction and Nitrobenzene Reduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 14225-14235.	3.2	19
93	Heterogeneous Pt and MoO _{<i>x</i>} Co-Loaded TiO ₂ Catalysts for Low-Temperature CO ₂ Hydrogenation To Form CH ₃ OH. ACS Catalysis, 2019, 9, 8187-8196.	5.5	66
94	Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation. Nature Communications, 2019, 10, 3377.	5.8	261
95	Continuous Hydrogenation of Carbon Dioxide to Formic Acid and Methyl Formate by a Molecular Iridium Complex Stably Heterogenized on a Covalent Triazine Framework. ChemCatChem, 2019, 11, 4725-4730.	1.8	18
96	Evaluation of the effect of the dicationic ionic liquid structure on the cycloaddition of CO2 to epoxides. Journal of CO2 Utilization, 2019, 34, 437-445.	3.3	45
97	Recent Advances in Power-to-X Technology for the Production of Fuels and Chemicals. Frontiers in Chemistry, 2019, 7, 392.	1.8	112
98	Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy and Environmental Science, 2019, 12, 2646-2664.	15.6	193
99	CO ₂ â€Mediated H ₂ Storageâ€Release with Nanostructured Catalysts: Recent Progresses, Challenges, and Perspectives. Advanced Energy Materials, 2019, 9, 1901158.	10.2	47
100	Semiconductor Quantum Dots: An Emerging Candidate for CO ₂ Photoreduction. Advanced Materials, 2019, 31, e1900709.	11.1	316
101	Cooperative copper centres in a metal–organic framework for selective conversion of CO2 to ethanol. Nature Catalysis, 2019, 2, 709-717.	16.1	256
102	Thermodynamic Cycles Relevant to Hydrogenation of CO ₂ to Formic Acid in Water and Acetonitrile. Chemistry Letters, 2019, 48, 627-629.	0.7	9
103	Catalytic CO2 Conversion to Added-Value Energy Rich C1 Products. , 2019, , 155-210.		6
104	Use of CO2 as Source of Carbon for Energy-Rich Cn Products. , 2019, , 211-238.		1
105	Kinetic and Deactivation Differences Among Methanol, Dimethyl Ether and Chloromethane as Stock for Hydrocarbons. ChemCatChem, 2019, 11, 5444-5456.	1.8	11
106	Adaptively evolved Escherichia coli for improved ability of formate utilization as a carbon source in sugar-free conditions. Biotechnology for Biofuels, 2019, 12, 207.	6.2	41
107	Post-mortem characterization of Rh/Ce0.75Zr0.25O2/Al2O3/FeCrAl wire mesh composite catalyst for diesel autothermal reforming. Materials Letters, 2019, 257, 126715.	1.3	19
108	Technologies for Biogas Upgrading to Biomethane: A Review. Bioengineering, 2019, 6, 92.	1.6	218

#	Article	IF	CITATIONS
109	Surface Lewis Acidity of Periphery Oxide Species as a General Kinetic Descriptor for CO ₂ Hydrogenation to Methanol on Supported Copper Nanoparticles. ACS Catalysis, 2019, 9, 10409-10417.	5.5	40
110	Ni and Zn/ZnO Synergistically Catalyzed Reduction of Bicarbonate into Formate with Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 42149-42155.	4.0	24
111	Zr(IV) surface sites determine CH3OH formation rate on Cu/ZrO2/SiO2 - CO2 hydrogenation catalysts. Chinese Journal of Catalysis, 2019, 40, 1741-1748.	6.9	22
112	Lewis acidic supports promote the selective hydrogenation of carbon dioxide to methyl formate in the presence of methanol over Ag catalysts. Journal of Catalysis, 2019, 380, 153-160.	3.1	27
113	Hydrogen Production from Formic Acid Attained by Bimetallic Heterogeneous PdAg Catalytic Systems. Energies, 2019, 12, 4027.	1.6	26
114	Kinetic Isolation between Turnovers on Au ₁₈ Nanoclusters: Formic Acid Decomposition One Molecule at a Time. ACS Catalysis, 2019, 9, 9446-9457.	5.5	20
115	Defect Engineering in Photocatalytic Nitrogen Fixation. ACS Catalysis, 2019, 9, 9739-9750.	5.5	286
116	Effects of Cu Precursor Types on the Catalytic Activity of Cu/ZrO ₂ toward Methanol Synthesis via CO ₂ Hydrogenation. Industrial & Engineering Chemistry Research, 2019, 58, 19434-19445.	1.8	30
117	From CO ₂ methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. Chemical Society Reviews, 2019, 48, 205-259.	18.7	205
118	Catalytic Conversion of CO ₂ to Formate with Renewable Hydrogen Donors: An Ambient-Pressure and H ₂ -Independent Strategy. ACS Catalysis, 2019, 9, 2164-2168.	5.5	47
119	Multishelled Hollow Structures of Yttrium Oxide for the Highly Selective and Ultrasensitive Detection of Methanol. Small, 2019, 15, e1804688.	5.2	22
120	Iridium Single-Atom Catalyst Performing a Quasi-homogeneous Hydrogenation Transformation of CO2 to Formate. CheM, 2019, 5, 693-705.	5.8	181
121	PdAg nanoparticles supported on resorcinol-formaldehyde polymers containing amine groups: the promotional effect of phenylamine moieties on CO ₂ transformation to formic acid. Journal of Materials Chemistry A, 2019, 7, 16356-16363.	5.2	39
122	Zirconia phase effect in Pd/ZrO2 catalyzed CO2 hydrogenation into formate. Molecular Catalysis, 2019, 475, 110461.	1.0	46
123	Turning a Methanation Co Catalyst into an In–Co Methanol Producer. ACS Catalysis, 2019, 9, 6910-6918.	5.5	88
124	Titanium nitride nanoparticles for the efficient photocatalysis of bicarbonate into formate. Solar Energy Materials and Solar Cells, 2019, 200, 109967.	3.0	22
125	Synthesis of liquid fuel via direct hydrogenation of CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12654-12659.	3.3	138
126	Electrochemical Reduction of CO2 to Formate on Easily Prepared Carbon-Supported Bi Nanoparticles. Molecules, 2019, 24, 2032.	1.7	50

#	Article	IF	CITATIONS
127	Effect of Zeolite Topology and Reactor Configuration on the Direct Conversion of CO ₂ to Light Olefins and Aromatics. ACS Catalysis, 2019, 9, 6320-6334.	5.5	144
128	How CO ₂ Chemisorption States Affect Hydrogenation Activity. Industrial & Engineering Chemistry Research, 2019, 58, 9838-9843.	1.8	11
129	Efficient CO ₂ Hydrogenation to Formate with Immobilized Irâ€Catalysts Based on Mesoporous Silica Beads. Chemistry - A European Journal, 2019, 25, 9443-9446.	1.7	17
130	Single-Sites and Nanoparticles at Tailored Interfaces Prepared via Surface Organometallic Chemistry from Thermolytic Molecular Precursors. Accounts of Chemical Research, 2019, 52, 1697-1708.	7.6	89
131	Understanding Catalyst Surfaces during Catalysis through Near Ambient Pressure X-ray Photoelectron Spectroscopy. Chemical Reviews, 2019, 119, 6822-6905.	23.0	127
132	A generic method for determining R + O2 rate parameters via OH regeneration. Chemical Physics Letters, 2019, 730, 213-219.	1.2	4
133	Recent advances of "soft―bio-polycarbonate plastics from carbon dioxide and renewable bio-feedstocks via straightforward and innovative routes. Journal of CO2 Utilization, 2019, 34, 40-52.	3.3	42
134	CO2 hydrogenation to methanol over CuO ZnO TiO2ZrO2 catalyst prepared by a facile solid-state route: The significant influence of assistant complexing agents. International Journal of Hydrogen Energy, 2019, 44, 14831-14841.	3.8	26
135	Confinement of subnanometric PdZn at a defect enriched ZnO/ZIF-8 interface for efficient and selective CO ₂ hydrogenation to methanol. Journal of Materials Chemistry A, 2019, 7, 23878-23885.	5.2	50
136	A review of heterogeneous catalysts for syngas production via dry reforming. Journal of the Taiwan Institute of Chemical Engineers, 2019, 101, 139-158.	2.7	87
137	A phenanthroline-based porous organic polymer for the iridium-catalyzed hydrogenation of carbon dioxide to formate. Journal of Materials Chemistry A, 2019, 7, 14019-14026.	5.2	48
138	Magnetic organic-silica hybrid supported Pt nanoparticles for carbon sequestration reaction. Chemical Papers, 2019, 73, 2241-2253.	1.0	5
139	Making quantitative sense of electromicrobial production. Nature Catalysis, 2019, 2, 437-447.	16.1	175
140	CO ₂ Activation on Ni(111) and Ni(100) Surfaces in the Presence of H ₂ O: An Ambient-Pressure X-ray Photoelectron Spectroscopy Study. Journal of Physical Chemistry C, 2019, 123, 12176-12182.	1.5	36
141	Electrocatalytic materials design for oxygen evolution reaction. Advances in Inorganic Chemistry, 2019, , 241-303.	0.4	14
142	Electropolymerization of Molecularâ€Sieving Polythiophene Membranes for H ₂ Separation. Angewandte Chemie, 2019, 131, 8860-8864.	1.6	20
143	Electropolymerization of Molecularâ€5ieving Polythiophene Membranes for H ₂ Separation. Angewandte Chemie - International Edition, 2019, 58, 8768-8772.	7.2	39
144	Direct Synthesis of Methyl Formate from CO 2 With Phosphineâ€Based Polymerâ€Bound Ru Catalysts. ChemSusChem, 2019, 12, 3278-3285.	3.6	12

#	Article	IF	CITATIONS
145	Transition metal-catalyzed hydrogenation of carbon dioxide in ionic liquids. Advances in Organometallic Chemistry, 2019, , 259-274.	0.5	4
146	Mesoporous manganese-cobalt oxide spinel catalysts for CO2 hydrogenation to methanol. Journal of CO2 Utilization, 2019, 32, 146-154.	3.3	50
147	Tandem Conversion of CO ₂ to Valuable Hydrocarbons in Highly Concentrated Potassium Iron Catalysts. ChemCatChem, 2019, 11, 2879-2886.	1.8	57
148	Synergy between active sites of Cu-In-Zr-O catalyst in CO2 hydrogenation to methanol. Journal of Catalysis, 2019, 372, 74-85.	3.1	104
149	Direct Synthesis of Alternating Polycarbonates from CO ₂ and Diols by Using a Catalyst System of CeO ₂ and 2-Furonitrile. ACS Sustainable Chemistry and Engineering, 2019, 7, 6304-6315.	3.2	64
150	Synergistic Ag(I)/ Bu4NBr-catalyzed fixation of CO2 to β-oxopropyl carbonates via propargylic alcohols and monohydric alcohols. Tetrahedron, 2019, 75, 2343-2349.	1.0	11
151	Selective Production of Aromatics Directly from Carbon Dioxide Hydrogenation. ACS Catalysis, 2019, 9, 3866-3876.	5.5	177
152	<i>110th Anniversary:</i> Ionic Liquid Promoted CO ₂ Hydrogenation to Free Formic Acid over Pd/C. Industrial & Engineering Chemistry Research, 2019, 58, 6333-6339.	1.8	25
153	Hydrogenation of Carbon Dioxide to Value-Added Chemicals by Heterogeneous Catalysis and Plasma Catalysis. Catalysts, 2019, 9, 275.	1.6	116
154	Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nature Communications, 2019, 10, 1166.	5.8	258
155	Low-Temperature Hydrogenation of CO ₂ to Methanol over Heterogeneous TiO ₂ -Supported Re Catalysts. ACS Catalysis, 2019, 9, 3685-3693.	5.5	82
156	Ceria-Based Materials in Hydrogenation and Reforming Reactions for CO2 Valorization. Frontiers in Chemistry, 2019, 7, 28.	1.8	98
157	Effects of mixing methods of bifunctional catalysts on catalyst stability of DME synthesis via CO2 hydrogenation. Carbon Resources Conversion, 2019, 2, 85-94.	3.2	29
158	Simple strategy synthesizing stable CuZnO/SiO2 methanol synthesis catalyst. Journal of Catalysis, 2019, 372, 163-173.	3.1	34
159	Overview of Current and Future Perspectives of Saudi Arabian Natural Clinoptilolite Zeolite: A Case Review. Journal of Chemistry, 2019, 2019, 1-16.	0.9	4
160	Selective Hydrogenation of CO2 to Formic Acid over Alumina-Supported Ru Nanoparticles with Multifunctional Ionic Liquid. Catalysis Letters, 2019, 149, 1464-1475.	1.4	17
161	An In Situ Infrared Study of CO ₂ Hydrogenation to Formic Acid by Using Rhodium Supported on Titanate Nanotubes as Catalysts. ChemistrySelect, 2019, 4, 4206-4216.	0.7	15
162	Cu(l)/lonic Liquids Promote the Conversion of Carbon Dioxide into Oxazolidinones at Room Temperature. Molecules, 2019, 24, 1241.	1.7	11

#	Article	IF	CITATIONS
163	Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals. BMC Chemical Engineering, 2019, 1, .	3.4	64
164	Innovative alternatives to methanol manufacture: Carbon footprint assessment. Journal of Cleaner Production, 2019, 225, 426-434.	4.6	37
165	A MOF-assisted phosphine free bifunctional iron complex for the hydrogenation of carbon dioxide, sodium bicarbonate and carbonate to formate. Chemical Communications, 2019, 55, 4977-4980.	2.2	33
166	Single Au Atoms on the Surface of N-Free and N-Doped Carbon: Interaction with Formic Acid and Methanol Molecules. Topics in Catalysis, 2019, 62, 508-517.	1.3	19
167	Enhanced CO ₂ decomposition via metallic foamed electrode packed in self-cooling DBD plasma device. Plasma Science and Technology, 2019, 21, 085504.	0.7	24
168	Modeling the Electrochemical Conversion of Carbon Dioxide to Formic Acid or Formate at Elevated Pressures. Journal of the Electrochemical Society, 2019, 166, E77-E86.	1.3	38
169	Recent advances in lithium containing ceramic based sorbents for high-temperature CO ₂ capture. Journal of Materials Chemistry A, 2019, 7, 7962-8005.	5.2	106
170	CO2 as a Building Block for the Catalytic Synthesis of Carboxylic Acids. Studies in Surface Science and Catalysis, 2019, 178, 105-124.	1.5	14
171	Development of Tandem Catalysts for CO ₂ Hydrogenation to Olefins. ACS Catalysis, 2019, 9, 2639-2656.	5.5	201
172	Hydrogenation of CO ₂ to Formate using a Simple, Recyclable, and Efficient Heterogeneous Catalyst. Inorganic Chemistry, 2019, 58, 3717-3723.	1.9	66
173	Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO ₂ reduction at low overpotential. Energy and Environmental Science, 2019, 12, 1334-1340.	15.6	230
174	Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coordination Chemistry Reviews, 2019, 387, 79-120.	9.5	298
175	Highly dispersed Pt-based catalysts for selective CO2 hydrogenation to methanol at atmospheric pressure. Chemical Engineering Science, 2019, 200, 167-175.	1.9	66
176	Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nature Communications, 2019, 10, 892.	5.8	446
177	Fuelling the hydrogen economy: Scale-up of an integrated formic acid-to-power system. International Journal of Hydrogen Energy, 2019, 44, 28533-28541.	3.8	78
178	Kinetic and Deactivation Differences Among Methanol, Dimethyl Ether and Chloromethane as Stock for Hydrocarbons. ChemCatChem, 2019, 11, 5406-5406.	1.8	0
179	29. Photocatalytic approaches for converting CO2 into fuels and feedstocks. , 2019, , 635-656.		0
180	Recent advances in catalytic CO2 hydrogenation to alcohols and hydrocarbons. Advances in Catalysis, 2019, , 121-233.	0.1	27

#	Article	IF	CITATIONS
181	CO2 Hydrogenation to CH3OH on Supported Cu Nanoparticles: Nature and Role of Ti in Bulk Oxides vs Isolated Surface Sites. Journal of Physical Chemistry C, 2019, 123, 31082-31093.	1.5	19
182	Magnetic Organic-Inorganic Hybrid Nano System Anchored Platinum Nanoparticles for Carbon Sequestration Reaction. Letters in Organic Chemistry, 2019, 17, 73-83.	0.2	3
183	Renewable Methanol Synthesis. ChemBioEng Reviews, 2019, 6, 209-236.	2.6	80
184	CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 2019, 10, 5698.	5.8	571
185	Carboxyl intermediate formation via an in situ-generated metastable active site during water-gas shift catalysis. Nature Catalysis, 2019, 2, 916-924.	16.1	79
186	Plant-to-planet analysis of CO ₂ -based methanol processes. Energy and Environmental Science, 2019, 12, 3425-3436.	15.6	160
187	CO ₂ Hydrogenation to Formate with Immobilized Ruâ€Catalysts Based on Hybrid Organoâ€Silica Mesostructured Materials. ChemCatChem, 2019, 11, 430-434.	1.8	24
188	CO2 hydrogenation to methanol on Pd Cu bimetallic catalysts with lower metal loadings. Catalysis Communications, 2019, 118, 10-14.	1.6	45
189	Ruthenium Complexes Immobilized on an Azolium Based Metal Organic Framework for Highly Efficient Conversion of CO ₂ into Formic Acid. ChemCatChem, 2019, 11, 1256-1263.	1.8	45
190	Rationally Designing Bifunctional Catalysts as an Efficient Strategy To Boost CO ₂ Hydrogenation Producing Value-Added Aromatics. ACS Catalysis, 2019, 9, 895-901.	5.5	236
191	Selecting emerging CO2 utilization products for short- to mid-term deployment. Applied Energy, 2019, 236, 662-680.	5.1	176
192	Hydrogenation of CO ₂ to Formate with H ₂ : Transition Metal Free Catalyst Based on a Lewis Pair. Angewandte Chemie, 2019, 131, 732-736.	1.6	15
193	Hydrogenation of CO ₂ to Formate with H ₂ : Transition Metal Free Catalyst Based on a Lewis Pair. Angewandte Chemie - International Edition, 2019, 58, 722-726.	7.2	66
194	The Use of Carbon Dioxide (CO ₂) as a Building Block in Organic Synthesis from an Industrial Perspective. Advanced Synthesis and Catalysis, 2019, 361, 223-246.	2.1	254
195	Heterogeneous Catalysis for the Valorization of CO ₂ : Role of Bifunctional Processes in the Production of Chemicals. ACS Energy Letters, 2019, 4, 167-176.	8.8	100
196	Choline-based ionic liquids for CO2 capture and conversion. Science China Chemistry, 2019, 62, 256-261.	4.2	18
197	Hydride Pinning Pathway in the Hydrogenation of CO ₂ to Formic Acid on Dimeric Tin Dioxide. ChemPhysChem, 2019, 20, 680-686.	1.0	6
198	Conversion of Formic Acid into Methanol Using a Bipyridine-Functionalized Molecular Heterogeneous Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 3933-3939.	3.2	17

#	Article	IF	CITATIONS
199	Effect of Vaporâ€phaseâ€treatment to CuZnZr Catalyst on the Reaction Behaviors in CO ₂ Hydrogenation into Methanol. ChemCatChem, 2019, 11, 1448-1457.	1.8	46
200	Partial and Complete Substitution of the 1,4-Benzenedicarboxylate Linker in UiO-66 with 1,4-Naphthalenedicarboxylate: Synthesis, Characterization, and H ₂ -Adsorption Properties. Inorganic Chemistry, 2019, 58, 1607-1620.	1.9	42
201	Cascade Strategy for Atmospheric Pressure CO ₂ Fixation to Cyclic Carbonates via Silver Sulfadiazine and Et ₄ NBr Synergistic Catalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 3378-3388.	3.2	29
202	Self-assembling of formic acid on the partially oxidizedp(2 × 1) Cu(110) surface reconstruction at low coverages. Journal of Chemical Physics, 2019, 150, 041720.	1.2	3
203	Selective Hydrogenation of CO ₂ to CH ₃ OH on Supported Cu Nanoparticles Promoted by Isolated Ti ^{IV} Surface Sites on SiO ₂ . ChemSusChem, 2019, 12, 968-972.	3.6	47
204	Methanol synthesis from CO2 hydrogenation over CuO-ZnO-ZrO2-MxOy catalysts (M=Cr, Mo and W). International Journal of Hydrogen Energy, 2019, 44, 4197-4207.	3.8	91
205	Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chemical Reviews, 2019, 119, 2453-2523.	23.0	260
206	Katalytische reduktive Nâ€Alkylierungen unter Verwendung von CO ₂ und Carbonsärederivaten: Aktuelle Entwicklungen. Angewandte Chemie, 2019, 131, 12950-12968.	1.6	17
207	Reduction of Carbon Oxides by an Acyclic Silylene: Reductive Coupling of CO. Angewandte Chemie, 2019, 131, 1822-1826.	1.6	24
208	Reduction of Carbon Oxides by an Acyclic Silylene: Reductive Coupling of CO. Angewandte Chemie - International Edition, 2019, 58, 1808-1812.	7.2	76
209	Highly active and selective Cu-ZnO based catalyst for methanol and dimethyl ether synthesis via CO2 hydrogenation. Fuel, 2019, 239, 1125-1133.	3.4	86
210	Catalytic Reductive Nâ€Alkylations Using CO ₂ and Carboxylic Acid Derivatives: Recent Progress and Developments. Angewandte Chemie - International Edition, 2019, 58, 12820-12838.	7.2	101
211	Phases of Cu/Zn/Al/Zr precursors linked to the property and activity of their final catalysts in CO2 hydrogenation to methanol. Catalysis Today, 2020, 347, 70-78.	2.2	17
212	State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511.	23.0	1,505
213	Challenges and opportunities for using formate to store, transport, and use hydrogen. Journal of Energy Chemistry, 2020, 41, 216-224.	7.1	65
214	Interaction effects between CuO-ZnO-ZrO2 methanol phase and zeolite surface affecting stability of hybrid systems during one-step CO2 hydrogenation to DME. Catalysis Today, 2020, 345, 175-182.	2.2	47
215	A Review on Pd Based Catalysts for CO2 Hydrogenation to Methanol: In-Depth Activity and DRIFTS Mechanistic Study. Catalysis Surveys From Asia, 2020, 24, 11-37.	1.0	67
216	Flame spray pyrolysis makes highly loaded Cu nanoparticles on ZrO2 for CO2-to-methanol hydrogenation. Chemical Engineering Journal, 2020, 381, 122750.	6.6	54

#	Article	IF	CITATIONS
217	Conversion of CO2 to C1 chemicals: Catalyst design, kinetics and mechanism aspects of the reactions. Catalysis Today, 2020, 358, 3-29.	2.2	78
218	Renewable methanol and formate as microbial feedstocks. Current Opinion in Biotechnology, 2020, 62, 168-180.	3.3	200
220	A theoretical study of the reverse waterâ€gas shift reaction on Ni(111) and Ni(311) surfaces. Canadian Journal of Chemical Engineering, 2020, 98, 740-748.	0.9	25
221	Operando Modeling of Multicomponent Reactive Solutions in Homogeneous Catalysis: from Nonâ€standard Free Energies to Reaction Network Control. ChemCatChem, 2020, 12, 795-802.	1.8	10
222	Facile hydrogenation of bicarbonate to formate in aqueous medium by highly stable nickel-azatrane complex. Journal of Catalysis, 2020, 382, 121-128.	3.1	9
223	Methanol production from CO ₂ <i>via</i> an integrated, formamide-assisted approach. Sustainable Energy and Fuels, 2020, 4, 1773-1779.	2.5	11
224	Surface reconstruction of AgPd nanoalloy particles during the electrocatalytic formate oxidation reaction. Nanoscale, 2020, 12, 3469-3481.	2.8	44
225	Nonâ€natural Cofactor and Formateâ€Driven Reductive Carboxylation of Pyruvate. Angewandte Chemie, 2020, 132, 3167-3170.	1.6	6
226	Montmorillonite-catalyzed conversions of carbon dioxide to formic acid: Active site, competitive mechanisms, influence factors and origin of high catalytic efficiency. Journal of Colloid and Interface Science, 2020, 563, 8-16.	5.0	20
227	TDLAS-based in situ diagnostics for the combustion of preheated ultra–lean dimethyl ether/air mixtures. Fuel, 2020, 263, 116652.	3.4	4
228	Enhanced catalytic performance of Zr modified CuO/ZnO/Al2O3 catalyst for methanol and DME synthesis via CO2 hydrogenation. Journal of CO2 Utilization, 2020, 36, 82-95.	3.3	74
229	DFT Study of Catalytic CO ₂ Hydrogenation over Pt-Decorated Carbon Nanocones: H ₂ Dissociation Combined with the Spillover Mechanism. Journal of Physical Chemistry C, 2020, 124, 1941-1949.	1.5	26
230	Nanoscale boron carbonitride semiconductors for photoredox catalysis. Nanoscale, 2020, 12, 3593-3604.	2.8	27
231	Exsolution of Metallic Ru Nanoparticles from Defective, Fluorite-Type Solid Solutions Sm ₂ Ru <i>_x</i> Ce _{2–<i>x</i>} O ₇ To Impart Stability on Dry Reforming Catalysts. ACS Catalysis, 2020, 10, 1923-1937.	5.5	70
232	Photoactivation of Cu Centers in Metal–Organic Frameworks for Selective CO ₂ Conversion to Ethanol. Journal of the American Chemical Society, 2020, 142, 75-79.	6.6	95
233	Nonâ€natural Cofactor and Formateâ€Driven Reductive Carboxylation of Pyruvate. Angewandte Chemie - International Edition, 2020, 59, 3143-3146.	7.2	18
234	Role of Zirconia in Indium Oxide-Catalyzed CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2020, 10, 1133-1145.	5.5	177
235	Catalytic activity of SAPO-34 molecular sieves prepared by using palygorskite in the synthesis of light olefins via CO2 hydrogenation. Applied Clay Science, 2020, 184, 105392.	2.6	25

#	Article	IF	CITATIONS
236	Sustainable production of formic acid from biomass and carbon dioxide. Molecular Catalysis, 2020, 483, 110716.	1.0	62
237	Catalysis with Colloidal Ruthenium Nanoparticles. Chemical Reviews, 2020, 120, 1085-1145.	23.0	137
238	Tuning surface-interface structures of ZrO2 supported copper catalysts by in situ introduction of indium to promote CO2 hydrogenation to methanol. Applied Catalysis A: General, 2020, 605, 117805.	2.2	26
239	A review on CO2 capture via nitrogen-doped porous polymers and catalytic conversion as a feedstock for fuels. Journal of Cleaner Production, 2020, 277, 123999.	4.6	45
241	Preparation of nano-sized Mg-doped copper silicate materials using coal gangue as the raw material and its characterization for CO2 adsorption. Korean Journal of Chemical Engineering, 2020, 37, 1786-1794.	1.2	6
242	Efficient Electrochemical Reduction of CO2 to CO in Ionic Liquid/Propylene Carbonate Electrolyte on Ag Electrode. Catalysts, 2020, 10, 1102.	1.6	6
243	Methanol as a carrier of hydrogen and carbon in fossil-free production of direct reduced iron. Energy Conversion and Management: X, 2020, 7, 100051.	0.9	7
244	In need of a second-hand? The second coordination sphere of ruthenium complexes enables water oxidation with improved catalytic activity. Dalton Transactions, 2020, 49, 16034-16046.	1.6	9
246	Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nature Communications, 2020, 11, 3633.	5.8	294
247	Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities. Advanced Materials, 2020, 32, e2002927.	11.1	165
248	Recent Progress with Pincer Transition Metal Catalysts for Sustainability. Catalysts, 2020, 10, 773.	1.6	71
249	Ambient Chemical Fixation of CO 2 Using a Robust Ag 27 Clusterâ€Based Twoâ€Dimensional Metal–Organic Framework. Angewandte Chemie, 2020, 132, 20206-20211.	1.6	7
250	Ambient Chemical Fixation of CO ₂ Using a Robust Ag ₂₇ Clusterâ€Based Twoâ€Dimensional Metal–Organic Framework. Angewandte Chemie - International Edition, 2020, 59, 20031-20036.	7.2	109
251	Engineering Heterostructured Nanocatalysts for CO 2 Transformation Reactions: Advances and Perspectives. ChemSusChem, 2020, 13, 6090-6123.	3.6	12
252	An "energyâ€auxotroph― <i>Escherichia coli</i> provides an in vivo platform for assessing NADH regeneration systems. Biotechnology and Bioengineering, 2020, 117, 3422-3434.	1.7	20
253	Infrared multiple photon dissociation spectroscopy of anionic copper formate clusters. Journal of Chemical Physics, 2020, 153, 184301.	1.2	5
254	Advances in the Design of Heterogeneous Catalysts and Thermocatalytic Processes for CO ₂ Utilization. ACS Catalysis, 2020, 10, 14147-14185.	5.5	181
255	Plasma Catalysis for CO ₂ Hydrogenation: Unlocking New Pathways toward CH ₃ OH. Journal of Physical Chemistry C, 2020, 124, 25859-25872.	1.5	35

#	Article	IF	CITATIONS
256	Stabilizing Cu ⁺ in Cu/SiO ₂ Catalysts with a Shattuckite-Like Structure Boosts CO ₂ Hydrogenation into Methanol. ACS Catalysis, 2020, 10, 14694-14706.	5.5	129
257	Mathematical Modeling and Calculation of the Methanol Production Process via Carbon Dioxide Hydrogenation. Petroleum Chemistry, 2020, 60, 1244-1250.	0.4	3
258	Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation. Nature Communications, 2020, 11, 5767.	5.8	197
259	Hydrogenation of CO ₂ to Methanol on a Au ^{Î′+} –In ₂ O _{3–<i>x</i>} Catalyst. ACS Catalysis, 2020, 10, 11307-113	17 ^{5.5}	142
260	Zeoliteâ€Encaged Pd–Mn Nanocatalysts for CO ₂ Hydrogenation and Formic Acid Dehydrogenation. Angewandte Chemie, 2020, 132, 20358-20366.	1.6	22
261	Zeoliteâ€Encaged Pd–Mn Nanocatalysts for CO ₂ Hydrogenation and Formic Acid Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 20183-20191.	7.2	175
262	High performance formic acid fuel cell benefits from Pd–PdO catalyst supported by ordered mesoporous carbon. International Journal of Hydrogen Energy, 2020, 45, 29235-29245.	3.8	31
263	Zinc Oxide Morphologyâ€Dependent Pd/ZnO Catalysis in Baseâ€Free CO ₂ Hydrogenation into Formic Acid. ChemCatChem, 2020, 12, 5540-5547.	1.8	24
264	Methanol as a Hydrogen Carrier: Kinetic and Thermodynamic Drivers for its CO ₂ â€Based Synthesis and Reforming over Heterogeneous Catalysts. ChemSusChem, 2020, 13, 6330-6337.	3.6	18
265	Photochemical activation of carbon dioxide in Mg+(CO2)(H2O)0,1. Theoretical Chemistry Accounts, 2020, 139, 127.	0.5	8
266	Fast CO2 hydrogenation to formic acid catalyzed by an Ir(PSiP) pincer hydride in a DMSO/water/ionic liquid solvent system. Catalysis Communications, 2020, 146, 106125.	1.6	18
267	Indium-Based Metal–Organic Framework for High-Performance Electroreduction of CO ₂ to Formate. Inorganic Chemistry, 2020, 59, 11298-11304.	1.9	35
268	New Kind of Thermoplastic Polyurea Elastomers Synthesized from CO ₂ and with Self-Healing Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 12677-12685.	3.2	18
269	Deciphering Dynamic Structural and Mechanistic Complexity in Cu/CeO ₂ /ZSM-5 Catalysts for the Reverse Water-Gas Shift Reaction. ACS Catalysis, 2020, 10, 10216-10228.	5.5	39
270	Endogenous X–Cî€O species enable catalyst-free formylation prerequisite for CO ₂ reductive upgrading. Green Chemistry, 2020, 22, 5822-5832.	4.6	21
271	Power-to-liquid <i>via</i> synthesis of methanol, DME or Fischer–Tropsch-fuels: a review. Energy and Environmental Science, 2020, 13, 3207-3252.	15.6	328
272	Pd Supported on MIL-68(In)-Derived In ₂ O ₃ Nanotubes as Superior Catalysts to Boost CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2020, 10, 13275-13289.	5.5	107
273	Sustainable synthesis of nitrogen heterocycles from carbon dioxide and aromatic amines over heterogeneous catalysts. Journal of CO2 Utilization, 2020, 42, 101325.	3.3	5

			2
#	ARTICLE In Situ Synthesis of Trimeric Ruthenium Cluster-Encapsulated ZIF-11 and Its Carbon Derivatives for	IF	CITATIONS
274	Simultaneous Conversion of Glycerol and CO ₂ . Chemistry of Materials, 2020, 32, 10084-10095.	3.2	21
275	Computational design of a metal-based frustrated Lewis pair on defective UiO-66 for CO ₂ hydrogenation to methanol. Journal of Materials Chemistry A, 2020, 8, 22802-22815.	5.2	27
276	Selective Conversion of CO2 into Propene and Butene. CheM, 2020, 6, 3344-3363.	5.8	58
277	Reactivity of a Zirconia–Copper Inverse Catalyst for CO ₂ Hydrogenation. Journal of Physical Chemistry C, 2020, 124, 22158-22172.	1.5	37
278	Enhancement of light olefin production in CO2 hydrogenation over In2O3-based oxide and SAPO-34 composite. Journal of Catalysis, 2020, 391, 459-470.	3.1	44
279	Reactivity of Iron Hydride Anions Fe ₂ H _{<i>n</i>} [–] (<i>n</i> = 0–3) with Carbon Dioxide. Journal of Physical Chemistry A, 2020, 124, 8414-8420.	1.1	7
280	Influence of gas impurities on the hydrogenation of CO ₂ to methanol using indium-based catalysts. Catalysis Science and Technology, 2020, 10, 7309-7322.	2.1	12
281	Chemische Batterien mit CO2. Angewandte Chemie, 2020, , .	1.6	1
282	Formic Acid: A Hydrogen-Bonding Cocatalyst for Formate Decomposition. ACS Catalysis, 2020, 10, 10812-10825.	5.5	36
283	CO ₂ to Formic Acid Using Cu–Sn on Laser-Induced Graphene. ACS Applied Materials & Interfaces, 2020, 12, 41223-41229.	4.0	48
284	Perovskite Oxide Based Materials for Energy and Environment-Oriented Photocatalysis. ACS Catalysis, 2020, 10, 10253-10315.	5.5	401
285	Hydrogenation of CO ₂ to Dimethyl Ether over Tandem Catalysts Based on Biotemplated Hierarchical ZSM-5 and Pd/ZnO. ACS Sustainable Chemistry and Engineering, 2020, 8, 14058-14070.	3.2	34
286	Novel Heterogeneous Catalysts for CO ₂ Hydrogenation to Liquid Fuels. ACS Central Science, 2020, 6, 1657-1670.	5.3	182
287	From CO ₂ activation to catalytic reduction: a metal-free approach. Chemical Science, 2020, 11, 10571-10593.	3.7	73
288	Chemical Batteries with CO ₂ . Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
289	Stable Highâ€Pressure Methane Dry Reforming Under Excess of CO ₂ . ChemCatChem, 2020, 12, 5919-5925.	1.8	17
290	Recycling Carbon Dioxide through Catalytic Hydrogenation: Recent Key Developments and Perspectives. ACS Catalysis, 2020, 10, 11318-11345.	5.5	215
291	Surface Orientation and Pressure Dependence of CO ₂ Activation on Cu Surfaces. Journal of Physical Chemistry C, 2020, 124, 27511-27518.	1.5	20

#	Article	IF	CITATIONS
292	Development of CO ₂ -to-Methanol Hydrogenation Catalyst by Focusing on the Coordination Structure of the Cu Species in Spinel-Type Oxide Mg _{1–<i>x</i>} Cu _{<i>x</i>} Al ₂ O ₄ . ACS Catalysis, 2020, 10, 15186-15194.	5.5	19
293	Cyclic oligourea synthesized from CO2: Purification, characterization and properties. Green Energy and Environment, 2022, 7, 477-484.	4.7	3
294	CO ₂ Reduction to Methanol in the Liquid Phase: A Review. ChemSusChem, 2020, 13, 6141-6159.	3.6	54
295	Strong Electronic Oxide–Support Interaction over In ₂ O ₃ /ZrO ₂ for Highly Selective CO ₂ Hydrogenation to Methanol. Journal of the American Chemical Society, 2020, 142, 19523-19531.	6.6	156
296	Hydrogenation of Carbon Dioxide to Methanol over Nonâ^'Cuâ€based Heterogeneous Catalysts. ChemSusChem, 2020, 13, 6160-6181.	3.6	90
297	Renewable Methanol Synthesis through Single Step Bi-reforming of Biogas. Industrial & Engineering Chemistry Research, 2020, 59, 10542-10551.	1.8	21
298	Hollow Mesoporous Organosilica Spheres Encapsulating PdAg Nanoparticles and Poly(Ethyleneimine) as Reusable Catalysts for CO ₂ Hydrogenation to Formate. ACS Catalysis, 2020, 10, 6356-6366.	5.5	51
299	Interfacial Engineering of PdAg/TiO ₂ with a Metal–Organic Framework to Promote the Hydrogenation of CO ₂ to Formic Acid. Journal of Physical Chemistry C, 2020, 124, 11499-11505.	1.5	22
300	Synthesis of Pdâ~'Rh Bimetallic Nanoparticles with Different Morphologies in Reverse Micelles and Characterization of Their Catalytic Properties. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 63-74.	0.3	3
301	Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO ₂ . Chemical Society Reviews, 2020, 49, 2937-3004.	18.7	479
302	Production of formate from CO ₂ gas under ambient conditions: towards flow-through enzyme reactors. Green Chemistry, 2020, 22, 3727-3733.	4.6	21
303	Induced high selectivity methanol formation during CO2 hydrogenation over a CuBr2-modified CuZnZr catalyst. Journal of Catalysis, 2020, 389, 47-59.	3.1	44
304	Hydroboration of carbon dioxide enabled by molecular zinc dihydrides. Dalton Transactions, 2020, 49, 7324-7327.	1.6	30
305	Intercalation of laminar Cu–Al LDHs with molecular TCPP(M) (M = Zn, Co, Ni, and Fe) towards high-performance CO ₂ hydrogenation catalysts. Nanoscale, 2020, 12, 13145-13156.	2.8	25
306	Interconversion of Formate/Bicarbonate for Hydrogen Storage/Release: Improved Activity Following Sacrificial Surface Modification of a Ag@Pd/TiO ₂ Catalyst with a TiO <i>_x</i> Shell. ACS Applied Energy Materials, 2020, 3, 5819-5829.	2.5	27
307	Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nature Communications, 2020, 11, 3028.	5.8	294
308	Unravelling Proximity-Driven Synergetic Effect within CIZO–SAPO Bifunctional Catalyst for CO ₂ Hydrogenation to DME. Energy & Fuels, 2020, 34, 8635-8643.	2.5	25
309	Realizing efficient carbon dioxide hydrogenation to liquid hydrocarbons by tandem catalysis design. EnergyChem, 2020, 2, 100038.	10.1	20

#	Article	IF	CITATIONS
310	Additive-Free Aqueous Phase Synthesis of Formic Acid by Direct CO2 Hydrogenation over a PdAg Catalyst on a Hydrophilic N-Doped Polymer–Silica Composite Support with High CO2 Affinity. ACS Applied Energy Materials, 2020, 3, 5847-5855.	2.5	22
311	Modified polyether glycols supported ionic liquids for CO2 adsorption and chemical fixation. Molecular Catalysis, 2020, 492, 111008.	1.0	10
312	Low-pressure hydrogenation of CO2 to methanol over Ni-Ga alloys synthesized by a surfactant-assisted co-precipitation method and a proposed mechanism by DRIFTS analysis. Catalysis Today, 2021, 381, 261-271.	2.2	17
313	Formic acid–aided biomass valorization. Current Opinion in Green and Sustainable Chemistry, 2020, 24, 67-71.	3.2	5
314	Design of a Graphene Nitrene Two-Dimensional Catalyst Heterostructure Providing a Well-Defined Site Accommodating One to Three Metals, with Application to CO ₂ Reduction Electrocatalysis for the Two-Metal Case. Journal of Physical Chemistry Letters, 2020, 11, 2541-2549.	2.1	51
315	UV/Vis Spectroscopy of Copper Formate Clusters: Insight into Metal‣igand Photochemistry. Chemistry - A European Journal, 2020, 26, 8286-8295.	1.7	10
316	From CO or CO ₂ ?: space-resolved insights into high-pressure CO ₂ hydrogenation to methanol over Cu/ZnO/Al ₂ O ₃ . Catalysis Science and Technology, 2020, 10, 2763-2768.	2.1	32
317	Metal-Dependent Selectivity on the Reactions of Carbon Dioxide with Diatomic Hydride Anions MH [–] (M = Co, Ni, and Cu). Journal of Physical Chemistry C, 2020, 124, 5928-5933.	1.5	13
318	Efficient synthesis of highly dispersed ultrafine Pd nanoparticles on a porous organic polymer for hydrogenation of CO ₂ to formate. RSC Advances, 2020, 10, 9414-9419.	1.7	26
319	Turning Waste into Value: Potassiumâ€Promoted Red Mud as an Effective Catalyst for the Hydrogenation of CO ₂ . ChemSusChem, 2020, 13, 2981-2987.	3.6	23
320	Metal–Organic Framework-Derived Synthesis of Cobalt Indium Catalysts for the Hydrogenation of CO ₂ to Methanol. ACS Catalysis, 2020, 10, 5064-5076.	5.5	88
321	Cu/ZnO Catalysts Derived from Bimetallic Metal–Organic Framework for Dimethyl Ether Synthesis from Syngas with Enhanced Selectivity and Stability. Small, 2020, 16, e1906276.	5.2	15
322	Eco-friendly upconversion of limestone into value-added calcium formate. Green Chemistry, 2020, 22, 4995-5001.	4.6	1
323	CO ₂ Hydrogenation to Formate Catalyzed by Ru Coordinated with a N,P-Containing Polymer. ACS Catalysis, 2020, 10, 8557-8566.	5.5	52
324	Surface Nitrogen-Injection Engineering for High Formation Rate of CO ₂ Reduction to Formate. Nano Letters, 2020, 20, 6097-6103.	4.5	71
325	Catalytic Semiâ€Water–Gas Shift Reaction: A Simple Green Path to Formic Acid Fuel. ChemSusChem, 2020, 13, 1817-1824.	3.6	7
326	CO2 Hydrogenation to Methanol over La2O3-Promoted CuO/ZnO/Al2O3 Catalysts: A Kinetic and Mechanistic Study. Catalysts, 2020, 10, 183.	1.6	15
327	Enhanced CH ₃ OH selectivity in CO ₂ hydrogenation using Cu-based catalysts generated <i>via</i> SOMC from Ga ^{III} single-sites. Chemical Science, 2020, 11, 7593-7598.	3.7	30

#	Article	IF	CITATIONS
328	Recycling of CO ₂ by Hydrogenation of Carbonate Derivatives to Methanol: Tuning Copper–Oxide Promotion Effects in Supported Catalysts. ChemSusChem, 2020, 13, 2043-2052.	3.6	10
329	All-Solid-State Z-Scheme α-Fe2O3/Amine-RGO/CsPbBr3 Hybrids for Visible-Light-Driven Photocatalytic CO2 Reduction. CheM, 2020, 6, 766-780.	5.8	280
330	State of the art and perspectives in heterogeneous catalysis of CO ₂ hydrogenation to methanol. Chemical Society Reviews, 2020, 49, 1385-1413.	18.7	605
331	In-Situ FT-IR Spectroscopy Investigation of CH4 and CO2 Reaction. Catalysts, 2020, 10, 131.	1.6	3
332	Comparative study of gasoline, diesel and biodiesel autothermal reforming over Rh-based FeCrAl-supported composite catalyst. International Journal of Hydrogen Energy, 2020, 45, 26197-26205.	3.8	32
333	Mechanism and catalytic performance for direct dimethyl ether synthesis by CO2 hydrogenation over CuZnZr/ferrierite hybrid catalyst. Journal of Environmental Sciences, 2020, 92, 106-117.	3.2	37
334	Amidines as Effective Ancillary Ligands in Copper-catalyzed Hydrogenation of Carbon Dioxide. Chemistry Letters, 2020, 49, 252-254.	0.7	9
335	Sodium-induced solid-phase hydrogenation of carbon dioxide to formate by mechanochemistry. Environmental Chemistry Letters, 2020, 18, 905-909.	8.3	5
336	Syngas production via partial oxidation of dimethyl ether over Rh/Ce0.75Zr0.25O2 catalyst and its application for SOFC feeding. International Journal of Hydrogen Energy, 2020, 45, 26188-26196.	3.8	19
337	A highly active copper catalyst for the hydrogenation of carbon dioxide to formate under ambient conditions. Dalton Transactions, 2020, 49, 2994-3000.	1.6	15
338	Selective N-Methylation of <i>N</i> -Methylaniline with CO ₂ and H ₂ over TiO ₂ -Supported PdZn Catalyst. ACS Catalysis, 2020, 10, 3285-3296.	5.5	33
339	Strategic harmonization of silica shell stabilization with Pt embedding on AuNPs for efficient artificial photosynthesis. Journal of Materials Chemistry A, 2020, 8, 5734-5743.	5.2	16
340	Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chemical Reviews, 2020, 120, 7984-8034.	23.0	825
341	CO ₂ hydrogenation to formic acid over heterogenized ruthenium catalysts using a fixed bed reactor with separation units. Green Chemistry, 2020, 22, 1639-1649.	4.6	70
342	Na ⁺ -gated water-conducting nanochannels for boosting CO ₂ conversion to liquid fuels. Science, 2020, 367, 667-671.	6.0	136
343	Copper-Iron-Zinc-Cerium oxide compositions as most suitable catalytic materials for the synthesis of green fuels via CO2 hydrogenation. Catalysis Today, 2021, 379, 230-239.	2.2	11
344	Analysis of Research Status of CO2 Conversion Technology Based on Bibliometrics. Catalysts, 2020, 10, 370.	1.6	26
345	CO2 hydrogenation to methanol: the structure–activity relationships of different catalyst systems. Energy, Ecology and Environment, 2020, 5, 272-285.	1.9	25

#	Article	IF	Citations
346	Reductive Coupling of Carbon Dioxide and an Aldehyde Mediated by a Copper(I) Complex toward the Synthesis of α-Hydroxycarboxylic Acids. Organic Letters, 2020, 22, 4922-4926.	2.4	10
347	Machine learning dihydrogen activation in the chemical space surrounding Vaska's complex. Chemical Science, 2020, 11, 4584-4601.	3.7	93
348	Highly efficient and durable aqueous electrocatalytic reduction of CO ₂ to HCOOH with a novel bismuth–MOF: experimental and DFT studies. Journal of Materials Chemistry A, 2020, 8, 9776-9787.	5.2	73
349	Rhodium-catalyzed reductive carbonylation of aryl iodides to arylaldehydes with syngas. Beilstein Journal of Organic Chemistry, 2020, 16, 645-656.	1.3	9
350	Zeolite membranes: Comparison in the separation of H2O/H2/CO2 mixtures and test of a reactor for CO2 hydrogenation to methanol. Catalysis Today, 2021, 364, 270-275.	2.2	43
351	CO2 hydrogenation on Cu-catalysts generated from ZnII single-sites: Enhanced CH3OH selectivity compared to Cu/ZnO/Al2O3. Journal of Catalysis, 2021, 394, 266-272.	3.1	35
352	The high-yield direct synthesis of dimethyl ether from CO ₂ and H ₂ in a dry reaction environment. Journal of Materials Chemistry A, 2021, 9, 2678-2682.	5.2	14
353	Niobium-based solid acids in combination with a methanol synthesis catalyst for the direct production of dimethyl ether from synthesis gas. Catalysis Today, 2021, 369, 77-87.	2.2	5
354	Applications of metal–organic framework composites in CO2 capture and conversion. Chinese Chemical Letters, 2021, 32, 649-659.	4.8	60
355	Biodiesel and hydrodeoxygenated biodiesel autothermal reforming over Rh-containing structured catalyst. Catalysis Today, 2021, 379, 42-49.	2.2	10
356	Selective Transformation of Nickelâ€Bound Formate to CO or Câ^'C Coupling Products Triggered by Deprotonation and Steered by Alkaliâ€Metal Ions. Angewandte Chemie - International Edition, 2021, 60, 2312-2321.	7.2	14
357	An overview of catalytic conversion of CO2 into fuels and chemicals using metal organic frameworks. Chemical Engineering Research and Design, 2021, 149, 67-92.	2.7	62
358	Advances in higher alcohol synthesis from CO2 hydrogenation. CheM, 2021, 7, 849-881.	5.8	129
359	CO2 towards fuels: A review of catalytic conversion of carbon dioxide to hydrocarbons. Journal of Environmental Chemical Engineering, 2021, 9, 104756.	3.3	147
360	The effect of CO2 and H2 adsorption strength and capacity on the performance of Ga and Zr modified Cu-Zn catalysts for CO2 hydrogenation to methanol. Journal of Environmental Chemical Engineering, 2021, 9, 104834.	3.3	30
361	Multi criteria decision analysis for screening carbon dioxide conversion products. Journal of CO2 Utilization, 2021, 43, 101391.	3.3	14
362	Tuning the transition barrier of H ₂ dissociation in the hydrogenation of CO ₂ to formic acid on Ti-doped Sn ₂ O ₄ clusters. Physical Chemistry Chemical Physics, 2021, 23, 204-210.	1.3	6
363	All roads lead to Rome: An energy-saving integrated electrocatalytic CO2 reduction system for concurrent value-added formate production. Chemical Engineering Journal, 2021, 412, 127893.	6.6	38

#	Article	IF	CITATIONS
364	Emerging material engineering strategies for amplifying photothermal heterogeneous CO2 catalysis. Journal of Energy Chemistry, 2021, 59, 108-125.	7.1	46
365	Homogeneous (De)hydrogenative Catalysis for Circular Chemistry – Using Waste as a Resource. ChemCatChem, 2021, 13, 1105-1134.	1.8	30
366	Current research progress and perspectives on liquid hydrogen rich molecules in sustainable hydrogen storage. Energy Storage Materials, 2021, 35, 695-722.	9.5	76
367	Recent advances in catalytic conversion of carbon dioxide to propiolic acids over coinage-metal-based catalysts. Journal of Energy Chemistry, 2021, 59, 572-580.	7.1	15
368	Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates. Green Chemistry, 2021, 23, 77-118.	4.6	284
369	Chemo- and regioselective hydroformylation of alkenes with CO ₂ /H ₂ over a bifunctional catalyst. Green Chemistry, 2021, 23, 8040-8046.	4.6	13
370	Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen. Renewable and Sustainable Energy Reviews, 2021, 138, 110644.	8.2	48
371	Selective Transformation of Nickelâ€Bound Formate to CO or Câ^'C Coupling Products Triggered by Deprotonation and Steered by Alkaliâ€Metal Ions. Angewandte Chemie, 2021, 133, 2342-2351.	1.6	3
372	MFI vs. FER zeolite during methanol dehydration to dimethyl ether: The crystal size plays a key role. Catalysis Communications, 2021, 149, 106214.	1.6	25
373	Metal-organic layers as a platform for developing single-atom catalysts for photochemical CO2 reduction. Nano Energy, 2021, 80, 105542.	8.2	77
374	Spectroscopy, lifetime, and charge-displacement of the methanol-noble gas complexes: An integrated experimental-theoretical investigation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 246, 119049.	2.0	4
375	Porous crystalline frameworks for thermocatalytic CO ₂ reduction: an emerging paradigm. Energy and Environmental Science, 2021, 14, 320-352.	15.6	61
376	Greener and facile synthesis of Cu/ZnO catalysts for CO2 hydrogenation to methanol by urea hydrolysis of acetates. RSC Advances, 2021, 11, 14323-14333.	1.7	6
377	Towards the development of the emerging process of CO ₂ heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chemical Society Reviews, 2021, 50, 10764-10805.	18.7	161
378	Approaching full-range selectivity control in CO ₂ hydrogenation to methanol and carbon monoxide with catalyst composition regulation. Inorganic Chemistry Frontiers, 2021, 8, 2433-2441.	3.0	5
379	Formic acid dehydrogenation over PdNi alloys supported on N-doped carbon: synergistic effect of Pd–Ni alloying on hydrogen release. Physical Chemistry Chemical Physics, 2021, 23, 11515-11527.	1.3	16
380	A Bifunctional Cationic Covalent Organic Polymer for Cooperative Conversion of CO2 to Cyclic Carbonate without Co-catalyst. Catalysis Letters, 2021, 151, 2833-2841.	1.4	12
381	Flame-made Cu/ZrO ₂ catalysts with metastable phase and strengthened interactions for CO ₂ hydrogenation to methanol. Chemical Communications, 2021, 57, 7509-7512.	2.2	25

#	Article	IF	CITATIONS
382	Homogeneous and heterogeneous catalysts for hydrogenation of CO ₂ to methanol under mild conditions. Chemical Society Reviews, 2021, 50, 4259-4298.	18.7	167
383	Dehydrogenation of Formic Acid to CO2 and H2 by Manganese(I)–Complex: Theoretical Insights for Green and Sustainable Route. Catalysts, 2021, 11, 141.	1.6	4
384	PdAg alloy nanoparticles immobilized on functionalized MIL-101-NH ₂ : effect of organic amines on hydrogenation of carbon dioxide into formic acid. New Journal of Chemistry, 2021, 45, 6293-6300.	1.4	9
385	Perspectives in Carbon Oxides Conversion to Methanol/Dimethyl Ether: Distinctive Contribution of Heterogeneous and Photocatalysis. , 2021, , 557-597.		0
386	Nanocatalyst for CO2 hydrogenation. , 2021, , 87-109.		0
387	CO ₂ valorisation towards alcohols by Cu-based electrocatalysts: challenges and perspectives. Green Chemistry, 2021, 23, 1896-1920.	4.6	32
388	Design and Synthesis of Yolk–Shell Nanostructured Silica Encapsulating Metal Nanoparticles and Aminopolymers for Selective Hydrogenation Reactions. Nanostructure Science and Technology, 2021, , 395-411.	0.1	0
389	Powerful and New Chemical Synthesis Reactions from CO2 and C1 Chemistry Innovated by Tailor-Made Core–Shell Catalysts. Nanostructure Science and Technology, 2021, , 105-120.	0.1	0
390	Identification of C ₂ –C ₅ products from CO ₂ hydrogenation over PdZn/TiO ₂ –ZSM-5 hybrid catalysts. Faraday Discussions, 2021, 230, 52-67.	1.6	3
391	Reverse Water-Gas Shift Reaction via Redox of Re Nanoclusters Supported on TiO2. Chemistry Letters, 2021, 50, 158-161.	0.7	11
392	Oxidative Transformation of Biomass into Formic Acid. European Journal of Organic Chemistry, 2021, 2021, 1331-1343.	1.2	17
393	Introduction to the Organometallic Chemistry of Carbon Dioxide. , 2021, , .		Ο
394	An enhanced electrochemical CO ₂ reduction reaction on the SnO _x –PdO surface of SnPd nanoparticles decorated on N-doped carbon fibers. Catalysis Science and Technology, 2021, 11, 143-151.	2.1	16
395	Reverse water-gas shift reaction over Pt/MoO _x /TiO ₂ : reverse Mars–van Krevelen mechanism <i>via</i> redox of supported MoO _x . Catalysis Science and Technology, 2021, 11, 4172-4180.	2.1	20
396	Selectivity controlled transformation of carbon dioxide into a versatile bi-functional multi-carbon oxygenate using a physically mixed ruthenium–iridium catalyst. Catalysis Science and Technology, 2021, 11, 4719-4731.	2.1	2
397	A quasi-stable molybdenum sub-oxide with abundant oxygen vacancies that promotes CO ₂ hydrogenation to methanol. Chemical Science, 2021, 12, 9902-9915.	3.7	35
398	Facile treatment tuning the morphology of Pb with state-of-the-art selectivity in CO ₂ electroreduction to formate. Chemical Communications, 2021, 57, 7418-7421.	2.2	34
399	Spectroscopy and photochemistry of copper nitrate clusters. Physical Chemistry Chemical Physics, 2021, 23, 9911-9920.	1.3	3

#	Article	IF	CITATIONS
400	Artificial photosynthesis system for the reduction of carbon dioxide to value-added fuels. , 2021, , 917-938.		4
401	Ultradispersed Mo/TiO ₂ catalysts for CO ₂ hydrogenation to methanol. Green Chemistry, 2021, 23, 7259-7268.	4.6	22
402	Nanocatalysts for interconversion of CO2 to fuels and chemicals. , 2021, , 221-237.		0
403	CO ₂ conversion over Cu–Mo ₂ C catalysts: effect of the Cu promoter and preparation method. Catalysis Science and Technology, 2021, 11, 1467-1480.	2.1	12
404	An air-stable, reusable Ni@Ni(OH) ₂ nanocatalyst for CO ₂ /bicarbonate hydrogenation to formate. Nanoscale, 2021, 13, 8931-8939.	2.8	19
405	Tailoring the Physicochemical Properties of Mg Promoted Catalysts via One Pot Non-ionic Surfactant Assisted Co-precipitation Route for CO2 Co-feeding Syngas to Methanol. Topics in Catalysis, 2021, 64, 395-413.	1.3	10
406	Nanomaterials for photocatalytic and cold plasma-catalytic hydrogenation of CO2 to CO, CH4, and CH3OH. , 2021, , 353-373.		0
409	Heterogeneous Formic Acid Production by Hydrogenation of CO ₂ Catalyzed by Irâ€bpy Embedded in Polyphenylene Porous Organic Polymers. ChemCatChem, 2021, 13, 1781-1786.	1.8	12
410	CO2 hydrogenation to methanol and dimethyl ether at atmospheric pressure using Cu-Ho-Ga(γ–Al2O3 and Cu-Ho-Ga/ZSM-5: Experimental study and thermodynamic analysis. Turkish Journal of Chemistry, 2021, 45, 231-247.	0.5	3
411	Catalysts with single metal atoms for the hydrogen production from formic acid. Catalysis Reviews - Science and Engineering, 2022, 64, 835-874.	5.7	33
412	Pd–Cu Alloy Nanoparticles Confined within Mesoporous Hollow Carbon Spheres for the Hydrogenation of CO ₂ to Formate. Journal of Physical Chemistry C, 2021, 125, 3961-3971.	1.5	25
413	Direct Carboxylation with Carbon Dioxide via Cooperative Photoredox and Transitionâ€Metal Dual Catalysis. Advanced Synthesis and Catalysis, 2021, 363, 1583-1596.	2.1	47
414	Liquid fuel synthesis via CO2 hydrogenation by coupling homogeneous and heterogeneous catalysis. CheM, 2021, 7, 726-737.	5.8	38
415	Highly Active Ir/In ₂ O ₃ Catalysts for Selective Hydrogenation of CO ₂ to Methanol: Experimental and Theoretical Studies. ACS Catalysis, 2021, 11, 4036-4046.	5.5	108
417	Lewis Acid Strength of Interfacial Metal Sites Drives CH ₃ OH Selectivity and Formation Rates on Cuâ€Based CO ₂ Hydrogenation Catalysts. Angewandte Chemie, 2021, 133, 9736-9745.	1.6	4
418	CO2 Hydrogenation to Methanol over Copper Catalysts: Learning from Syngas Conversion. Topics in Catalysis, 2021, 64, 974-983.	1.3	16
419	Progress in Catalytic Hydrogen Production from Formic Acid over Supported Metal Complexes. Energies, 2021, 14, 1334.	1.6	25
421	Copper(I) Complexes Containing PCP Ligand Catalyzed Hydrogenation of Carbon Dioxide to Formate under Ambient Conditions. Inorganic Chemistry, 2021, 60, 4385-4396.	1.9	12

#	Article	IF	CITATIONS
422	Nanostructure of nickel-promoted indium oxide catalysts drives selectivity in CO2 hydrogenation. Nature Communications, 2021, 12, 1960.	5.8	90
423	Non-thermal plasma catalysis for CO ₂ conversion and catalyst design for the process. Journal Physics D: Applied Physics, 2021, 54, 233001.	1.3	52
424	Silica-Supported PdGa Nanoparticles: Metal Synergy for Highly Active and Selective CO ₂ -to-CH ₃ OH Hydrogenation. Jacs Au, 2021, 1, 450-458.	3.6	31
425	Achieving high current density for electrocatalytic reduction of CO2 to formate on bismuth-based catalysts. Cell Reports Physical Science, 2021, 2, 100353.	2.8	46
426	Direct Synthesis of Dimethyl Ether from CO2: Recent Advances in Bifunctional/Hybrid Catalytic Systems. Catalysts, 2021, 11, 411.	1.6	45
428	Lewis Acid Strength of Interfacial Metal Sites Drives CH ₃ OH Selectivity and Formation Rates on Cuâ€Based CO ₂ Hydrogenation Catalysts. Angewandte Chemie - International Edition, 2021, 60, 9650-9659.	7.2	43
429	Both sites must turn over in tandem catalysis: Lessons from one-pot CO2 capture and hydrogenation. Journal of Catalysis, 2021, 404, 977-984.	3.1	4
430	From Trash to Treasure: Probing Cycloaddition and Photocatalytic Reduction of CO ₂ over Cerium-Based Metal–Organic Frameworks. Journal of Physical Chemistry C, 2021, 125, 8497-8507.	1.5	41
431	CO2 hydrogenation over functional nanoporous polymers and metal-organic frameworks. Advances in Colloid and Interface Science, 2021, 290, 102349.	7.0	36
432	Design and Synthesis of Bioinspired ZnZrO _{<i>x</i>} &Bio-ZSM-5 Integrated Nanocatalysts to Boost CO ₂ Hydrogenation to Light Olefins. ACS Sustainable Chemistry and Engineering, 2021, 9, 6446-6458.	3.2	23
433	The roles of polyoxometalates in photocatalytic reduction of carbon dioxide. Materials Today Energy, 2021, 21, 100760.	2.5	28
434	Unsupported Nanoporous Palladium Catalyst for Highly Selective Hydrogenation of Carbon Dioxide and Sodium Bicarbonate into Formate. ChemCatChem, 2021, 13, 2702-2708.	1.8	9
435	Synthesis of C ₂₊ Chemicals from CO ₂ and H ₂ via C–C Bond Formation. Accounts of Chemical Research, 2021, 54, 2467-2476.	7.6	48
436	PdAg Nanoparticles Supported on an Amine-functionalized MOF as a Photo-switchable Catalyst for Hydrogen Storage/Delivery Mediated by CO2/Formic Acid. Chemistry Letters, 2021, 50, 607-610.	0.7	3
438	Water–Gas Shift Reaction Produces Formate at Extreme Pressures and Temperatures in Deep Earth Fluids. Journal of Physical Chemistry Letters, 2021, 12, 4292-4298.	2.1	3
439	Solvothermal preparation of CuO-ZnO-ZrO2 catalysts for methanol synthesis via CO2 hydrogenation. Journal of the Taiwan Institute of Chemical Engineers, 2021, 121, 81-91.	2.7	24
440	Density functional and microkinetic study of CO2 hydrogenation to methanol on subnanometer Pd cluster doped by transition metal (M= Cu, Ni, Pt, Rh). International Journal of Hydrogen Energy, 2021, 46, 14418-14428.	3.8	19
441	Versatile Hollow ZSM-5 Nanoreactors Loaded with Tailorable Metal Catalysts for Selective Hydrogenation Reactions. ACS Applied Materials & Interfaces, 2021, 13, 20524-20538.	4.0	22

#	Article	IF	CITATIONS
443	Mechanochemical Effect in Mixing Sponge Copper with Amorphous ZrO ₂ Creates Effective Active Sites for Methanol Synthesis by CO ₂ Hydrogenation. Journal of Physical Chemistry C, 2021, 125, 8155-8162.	1.5	10
444	Capture and Reuse of Carbon Dioxide (CO2) for a Plastics Circular Economy: A Review. Processes, 2021, 9, 759.	1.3	41
445	Distinct Mechanisms and Hydricities of Cp*Ir-Based CO ₂ Hydrogenation Catalysts in Basic Water. ACS Catalysis, 2021, 11, 5776-5788.	5.5	17
446	Catalytic Methylation of <i>m</i> -Xylene, Toluene, and Benzene Using CO ₂ and H ₂ over TiO ₂ -Supported Re and Zeolite Catalysts: Machine-Learning-Assisted Catalyst Optimization. ACS Catalysis, 2021, 11, 5829-5838.	5.5	25
447	Synthetic Fuels Based on Dimethyl Ether as a Future Non-Fossil Fuel for Road Transport From Sustainable Feedstocks. Frontiers in Energy Research, 2021, 9, .	1.2	28
448	Combination of Cu/ZnO Methanol Synthesis Catalysts and ZSM-5 Zeolites to Produce Oxygenates from CO2 and H2. Topics in Catalysis, 2021, 64, 965-973.	1.3	6
449	Flow MAS NMR for In Situ Monitoring of Carbon Dioxide Capture and Hydrogenation Using Nanoporous Solids. Journal of Physical Chemistry C, 2021, 125, 10219-10225.	1.5	5
450	Impact of hybrid CO2-CO feeds on methanol synthesis over In2O3-based catalysts. Applied Catalysis B: Environmental, 2021, 285, 119878.	10.8	30
451	Size-Controlled Synthesis of Pd Nanocatalysts on Defect-Engineered CeO ₂ for CO ₂ Hydrogenation. ACS Applied Materials & Interfaces, 2021, 13, 24957-24965.	4.0	33
452	Cu-Based Nanocatalysts for CO ₂ Hydrogenation to Methanol. Energy & Fuels, 2021, 35, 8558-8584.	2.5	74
453	Ceria morphology-dependent Pd-CeO2 interaction and catalysis in CO2 hydrogenation into formate. Journal of Catalysis, 2021, 397, 116-127.	3.1	63
454	Climate change impacts of introducing carbon capture and utilisation (CCU) in waste incineration. Waste Management, 2021, 126, 754-770.	3.7	43
455	Efficient approaches to overcome challenges in material development for conventional and intensified CO2 catalytic hydrogenation to CO, methanol, and DME. Applied Catalysis A: General, 2021, 617, 118119.	2.2	44
456	Deciphering Metal–Oxide and Metal–Metal Interplay via Surface Organometallic Chemistry: A Case Study with CO ₂ Hydrogenation to Methanol. Journal of the American Chemical Society, 2021, 143, 6767-6780.	6.6	48
457	Yttria-doped Cu/ZnO catalyst with excellent performance for CO2 hydrogenation to methanol. Molecular Catalysis, 2021, 509, 111641.	1.0	11
458	Mind the gaps in CO2-to-methanol. Nature Catalysis, 2021, 4, 447-448.	16.1	17
459	Competition between Reversible Capture of CO ₂ and Release of CO ₂ ^{•–} Using Electrochemically Reduced Quinones in Acetonitrile Solutions. Journal of Physical Chemistry C, 2021, 125, 11916-11927.	1.5	11
460	Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nature Reviews Chemistry, 2021, 5, 564-579.	13.8	253

ARTICLE IF CITATIONS # Theoretical new insights into hydrogen interaction with single-atom Zn- and co-doped copper metal 461 3.1 2 catalysts. Applied Surface Science, 2021, 551, 149365. Synthesis of Monocarboxylic Acids via Direct CO₂ Conversion over Ni–Zn Intermetallic 5.5 Catalysts. ACS Catalysis, 2021, 11, 8382-8398. Unlocking the Catalytic Potential of TiO₂-Supported Pt Single Atoms for the Reverse 463 3.6 46 Waterâ \in ^{*a*}Gas Shift Reaction by Altering Their Chemical Environment. Jacs Au, 2021, 1, 977-986. Sodium Hexanoate and Dodecanoate Salt-Based Eutectic Solvents: Density, Viscosity, and Kamlet–Taft 464 1.0 Parameters. Journal of Chemical & amp; Engineering Data, 2021, 66, 2793-2802. Tin–Ruthenium Cooperative Catalyst for Disproportionation of Formic Acid to Methanol. ACS 465 5.5 8 Catalysis, 2021, 11, 7460-7466. Heterogeneous catalysts for the hydrogenation of amine/alkali hydroxide solvent captured CO 2 to formate: A review. , 2021, 11, 807-823 Lead-Free Perovskite Cs₂AgBiX₆ Nanocrystals with a Band Gap Funnel Structure for Photocatalytic CO₂ Reduction under Visible Light. Chemistry of Materials, 467 3.2 60 2021, 33, 4971-4976. Chemodivergent Synthesis of One-Carbon-Extended Alcohols via Copper-Catalyzed 2.4 Hydroxymethylation of Alkynes with Formic Acid. Organic Letters, 2021, 23, 4997-5001. Understanding the structure-performance relationship of cubic In2O3 catalysts for CO2 469 3.3 10 hydrogenation. Journal of CO2 Utilization, 2021, 49, 101543. Recent advances in CO2 hydrogenation to value-added products â€" Current challenges and future 15.8 134 directions. Progress in Energy and Combustion Science, 2021, 85, 100905. Tailoring the yttrium content in Ni-Ce-Y/SBA-15 mesoporous silicas for CO2 methanation. Catalysis 471 2.2 16 Today, 2021, 382, 104-119. Enzymes, <i>In Vivo</i> Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and 23.0 111 Sustainability. Chemical Reviews, 2021, 121, 10367-10451. Effect of Sm Doping on CO₂-to-Methanol Hydrogenation of 473 1.5 8 Cu/Amorphous-ŻrO₂ Catalysts. Journal of Physical Chemistry C, 2021, 125, 15899-15909. Catalytic Hydrogenation of CO2 to Methanol over Cu/MgO Catalysts in a Semi-Continuous Reactor. Energies, 2021, 14, 4319. 474 1.6 Sustainability Assessment of Thermocatalytic Conversion of CO₂ to Transportation Fuels, 475 3.2 20 Methanol, and 1-Propanol. ACS Sustainable Chemistry and Engineering, 2021, 9, 10591-10600. Unlocking mixed oxides with unprecedented stoichiometries from heterometallic metal-organic frameworks for the catalytic hydrogenation of CO2. Chem Catalysis, 2021, 1, 364-382. Role of metal-support interaction for atmospheric pressure CO2 hydrogenation over Pd/(Ti)-SBA-15 477 1.0 2 catalyst: Effect of titanium composition on products selectivity. Molecular Catalysis, 2021, 511, 111732. Direct Synthesis of Formic acid from Carbon Dioxide by Hydrogenation over Ruthenium Metal Doped 478 Titanium Dioxide Nanoparticles in Functionalized Ionic Liquid. Current Organocatalysis, 2021, 08, .

#	Article	IF	CITATIONS
479	Chemical Reduction of Nill Cyclam and Characterization of Isolated Nil Cyclam with Cryogenic Vibrational Spectroscopy and Inert-Gas-Mediated High-Resolution Mass Spectrometry. Journal of Physical Chemistry A, 2021, 125, 6715-6721.	1.1	0
480	Catalytic CO2 hydrosilylation with [Mn(CO)5Br] under mild reaction conditions. Polyhedron, 2021, 203, 115242.	1.0	8
481	Ni–In Synergy in CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2021, 11, 11371-11384.	5.5	79
482	On the activity and stability of Sb2O3/Sb nanoparticles for the electroreduction of CO2 toward formate. Journal of Electroanalytical Chemistry, 2021, 895, 115440.	1.9	11
483	Facet effect of In2O3 for methanol synthesis by CO2 hydrogenation: A mechanistic and kinetic study. Surfaces and Interfaces, 2021, 25, 101244.	1.5	9
484	Catalysts design for higher alcohols synthesis by CO2 hydrogenation: Trends and future perspectives. Applied Catalysis B: Environmental, 2021, 291, 120073.	10.8	90
485	Promoting Methanol Synthesis and Inhibiting CO ₂ Methanation with Bimetallic In–Ru Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 11891-11902.	3.2	17
486	Highly selective synthesis of LPG from CO2 hydrogenation over In2O3/SSZ-13 binfunctional catalyst. Journal of Fuel Chemistry and Technology, 2021, 49, 1132-1139.	0.9	6
487	CO2 hydrogenation to methanol over partially embedded Cu within Zn-Al oxide and the effect of indium. Journal of CO2 Utilization, 2021, 50, 101609.	3.3	15
488	Hydrogenation of CO2 on NiGa thin films studied by ambient pressure x-ray photoelectron spectroscopy. Journal Physics D: Applied Physics, 2021, 54, 424004.	1.3	2
489	Ru complex and N, P-containing polymers confined within mesoporous hollow carbon spheres for hydrogenation of CO2 to formate. Nano Research, 2023, 16, 4515-4523.	5.8	8
490	CO2 Utilization Through its Reduction to Methanol: Design of Catalysts Using Quantum Mechanics and Machine Learning. , 2022, 7, 1-11.		3
491	Solid micellar Ru single-atom catalysts for the water-free hydrogenation of CO2 to formic acid. Applied Catalysis B: Environmental, 2021, 290, 120036.	10.8	43
492	A comparison of two hydrogen storages in a fossil-free direct reduced iron process. International Journal of Hydrogen Energy, 2021, 46, 28657-28674.	3.8	13
493	Catalytic Reductive Alcohol Etherifications with Carbonylâ€Based Compounds or CO ₂ and Related Transformations for the Synthesis of Ether Derivatives. ChemSusChem, 2021, 14, 3744-3784.	3.6	18
494	Catalytic Conversion of CO2 to Formate Promoted by a Biochar-Supported Nickel Catalyst Sourced from Nickel Phytoextraction Using Cyanogen-Rich Cassava. ACS Earth and Space Chemistry, 0, , .	1.2	2
495	Photo-bioelectrocatalytic CO2 reduction for a circular energy landscape. Joule, 2021, 5, 2564-2592.	11.7	32
496	Photoreduction of Carbon Dioxide to Formic Acid with Fe-Based MOFs: The Promotional Effects of Heteroatom Doping and Alloy Nanoparticle Confinement. ACS Applied Energy Materials, 2021, 4, 11634-11642.	2.5	13

#	Article	IF	CITATIONS
497	Simultaneous production of lactate and formate from glycerol and carbonates over supported Pt catalysts. Journal of Industrial and Engineering Chemistry, 2021, 101, 66-77.	2.9	12
498	Fabrication of PdZn alloy catalysts supported on ZnFe composite oxide for CO2 hydrogenation to methanol. Journal of Colloid and Interface Science, 2021, 597, 260-268.	5.0	18
499	Graphdiyne enables Cu nanoparticles for highly selective electroreduction of CO ₂ to formate. 2D Materials, 2021, 8, 044008.	2.0	7
500	Revealing the dependence of CO ₂ activation on hydrogen dissociation ability over supported nickel catalysts. AICHE Journal, 2022, 68, e17458.	1.8	9
501	Energyâ€saving H ₂ Generation Coupled with Oxidative Alcohol Refining over Bimetallic Phosphide Ni ₂ Pâ^'CoP Junction Bifunctional Electrocatalysts. ChemSusChem, 2021, 14, 5450-5459.	3.6	16
502	Search for solid acid catalysts aiming at the development of bifunctional tandem catalysts for the one-pass synthesis of lower olefins via CO2 hydrogenation. International Journal of Hydrogen Energy, 2021, 46, 36721-36730.	3.8	18
503	Carbonic Anhydrase-Mimicking Keplerate Cluster Encapsulated Iron Trimesate for Base-Free CO ₂ Hydrogenation. ACS Sustainable Chemistry and Engineering, 2021, 9, 14051-14060.	3.2	6
504	Highly Efficient and Recyclable Porous Organic Polymer Supported Iridium Catalysts for Dehydrogenation and Borrowing Hydrogen Reactions in Water. ChemCatChem, 2021, 13, 4751-4758.	1.8	23
505	Toward efficient single-atom catalysts for renewable fuels and chemicals production from biomass and CO2. Applied Catalysis B: Environmental, 2021, 292, 120162.	10.8	114
506	High Temperature Water Permeable Membrane Reactors for CO2 Utilization. Chemical Engineering Journal, 2021, 420, 129834.	6.6	38
507	Understanding and Application of Strong Metal–Support Interactions in Conversion of CO ₂ to Methanol: A Review. Energy & Fuels, 2021, 35, 19012-19023.	2.5	40
508	Molecular transition metal corrole as an efficient electrocatalyst for the heterogeneous CO2 electroreduction: A theory study. International Journal of Hydrogen Energy, 2021, 46, 33120-33131.	3.8	8
509	Ni-N4 sites in a single-atom Ni catalyst on N-doped carbon for hydrogen production from formic acid. Journal of Catalysis, 2021, 402, 264-274.	3.1	41
510	Electrochemical production of formic acid from carbon dioxide: A life cycle assessment study. Journal of Environmental Chemical Engineering, 2021, 9, 106130.	3.3	8
511	Thermodynamic analysis of carbon dioxide hydrogenation to formic acid and methanol. Chemical Engineering Science, 2021, 242, 116731.	1.9	21
512	Suppressing Dormant Ru States in the Presence of Conventional Metal Oxides Promotes the Ru-MACHO-BH-Catalyzed Integration of CO ₂ Capture and Hydrogenation to Methanol. ACS Catalysis, 2021, 11, 12682-12691.	5.5	8
513	Identification of opportunities for integrating chemical processes for carbon (dioxide) utilization to nuclear power plants. Renewable and Sustainable Energy Reviews, 2021, 150, 111450.	8.2	10
514	Enhanced CO2 hydrogenation to methanol over La oxide-modified Cu nanoparticles socketed on Cu phyllosilicate nanotubes. Journal of CO2 Utilization, 2021, 52, 101699.	3.3	9

#	Article	IF	CITATIONS
515	Recent progress in syngas production via catalytic CO2 hydrogenation reaction. Applied Catalysis B: Environmental, 2021, 295, 120319.	10.8	110
516	Black phosphorus coupled black titania nanocomposites with enhanced sunlight absorption properties for efficient photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 295, 120211.	10.8	47
517	Turning CO2 into di-methyl ether (DME) using Pd based catalysts – Role of Ca in tuning the activity and selectivity. Journal of Industrial and Engineering Chemistry, 2021, 103, 67-79.	2.9	12
518	Investigating the role of oxygen vacancies and basic site density in tuning methanol selectivity over Cu/CeO2 catalyst during CO2 hydrogenation. Fuel, 2021, 303, 121289.	3.4	65
519	Effect of In2O3 particle size on CO2 hydrogenation to lower olefins over bifunctional catalysts. Chinese Journal of Catalysis, 2021, 42, 2038-2048.	6.9	39
520	Multi-criteria decision approach to select carbon dioxide and hydrogen sources as potential raw materials for the production of chemicals. Renewable and Sustainable Energy Reviews, 2021, 151, 111542.	8.2	18
521	Effects of metal promotion on the performance, catalytic activity, selectivity and deactivation rates of Cu/ZnO/Al2O3 catalysts for methanol synthesis. Chemical Engineering Research and Design, 2021, 175, 146-160.	2.7	11
522	Recent advances in catalytic systems for CO2 conversion to substitute natural gas (SNG): Perspective and challenges. Journal of Energy Chemistry, 2021, 62, 377-407.	7.1	91
523	Enhanced catalytic activity and stability of bismuth nanosheets decorated by 3-aminopropyltriethoxysilane for efficient electrochemical reduction of CO2. Applied Catalysis B: Environmental, 2021, 298, 120602.	10.8	19
524	Single Ni supported on Ti3C2O2 for uninterrupted CO2 catalytic hydrogenation to formic acid: A DFT study. Separation and Purification Technology, 2021, 279, 119722.	3.9	14
525	Three-phase electrochemistry for green ethylene production. Current Opinion in Electrochemistry, 2021, 30, 100789.	2.5	6
526	Hydrogenation. , 2022, , 85-156.		0
527	Dimethoxymethane production via CO2 hydrogenation in methanol over novel Ru based hierarchical BEA. Journal of Energy Chemistry, 2022, 66, 181-189.	7.1	12
528	Catalytic Technologies for the Conversion and Reuse of CO2. , 2021, , 1-50.		0
529	A Short Review of Recent Advances in Direct CO2 Hydrogenation to Alcohols. Topics in Catalysis, 2021, 64, 371-394.	1.3	52
530	Electrochemical reduction of carbon dioxide (CO ₂): bismuth-based electrocatalysts. Journal of Materials Chemistry A, 2021, 9, 13770-13803.	5.2	55
531	Recent advances in hydrogenation of CO ₂ into hydrocarbons <i>via</i> methanol intermediate over heterogeneous catalysts. Catalysis Science and Technology, 2021, 11, 1665-1697.	2.1	64
532	Acid-assisted hydrogenation of CO ₂ to methanol using Ru(<scp>ii</scp>) and Rh(<scp>iii</scp>) RAPTA-type catalysts under mild conditions. Chemical Communications, 2021, 57, 8941-8944.	2.2	5

#	Article	IF	CITATIONS
533	Catalytic Hydrogenation of CO ₂ to Methanol Using Multinuclear Iridium Complexes in a Gas–Solid Phase Reaction. Journal of the American Chemical Society, 2021, 143, 1570-1576.	6.6	44
534	Constructing Nitrogen Self-Doped Covalent Triazine-Based Frameworks for Visible-Light-Driven Photocatalytic Conversion of CO ₂ into CH ₄ . ACS Sustainable Chemistry and Engineering, 2021, 9, 1333-1340.	3.2	43
535	Advances on Transition-Metal Catalyzed CO ₂ Hydrogenation. Chinese Journal of Organic Chemistry, 2021, 41, 3914.	0.6	7
536	Catalytic systems for enhanced carbon dioxide reforming of methane: a review. Environmental Chemistry Letters, 2021, 19, 2157-2183.	8.3	44
537	Hollow Carbon Spheres Encapsulating Metal Nanoparticles for CO2 Hydrogenation Reactions. Nanostructure Science and Technology, 2021, , 425-440.	0.1	0
538	HCOOH disproportionation to MeOH promoted by molybdenum PNP complexes. Chemical Science, 2021, 12, 13101-13119.	3.7	11
539	Hydroxycarbonylation of alkenes with formic acid using a rhodium iodide complex and alkyl ammonium iodide. Organic and Biomolecular Chemistry, 2021, 19, 8727-8734.	1.5	5
540	Power-to-methanol process: a review of electrolysis, methanol catalysts, kinetics, reactor designs and modelling, process integration, optimisation, and techno-economics. Sustainable Energy and Fuels, 2021, 5, 3490-3569.	2.5	41
541	Direct synthesis of polycarbonate diols from atmospheric flow CO ₂ and diols without using dehydrating agents. Green Chemistry, 2021, 23, 5786-5796.	4.6	21
542	Relations between Surface Oxygen Vacancies and Activity of Methanol Formation from CO ₂ Hydrogenation over In ₂ O ₃ Surfaces. ACS Catalysis, 2021, 11, 1780-1786.	5.5	88
543	A DFT-based microkinetic study on methanol synthesis from CO ₂ hydrogenation over the In ₂ O ₃ catalyst. Physical Chemistry Chemical Physics, 2021, 23, 1888-1895.	1.3	20
544	Heterogeneous catalysts for CO ₂ hydrogenation to formic acid/formate: from nanoscale to single atom. Energy and Environmental Science, 2021, 14, 1247-1285.	15.6	152
545	Conversion of Carbon Dioxide into Formic Acid. Environmental Chemistry for A Sustainable World, 2020, , 91-110.	0.3	3
546	Synthetic natural gas production from CO2 over Ni-x/CeO2-ZrO2 (x = Fe, Co) catalysts: Influence of promoters and space velocity. Catalysis Today, 2018, 317, 108-113.	2.2	64
547	Behavior of volatile compounds in membrane distillation: The case of carboxylic acids. Journal of Membrane Science, 2020, 612, 118453.	4.1	9
548	CO2 Derived E-Fuels: Research Trends, Misconceptions, and Future Directions. Trends in Chemistry, 2020, 2, 785-795.	4.4	54
549	Shape and Surface Morphology of Copper Nanoparticles under CO2 Hydrogenation Conditions from First Principles. Journal of Physical Chemistry C, 2021, 125, 396-409.	1.5	15
550	Coated sulfated zirconia/SAPO-34 for the direct conversion of CO ₂ to light olefins. Catalysis Science and Technology, 2020, 10, 1507-1517.	2.1	34

#	Article	IF	CITATIONS
551	PdAg nanoparticles and aminopolymer confined within mesoporous hollow carbon spheres as an efficient catalyst for hydrogenation of CO ₂ to formate. Journal of Materials Chemistry A, 2020, 8, 4437-4446.	5.2	31
552	Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 2020, 49, 8584-8686.	18.7	610
553	Utilizing hydrogen underpotential deposition in CO reduction for highly selective formaldehyde production under ambient conditions. Green Chemistry, 2020, 22, 5639-5647.	4.6	14
554	Cluster size effects on the adsorption of CO, O, and CO ₂ and the dissociation of CO ₂ on two-dimensional Cu _{<i>x</i>} (<i>x</i> = 1, 3, and 7) clusters supported on Cu(111) surface: a density functional theory study. Journal of Physics Condensed Matter, 2020, 32, 405201.	0.7	3
555	Dimethyl Ether Synthesis from CO ₂ –H ₂ Mixture over Cu/Amorphous-ZrO ₂ Mixed with FER-type Zeolite. Journal of the Japan Petroleum Institute, 2020, 63, 388-393.	0.4	3
556	The cascade catalysis of the porphyrinic zirconium metal–organic framework PCN-224-Cu for CO ₂ conversion to alcohols. Journal of Materials Chemistry A, 2021, 9, 24510-24516.	5.2	25
557	Effect of the Synthesis Method on Physicochemical Properties and Performance of Cu/ZnO/Nb ₂ O ₅ Catalysts for CO ₂ Hydrogenation to Methanol. Industrial & Engineering Chemistry Research, 2021, 60, 18750-18758.	1.8	10
558	Insights into the alloy-support synergistic effects for the CO2 hydrogenation towards methanol on oxide-supported Ni5Ga3 catalysts: An experimental and DFT study. Applied Catalysis B: Environmental, 2022, 302, 120842.	10.8	29
559	Ionothermal Synthesis of Imidazolium and Triazine Integrated Porous Organic Frameworks for Efficient CO ₂ Adsorption and Synergetic Conversion into Cyclic Carbonates. Industrial & Engineering Chemistry Research, 2021, 60, 15027-15036.	1.8	9
560	Ethylene Hydroformylation with Carbon Dioxide Catalyzed by Ruthenium Supported on Titanate Nanotubes: Infrared Spectroscopic Evidence of Surface Species. ChemistrySelect, 2021, 6, 10758-10766.	0.7	2
561	An Efficient Metal–Organic Frameworkâ€Đerived Nickel Catalyst for the Light Driven Methanation of CO ₂ . Angewandte Chemie - International Edition, 2021, 60, 26476-26482.	7.2	45
562	Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis. Nature Communications, 2021, 12, 5914.	5.8	43
563	Reticular frameworks and their derived materials for CO2 conversion by thermoâ^'catalysis. EnergyChem, 2021, 3, 100064.	10.1	52
564	Advanced Catalysis in Hydrogen Production from Formic Acid and Methanol. Energies, 2021, 14, 6810.	1.6	2
565	An Efficient Metal–Organic Frameworkâ€Derived Nickel Catalyst for the Light Driven Methanation of CO ₂ . Angewandte Chemie, 2021, 133, 26680-26686.	1.6	4
566	Recent strategies for enhancing the catalytic activity of CO2 hydrogenation to formate/formic acid over Pd-based catalyst. Journal of CO2 Utilization, 2021, 54, 101765.	3.3	27
567	CO2 hydrogenation to formate catalyzed by highly stable and recyclable carbene-iridium under mild condition. Journal of CO2 Utilization, 2021, 54, 101769.	3.3	12
568	CHAPTER 2. Zeolite and Silica-based CO2 Adsorbents. Inorganic Materials Series, 2018, , 76-152.	0.5	1

#	Article	IF	CITATIONS
569	Hydrotalcite Anchored Ruthenium Catalyst for CO2 Hydrogenation Reaction. Letters in Organic Chemistry, 2019, 16, 396-408.	0.2	3
570	Selective Hydrogenation of Carbon Dioxide into Methanol. Environmental Chemistry for A Sustainable World, 2020, , 111-157.	0.3	3
571	Design of Catalytic Polyfunctional Nanomaterials for the Hydrogen Production Processes. Nanotechnologies in Russia, 2020, 15, 308-313.	0.7	2
572	A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks. Journal of Energy Chemistry, 2022, 68, 255-266.	7.1	43
573	Enhanced stability of Fe-modified CuO-ZnO-ZrO2-Al2O3/HZSM-5 bifunctional catalysts for dimethyl ether synthesis from CO2 hydrogenation. Chinese Journal of Chemical Engineering, 2021, 38, 106-113.	1.7	5
574	Influence of Mn and Mg oxides on the performance of In2O3 catalysts for CO2 hydrogenation to methanol. Chemical Physics Letters, 2022, 786, 139173.	1.2	13
575	Causation of catalytic activity of Cu-ZnO for CO2 hydrogenation to methanol. Chemical Engineering Journal, 2022, 430, 132784.	6.6	27
576	Current status of hydrogenation of carbon dioxide. , 2020, , 215-239.		0
577	Catalytic Conversion of CO2 to Fuels and Value-added Chemicals. RSC Energy and Environment Series, 2020, , 397-430.	0.2	0
578	Sn-Doped Bi ₂ O ₃ nanosheets for highly efficient electrochemical CO ₂ reduction toward formate production. Nanoscale, 2021, 13, 19610-19616.	2.8	25
579	Closing the Anthropogenic Chemical Carbon Cycle toward a Sustainable Future via CO ₂ Valorization. Advanced Energy Materials, 2021, 11, 2102767.	10.2	35
580	Graphitic Azaâ€Fused Ï€â€Conjugated Networks: Construction, Engineering, and Taskâ€5pecific Applications. Advanced Materials, 2022, 34, e2107947.	11.1	17
581	Fabrication of Zr–Ce Oxide Solid Solution Surrounded Cu-Based Catalyst Assisted by a Microliquid Film Reactor for Efficient CO ₂ Hydrogenation to Produce Methanol. Industrial & Engineering Chemistry Research, 2021, 60, 16188-16200.	1.8	15
582	Self-assembled geopolymer-based microspheres supported nanoclusters for CO2 hydrogenation. Journal of CO2 Utilization, 2022, 55, 101820.	3.3	6
583	CuZnAl-Oxide Nanopyramidal Mesoporous Materials for the Electrocatalytic CO2 Reduction to Syngas: Tuning of H2/CO Ratio. Nanomaterials, 2021, 11, 3052.	1.9	10
584	Carbon Dioxide Conversion to Useful Chemicals and its Thermodynamics. Advances in Science, Technology and Innovation, 2022, , 311-322.	0.2	0
585	Systematic Screening of Ionic Liquids for the Hydrogenation of Carbon Dioxide to Formic Acid and Methanol. Industrial & amp; Engineering Chemistry Research, 2021, 60, 17195-17206.	1.8	5
586	Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology. Fermentation, 2021, 7, 291.	1.4	35

		CITATION REPORT		
#	Article		IF	CITATIONS
587	Chemical Valorization of CO2. Advances in Science, Technology and Innovation, 2022,	, 1-30.	0.2	1
588	Catalysts for the Conversion of CO2 to Low Molecular Weight Olefins—A Review. Ma 6952.	aterials, 2021, 14,	1.3	21
589	Investigation on the formic acid evaporation and ignition of formic acid/octanol blend temperature and pressure. Fuel, 2022, 313, 122636.	at elevated	3.4	3
590	Synthesis of Mesoporous Pd _{<i>x</i>} Cu _{1â€"<i>x</i>} /Al ₂ O ₃ Catalysts Via Mechanochemistry for Selective <i>N</i> -Formylation of Amines with CC and H ₂ . ACS Sustainable Chemistry and Engineering. 2021. 9. 16153-161	- <i>y</i> Bimetallic ₂ .62.	3.2	9
591	ZnO Supported on a Zr-Based Metal–Organic Framework for Selective CO _{2to Methanol. ACS Applied Energy Materials, 2021, 4, 13567-13574.}	sub> Hydrogenation	2.5	12
592	Morphology-engineered highly active and stable Pd/TiO2 catalysts for CO2 hydrogenat formate. Journal of Catalysis, 2022, 405, 152-163.	tion into	3.1	33
593	Isobaric Vapor–Liquid Equilibria for the Formic Acid–N-methyl-2-pyrrolidone Binary and 10 kPa and Modeling Using the NRTL-HOC and PC-SAFT Models. Journal of Chemic Engineering Data, 0, , .	System at 50, 20, cal &	1.0	1
594	Direct Synthesis of Dimethyl Ether on Bifunctional Catalysts Based on Cu–ZnO(Al) a H ₃ PW ₁₂ O ₄₀ : Effect of Physical Mixing on Bifu Interactions and Activity. Industrial & Engineering Chemistry Research, 2021, 60,	nd Supported nctional 18853-18869.	1.8	9
595	Regioselective Hydroxymethylation of Alkenes to Linear Alcohols with CO ₂ /H ₂ Using a Rh/Ru Dual Catalyst. ACS Sustainable Cherr Engineering, 2021, 9, 16741-16748.	nistry and	3.2	3
596	Mechanistic studies toward the rational design of oxide catalysts for carbon dioxide hy Annual Reports in Computational Chemistry, 2021, 17, 211-270.	drogenation.	0.9	1
597	Design of CO2 hydrogenation catalysts based on phosphane/borane frustrated Lewis p xanthene-derived scaffolds. Catalysis Communications, 2022, 162, 106385.	pairs and	1.6	2
598	Current advances in bimetallic catalysts for carbon dioxide hydrogenation to methanol 313, 122963.	. Fuel, 2022,	3.4	6
599	A Feasibility Study of the Conversion of Petrochemical Off-Gas Streams to Methanol O CuO/ZnO/Al2O3 Catalyst. Topics in Catalysis, 0, , 1.	ver	1.3	2
600	Ambient hydrogenation of carbon dioxide into liquid fuel by a heterogeneous synerget single-atom catalyst. Cell Reports Physical Science, 2022, 3, 100705.	ic dual	2.8	18
602	Efficient Role of Nanosheet-Like Pr ₂ O ₃ Induced Surface-Inte Structures over Cu-Based Catalysts for Enhanced Methanol Production from CO _{ Hydrogenation. ACS Applied Materials & Interfaces, 2022, 14, 2768-2781.}	rface Synergistic 2	4.0	9
603	Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenatic Communications, 2022, 13, 324.	on. Nature	5.8	69
604	Hydroxyâ€Groupâ€Enriched In ₂ O ₃ Facilitates CO ₂ to Formate at Large Current Densities. Advanced Materials Interfaces, 2022, 9, .	ub> Electroreduction	1.9	19
605	Thin-water-film-enhanced TiO ₂ -based catalyst for CO ₂ hydro formic acid. Chemical Communications, 2022, 58, 787-790.	ogenation to	2.2	5

#	Article	IF	CITATIONS
606	CO 2 Hydrogenation to Methanol over Cd 4 /TiO 2 Catalyst: Insight into Multifunctional Interface. ChemCatChem, 0, , .	1.8	1
607	Hybrid monometallic and bimetallic copper–palladium zeolite catalysts for direct synthesis of dimethyl ether from CO ₂ . New Journal of Chemistry, 2022, 46, 3889-3900.	1.4	8
608	Drastische Ereignisse und langsame Transformation definieren die Struktur eines aktiven Kupferâ€Zinkâ€Aluminiumoxidâ€Katalysators für die Methanol Synthese. Angewandte Chemie, 2022, 134, .	1.6	3
609	Kinetically relevant variation triggered by hydrogen pressure: A mechanistic case study of CO2 hydrogenation to methanol over Cu/ZnO. Journal of Catalysis, 2022, 406, 145-156.	3.1	11
610	Drastic Events and Gradual Change Define the Structure of an Active Copperâ€Zincâ€Alumina Catalyst for Methanol Synthesis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
611	Valorization of CO2 to DME using a membrane reactor: A theoretical comparative assessment from the equipment to flowsheet level. Chemical Engineering Journal Advances, 2022, 10, 100249.	2.4	16
612	Hydrogenation of carbon dioxide (CO ₂) to fuels in microreactors: a review of set-ups and value-added chemicals production. Reaction Chemistry and Engineering, 2022, 7, 795-812.	1.9	7
613	The Influence of ZnOâ^'ZrO ₂ Interface in Hydrogenation of CO ₂ to CH ₃ OH. Helvetica Chimica Acta, 2022, 105, .	1.0	9
614	Highly effective conversion of CO2 into light olefins abundant in ethene. CheM, 2022, 8, 1376-1394.	5.8	31
615	Tuning activity and selectivity of CO2 hydrogenation via metal-oxide interfaces over ZnO-supported metal catalysts. Journal of Catalysis, 2022, 407, 126-140.	3.1	34
616	Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. Angewandte Chemie, 2022, 134, .	1.6	11
617	Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. Angewandte Chemie - International Edition, 2022, 61, .	7.2	146
618	Establishing <i>Butyribacterium methylotrophicum</i> as a Platform Organism for the Production of Biocommodities from Liquid C ₁ Metabolites. Applied and Environmental Microbiology, 2022, 88, aem0239321.	1.4	9
619	Highly dispersed Cd cluster supported on TiO2 as an efficient catalyst for CO2 hydrogenation to methanol. Chinese Journal of Catalysis, 2022, 43, 761-770.	6.9	24
620	Treated activated carbon as a metal-free catalyst for effectively catalytic reduction of toxic hexavalent chromium. Journal of Hazardous Materials, 2022, 430, 128416.	6.5	12
621	Flexible operation strategy for formic acid synthesis providing frequency containment reserve in smart grids. International Journal of Electrical Power and Energy Systems, 2022, 139, 107969.	3.3	6
622	Surface Organometallic Chemistry and Catalysis. , 2022, , .		0
624	Mechanistic exploration of CO ₂ conversion to dimethoxymethane (DMM) using transition metal (Co, Ru) catalysts: an energy span model. Physical Chemistry Chemical Physics, 2022, 24, 8387-8397.	1.3	9

#	Article	IF	CITATIONS
625	Effective conversion of CO ₂ into light olefins over a bifunctional catalyst consisting of La-modified ZnZrO _{<i>x</i>} oxide and acidic zeolite. Catalysis Science and Technology, 2022, 12, 2566-2577.	2.1	15
626	Promoting effects of indium doped Cu/CeO ₂ catalysts on CO ₂ hydrogenation to methanol. Reaction Chemistry and Engineering, 2022, 7, 1589-1602.	1.9	14
627	Selective oxidation conversion of methanol/dimethyl ether. Chemical Communications, 2022, 58, 4687-4699.	2.2	11
628	CO2 hydrogenation to methanol by organometallic catalysts. Chem Catalysis, 2022, 2, 242-252.	2.9	14
629	Evaluation of Au/ZrO2 Catalysts Prepared via Postsynthesis Methods in CO2 Hydrogenation to Methanol. Catalysts, 2022, 12, 218.	1.6	13
630	Formic Acid to Power towards Low arbon Economy. Advanced Energy Materials, 2022, 12, .	10.2	77
631	Impact of La engineered stable phase mixed precursors on physico-chemical features of Cu- based catalysts for conversion of CO2 rich syngas to methanol. Catalysis Today, 2022, 404, 154-168.	2.2	5
632	Electroâ€Reconstructionâ€Induced Strain Regulation and Synergism of Agâ€Inâ€S toward Highly Efficient CO ₂ Electrolysis to Formate. Advanced Functional Materials, 2022, 32, .	7.8	41
633	The Route from Green H2 Production through Bioethanol Reforming to CO2 Catalytic Conversion: A Review. Energies, 2022, 15, 2383.	1.6	16
634	Conversion of Carbon Dioxide into Methanol Using Cu–Zn Nanostructured Materials as Catalysts. Nanomaterials, 2022, 12, 999.	1.9	13
635	Performance analysis of hybrid catalytic conversion of CO2 to DiMethyl ether. International Journal of Hydrogen Energy, 2022, 47, 11341-11358.	3.8	8
636	The application of nonthermal plasma in methanol synthesis via CO ₂ hydrogenation. Energy Science and Engineering, 2022, 10, 1572-1583.	1.9	7
637	Emerging Trends in Sustainable CO ₂ â€Management Materials. Advanced Materials, 2022, 34, e2201547.	11.1	52
638	Effects of Methanol Application on Carbon Emissions and Pollutant Emissions Using a Passenger Vehicle. Processes, 2022, 10, 525.	1.3	27
639	Rh single atoms embedded in CeO2 nanostructure boost CO2 hydrogenation to HCOOH. Chinese Journal of Chemical Engineering, 2022, 43, 62-69.	1.7	13
640	Effect of flue gas impurities in carbon dioxide from power plants in the synthesis of isopropyl N-phenylcarbamate from CO2, aniline, and 2-propanol using CeO2 and 2-cyanopyridine. Catalysis Today, 2023, 410, 19-35.	2.2	7
641	Direct Conversion of CO ₂ to Aromatics over K–Zn–Fe/ZSM-5 Catalysts via a Fischer–Tropsch Synthesis Pathway. Industrial & Engineering Chemistry Research, 2022, 61, 10336-10346.	1.8	18
642	Catalytic Synthesis of Formamides by Integrating CO ₂ Capture and Morpholine Formylation on Supported Iridium Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25

#	Article	IF	CITATIONS
643	In Situ Spectroscopic Characterization and Theoretical Calculations Identify Partially Reduced ZnO _{1â^'<i>x</i>} /Cu Interfaces for Methanol Synthesis from CO ₂ . Angewandte Chemie, 2022, 134, .	1.6	6
644	Catalytic Synthesis of Formamides by Integrating CO ₂ Capture and Morpholine Formylation on Supported Iridium Catalyst. Angewandte Chemie, 2022, 134, .	1.6	3
645	Atomically dispersed Ru(III) on N-doped mesoporous carbon hollow spheres as catalysts for CO2 hydrogenation to formate. Chemical Engineering Journal, 2022, 442, 136185.	6.6	17
646	In Situ Spectroscopic Characterization and Theoretical Calculations Identify Partially Reduced ZnO _{1â^'<i>x</i>} /Cu Interfaces for Methanol Synthesis from CO ₂ . Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
647	Electrode Engineering for Electrochemical CO ₂ Reduction. Energy & Fuels, 2022, 36, 4234-4249.	2.5	22
648	Unsupported Nanoporous Palladium Catalyst for <i>N</i> â€Formylation of Amines Using CO ₂ as a Sustainable C1 Source. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	2
649	Mechanochemical synthesis of carbene copper complexes for CO2 hydrogenation to formate. Journal of CO2 Utilization, 2022, 59, 101963.	3.3	2
650	Zeolite-based catalyst for direct conversion of CO2 to C2+ hydrocarbon: A review. Journal of CO2 Utilization, 2022, 59, 101969.	3.3	32
651	Unravelling synergetic interaction over tandem Cu-ZnO-ZrO2/hierarchical ZSM5 catalyst for CO2 hydrogenation to methanol and DME. Fuel, 2022, 318, 123641.	3.4	25
652	Simultaneous transformation of sugars and CO2 into sugar derivatives and formate at room temperature: Effect of alcohols and cations. Journal of CO2 Utilization, 2022, 60, 101981.	3.3	3
653	Conversion of carbon dioxide to methanol: A comprehensive review. Chemosphere, 2022, 298, 134299.	4.2	45
654	How magnetic field affects catalytic CO2 hydrogenation over Fe-Cu/MCM-41: In situ active metal phase—reactivity observation during activation and reaction. Chemical Engineering Journal, 2022, 441, 135952.	6.6	8
655	Methanol as a Fuel for Internal Combustion Engines. Energy, Environment, and Sustainability, 2022, , 281-324.	0.6	1
656	Design of porous organic polymer catalysts for transformation of carbon dioxide. Green Chemical Engineering, 2022, 3, 96-110.	3.3	29
657	Metallated Isoindigo–Porphyrin Covalent Organic Framework Photocatalyst with a Narrow Band Gap for Efficient CO ₂ Conversion. ACS Applied Materials & Interfaces, 2022, 14, 2015-2022.	4.0	31
658	Rational Design of Main Group Metal-Embedded Nitrogen-Doped Carbon Materials as Frustrated Lewis Pair Catalysts for CO ₂ Hydrogenation to Formic Acid. ACS Applied Materials & Interfaces, 2022, 14, 1002-1014.	4.0	21
659	Engineering Electrochemical Surface for Efficient Carbon Dioxide Upgrade. Advanced Energy Materials, 2022, 12, .	10.2	33
660	CO2 Electroreduction over Metallic Oxide, Carbon-Based, and Molecular Catalysts: A Mini-Review of the Current Advances. Catalysts, 2022, 12, 450.	1.6	14

#	Article	IF	CITATIONS
661	Preparation of magnetic Au/MIL-101(Cr)@SiO2@Fe3O4 catalysts and N-methylation reaction mechanism of CO2 with aniline/H2. Catalysis Today, 2022, 405-406, 309-320.	2.2	5
662	Metal-organic frameworks as a good platform for the fabrication of multi-metal nanomaterials: design strategies, electrocatalytic applications and prospective. Advances in Colloid and Interface Science, 2022, 304, 102668.	7.0	16
663	Coproduction of dimethyl-ether and hydrogen/power from natural gas with no carbon dioxide emissions. Journal of Natural Gas Science and Engineering, 2022, 102, 104546.	2.1	2
665	Mapping Active Site Geometry to Activity in Immobilized Frustrated Lewis Pair Catalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
666	Exploring dopant effects in stannic oxide nanoparticles for CO2 electro-reduction to formate. Nature Communications, 2022, 13, 2205.	5.8	61
667	Transition metal-based catalysts for CO2 methanation and hydrogenation. , 2022, , 59-93.		0
668	Multiple electron transfer pathways of tungsten-containing formate dehydrogenase in direct electron transfer-type bioelectrocatalysis. Chemical Communications, 2022, 58, 6478-6481.	2.2	10
669	Sorption enhanced catalysis for CO2 hydrogenation towards fuels and chemicals with focus on methanation. , 2022, , 95-119.		0
670	Synthesis of Hydrophobic Pd-Poly(Ionic Liquid)S with Excellent Co2 Affinity to Efficiently Catalyze Co2 Hydrogenation to Formic Acid. SSRN Electronic Journal, 0, , .	0.4	0
671	Recent developments in first-row transition metal complex-catalyzed CO ₂ hydrogenation. Dalton Transactions, 2022, 51, 8160-8168.	1.6	11
672	Production of Polyhydroxyalkanoates with the Fermentation of Methylorubrum extorquens Using Formate as a Carbon Substrate. Biotechnology and Bioprocess Engineering, 2022, 27, 268-275.	1.4	4
673	Mapping Active Site Geometry to Activity in Immobilized Frustrated Lewis Pair Catalysts. Angewandte Chemie, 0, , .	1.6	3
674	Solid-State Synthesis of Pd/In2O3 Catalysts for CO2 Hydrogenation to Methanol. Catalysis Letters, 2023, 153, 903-910.	1.4	8
675	Chemical-Phase Equilibrium of CO–CO ₂ –H ₂ –CH ₃ OH–DME–H ₂ O Mixtures in Câ€ Atom-Mol Fraction Space Using Gibbs Free Energy Minimization. Industrial & Engineering Chemistry Research 2022 61 6551-6561	€"Hậ€"O 1.8	0
676	Ordered mesoporous carbon spheres assisted Ru nanoclusters/RuO2 with redistribution of charge density for efficient CO2 methanation in a novel H2/CO2 fuel cell. Journal of Energy Chemistry, 2022, 72, 116-124.	7.1	11
677	Effect mechanism of NO on electrocatalytic reduction of CO2 to CO over Pd@Cu bimetal catalysts. Fuel, 2022, 323, 124339.	3.4	9
678	<i>Ab initio</i> study of the adsorption properties of CO2 reduction intermediates: The effect of Ni5Ga3 alloy and the Ni5Ga3/ZrO2 interface. Journal of Chemical Physics, 2022, 156, .	1.2	1
679	Application of proteomics and metabolomics in microbiology research. , 2022, , 107-129.		0

#	ARTICLE Plasma-promoted reactions of the heterobimetallic anions CuNb ^{â^'} with dinitrogen and	IF	CITATIONS
680	subsequent reactions with carbon dioxide: formation of C–N bonds. Physical Chemistry Chemical Physics, 2022, 24, 14333-14338.	1.3	8
681	Greenery-inspired nanoengineering of bamboo-like hierarchical porous nanotubes with spatially organized bifunctionalities for synergistic photothermal catalytic CO ₂ fixation. Journal of Materials Chemistry A, 2022, 10, 12418-12428.	5.2	18
682	Promising Approaches to Carbon Dioxide Processing Using Heterogeneous Catalysts (A Review). Petroleum Chemistry, 2022, 62, 445-474.	0.4	7
683	S-Scheme 2D/2D Bi2MoO6/BiOI van der Waals heterojunction for CO2 photoreduction. Chinese Journal of Catalysis, 2022, 43, 1657-1666.	6.9	75
684	Catalytic Technologies for the Conversion and Reuse of CO2. , 2022, , 1803-1852.		1
685	Understanding the structure of Cu-doped MgAl2O4 for CO2 hydrogenation catalyst precursor using experimental and computational approaches. International Journal of Hydrogen Energy, 2022, 47, 21369-21374.	3.8	2
686	Environmental analysis of methanol production from steel-making offgas. Environmental Technology and Innovation, 2022, 28, 102694.	3.0	3
687	Synthesis of MeOH and DME From CO2 Hydrogenation Over Commercial and Modified Catalysts. Frontiers in Chemistry, 2022, 10, .	1.8	8
688	Activation reconstructing CuZnO/SiO2 catalyst for CO2 hydrogenation. Journal of Catalysis, 2022, 412, 10-20.	3.1	21
689	The Potential of Sequential Fermentations in Converting C1 Substrates to Higher-Value Products. Frontiers in Microbiology, 2022, 13, .	1.5	2
690	Photocatalytic Carboxylation with CO ₂ : A Review of Recent Studies. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	12
691	Evaluation of Al2O3 and ZrO2 addition to reduced graphene oxide (rGO) supports and their interplay with Cu sites in the catalyst surface. Inorganic Chemistry Communication, 2022, 142, 109591.	1.8	0
692	On the design of mesostructured acidic catalysts for the one-pot dimethyl ether production from CO2. Journal of CO2 Utilization, 2022, 62, 102066.	3.3	12
693	Ultrasmall bimetallic Cu/ZnOx nanoparticles encapsulated in UiO-66 by deposition–precipitation method for CO2 hydrogenation to methanol. Fuel, 2022, 324, 124694.	3.4	16
694	MOF-Based Catalysts for the Production of Value-Added Fine Chemicals. ACS Symposium Series, 0, , 133-151.	0.5	0
695	A novel copper metal–organic framework catalyst for the highly efficient conversion of CO ₂ with propargylic amines. Inorganic Chemistry Frontiers, 2022, 9, 3839-3844.	3.0	4
696	Nanotechnology Research for Alternative Renewable Energy. RSC Nanoscience and Nanotechnology, 2022, , 277-298.	0.2	0
697	Making biogas a more viable green alternative fuel by methane enrichment: A review on its present techniques. AIP Conference Proceedings, 2022, , .	0.3	0

#	Article	IF	CITATIONS
698	A Highly Selective Cr2O3/nano-ZSM-5 Bifunctional Catalysts for CO2 Hydrogenation to Aromatics. Russian Journal of Applied Chemistry, 2022, 95, 296-307.	0.1	1
699	Developing Benign Ni/g-C ₃ N ₄ Catalysts for CO ₂ Hydrogenation: Activity and Toxicity Study. Industrial & Engineering Chemistry Research, 2022, 61, 10496-10510.	1.8	7
700	Photodriven CO ₂ Hydrogenation into Diverse Products: Recent Progress and Perspective. Journal of Physical Chemistry Letters, 2022, 13, 5291-5303.	2.1	18
701	Haptophilicity and Substrate-Directed Reactivity in Diastereoselective Heterogeneous Hydrogenation. ACS Catalysis, 2022, 12, 7643-7654.	5.5	4
702	Recent progress on MTO reaction mechanisms and regulation of acid site distribution in the zeolite framework. Chem Catalysis, 2022, 2, 1657-1685.	2.9	20
703	Synthesis of hydrophobic Pd-poly(ionic liquid)s with excellent CO2 affinity to efficiently catalyze CO2 hydrogenation to formic acid. Fuel, 2022, 325, 124853.	3.4	10
704	DFT Study on the CO2 Reduction to C2 Chemicals Catalyzed by Fe and Co Clusters Supported on N-Doped Carbon. Nanomaterials, 2022, 12, 2239.	1.9	5
705	Hydroxycarbonylation of Alkenes with Formic Acid Catalyzed by a Rhodium(III) Hydride Diiodide Complex Bearing a Bidentate Phosphine Ligand. Organometallics, 2022, 41, 1640-1648.	1.1	5
706	Single-Site Iridium Picolinamide Catalyst Immobilized onto Silica for the Hydrogenation of CO ₂ and the Dehydrogenation of Formic Acid. Inorganic Chemistry, 2022, 61, 10575-10586.	1.9	19
707	A mini review on recent advances in thermocatalytic hydrogenation of carbon dioxide to value-added chemicals and fuels. , 2022, 1, 230-248.		4
708	Steel slag as low-cost catalyst for artificial photosynthesis to convert CO2 and water into hydrogen and methanol. Scientific Reports, 2022, 12, .	1.6	6
709	Influence of Si/Al ratio of MOR type zeolites for bifunctional catalysts specific to the one-pass synthesis of lower olefins via CO2 hydrogenation. Catalysis Today, 2022, , .	2.2	2
710	Development of Multi-functional Catalysts for Capture and Catalytic Transformation of Carbon Dioxide Using Nanoporous Materials. Journal of the Japan Petroleum Institute, 2022, 65, 125-133.	0.4	2
711	Homogeneous Firstâ€row Transitionâ€metalâ€catalyzed Carbon Dioxide Hydrogenation to Formic Acid/Formate, and Methanol. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	10
712	Rational Design of Synergistic Structure Between Single-Atoms and Nanoparticles for CO2 Hydrogenation to Formate Under Ambient Conditions. Frontiers in Chemistry, 0, 10, .	1.8	3
713	Computational Design of a CoCu-Modified Indium Oxide Catalyst Promoting CO ₂ Activation and Hydrogenation through Electronic Regulation. Energy & Fuels, 2022, 36, 7915-7920.	2.5	0
714	The solvation structure of CO2 in dichloromethane – A comparative correlated, semi-empirical and classical MD simulation study. Journal of Molecular Liquids, 2022, 363, 119840.	2.3	3
715	Combined <i>In Situ</i> Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Kinetic Studies on CO ₂ Methanation Reaction over Ni/Al ₂ O ₃ . Industrial & Engineering Chemistry Research, 2022, 61, 9678-9685.	1.8	7

#	Article		CITATIONS
716	Synthesis of Cu–ZnO–Pt@HZSM-5 catalytic membrane reactor for CO2 hydrogenation to dimethyl ether. Journal of Membrane Science, 2022, 660, 120845.	4.1	11
717	Selective Transformation of Methanol to Ethanol in the Presence of Syngas over Composite Catalysts. ACS Catalysis, 2022, 12, 8451-8461.	5.5	9
718	Electronic modulation of InNi3C0.5/Fe3O4 by support precursor toward efficient CO2 hydrogenation to methanol. Applied Catalysis B: Environmental, 2022, 316, 121699.	10.8	22
719	Influence of support textural property on CO2 to methane activity of Ni/SiO2 catalysts. Applied Catalysis B: Environmental, 2022, 317, 121692.	10.8	18
720	Direct conversion of CO ₂ into aromatics over multifunctional heterogeneous catalysts. Catalysis Reviews - Science and Engineering, 0, , 1-60.	5.7	9
721	Competition between reverse water gas shift reaction and methanol synthesis from CO ₂ : influence of copper particle size. Nanoscale, 2022, 14, 13551-13560.	2.8	11
722	Tuning the hybridization and charge polarization in metal nanoparticles dispersed over Schiff base functionalized SBA-15 enhances CO ₂ capture and conversion to formic acid. Journal of Materials Chemistry A, 2022, 10, 18354-18362.	5.2	3
723	Defectâ€Rich Heterostructured Biâ€Based Catalysts for Efficient CO ₂ Reduction Reaction to Formate in Wide Operable Windows. Energy Technology, 2022, 10, .	1.8	4
724	Ga-Promoted CuCo-Based Catalysts for Efficient CO ₂ Hydrogenation to Ethanol: The Key Synergistic Role of Cu-CoGaO _{<i>x</i>} Interfacial Sites. ACS Applied Materials & Interfaces, 2022, 14, 35569-35580.	4.0	13
725	Homogeneous Hydrogenation of CO ₂ and CO to Methanol: The Renaissance of Lowâ€Temperature Catalysis in the Context of the Methanol Economy. Angewandte Chemie, 2022, 134, .	1.6	3
726	Green Carbon Science: Keeping the Pace in Practice. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
727	Transformation of carbon dioxide, a greenhouse gas, into useful components and reducing global warming: A comprehensive review. International Journal of Energy Research, 2022, 46, 17926-17951.	2.2	9
728	The regulation of Cu-ZnO interface by Cu-Zn bimetallic metal organic framework-templated strategy for enhanced CO2 hydrogenation to methanol. Applied Catalysis A: General, 2022, 643, 118805.	2.2	16
729	Green Carbon Science: Keeping the Pace in Practice. Angewandte Chemie, 0, , .	1.6	0
730	Homogeneous Hydrogenation of CO ₂ and CO to Methanol: The Renaissance of Lowâ€Temperature Catalysis in the Context of the Methanol Economy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
731	Comparative Effect of Amino Functionality on the Performance of Isostructural Mixedâ€Ligand MOFs towards Multifunctional Catalytic Application. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	1
732	Effective conversion of CO2 into light olefins along with generation of low amounts of CO. Journal of Catalysis, 2022, 413, 923-933.	3.1	13
733	Highly efficient Cu-based catalysts for selective hydrogenation of furfural: A key role of copper carbide. Renewable Energy, 2022, 197, 69-78.	4.3	8

			-
#	ARTICLE	lF	CITATIONS
734	hydrocarbons and oxygenated products. Coordination Chemistry Reviews, 2022, 471, 214737.	9.5	20
735	Highly selective electrocatalytic reduction of carbon dioxide to ethylene on CuCl-derived Cu. Materials Chemistry and Physics, 2022, 291, 126660.	2.0	4
736	Boosting CO2 hydrogenation efficiency for methanol synthesis over Pd/In2O3/ZrO2 catalysts by crystalline phase effect. Applied Surface Science, 2022, 603, 154420.	3.1	12
737	Ga CrO /H-SAPO-34(F), a highly efficient bifunctional catalyst for the direct conversion of CO2 into ethene and propene. Fuel, 2022, 329, 125475.	3.4	9
738	Rational design of Lewis acid-base bifunctional nanopolymers with high performance on CO2/epoxide cycloaddition without a cocatalyst. Chemical Engineering Journal, 2023, 451, 138715.	6.6	8
739	Liquid Sunshine: Formic Acid. Journal of Physical Chemistry Letters, 2022, 13, 8586-8600.	2.1	25
740	Regulation of product distribution in CO2 hydrogenation by modifying Ni/CeO2 catalysts. Journal of Catalysis, 2022, 414, 53-63.	3.1	6
741	Synthesis of a Cu/Zn-BTC@LTA derivatived Cu–ZnO@LTA membrane reactor for CO2 hydrogenation. Journal of Membrane Science, 2022, 662, 121010.	4.1	6
742	Role of ZrO2 and CeO2 support on the In2O3 catalyst activity for CO2 hydrogenation. Fuel, 2023, 331, 125878.	3.4	13
743	Formate as a key intermediate in CO ₂ utilization. Green Chemistry, 2022, 24, 8227-8258.	4.6	7
744	Switching of Co2 Hydrogenation Selectivity Via Chlorine Poisoning Over Ru/Tio2 Catalyst. SSRN Electronic Journal, 0, , .	0.4	0
745	Catalytic conversion of CO2 into methanol. , 2022, , 129-162.		0
746	Nitrogen–nitrogen-functionalized N-heterocyclic carbene ruthenium(<scp>ii</scp>) complexes realized efficient CO ₂ hydrogenation to formate. Catalysis Science and Technology, 0, , .	2.1	0
747	Recent advancement in heterogeneous CO ₂ reduction processes in aqueous electrolyte. Journal of Materials Chemistry A, 2022, 10, 20667-20706.	5.2	6
748	Multifunctional long-lived catalysts for direct hydrogenative conversion of CO ₂ to liquid hydrocarbons with upscaling C ₅₊ productivity. Journal of Materials Chemistry A, 2022, 10, 21862-21873.	5.2	6
749	Efficient hydrogenation of CO ₂ to formic acid in water without consumption of a base. Green Chemistry, 2022, 24, 6727-6732.	4.6	14
750	Interplay of Pd Ensemble Sites Induced by Gaox Modification in Boosting Co2 Hydrogenation to Formic Acid. SSRN Electronic Journal, 0, , .	0.4	0
751	Interplay of Pd ensemble sites induced by GaO modification in boosting CO2 hydrogenation to formic acid. Applied Catalysis B: Environmental, 2023, 320, 122022.	10.8	16

#	Article	IF	CITATIONS
752	An Overview of Catalytic CO ₂ Conversion. ACS Symposium Series, 0, , 411-468.	0.5	1
753	Modifying Interface of Carbon Support-Stimulated Hydrogen Spillover for Selective Hydrogenation. Journal of Physical Chemistry C, 2022, 126, 16682-16689.	1.5	5
754	Efficient Electrocatalytic Oxidation of Glycerol via Promoted OH* Generation over Single-Atom-Bismuth-Doped Spinel Co ₃ O ₄ . ACS Catalysis, 2022, 12, 12432-12443.	5.5	63
755	Design of Frustrated Lewis Pair Catalysts for Direct Hydrogenation of CO2. Angewandte Chemie, 0, , .	1.6	4
756	Advances in Thermo-, Photo-, and Electrocatalytic Continuous Conversion of Carbon Dioxide into Liquid Chemicals. ACS Sustainable Chemistry and Engineering, 2022, 10, 12906-12932.	3.2	8
757	Design of Frustrated Lewis Pair Catalysts for Direct Hydrogenation of CO ₂ . Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
758	Boosting Electrocatalytic Reduction of CO ₂ to HCOOH on Ni Single Atom Anchored WTe ₂ Monolayer. Small, 2022, 18, .	5.2	37
759	First Principles Study of Photocatalytic Reduction of CO ₂ to CH ₄ on WS ₂ -Supported Pt Clusters. Journal of Physical Chemistry C, 2022, 126, 16702-16709.	1.5	4
760	CO ₂ Hydrogenation to Methanol on Indium Oxide-Supported Rhenium Catalysts: The Effects of Size. ACS Catalysis, 2022, 12, 12658-12669.	5.5	36
761	Toward a Hydrogen Economy: Development of Heterogeneous Catalysts for Chemical Hydrogen Storage and Release Reactions. ACS Energy Letters, 2022, 7, 3734-3752.	8.8	30
762	Optimal hydrogen carrier: Holistic evaluation of hydrogen storage and transportation concepts for power generation, aviation, and transportation. Journal of Energy Storage, 2022, 55, 105714.	3.9	41
763	Review and environmental footprint assessment of various formalin production pathways. Journal of Cleaner Production, 2022, 377, 134537.	4.6	2
764	Crystalline MoS ₂ -enhanced conductive black titania for efficient solar to chemical energy conversion: photocatalytic CO ₂ reduction and CH ₄ oxidation. Journal of Materials Chemistry A, 2022, 10, 23854-23862.	5.2	7
765	Black Phosphorus Boosted Bismuth Chloride Oxide for Efficient Photocatalytic CO2 Reduction. New Journal of Chemistry, 0, , .	1.4	0
766	Challenges and recent advancements in the transformation of CO ₂ into carboxylic acids: straightforward assembly with homogeneous 3d metals. Chemical Society Reviews, 2022, 51, 9371-9423.	18.7	38
767	Photo-assisted effective and selective reduction of CO ₂ to methanol on a Cu–ZnO–ZrO ₂ catalyst. New Journal of Chemistry, 2022, 46, 21268-21277.	1.4	3
768	Recent advances on photo-thermo-catalysis for carbon dioxide methanation. International Journal of Hydrogen Energy, 2023, 48, 24756-24787.	3.8	2
769	Biogas improvement as renewable energy through conversion into methanol: A perspective of new catalysts based on nanomaterials and metal organic frameworks. Frontiers in Nanotechnology, 0, 4, .	2.4	0

#	Article	IF	CITATIONS
770	Hydrogenation of carbon dioxide to formic acid over Pd doped thermally activated Ni/Al layered double hydroxide. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 3007-3019.	0.8	1
771	Metallurgical Residue-Derived Cu–ZnO-Based Catalyst for CO ₂ Hydrogenation to Methanol: An Insight on the Effect of the Preparation Method. Industrial & Engineering Chemistry Research, 2022, 61, 15085-15102.	1.8	5
772	Visualizing Structural and Chemical Transformations of an Industrial Cu/ZnO/Al ₂ O ₃ Preâ€eatalyst during Activation and CO ₂ Reduction. ChemCatChem, 2022, 14, .	1.8	7
773	A review of formic acid decomposition routes on transition metals for its potential use as a liquid H2 carrier. Korean Journal of Chemical Engineering, 2022, 39, 2883-2895.	1.2	6
774	Promotional Role of Oxygen Vacancy Defects and Cuâ^'Ce Interfacial Sites on the Activity of Cu/CeO ₂ Catalyst for CO ₂ Hydrogenation to Methanol. ChemCatChem, 2022, 14, .	1.8	5
775	Investigation of In Promotion on Cu/ZrO2 Catalysts and Application in CO2 Hydrogenation to Methanol. Catalysis Letters, 2023, 153, 2728-2744.	1.4	5
776	A review on the development of catalysts and technologies of CO ₂ hydrogenation to produce methanol. Chemical Engineering Communications, 2023, 210, 1791-1821.	1.5	2
777	Chromic hydroxide-decorated palladium nanoparticles confined by amine-functionalized mesoporous silica for rapid dehydrogenation of formic acid. Journal of Colloid and Interface Science, 2023, 630, 879-887.	5.0	16
778	Ga and Zn increase the oxygen affinity of Cu-based catalysts for the CO _{<i>x</i>} hydrogenation according to <i>ab initio</i> atomistic thermodynamics. Chemical Science, 2022, 13, 13442-13458.	3.7	6
779	Turbulent flame speed of NH3/CH4/H2/H2O/air-mixtures: Effects of elevated pressure and Lewis number. Combustion and Flame, 2023, 247, 112488.	2.8	10
780	Iridium supported on spinal cubic cobalt oxide catalyst for the selective hydrogenation of CO2 to formic acid. Journal of CO2 Utilization, 2023, 67, 102315.	3.3	9
781	Highly CO-selective Ni–MgO–CexZr1–xO2 catalyst for efficient low-temperature reverse water–gas shift reaction. Journal of Industrial and Engineering Chemistry, 2023, 118, 341-350.	2.9	3
782	Feasibility, Limit, and Suitable Reaction Conditions for the Production of Alcohols and Hydrocarbons from CO and CO ₂ through Hydrogenation, a Thermodynamic Consideration. Industrial & Engineering Chemistry Research, 2022, 61, 17027-17038.	1.8	9
783	Perspective on CO2 Hydrogenation for Dimethyl Ether Economy. Catalysts, 2022, 12, 1375.	1.6	10
785	Direct conversion of carbon dioxide and steam into hydrocarbons and oxygenates using solid acid electrolysis cells. IScience, 2022, 25, 105381.	1.9	1
786	Hybrid MOF Templateâ€Directed Construction of Hollowâ€Structured In ₂ O ₃ @ZrO ₂ Heterostructure for Enhancing Hydrogenation of CO ₂ to Methanol. Small, 2023, 19, .	5.2	15
787	Physico-Chemical Modifications Affecting the Activity and Stability of Cu-Based Hybrid Catalysts during the Direct Hydrogenation of Carbon Dioxide into Dimethyl-Ether. Materials, 2022, 15, 7774.	1.3	4
788	Non thermal plasma assisted water-gas shift reactions under mild conditions: state of the art and a future perspective. Catalysis Today, 2023, 423, 113956.	2.2	1

#	Article	IF	Citations
789	Bismuth nanosheets with rich grain boundaries for efficient electroreduction of CO2 to formate under high pressures. Chinese Journal of Catalysis, 2022, 43, 3161-3169.	6.9	10
790	The role of CO2 dissociation in CO2 hydrogenation to ethanol on CoCu/silica catalysts. Nano Research, 2023, 16, 6128-6133.	5.8	9
791	Highly selective hydrogenation of CO2 to propane over GaZrOx/H-SSZ-13 composite. Nature Catalysis, 2022, 5, 1038-1050.	16.1	37
792	Direct hydrogenation of CO2-rich scrubbing solvents to formate/formic acid over heterogeneous Ru catalysts: A sustainable approach towards continuous integrated CCU. Journal of CO2 Utilization, 2023, 67, 102326.	3.3	6
793	Synergetic effect of metal–support for enhanced performance of the Cu–ZnO–ZrO ₂ /UGSO catalyst for CO ₂ hydrogenation to methanol. Catalysis Science and Technology, 2023, 13, 81-99.	2.1	3
794	Dynamic ion exchange engineering BiOl-derived Bi2O2CO3 to promote CO2 electroreduction for efficient formate production. Chemical Engineering Journal, 2023, 455, 140926.	6.6	9
795	Precision loading of Pd on Cu species for highly selective CO2 photoreduction to methanol. Chemical Engineering Journal, 2023, 456, 140805.	6.6	6
796	Hydrocarboxylation of methanol to methyl acetate using rhodium and ruthenium nanoparticles supported on titanate nanotubes as catalysts: infrared spectroscopy study. Catalysis Science and Technology, 0, , .	2.1	1
797	Direct conversion of carbon dioxide into liquid fuels and chemicals by coupling green hydrogen at high temperature. Applied Catalysis B: Environmental, 2023, 324, 122299.	10.8	19
798	Heterogeneous CO2 Hydrogenation. RSC Green Chemistry, 2022, , 150-169.	0.0	0
799	Thermocatalytic CO ₂ conversion by siliceous matter: a review. Journal of Materials Chemistry A, 2023, 11, 1593-1633.	5.2	7
800	Recent Progress of Hydrogenation and Hydrogenolysis Catalysts Derived from Layered Double Hydroxides. Catalysts, 2022, 12, 1484.	1.6	2
801	Switching of CO2 hydrogenation selectivity via chlorine poisoning over Ru/TiO2 catalyst. Nano Research, 2023, 16, 4786-4792.	5.8	4
802	Ga and Zn Atom-Doped CuAl ₂ O ₄ (111) Surface-Catalyzed CO ₂ Conversion to Dimethyl Ether: Importance of Acidic Sites. Journal of Physical Chemistry C, 2022, 126, 21628-21637.	1.5	6
803	Ceriaâ€Supported Cobalt Catalyst for Lowâ€Temperature Methanation at Low Partial Pressures of CO ₂ . Angewandte Chemie, 2023, 135, .	1.6	1
804	Process Design and Techno-Economic Assessment of biogenic CO ₂ Hydrogenation-to-Methanol with innovative catalyst. Journal of Physics: Conference Series, 2022, 2385, 012038.	0.3	2
805	Cr-Zn/Ni-Containing Nanocomposites as Effective Magnetically Recoverable Catalysts for CO2 Hydrogenation to Methanol: The Role of Metal Doping and Polymer Co-Support. Catalysts, 2023, 13, 1.	1.6	2
806	Hydrogen storage in liquid hydrogen carriers: recent activities and new trends. Progress in Energy, 2023, 5, 012004.	4.6	9

#	Article	IF	Citations
807	Electrification of CO2 conversion into chemicals and fuels: Gaps and opportunities in process systems engineering. Computers and Chemical Engineering, 2023, 170, 108106.	2.0	4
808	Architecture Design and Catalytic Activity: Nonâ€Noble Bimetallic CoFe/fe ₃ O ₄ Core–Shell Structures for CO ₂ Hydrogenation. Advanced Science, 2023, 10, .	5.6	6
809	Ceria‣upported Cobalt Catalyst for Lowâ€Temperature Methanation at Low Partial Pressures of CO ₂ . Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
810	Celluloseâ€Phytic Acid Composite Complexed Ru Catalyst for CO ₂ Hydrogenation to Free Formic Acid. ChemCatChem, 2023, 15, .	1.8	3
811	Skeletal Nanostructures Promoting Electrocatalytic Reactions with Three-Dimensional Frameworks. ACS Catalysis, 2023, 13, 355-374.	5.5	10
812	Leveraging substrate flexibility and product selectivity of acetogens in twoâ€stage systems for chemical production. Microbial Biotechnology, 2023, 16, 218-237.	2.0	5
813	Addressing the CO ₂ challenge through thermocatalytic hydrogenation to carbon monoxide, methanol and methane. Green Chemistry, 2023, 25, 490-521.	4.6	23
814	CO ₂ or Carbonates – What is the Active Species in Electrochemical CO ₂ Reduction over Feâ€Porphyrin?. ChemCatChem, 2023, 15, .	1.8	4
815	CO2 utilization in syngas conversion to dimethyl ether and aromatics: Roles and challenges of zeolites-based catalysts. Journal of Energy Chemistry, 2023, 79, 418-449.	7.1	18
816	CO ₂ hydrogenation to formic acid on Pd–Cu nanoclusters: a DFT study. Physical Chemistry Chemical Physics, 2023, 25, 2584-2594.	1.3	4
817	Conversion of Recovered Ammonia and Carbon Dioxide into Urea in the Presence of Catalytically Active Copper Species in Nanospaces of Porous Silica Hollow Spheres. ACS Applied Materials & Interfaces, 2023, 15, 5109-5117.	4.0	4
818	Photocatalytic process for syngas production. , 2023, , 261-290.		0
819	Methanol production from syngas. , 2023, , 111-146.		1
820	The Promoting Role of Ni on In ₂ O ₃ for CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2023, 13, 1875-1892.	5.5	29
821	Morphological and structural differences of Fe-Zn-Al oxide nanocomposites obtained from citrate decomposition and microemulsion method. Journal of Alloys and Compounds, 2023, 942, 169093.	2.8	0
822	Integration of carbon capture with heterogeneous catalysis toward methanol production: chemistry, challenges, and opportunities. Catalysis Reviews - Science and Engineering, 0, , 1-40.	5.7	7
823	Theoretical study the electrocatalytic performance and mechanism of novel designed electrocatalyst Ru@2DMs for CO2RR. Fuel, 2023, 340, 127541.	3.4	5
824	Rapid and effective cycloaddition of environmentally diluted CO2 catalyzed by hierarchical porous ionic carbon at atmospheric conditions. Journal of Environmental Chemical Engineering, 2023, 11, 109458.	3.3	6

#	Article	IF	CITATIONS
825	A multi-criteria sustainability assessment and decision-making framework for DME synthesis via CO2 hydrogenation. Energy, 2023, 275, 127467.	4.5	0
826	Hydrogen for CO2 processing in heterogeneous catalytic reactions. International Journal of Hydrogen Energy, 2023, 48, 22462-22483.	3.8	7
827	Structured Porous Carbon-Based Catalysts: Cu–ZnO/CMK-3 and Cu–CeO2/CMK-3 for Direct CO2 Conversion to Methanol. Topics in Catalysis, 0, , .	1.3	2
828	Power-to-X processes based on PEM water electrolyzers: A review of process integration and flexible operation. Computers and Chemical Engineering, 2023, 175, 108260.	2.0	13
829	Comparative computational study of CO2 hydrogenation and dissociation on metal-doped Pd clusters. Separation and Purification Technology, 2023, 313, 123462.	3.9	6
830	Merging biomass and CO2 utilization; process design and assessment on simultaneous production of lactic acid and formic acid from glycerol and CO2. Chemical Engineering Journal, 2023, 463, 142410.	6.6	6
831	Catalytic activity for direct CO2 hydrogenation to dimethyl ether with different proximity of bifunctional Cu-ZnO-Al2O3 and ferrierite. Applied Catalysis B: Environmental, 2023, 327, 122456.	10.8	5
832	Hydrogenation of CO2 to dimethyl ether over nanosized WOx-ZrO2/Cu-ZnO-ZrO2 catalysts. Journal of Environmental Chemical Engineering, 2023, 11, 109908.	3.3	1
833	One-pot synthesis of cyclic carbonates from olefins and CO2 catalyzed by silica-supported imidazolium hydrogen carbonate ionic liquids. Microporous and Mesoporous Materials, 2023, 356, 112576.	2.2	6
834	Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature. Journal of Membrane Science, 2023, 677, 121613.	4.1	4
835	Catalytic Hydrogenation of CO ₂ to Formate Using Ruthenium Nanoparticles Immobilized on Supported Ionic Liquid Phases. Small, 2023, 19, .	5.2	11
836	Novel Technological Paradigm of the Application of Carbon Dioxide as a C1 Synthon in Organic Chemistry: I. Synthesis of Hydroxybenzoic Acids, Methanol, and Formic Acid. Russian Journal of Organic Chemistry, 2022, 58, 1681-1711.	0.3	2
837	CO2 hydrogenation to methanol over Zr- and Ce-doped indium oxide. Catalysis Today, 2023, 423, 114023.	2.2	7
838	Cost Efficiency Analysis of H2 Production from Formic Acid by Molecular Catalysts. Energies, 2023, 16, 1723.	1.6	6
839	Present and Future Perspectives of Liquid-Phase Slurry Processes Involved in Methanol and Dimethyl Ether Synthesis Using Biomass-Derived Syngas. Energy & Fuels, 2023, 37, 3328-3354.	2.5	4
840	Engineering nanoscale H supply chain to accelerate methanol synthesis on ZnZrOx. Nature Communications, 2023, 14, .	5.8	19
841	Numerical simulation of the combustion of preheated ultra-lean dimethyl ether/air mixture. AIP Conference Proceedings, 2023, , .	0.3	0
842	Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO ₂ to chemicals and fuels. Chemical Society Reviews, 2023, 52, 1773-1946.	18.7	57

#	Article	IF	CITATIONS
843	Design and optimization of the flexible poly-generation process for methanol and formic acid from CO2 hydrogenation under uncertain product prices. International Journal of Hydrogen Energy, 2024, 54, 635-651.	3.8	1
844	Rational Design of Novel Reaction Pathways and Tailor-Made Catalysts for Value-Added Chemicals Synthesis from CO2 Hydrogenation. Bulletin of the Chemical Society of Japan, 2023, 96, 291-302.	2.0	7
845	Porous Polymer Materials for CO2 Capture and Electrocatalytic Reduction. Materials, 2023, 16, 1630.	1.3	6
846	Stabilizing Oxidation State of SnO ₂ for Highly Selective CO ₂ Electroreduction to Formate at Large Current Densities. ACS Catalysis, 2023, 13, 3101-3108.	5.5	40
847	Confinement Effects in Well-Defined Metal–Organic Frameworks (MOFs) for Selective CO2 Hydrogenation: A Review. International Journal of Molecular Sciences, 2023, 24, 4228.	1.8	2
848	Heterogeneous Cu Catalyst for CO ₂ -to-Methanol Hydrogenation Importance of Catalyst Precursor Structure. Journal of the Japan Petroleum Institute, 2023, 66, 40-47.	0.4	1
849	Mesostructured Î ³ -Al2O3-Based Bifunctional Catalysts for Direct Synthesis of Dimethyl Ether from CO2. Catalysts, 2023, 13, 505.	1.6	1
850	Industrial bioelectrochemistry for waste valorization: State of the art and challenges. Biotechnology Advances, 2023, 64, 108123.	6.0	8
851	CO ₂ Hydrogenation to Methanol over a Pt-Loaded Molybdenum Suboxide Nanosheet with Abundant Surface Oxygen Vacancies. Journal of Physical Chemistry C, 2023, 127, 4942-4952.	1.5	1
852	The Role of Surface Hydroxyls in the Mobility of Carboxylates on Surfaces: Dynamics of Acetate on Anatase TiO ₂ (101). Journal of Physical Chemistry Letters, 2023, 14, 2542-2550.	2.1	1
853	Heteronuclear Dual Single-Atom Catalysts for Ambient Conversion of CO ₂ from Air to Formate. ACS Catalysis, 2023, 13, 3915-3924.	5.5	12
854	ls Direct DME Synthesis Superior to Methanol Production in Carbon Dioxide Valorization? From Thermodynamic Predictions to Experimental Confirmation. ACS Catalysis, 2023, 13, 3960-3970.	5.5	4
855	Graphene-Supported Tin Single-Atom Catalysts for CO ₂ Hydrogenation to HCOOH: A Theoretical Investigation of Performance under Different N Coordination Numbers. ACS Applied Nano Materials, 2023, 6, 4489-4498.	2.4	4
856	Thermo―and Photocatalytic Activation of CO ₂ in Ionic Liquids Nanodomains. Angewandte Chemie, 2023, 135, .	1.6	1
857	Thermo―and Photocatalytic Activation of CO ₂ in Ionic Liquids Nanodomains. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
858	Highly efficient ZnCeZrOx/SAPO-34 catalyst for the direct conversion of CO2 into light olefins under mild reaction conditions. Applied Catalysis A: General, 2023, 657, 119141.	2.2	2
859	Surface conversion of CuO–ZnO to ZIF-8 to enhance CO ₂ adsorption for CO ₂ hydrogenation to methanol. New Journal of Chemistry, 2023, 47, 6700-6707.	1.4	2
860	Silicalite-1 Layer Secures the Bifunctional Nature of a CO ₂ Hydrogenation Catalyst. Jacs Au, 2023, 3, 1029-1038.	3.6	7

#	Article	IF	CITATIONS
861	A Review on the Progress in Chemo-Enzymatic Processes for CO2 Conversion and Upcycling. Catalysts, 2023, 13, 611.	1.6	2
862	Sustainable Hydrogen and Ammonia Technologies with Nonthermal Plasma Catalysis: Mechanistic Insights and Technoeconomic Analysis. ACS Sustainable Chemistry and Engineering, 2023, 11, 4903-4933.	3.2	4
863	Engineering of the N-doped carbon support for improved performance of supported Pd catalysts in hydrogen production from gas-phase formic acid. International Journal of Hydrogen Energy, 2023, 48, 22439-22452.	3.8	5
864	Cobaltâ€Promoted Transfer Hydrogenation of Azaaryl Ketones by Using Formate as the Hydrogen Source. European Journal of Organic Chemistry, 2023, 26, .	1.2	1
865	The Role of Carbonate Formation during CO2 Hydrogenation over MgO-Supported Catalysts: A Review on Methane and Methanol Synthesis. Energies, 2023, 16, 2973.	1.6	3
866	Design of gold catalysts for activation of H2 and H-donor molecules: transfer hydrogenation and CO ₂ hydrogenation. Catalysis Science and Technology, 0, , .	2.1	Ο
867	Simultaneous Activation of Carbon Dioxide and Epoxides to Produce Cyclic Carbonates by Crossâ€linked Epoxy Resin Organocatalysts. ChemCatChem, 0, , .	1.8	0
868	UiO-66 MOF-Derived Ru@ZrO2 Catalysts for Photo-Thermal CO2 Hydrogenation. Chemistry, 2023, 5, 720-729.	0.9	1
869	Alkoxide-Decorated Copper Nanoparticles on Amidine-Modified Polymers as Hydrogenation Catalysts for Enabling H ₂ Heterolysis. ACS Catalysis, 2023, 13, 5159-5169.	5.5	1
870	Conversion of the CO and CO2 mixture to alcohols and hydrocarbons by hydrogenation under the influence of the water-gas shift reaction, a thermodynamic consideration. Journal of Fuel Chemistry and Technology, 2023, 51, 482-491.	0.9	5
871	Decoupling the Interfacial Catalysis of CeO ₂ -Supported Rh Catalysts Tuned by CeO ₂ Morphology and Rh Particle Size in CO ₂ Hydrogenation. ACS Catalysis, 2023, 13, 5767-5779.	5.5	13
872	Zn-CdZrOx solid solution catalysts for hydrogenation of CO2 to methanol. Fuel, 2023, 346, 128376.	3.4	Ο
873	A DFT study of methanol synthesis from CO2 hydrogenation on Cu/ZnO catalyst. Fuel, 2023, 346, 128381.	3.4	3
874	From CO ₂ to DME: Enhancement through Heteropoly Acids from a Catalyst Screening and Stability Study. ACS Omega, 2023, 8, 15203-15216.	1.6	1
875	Research Progress on Carbon Dioxide Reduction Coupled with the Formation of Câ^'O Bonds to Oxygenated Compounds. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	1
876	A Derivative of ZnIn ₂ S ₄ Nanosheet Supported Pd Boosts Selective CO ₂ Hydrogenation. Advanced Functional Materials, 2023, 33, .	7.8	3
879	Biomass as a Source of Energy, Fuels and Chemicals. , 2021, , 589-741.		0
898	Recent Advances on Heterogeneous Non-noble Metal Catalysts toward Selective Hydrogenation Reactions. ACS Catalysis, 2023, 13, 8902-8924.	5.5	16

		CITATION REPO	ORT	
#	Article		IF	CITATIONS
903	Ni Single Atoms Confined in Nitrogen-Doped Carbon Nanotubes for Active and Selectiv Hydrogenation of CO ₂ to CO. ACS Catalysis, 2023, 13, 7132-7138.	e	5.5	6
905	Photocatalytic Reduction of Carbon Dioxide to Methanol: Carbonaceous Materials, Kin Industrial Feasibility, and Future Directions. Energy & Fuels, 2023, 37, 7577-7602.	etics,	2.5	11
919	CO2 Conversion via Catalytic Hydrogenation to Methanol, DME and Syngas. , 2023, , 3	7-59.		0
933	Selective CO ₂ hydrogenation over zeolite-based catalysts for targeted hig products. Journal of Materials Chemistry A, 2023, 11, 17938-17960.	n-value	5.2	5
936	Catalysis with Ruthenium for Sustainable Carbon Cycles. , 0, , .			0
942	Effects of metal size on supported catalysts for CO ₂ hydrogenation. Mate Frontiers, 0, , .	rials Chemistry	3.2	0
974	From emissions to opportunities: harnessing bio-CO2 for sustainable industry applicati 195-221.	ons. , 2024, ,		0
992	Tuning interfaces between Cu and oxide <i>via</i> atomic layer deposition method for CO ₂ hydrogenation to methanol. Catalysis Science and Technology, 2024	., 14, 261-266.	2.1	1
996	Recent progress of heterogeneous catalysts for transfer hydrogenation under the back carbon neutrality. Nanoscale, 0, , .	ground of	2.8	0