Emissions from prescribed burning of agricultural field

Atmospheric Environment 166, 22-33 DOI: 10.1016/j.atmosenv.2017.06.043

Citation Report

#	Article	IF	CITATIONS
1	Improved rice residue burning emissions estimates: Accounting for practice-specific emission factors in air pollution assessments of Vietnam. Environmental Pollution, 2018, 236, 795-806.	7.5	82
2	Emission factors of atmospheric and climatic pollutants from crop residues burning. Journal of the Air and Waste Management Association, 2018, 68, 849-865.	1.9	36
3	Modeling crop residue burning experiments to evaluate smoke emissions and plume transport. Science of the Total Environment, 2018, 627, 523-533.	8.0	36
4	Abatement of Volatile Organic Compounds Emission as a Target for Various Human Activities Including Energy Production. Advances in Inorganic Chemistry, 2018, 72, 385-419.	1.0	33
5	Lagrangian simulation of smoke plume from fire and validation using ground-based lidar and aircraft measurements. Atmospheric Environment, 2019, 213, 659-674.	4.1	9
6	Volatile Organic Compound Emissions from Prescribed Burning in Tallgrass Prairie Ecosystems. Atmosphere, 2019, 10, 464.	2.3	9
7	Determination of the Area Affected by Agricultural Burning. Atmosphere, 2019, 10, 312.	2.3	5
8	A Multipollutant Smoke Emissions Sensing and Sampling Instrument Package for Unmanned Aircraft Systems: Development and Testing. Fire, 2019, 2, 32.	2.8	13
9	Gaseous and speciated particulate emissions from the open burning of wastes from tree pruning. Atmospheric Research, 2019, 226, 110-121.	4.1	27
10	Effects of land use and anthropogenic aerosol emissions in the Roman Empire. Climate of the Past, 2019, 15, 1885-1911.	3.4	9
11	The bibliometric analysis and review of dioxin in waste incineration and steel sintering. Environmental Science and Pollution Research, 2019, 26, 35687-35703.	5.3	11
12	Light Absorption by Organic Aerosol Emissions Rivals That of Black Carbon from Residential Biomass Fuels in South Asia. Environmental Science and Technology Letters, 2020, 7, 266-272.	8.7	22
13	Daily variations and factors of atmospheric PCDD/Fs in post-harvest paddy fields: PCDD/F source estimation using a Bayesian semi-factor model. Chemosphere, 2021, 268, 129292.	8.2	5
14	Emission Factors of Polycyclic Aromatic Hydrocarbons and Oxidative Potential of Fine Particles Emitted from Crop Residues Burning. Polycyclic Aromatic Compounds, 2022, 42, 5123-5142.	2.6	1
15	Emissions of Trace Organic Gases From Western U.S. Wildfires Based on WE AN Aircraft Measurements. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033838.	3.3	54
16	Particle-bound polycyclic aromatic hydrocarbons in a rural background atmosphere of southwestern Europe. Science of the Total Environment, 2021, 787, 147666.	8.0	13
17	Smoke in the Great Plains, USA: an increasing phenomenon with potential policy and health implications. Fire Ecology, 2020, 16, .	3.0	1
18	Characterization of emissions from burning methyl-bromide-treated crop biomass. Journal of the Air and Waste Management Association, 2021, , 1-11.	1.9	0

#	Article	IF	CITATIONS
19	Impact of dry intrusion events on the composition and mixing state of particles during the winter Aerosol and Cloud Experiment in the Eastern North Atlantic (ACE-ENA). Atmospheric Chemistry and Physics, 2021, 21, 18123-18146.	4.9	10
20	Development and application of a supervised pattern recognition algorithm for identification of fuel-specific emissions profiles. Atmospheric Measurement Techniques, 2022, 15, 2591-2606.	3.1	2
21	Large mitigation potential of smoke PM _{2.5} in the US from human-ignited fires. Environmental Research Letters, 2023, 18, 014002.	5.2	1
22	Seasonal emission factors from rangeland prescribed burns in the Kansas Flint Hills grasslands. Atmospheric Environment, 2023, 304, 119769.	4.1	2
23	Agricultural burning in Imperial Valley, California and respiratory symptoms in children: A cross-sectional, repeated measures analysis. Science of the Total Environment, 2023, 901, 165854.	8.0	0
24	Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements. Atmospheric Chemistry and Physics, 2024, 24, 929-956.	4.9	Ο
25	Wintertime Heavy Haze Episodes in Northeast China Driven by Agricultural Fire Emissions. Environmental Science and Technology Letters, 2024, 11, 150-157.	8.7	0
26	AgriFireInfo v1.0: An Open-Source Platform for the Monitoring and Management of Open-Field Crop Residue Burning. Fire, 2024, 7, 63.	2.8	0