Inhibition of the B7-H3 immune checkpoint limits tumo lymphocyte function

Cell Research 27, 1034-1045 DOI: 10.1038/cr.2017.90

Citation Report

#	Article	IF	CITATIONS
1	Natural Killer Cells: Angels and Devils for Immunotherapy. International Journal of Molecular Sciences, 2017, 18, 1868.	4.1	59
2	The State of Cellular Adoptive Immunotherapy for Neuroblastoma and Other Pediatric Solid Tumors. Frontiers in Immunology, 2017, 8, 1640.	4.8	7
3	Reduced sB7-H3 Expression in the Peripheral Blood of Systemic Lupus Erythematosus Patients. Journal of Immunology Research, 2017, 2017, 1-8.	2.2	11
4	Nanotherapeutic approaches targeting angiogenesis and immune dysfunction in tumor microenvironment. Science China Life Sciences, 2018, 61, 380-391.	4.9	15
5	Polymorphisms of nucleotide factor of activated T cells cytoplasmic 2 and 4 and the risk of acute rejection following kidney transplantation. World Journal of Urology, 2018, 36, 111-116.	2.2	13
6	PD-1 expression and clinical PD-1 blockade in B-cell lymphomas. Blood, 2018, 131, 68-83.	1.4	311
7	Challenges and unanswered questions for the next decade of immune-oncology research in NSCLC. Translational Lung Cancer Research, 2018, 7, 691-702.	2.8	8
8	Large-scale analysis reveals the specific clinical and immune features of B7-H3 in glioma. Oncolmmunology, 2018, 7, e1461304.	4.6	59
9	Genetic and clinical characterization of B7â€H3 (CD276) expression and epigenetic regulation in diffuse brain glioma. Cancer Science, 2018, 109, 2697-2705.	3.9	73
10	Cancer Immunotherapy: A Focus on the Regulation of Immune Checkpoints. International Journal of Molecular Sciences, 2018, 19, 1389.	4.1	77
11	Clinical significance of serum soluble B7-H3 in patients with osteosarcoma. Cancer Cell International, 2018, 18, 115.	4.1	24
12	Expression of the inhibitory B7 family molecule VISTA in human colorectal carcinoma tumors. Cancer Immunology, Immunotherapy, 2018, 67, 1685-1694.	4.2	81
13	B7-H3 modulates endothelial cell angiogenesis through the VEGF cytokine. Immunologic Research, 2019, 67, 202-211.	2.9	13
14	Interleukin-17D Promotes Pathogenicity During Infection by Suppressing CD8 T Cell Activity. Frontiers in Immunology, 2019, 10, 1172.	4.8	31
15	High-resolution structural genomics reveals new therapeutic vulnerabilities in glioblastoma. Genome Research, 2019, 29, 1211-1222.	5.5	52
16	Immune Checkpoints of the B7 Family. Part 2. Representatives of the B7 Family B7-H3, B7-H4, B7-H5, B7-H6, B7-H7, and ILDR2 and Their Receptors. Russian Journal of Bioorganic Chemistry, 2019, 45, 321-334.	1.0	9
17	Monoclonal Antibodies in Dermatooncology—State of the Art and Future Perspectives. Cancers, 2019, 11, 1420.	3.7	9
18	Expression of Programmed Cell Death-Ligands in Hepatocellular Carcinoma: Correlation With Immune Microenvironment and Survival Outcomes. Frontiers in Oncology, 2019, 9, 883.	2.8	40

#	Article	IF	CITATIONS
19	B7-H3 as a Novel CAR-T Therapeutic Target for Glioblastoma. Molecular Therapy - Oncolytics, 2019, 14, 279-287.	4.4	120
20	Bispecific anti-CD3ÂxÂanti-B7-H3 antibody mediates T cell cytotoxic ability to human melanoma in vitro and in vivo. Investigational New Drugs, 2019, 37, 1036-1043.	2.6	19
21	B7-H3 and its role in bone cancers. Pathology Research and Practice, 2019, 215, 152420.	2.3	14
22	Frequent B7-H3 overexpression in craniopharyngioma. Biochemical and Biophysical Research Communications, 2019, 514, 379-385.	2.1	10
23	Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proceedings of the United States of America, 2019, 116, 9020-9029.	7.1	372
24	Autophagy protein ATG5 regulates CD36 expression and anti-tumor MHC class II antigen presentation in dendritic cells. Autophagy, 2019, 15, 2091-2106.	9.1	61
25	<p>Growth and differentiation factor 15 regulates PD-L1 expression in glioblastoma</p> . Cancer Management and Research, 2019, Volume 11, 2653-2661.	1.9	20
26	FcÎ ³ R-Binding Is an Important Functional Attribute for Immune Checkpoint Antibodies in Cancer Immunotherapy. Frontiers in Immunology, 2019, 10, 292.	4.8	111
27	Antitumor Responses in the Absence of Toxicity in Solid Tumors by Targeting B7-H3 via Chimeric Antigen Receptor T Cells. Cancer Cell, 2019, 35, 221-237.e8.	16.8	286
28	Tracers for non-invasive radionuclide imaging of immune checkpoint expression in cancer. EJNMMI Radiopharmacy and Chemistry, 2019, 4, 29.	3.9	23
29	Future of Immune Checkpoint Inhibitors. , 2019, , 227-243.		2
30	B7-H3 promotes multiple myeloma cell survival and proliferation by ROS-dependent activation of Src/STAT3 and c-Cbl-mediated degradation of SOCS3. Leukemia, 2019, 33, 1475-1486.	7.2	47
31	Expression of Programmed Death-Ligand 1 in Laryngeal Carcinoma and its Effects on Immune Cell Subgroup Infiltration. Pathology and Oncology Research, 2019, 25, 1437-1443.	1.9	8
32	Tumor-expressed B7-H3 mediates the inhibition of antitumor T-cell functions in ovarian cancer insensitive to PD-1 blockade therapy. Cellular and Molecular Immunology, 2020, 17, 227-236.	10.5	66
34	T cell cytotoxicity toward hematologic malignancy via B7-H3 targeting. Investigational New Drugs, 2020, 38, 722-732.	2.6	12
35	The New Immunotherapy Combinations in the Treatment of Advanced Non-Small Cell Lung Cancer: Reality and Perspectives. Current Clinical Pharmacology, 2020, 15, 11-19.	0.6	14
36	B7-H3 expression in upper tract urothelial carcinoma associates with adverse clinicopathological features and poor survival. Pathology Research and Practice, 2020, 216, 153219.	2.3	7
37	Expression status of PDâ€L1 and B7â€H3 in mesothelioma. Pathology International, 2020, 70, 999-1008.	1.3	13

#	Article	IF	CITATIONS
38	Knocking down B7H3 expression enhances cell proliferation of SHEDs via the SHP1/AKT signal axis. Biochemical and Biophysical Research Communications, 2020, 531, 282-289.	2.1	4
39	Hybrid spherical nucleotide nanoparticles can enhance the synergistic anti-tumor effect of CTLA-4 and PD-1 blockades. Biomaterials Science, 2020, 8, 4757-4766.	5.4	9
40	Protein Kinase C Isozymes Associated With Relapse Free Survival in Non-Small Cell Lung Cancer Patients. Frontiers in Oncology, 2020, 10, 590755.	2.8	6
41	The Role of TIM-3 in Hepatocellular Carcinoma: A Promising Target for Immunotherapy?. Frontiers in Oncology, 2020, 10, 601661.	2.8	28
42	High B7â€H3 expression is linked to increased risk of prostate cancer progression. Pathology International, 2020, 70, 733-742.	1.3	16
43	Knockdown of lncRNA MCM3AP-AS1 Attenuates Chemoresistance of Burkitt Lymphoma to Doxorubicin Treatment via Targeting the miR-15a/EIF4E Axis. Cancer Management and Research, 2020, Volume 12, 5845-5855.	1.9	21
44	Transcriptome analysis of desmoplastic small round cell tumors identifies actionable therapeutic targets: a report from the Children's Oncology Group. Scientific Reports, 2020, 10, 12318.	3.3	28
45	Monocyte-derived APCs are central to the response of PD1 checkpoint blockade and provide a therapeutic target for combination therapy. , 2020, 8, e000588.		38
46	Targeting B7-H3 Immune Checkpoint With Chimeric Antigen Receptor-Engineered Natural Killer Cells Exhibits Potent Cytotoxicity Against Non-Small Cell Lung Cancer. Frontiers in Pharmacology, 2020, 11, 1089.	3.5	38
47	CAR T Cell Therapy for Pediatric Brain Tumors. Frontiers in Oncology, 2020, 10, 1582.	2.8	37
48	Alternative Checkpoints as Targets for Immunotherapy. Current Oncology Reports, 2020, 22, 126.	4.0	12
49	B7-H3-Targeted CAR-T Cells Exhibit Potent Antitumor Effects on Hematologic and Solid Tumors. Molecular Therapy - Oncolytics, 2020, 17, 180-189.	4.4	67
50	Potential Therapeutic Targets of B7 Family in Colorectal Cancer. Frontiers in Immunology, 2020, 11, 681.	4.8	25
51	Clinicopathological and molecular features of hereditary leiomyomatosis and renal cell cancer-associated renal cell carcinomas. Journal of Clinical Pathology, 2020, 73, 819-825.	2.0	13
52	Current Advances in Osteosarcoma. Advances in Experimental Medicine and Biology, 2020, , .	1.6	4
53	Metastatic melanoma: therapeutic agents in preclinical and early clinical development. Expert Opinion on Investigational Drugs, 2020, 29, 739-753.	4.1	2
54	B7-H3 immune checkpoint expression is a poor prognostic factor in colorectal carcinoma. Modern Pathology, 2020, 33, 2330-2340.	5.5	25
55	<p>B7-H3 Regulates Clioma Growth and Cell Invasion Through a JAK2/STAT3/Slug-Dependent Signaling Pathway</p> . OncoTargets and Therapy, 2020, Volume 13, 2215-2224.	2.0	35

#	Article	IF	CITATIONS
56	MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers, 2020, 12, 1760.	3.7	213
57	B7-H3: A promising therapeutic target for autoimmune diseases. Cellular Immunology, 2020, 352, 104077.	3.0	16
58	A novel chalcone derivative has antitumor activity in melanoma by inducing DNA damage through the upregulation of ROS products. Cancer Cell International, 2020, 20, 36.	4.1	17
59	Clinicopathological and Prognostic Characteristics of CD276 (B7-H3) Expression in Adrenocortical Carcinoma. Disease Markers, 2020, 2020, 1-10.	1.3	12
60	Loss of <i>BAP1</i> expression is associated with an immunosuppressive microenvironment in uveal melanoma, with implications for immunotherapy development. Journal of Pathology, 2020, 250, 420-439.	4.5	97
61	B7-H3 inhibits the IFN-γ-dependent cytotoxicity of Vγ9VΠ2 T cells against colon cancer cells. Oncolmmunology, 2020, 9, 1748991.	4.6	43
62	Efficacy of B7-H3-Redirected BiTE and CAR-T Immunotherapies Against Extranodal Nasal Natural Killer/T Cell Lymphoma. Translational Oncology, 2020, 13, 100770.	3.7	29
63	Natural-Killer-Derived Extracellular Vesicles: Immune Sensors and Interactors. Frontiers in Immunology, 2020, 11, 262.	4.8	87
64	B7-H3: An Attractive Target for Antibody-based Immunotherapy. Clinical Cancer Research, 2021, 27, 1227-1235.	7.0	162
65	Targeting tumor-associated macrophages as an antitumor strategy. Biochemical Pharmacology, 2021, 183, 114354.	4.4	88
66	B7-H3 targeted antibody-based immunotherapy of malignant diseases. Expert Opinion on Biological Therapy, 2021, 21, 587-602.	3.1	16
67	B7-H3 confers resistance to Vγ9VÎ′2 T cell-mediated cytotoxicity in human colon cancer cells via the STAT3/ULBP2 axis. Cancer Immunology, Immunotherapy, 2021, 70, 1213-1226.	4.2	11
68	CD276 as a novel CAR NKâ€92 therapeutic target for neuroblastoma. Advances in Cell and Gene Therapy, 2021, 4, e105.	0.9	18
69	B7-H3 augments the pro-angiogenic function of tumor-associated macrophages and acts as a novel adjuvant target for triple-negative breast cancer therapy. Biochemical Pharmacology, 2021, 183, 114298.	4.4	30
70	The Updated Status and Future Direction of Immunotherapy Targeting B7-H1/PD-1 in Osteosarcoma. Cancer Management and Research, 2021, Volume 13, 757-764.	1.9	0
71	Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers. Oncolmmunology, 2021, 10, 1885778.	4.6	12
72	Targeting B7-H3 via chimeric antigen receptor T cells and bispecific killer cell engagers augments antitumor response of cytotoxic lymphocytes. Journal of Hematology and Oncology, 2021, 14, 21.	17.0	51
73	Gastric Carcinomas with Stromal B7-H3 Expression Have Lower Intratumoural CD8+ T Cell Density. International Journal of Molecular Sciences, 2021, 22, 2129.	4.1	14

#	Article	IF	CITATIONS
74	Tumor B7-H3 expression in diagnostic biopsy specimens and survival in patients with metastatic prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 767-774.	3.9	13
75	Advanced Molecular Characterization Using Digital Spatial Profiling Technology on Immunooncology Targets in Methylated Compared with Unmethylated IDH-Wildtype Glioblastoma. Journal of Oncology, 2021, 2021, 1-9.	1.3	7
76	MYCN Drives a Tumor Immunosuppressive Environment Which Impacts Survival in Neuroblastoma. Frontiers in Oncology, 2021, 11, 625207.	2.8	21
77	Preclinical Evaluation of B7-H3–specific Chimeric Antigen Receptor T Cells for the Treatment of Acute Myeloid Leukemia. Clinical Cancer Research, 2021, 27, 3141-3153.	7.0	45
78	The B7-H3–Targeting Antibody–Drug Conjugate m276-SL-PBD Is Potently Effective Against Pediatric Cancer Preclinical Solid Tumor Models. Clinical Cancer Research, 2021, 27, 2938-2946.	7.0	55
79	B7 Family Members in Lymphoma: Promising Novel Targets for Tumor Immunotherapy?. Frontiers in Oncology, 2021, 11, 647526.	2.8	3
80	Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cellular and Molecular Immunology, 2021, 18, 1085-1095.	10.5	74
81	Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Letters, 2021, 500, 1-10.	7.2	220
82	Immune Checkpoint-Associated Locations of Diffuse Gliomas Comparing Pediatric With Adult Patients Based on Voxel-Wise Analysis. Frontiers in Immunology, 2021, 12, 582594.	4.8	4
83	Expression patterns of the immune checkpoint ligand CD276 in urothelial carcinoma. BMC Urology, 2021, 21, 60.	1.4	10
84	Dysregulation of chromatin organization in pediatric and adult brain tumors: oncoepigenomic contributions to tumorigenesis and cancer stem cell properties. Genome, 2021, 64, 326-336.	2.0	1
85	Comprehensive Analysis of Myeloid Signature Genes in Head and Neck Squamous Cell Carcinoma to Predict the Prognosis and Immune Infiltration. Frontiers in Immunology, 2021, 12, 659184.	4.8	13
86	Cancer Cell B7-H3 Expression Is More Prevalent in the Pancreato-Biliary Subtype of Ampullary Cancer Than in Pancreatic Cancer. Frontiers in Oncology, 2021, 11, 615691.	2.8	3
87	FUT8-mediated aberrant N-glycosylation of B7H3 suppresses the immune response in triple-negative breast cancer. Nature Communications, 2021, 12, 2672.	12.8	74
88	Glycosylation of Immune Receptors in Cancer. Cells, 2021, 10, 1100.	4.1	32
89	Identification of m6A methyltransferase-related IncRNA signature for predicting immunotherapy and prognosis in patients with hepatocellular carcinoma. Bioscience Reports, 2021, 41, .	2.4	39
90	Approaches to Enhance Natural Killer Cell-Based Immunotherapy for Pediatric Solid Tumors. Cancers, 2021, 13, 2796.	3.7	13
91	Expression, regulation and clinical significance of B7-H3 on neutrophils in human gastric cancer. Clinical Immunology, 2021, 227, 108753.	3.2	12

#	Article	IF	Citations
92	MicroRNA-326 attenuates immune escape and prevents metastasis in lung adenocarcinoma by targeting PD-L1 and B7-H3. Cell Death Discovery, 2021, 7, 145.	4.7	18
93	Tumor-Associated Macrophages: A Potential Target for Cancer Therapy. Frontiers in Oncology, 2021, 11, 693517.	2.8	46
94	Multiplexed digital spatial profiling of invasive breast tumors from Black and White women. Molecular Oncology, 2022, 16, 54-68.	4.6	12
95	Identification and Validation of an 11-Ferroptosis Related Gene Signature and Its Correlation With Immune Checkpoint Molecules in Glioma. Frontiers in Cell and Developmental Biology, 2021, 9, 652599.	3.7	20
96	Immune infiltration profiling in gastric cancer and their clinical implications. Cancer Science, 2021, 112, 3569-3584.	3.9	38
97	B7-H3/CD276: An Emerging Cancer Immunotherapy. Frontiers in Immunology, 2021, 12, 701006.	4.8	100
98	CD276 is an important player in macrophage recruitment into the tumor and an upstream regulator for PAI-1. Scientific Reports, 2021, 11, 14849.	3.3	6
99	MiR-29c downregulates tumor-expressed B7-H3 to mediate the antitumor NK-cell functions in ovarian cancer. Gynecologic Oncology, 2021, 162, 190-199.	1.4	19
100	Inhibitory Receptors and Immune Checkpoints Regulating Natural Killer Cell Responses to Cancer. Cancers, 2021, 13, 4263.	3.7	32
101	PLA2G4A promotes right-sided colorectal cancer progression by inducing CD39+131 Treg polarization. JCI Insight, 2021, 6, .	5.0	26
102	Epigenetic Regulation of Immunotherapy Response in Triple-Negative Breast Cancer. Cancers, 2021, 13, 4139.	3.7	10
103	Immune Checkpoints in Cancers: From Signaling to the Clinic. Cancers, 2021, 13, 4573.	3.7	35
104	A Novel Treatment for Ewing's Sarcoma: Chimeric Antigen Receptor-T Cell Therapy. Frontiers in Immunology, 2021, 12, 707211.	4.8	9
105	CD276 expression enables squamous cell carcinoma stem cells to evade immune surveillance. Cell Stem Cell, 2021, 28, 1597-1613.e7.	11.1	127
106	Surfaceome Profiling of Rhabdomyosarcoma Reveals B7-H3 as a Mediator of Immune Evasion. Cancers, 2021, 13, 4528.	3.7	14
108	Effective killing of cells expressing CD276 (B7-H3) by a bispecific T cell engager based on a new fully human antibody. Translational Oncology, 2021, 14, 101232.	3.7	6
109	Melphalan flufenamide inhibits osteoclastogenesis by suppressing proliferation of monocytes. Bone Reports, 2021, 15, 101098.	0.4	0
110	A Comprehensive Analysis of Baseline Clinical Characteristics and Biomarkers Associated with Outcome in Advanced Melanoma Patients Treated with Pembrolizumab. Cancers, 2021, 13, 168.	3.7	24

#	Article	IF	CITATIONS
111	Therapeutic targeting of TGF-β in cancer: hacking a master switch of immune suppression. Clinical Science, 2021, 135, 35-52.	4.3	42
112	Update of early phase clinical trials in cancer immunotherapy. BMB Reports, 2021, 54, 70-88.	2.4	27
113	B7-H3×4-1BB bispecific antibody augments antitumor immunity by enhancing terminally differentiated CD8 ⁺ tumor-infiltrating lymphocytes. Science Advances, 2021, 7, .	10.3	31
114	Genetically Modified T-Cell Therapy for Osteosarcoma: Into the Roaring 2020s. Advances in Experimental Medicine and Biology, 2020, 1257, 109-131.	1.6	7
115	Effects of B7-H3 expression on tumour-infiltrating immune cells and clinicopathological characteristics in non–small-cell lung cancer. European Journal of Cancer, 2020, 133, 74-85.	2.8	38
116	Blocking PD-1/PD-L1 by an ADCC enhanced anti-B7-H3/PD-1 fusion protein engages immune activation and cytotoxicity. International Immunopharmacology, 2020, 84, 106584.	3.8	13
117	Prognostic value of immune checkpoint molecules in breast cancer. Bioscience Reports, 2020, 40, .	2.4	80
119	B7-H3-Induced Signaling in Lung Adenocarcinoma Cell Lines with Divergent Epidermal Growth Factor Receptor Mutation Patterns. BioMed Research International, 2020, 2020, 1-8.	1.9	7
120	Antitumor Responses in the Absence of Toxicity in Solid Tumors by Targeting B7-H3 Via Chimeric Antigen Receptor T Cells. SSRN Electronic Journal, 0, , .	0.4	1
121	Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules. Current Medicinal Chemistry, 2020, 27, 2402-2448.	2.4	12
122	B7-H3-targeted Radioimmunotherapy of Human Cancer. Current Medicinal Chemistry, 2020, 27, 4016-4038.	2.4	5
123	B7-H3 Immune Checkpoint Protein in Human Cancer. Current Medicinal Chemistry, 2020, 27, 4062-4086.	2.4	50
124	Cyclin‑dependent kinase 9 expression and its association with CD8+ T cell infiltration in microsatellite‑stable colorectal cancer. Oncology Letters, 2019, 18, 6046-6056.	1.8	10
125	Main NK cell receptors and their ligands: regulation by microRNAs. AIMS Allergy and Immunology, 2018, 2, 98-112.	0.5	6
126	The role of B7-H3 in tumors and its potential in clinical application. International Immunopharmacology, 2021, 101, 108153.	3.8	22
130	Multi-Omics Data Analyses Identify B7-H3 as a Novel Prognostic Biomarker and Predict Response to Immune Checkpoint Blockade in Head and Neck Squamous Cell Carcinoma. Frontiers in Immunology, 2021, 12, 757047.	4.8	8
131	The expressions and significance of B7-H3 and CTLA-4 in the clinical stages of non-small-cell lung cancer. International Journal of Clinical and Experimental Pathology, 2019, 12, 3032-3041.	0.5	0
132	B7-H3 Suppresses Antitumor Immunity via the CCL2–CCR2–M2 Macrophage Axis and Contributes to Ovarian Cancer Progression. Cancer Immunology Research, 2022, 10, 56-69.	3.4	49

#	Article	IF	Citations
133	The importance of immune checkpoints in immune monitoring: A future paradigm shift in the treatment of cancer. Biomedicine and Pharmacotherapy, 2022, 146, 112516.	5.6	38
134	Cancer exosomes and natural killer cells dysfunction: biological roles, clinical significance and implications for immunotherapy. Molecular Cancer, 2022, 21, 15.	19.2	38
135	Over-Expression and Prognostic Significance of FN1, Correlating With Immune Infiltrates in Thyroid Cancer. Frontiers in Medicine, 2021, 8, 812278.	2.6	14
136	Breast Cancer Tumor Microenvironment and Molecular Aberrations Hijack Tumoricidal Immunity. Cancers, 2022, 14, 285.	3.7	12
137	The Prognostic Value of the Prognostic Nutritional Index in Operable High-Grade Glioma Patients and the Establishment of a Nomogram. Frontiers in Oncology, 2021, 11, 724769.	2.8	3
138	Pediatric medulloblastoma express immune checkpoint B7-H3. Clinical and Translational Oncology, 2022, , .	2.4	11
139	GOLM1 as a Potential Therapeutic Target Modulates B7-H3 Secretion to Drive Ovarian Cancer Metastasis. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-12.	1.2	1
140	Expression Profiles and Prognostic Value of Multiple Inhibitory Checkpoints in Head and Neck Lymphoepithelioma-Like Carcinoma. Frontiers in Immunology, 2022, 13, 818411.	4.8	1
141	Mechanisms of immune activation and regulation: lessons from melanoma. Nature Reviews Cancer, 2022, 22, 195-207.	28.4	101
142	LINC01123 promotes immune escape by sponging miR-214-3p to regulate B7–H3 in head and neck squamous-cell carcinoma. Cell Death and Disease, 2022, 13, 109.	6.3	17
143	An Inflammatory Response Related Gene Signature Associated with Survival Outcome and Gemcitabine Response in Patients with Pancreatic Ductal Adenocarcinoma. Frontiers in Pharmacology, 2021, 12, 778294.	3.5	13
144	CAR T targets and microenvironmental barriers of osteosarcoma. Cytotherapy, 2022, 24, 567-576.	0.7	11
145	<scp>CARâ€T</scp> cell therapy for lung cancer: Potential and perspective. Thoracic Cancer, 2022, 13, 889-899.	1.9	25
146	Association of B7â€H3 expression with racial ancestry, immune cell density, and androgen receptor activation in prostate cancer. Cancer, 2022, 128, 2269-2280.	4.1	16
147	Evidence supporting a role for the immune checkpoint protein B7-H3 in NK cell-mediated cytotoxicity against AML. Blood, 2022, 139, 2782-2796.	1.4	11
148	Microbiota-dependent activation of the myeloid calcineurin-NFAT pathway inhibits B7H3- and B7H4-dependent anti-tumor immunity in colorectal cancer. Immunity, 2022, 55, 701-717.e7.	14.3	16
149	Exploring the Mechanisms Underlying the Cardiotoxic Effects of Immune Checkpoint Inhibitor Therapies. Vaccines, 2022, 10, 540.	4.4	8
150	Establishment of an Ex Vivo Tissue Culture Model for Evaluation of Antitumor Efficacy in Clear Cell Renal Cell Carcinoma. Frontiers in Oncology, 2022, 12, 851191.	2.8	3

#	Article	IF	CITATIONS
151	Inhibitor of glutamine metabolism V9302 promotes ROS-induced autophagic degradation of B7H3 to enhance antitumor immunity. Journal of Biological Chemistry, 2022, 298, 101753.	3.4	19
152	B7-H3 Specific CAR T Cells for the Naturally Occurring, Spontaneous Canine Sarcoma Model. Molecular Cancer Therapeutics, 2022, 21, 999-1009.	4.1	8
153	Establishment of a mechanism-based in vitro coculture assay for evaluating the efficacy of immune checkpoint inhibitors. Cancer Immunology, Immunotherapy, 2022, , 1.	4.2	0
154	Dual checkpoint targeting of B7-H3 and PD-1 with enoblituzumab and pembrolizumab in advanced solid tumors: interim results from a multicenter phase I/II trial. , 2022, 10, e004424.		54
175	Elevated Expression of the Immune Checkpoint Ligand CD276 (B7-H3) in Urothelial Carcinoma Cell Lines Correlates Negatively with the Cell Proliferation. International Journal of Molecular Sciences, 2022, 23, 4969.	4.1	5
176	FLG Is a Potential Biomarker of Prognosis and Immunotherapy in Skin Cutaneous Melanoma. Applied Bionics and Biomechanics, 2022, 2022, 1-11.	1.1	3
177	Profile of Dr. Chen Dong. Science China Life Sciences, 0, , .	4.9	0
178	Clinical Significance of B7-H3 and HER2 Co-Expression and Therapeutic Value of Combination Treatment in Gastric Cancer. SSRN Electronic Journal, 0, , .	0.4	0
179	Targeted Therapy of B7 Family Checkpoints as an Innovative Approach to Overcome Cancer Therapy Resistance: A Review from Chemotherapy to Immunotherapy. Molecules, 2022, 27, 3545.	3.8	1
180	AAMP is a binding partner of costimulatory human B7-H3. Neuro-Oncology Advances, 2022, 4, .	0.7	4
181	Immune checkpoint molecules in neuroblastoma: A clinical perspective. Seminars in Cancer Biology, 2022, 86, 247-258.	9.6	8
182	Chimeric Antigen Receptor (CAR)-T Cell Immunotherapy Against Thoracic Malignancies: Challenges and Opportunities. Frontiers in Immunology, 0, 13, .	4.8	4
183	Clinical significance of B7-H3 and HER2 co-expression and therapeutic value of combination treatment in gastric cancer. International Immunopharmacology, 2022, 110, 108988.	3.8	6
184	Prognostic Value of Programmed Death Ligand-1 in Discriminating Patients With Lymph Node–Negative, p53–Wild-Type, or Low-BRCA1/2-Expression Pancreatic Ductal Adenocarcinoma. Archives of Pathology and Laboratory Medicine, 2023, 147, 465-473.	2.5	2
185	The Regulatory Effects of MicroRNAs on Tumor Immunity. BioMed Research International, 2022, 2022, 1-12.	1.9	2
186	A B7-CD28 Family-Based Signature Demonstrates Significantly Different Prognosis and Immunological Characteristics in Diffuse Cliomas. Frontiers in Molecular Biosciences, 0, 9, .	3.5	1
187	FN1 overexpression is correlated with unfavorable prognosis and immune infiltrates in breast cancer. Frontiers in Genetics, 0, 13, .	2.3	16
188	To kill a cancer: Targeting the immune inhibitory checkpoint molecule, B7-H3. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188783.	7.4	14

#	Article	IF	CITATIONS
189	Engineering of immune checkpoints B7-H3 and CD155 enhances immune compatibility of MHC-lâ^'/â^' iPSCs for l² cell replacement. Cell Reports, 2022, 40, 111423.	6.4	8
190	Novel immune scoring dynamic nomograms based on B7-H3, B7-H4, and HHLA2: Potential prediction in survival and immunotherapeutic efficacy for gallbladder cancer. Frontiers in Immunology, 0, 13, .	4.8	1
191	Advanced Acral Melanoma Therapies: Current Status and Future Directions. Current Treatment Options in Oncology, 2022, 23, 1405-1427.	3.0	9
192	B7-H3 as a Therapeutic Target in Advanced Prostate Cancer. European Urology, 2023, 83, 224-238.	1.9	18
193	Inhibiting PP2A Upregulates B7-H3 Expression and Potentially Increases the Sensitivity of Malignant Meningiomas to Immunotherapy by Proteomics. Pathology and Oncology Research, 0, 28, .	1.9	0
194	Bridging the Scientific Gaps to Identify Effective Treatments in Adrenocortical Cancer. Cancers, 2022, 14, 5245.	3.7	1
195	Predictive biomarkers in gastric cancer. Journal of Cancer Research and Clinical Oncology, 2023, 149, 467-481.	2.5	27
196	Regulation of autophagy fires up the cold tumor microenvironment to improve cancer immunotherapy. Frontiers in Immunology, 0, 13, .	4.8	11
197	Tumor immune checkpoints and their associated inhibitors. Journal of Zhejiang University: Science B, 2022, 23, 823-843.	2.8	9
198	B7-H3 targeted CAR-T cells show highly efficient anti-tumor function against osteosarcoma both in vitro and in vivo. BMC Cancer, 2022, 22, .	2.6	6
199	Deficiency of tumor-expressed B7-H3 augments anti-tumor efficacy of anti-PD-L1 monotherapy rather than the combined chemoimmunotherapy in ovarian cancer. Pharmacological Research, 2022, 186, 106512.	7.1	4
200	A Novel Immune-Related Gene Prognostic Index (IRGPI) in Pancreatic Adenocarcinoma (PAAD) and Its Implications in the Tumor Microenvironment. Cancers, 2022, 14, 5652.	3.7	3
201	Lipid Nanoparticle Delivery System for mRNA Encoding B7H3â€redirected Bispecific Antibody Displays Potent Antitumor Effects on Malignant Tumors. Advanced Science, 2023, 10, .	11.2	17
202	Pediatric versus adult high grade glioma: Immunotherapeutic and genomic considerations. Frontiers in Immunology, 0, 13, .	4.8	6
203	B7 Family Members in Pancreatic Ductal Adenocarcinoma: Attractive Targets for Cancer Immunotherapy. International Journal of Molecular Sciences, 2022, 23, 15005.	4.1	1
204	Bottlenecks and opportunities in immunotherapy for glioma: a narrative review. Journal of Bio-X Research, O, Publish Ahead of Print, .	0.2	0
205	Transcriptomic and immunophenotypic profiling reveals molecular and immunological hallmarks of colorectal cancer tumourigenesis. Gut, 2023, 72, 1326-1339.	12.1	15
206	The Glycosylation of Immune Checkpoints and Their Applications in Oncology. Pharmaceuticals, 2022, 15, 1451.	3.8	3

#	Article	IF	CITATIONS
207	Decreased B7-H3 promotes unexplained recurrent miscarriage via RhoA/ROCK2 signaling pathway and regulates the secretion of decidual NK cells. Biology of Reproduction, 2023, 108, 504-518.	2.7	6
208	Inhibition of the B7-H3 immune checkpoint limits hepatocellular carcinoma progression by enhancing T lymphocyte-mediated immune cytotoxicity in vitro and in vivo. Clinical and Translational Oncology, 2023, 25, 1067-1079.	2.4	4
209	Pan-cancer analysis identifies proteasome 26S subunit, ATPase (PSMC) family genes, and related signatures associated with prognosis, immune profile, and therapeutic response in lung adenocarcinoma. Frontiers in Genetics, 0, 13, .	2.3	2
210	Natural Killer Cell-Based Cancer Immunotherapy: From Bench to Bedside. , 0, , .		0
211	A glycolysis-related gene signatures in diffuse large B-Cell lymphoma predicts prognosis and tumor immune microenvironment. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	6
212	CAR T-cells to treat brain tumors. Brain Research Bulletin, 2023, 196, 76-98.	3.0	7
214	Comprehensive Analysis Reveals Distinct Immunological and Prognostic Characteristics of CD276/B7-H3 in Pan-Cancer. International Journal of General Medicine, 0, Volume 16, 367-391.	1.8	2
216	Prognostic value of prognostic nutritional index score and controlling nutritional status score in patients with glioblastoma: A comprehensive meta-analysis. Frontiers in Oncology, 0, 13, .	2.8	3
218	Recently approved and emerging monoclonal antibody immune checkpoint inhibitors for the treatment of advanced non-small cell lung cancer. Expert Opinion on Biological Therapy, 2023, 23, 261-268.	3.1	1
219	Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Research, 2023, 11, .	11.4	38
220	mTORC1 upregulates B7-H3/CD276 to inhibit antitumor T cells and drive tumor immune evasion. Nature Communications, 2023, 14, .	12.8	10
221	EBV-Upregulated B7-H3 Inhibits NK cell–Mediated Antitumor Function and Contributes to Nasopharyngeal Carcinoma Progression. Cancer Immunology Research, 2023, 11, 830-846.	3.4	4
222	Neoadjuvant enoblituzumab in localized prostate cancer: a single-arm, phase 2 trial. Nature Medicine, 2023, 29, 888-897.	30.7	16
223	Potential role of LPAR5 gene in prognosis and immunity of thyroid papillary carcinoma and pan-cancer. Scientific Reports, 2023, 13, .	3.3	1
224	Immunotherapy for Pediatric Gliomas: CAR-T Cells Against B7H3: A Review of the Literature. CNS and Neurological Disorders - Drug Targets, 2024, 23, 420-430.	1.4	2
225	Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	35
226	<scp>B7â€H3</scp> drives immunosuppression and Coâ€targeting with <scp>CD47</scp> is a new therapeutic strategy in βâ€catenin activated melanomas. Pigment Cell and Melanoma Research, 2023, 36, 407-415.	3.3	1
227	Engineering MMP-2 Activated Nanoparticles Carrying B7-H3 Bispecific Antibodies for Ferroptosis-Enhanced Glioblastoma Immunotherapy. ACS Nano, 2023, 17, 9126-9139.	14.6	21

#	Article	IF	CITATIONS
229	Bispecific antibody targeting both B7-H3 and PD-L1 exhibits superior antitumor activities. Acta Pharmacologica Sinica, 0, , .	6.1	0
230	Beyond CTLA-4 and PD-1 Inhibition: Novel Immune Checkpoint Molecules for Melanoma Treatment. Cancers, 2023, 15, 2718.	3.7	9
231	B7-H3 immunoregulatory roles in cancer. Biomedicine and Pharmacotherapy, 2023, 163, 114890.	5.6	4
232	Synthesis and Evaluation of Clinically Translatable Targeted Microbubbles Using a Microfluidic Device for In Vivo Ultrasound Molecular Imaging. International Journal of Molecular Sciences, 2023, 24, 9048.	4.1	1
233	CD276 as a Candidate Target for Immunotherapy in Medullary Thyroid Cancer. International Journal of Molecular Sciences, 2023, 24, 10019.	4.1	1
234	Hub gene of disulfidptosis-related immune checkpoints in breast cancer. , 2023, 40, .		4
235	Influence of ADT on B7-H3 expression during CRPC progression from hormone-naÃ ⁻ ve prostate cancer. Cancer Gene Therapy, 0, , .	4.6	0
237	Global research trends on B7-H3 for cancer immunotherapy: A bibliometric analysis (2012-2022). Human Vaccines and Immunotherapeutics, 2023, 19, .	3.3	1
238	Non-spatial and spatial heterogeneity revealed a suppressive immune feature of Siglec-15 in lung adenocarcinomas. Journal of Translational Medicine, 2023, 21, .	4.4	2
239	Highly proliferative and hypodifferentiated CAR-T cells targeting B7–H3 enhance antitumor activity against ovarian and triple-negative breast cancers. Cancer Letters, 2023, 572, 216355.	7.2	1
240	Neuroblastoma in the Era of Precision Medicine: A Clinical Review. Cancers, 2023, 15, 4722.	3.7	0
241	B7-H3/CD276 and small-cell lung cancer: What's new?. Translational Oncology, 2024, 39, 101801.	3.7	0
242	Anoikis patterns via machine learning strategy and experimental verification exhibit distinct prognostic and immune landscapes in melanoma. Clinical and Translational Oncology, 0, , .	2.4	0
243	Exploiting innate immunity for cancer immunotherapy. Molecular Cancer, 2023, 22, .	19.2	6
244	Immune microenvironment dynamics of HER2 overexpressing breast cancer under dual anti-HER2 blockade. Frontiers in Immunology, 0, 14, .	4.8	0
245	Phytochemicals in regulating <scp>PD</scp> â€1/ <scp>PDâ€L1</scp> and immune checkpoint blockade therapy. Phytotherapy Research, 2024, 38, 776-796.	5.8	1
247	CAR NK Cell Therapy for the Treatment of Metastatic Melanoma: Potential & Prospects. Cells, 2023, 12, 2750.	4.1	0
248	Introduction on Immune Checkpoints in Cancer. , 2023, , 1-19.		0

#	Article	IF	CITATIONS
249	Cell-Surface GRP78-Targeted Chimeric Antigen Receptor T Cells Eliminate Lung Cancer Tumor Xenografts. International Journal of Molecular Sciences, 2024, 25, 564.	4.1	0
250	The immune regulatory function of B7-H3 in malignancy: spotlight on the IFN-STAT1 axis and regulation of tumor-associated macrophages. Immunologic Research, 0, , .	2.9	0
251	miRNAs Related to Immune Checkpoint Inhibitor Response: A Systematic Review. International Journal of Molecular Sciences, 2024, 25, 1737.	4.1	0
252	A promising target for breast cancer: B7-H3. BMC Cancer, 2024, 24, .	2.6	0
253	Interplay between B7–H3 and HLA class I in the clinical course of pancreatic ductal adenocarcinoma. Cancer Letters, 2024, 587, 216713.	7.2	0
254	Mapping spatial heterogeneity in gastric cancer microenvironment. Biomedicine and Pharmacotherapy, 2024, 172, 116317.	5.6	0
255	ALMS1-IT1: A Key Player in the Novel Disulfidptosis-Related LncRNA Prognostic Signature for Head and Neck Squamous Cell Carcinoma. Biomolecules, 2024, 14, 266.	4.0	0
256	The role of immunotherapy sensitizers and novel immunotherapy modalities in the treatment of cancer. Frontiers in Oncology, 0, 14, .	2.8	0
257	Improved antitumor effects elicited by an oncolytic HSV-1 expressing a novel B7H3nb/CD3 BsAb. Cancer Letters, 2024, 588, 216760.	7.2	0
258	Intraoperative Resection Guidance and Rapid Pathological Diagnosis of Osteosarcoma using B7H3 Targeted Probe under NIRâ€II Fluorescence Imaging. Advanced Science, 0, , .	11.2	0
259	Survival and clinicopathological significance of B7-H3 in bladder cancer: a systematic review and meta-analysis. BMC Urology, 2024, 24, .	1.4	0