GW170104: Observation of a 50-Solar-Mass Binary Black

Physical Review Letters 118, 221101 DOI: 10.1103/physrevlett.118.221101

Citation Report

#	Article	IF	CITATIONS
1	Orbiting naked singularities in large- \$\$omega \$\$ ï‰ Brans–Dicke gravity. General Relativity and Gravitation, 2017, 49, 1.	0.7	2
2	Implications of Binary Black Hole Detections on the Merger Rates of Double Neutron Stars and Neutron Star–Black Holes. Astrophysical Journal Letters, 2017, 849, L14.	3.0	4
3	Precision cosmology from future lensed gravitational wave and electromagnetic signals. Nature Communications, 2017, 8, 1148.	5.8	106
4	Strongly lensed gravitational waves and electromagnetic signals as powerful cosmic rulers. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2906-2912.	1.6	25
5	Post-Kerr black hole spectroscopy. Physical Review D, 2017, 96, .	1.6	53
6	A recipe for echoes from exotic compact objects. Physical Review D, 2017, 96, .	1.6	145
7	Frequency-dependent responses in third generation gravitational-wave detectors. Physical Review D, 2017, 96, .	1.6	47
8	General relativistic magnetohydrodynamics simulations of prompt-collapse neutron star mergers: The absence of jets. Physical Review D, 2017, 96, .	1.6	34
9	Gravitational radiation driven capture in unequal mass black hole encounters. Physical Review D, 2017, 96, .	1.6	7
10	Test the mergers of the primordial black holes by high frequency gravitational-wave detector. European Physical Journal C, 2017, 77, 1.	1.4	2
11	Mass sensing by detecting the quadrature of a coupled light field. Physical Review A, 2017, 96, .	1.0	23
12	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
13	Resonant tidal excitation of oscillation modes in merging binary neutron stars: Inertial-gravity modes. Physical Review D, 2017, 96, .	1.6	55
14	Effective action model of dynamically scalarizing binary neutron stars. Physical Review D, 2017, 96, .	1.6	26
15	Numerical initial boundary value problem for the generalized conformal field equations. Physical Review D, 2017, 96, .	1.6	9
16	The mechanism(s) of core-collapse supernovae. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160271.	1.6	29
17	Black hole squeezers. Physical Review D, 2017, 96, .	1.6	4
18	Gravitational wave searches for ultralight bosons with LIGO and LISA. Physical Review D, 2017, 96, .	1.6	190

#	ARTICLE Stochastic and Resolvable Gravitational Waves from Ultralight Bosons. Physical Review Letters, 2017,	IF 2.9	CITATIONS
19 20	119, 131101. AGILE Observations of the Gravitational-wave Source GW170104. Astrophysical Journal Letters, 2017,	3.0	25
20	847, L20.	5.0	20
21	Bimodal Long-lasting Components in Short Gamma-Ray Bursts: Promising Electromagnetic Counterparts to Neutron Star Binary Mergers. Astrophysical Journal, 2017, 846, 142.	1.6	45
22	Gravitational-wave observations from ground-based detectors. International Journal of Modern Physics A, 2017, 32, 1744002.	0.5	1
23	A golden binary. Nature, 2017, 551, 36-37.	13.7	5
24	Damping of gravitational waves by matter. Physical Review D, 2017, 96, .	1.6	31
25	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
26	Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science, 2017, 358, 1556-1558.	6.0	811
27	Electromagnetic evidence that SSS17a is the result of a binary neutron star merger. Science, 2017, 358, 1583-1587.	6.0	203
28	An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A. Astrophysical Journal Letters, 2017, 848, L14.	3.0	1,038
29	INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817. Astrophysical Journal Letters, 2017, 848, L15.	3.0	647
30	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models. Astrophysical Journal Letters, 2017, 848, L17.	3.0	656
31	The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars. Astrophysical Journal Letters, 2017, 848, L27.	3.0	507
32	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
33	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
34	On gauge dependence of gravitational waves from a first-order phase transition in classical scale-invariant U (1) ′ models. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 774, 489-493.	1.5	34
35	Bounding the Speed of Gravity with Gravitational Wave Observations. Physical Review Letters, 2017, 119, 161102.	2.9	50
36	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale. Astrophysical Journal Letters, 2017, 848, L22.	3.0	107

#	Article	IF	CITATIONS
37	Observations of the First Electromagnetic Counterpart to a Gravitational-wave Source by the TOROS Collaboration. Astrophysical Journal Letters, 2017, 848, L29.	3.0	96
38	About gravitational-wave generation by a three-body system. Classical and Quantum Gravity, 2017, 34, 215004.	1.5	13
39	Black hole merger estimates in Einstein-Maxwell and Einstein-Maxwell-dilaton gravity. Physical Review D, 2017, 96, .	1.6	54
40	Disentangling the Potential Dark Matter Origin of LIGO's Black Holes. Astrophysical Journal Letters, 2017, 845, L13.	3.0	4
41	Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism. Physical Review D, 2017, 96, .	1.6	101
42	Fermi Observations of the LIGO Event GW170104. Astrophysical Journal Letters, 2017, 846, L5.	3.0	15
43	Self-force correction to geodetic spin precession in Kerr spacetime. Physical Review D, 2017, 96, .	1.6	19
44	History of black holes revealed by their spin. Nature, 2017, 548, 397-398.	13.7	0
45	Distinguishing spin-aligned and isotropic black hole populations with gravitational waves. Nature, 2017, 548, 426-429.	13.7	208
46	New inhomogeneous universes in scalar-tensor and <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi) etqq1="" i<="" td="" tj=""><td>l 0.7.84314</td><td>• rg&T /Overic</td></mml:mi)></mml:mrow></mmi:math 	l 0. 7.8 4314	• r g &T /Overic
47	gravity. Physical Review D, 2017, 96, . Pseudotopological quasilocal energy of torsion gravity. Physical Review D, 2017, 96, .	1.6	2
48	Spin–Orbit Misalignment of Merging Black Hole Binaries with Tertiary Companions. Astrophysical Journal Letters, 2017, 846, L11.	3.0	65
49	Where and When: Optimal Scheduling of the Electromagnetic Follow-up of Gravitational-wave Events Based on Counterpart Light-curve Models. Astrophysical Journal, 2017, 846, 62.	1.6	28
50	Excitation of high frequency voices from intermediate-mass-ratio inspirals with large eccentricity. Classical and Quantum Gravity, 2017, 34, 225010.	1.5	11
51	Spectral analysis of gravitational waves from binary neutron star merger remnants. Physical Review D, 2017, 96, .	1.6	31
52	Generalized plane waves in Poincar $ ilde{A}$ © gauge theory of gravity. Physical Review D, 2017, 96, .	1.6	21
53	Gravitational waves discovery, intellectual property and technology transfer. World Patent Information, 2017, 51, 1-6.	0.7	0
54	Gravitational wave memory in ĥCDM cosmology. Classical and Quantum Gravity, 2017, 34, 215002.	1.5	33

	CITATION R	EPORT	
#	Article	IF	CITATIONS
55	Power radiated by a binary system in a de Sitter universe. Physical Review D, 2017, 96, .	1.6	12
56	Formation of Double Neutron Star Systems. Astrophysical Journal, 2017, 846, 170.	1.6	435
57	Whispers from the Edge of Physics. Journal of Astrophysics and Astronomy, 2017, 38, 1.	0.4	5
58	Causal properties of nonlinear gravitational waves in modified gravity. Physical Review D, 2017, 96, .	1.6	3
59	Velocity-dependent inverse cubic force and solar system gravity tests. Physical Review D, 2017, 96, .	1.6	16
60	Constraining Formation Models of Binary Black Holes with Gravitational-wave Observations. Astrophysical Journal, 2017, 846, 82.	1.6	128
61	INTEGRAL Observations of GW170104. Astrophysical Journal Letters, 2017, 846, L23.	3.0	12
62	Primordial black holes and slow-roll violation. Physical Review D, 2017, 96, .	1.6	207
63	Quasinormal modes of Einstein-Gauss-Bonnet-dilaton black holes. Physical Review D, 2017, 96, .	1.6	96
64	Stellar palaeontology. Nature, 2017, 547, 284-285.	13.7	8
65	A no-hair theorem for stars in Horndeski theories. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 037-037.	1.9	34
66	Electromagnetic chirp of a compact binary black hole: A phase template for the gravitational wave inspiral. Physical Review D, 2017, 96, .	1.6	44
67	Particle collision with an arbitrarily high center-of-mass energy near a Bañados-Teitelboim-Zanelli black hole. Physical Review D, 2017, 96, .	1.6	13
68	Determining the population properties of spinning black holes. Physical Review D, 2017, 96, .	1.6	130
69	Neutron Star–Black Hole Coalescence Rate Inferred from Macronova Observations. Astrophysical Journal Letters, 2017, 844, L22.	3.0	15
70	How would GW150914 look with future gravitational wave detector networks?. Classical and Quantum Gravity, 2017, 34, 174003.	1.5	12
71	Cosmic string in gravity's rainbow. Astrophysics and Space Science, 2017, 362, 1.	0.5	15
73	On the time lags of the LIGO signals. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 013-013.	1.9	23

#	Article	IF	CITATIONS
74	Numerical binary black hole mergers in dynamical Chern-Simons gravity: Scalar field. Physical Review D, 2017, 96, .	1.6	93
75	Ultra compact stars: reconstructing the perturbation potential. Classical and Quantum Gravity, 2017, 34, 175015.	1.5	31
76	The gravitational waves from the first-order phase transition with a dimension-six operator. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 004-004.	1.9	50
77	Anisotropy of the astrophysical gravitational wave background: Analytic expression of the angular power spectrum and correlation with cosmological observations. Physical Review D, 2017, 96, .	1.6	84
78	Baryon asymmetry and gravitational waves from pseudoscalar inflation. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 011-011.	1.9	68
79	Polarization-Based Tests of Gravity with the Stochastic Gravitational-Wave Background. Physical Review X, 2017, 7, .	2.8	65
80	Lensing and dynamics of ultracompact bosonic stars. Physical Review D, 2017, 96, .	1.6	73
81	Dirac perturbations on Schwarzschild–anti–de Sitter spacetimes: Generic boundary conditions and new quasinormal modes. Physical Review D, 2017, 96, .	1.6	14
82	Distance and Properties of NGC 4993 as the Host Galaxy of the Gravitational-wave Source GW170817. Astrophysical Journal Letters, 2017, 849, L16.	3.0	59
83	The SVOM mission. Astronomische Nachrichten, 2017, 338, 978-983.	0.6	1
84	Multimessenger tests of the weak equivalence principle from GW170817 and its electromagnetic counterparts. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 035-035.	1.9	33
85	AGILEÂObservations of the Gravitational-wave Source GW170817: Constraining Gamma-Ray Emission from an NS–NS Coalescence. Astrophysical Journal Letters, 2017, 850, L27.	3.0	20
86	Bounds on the polymer scale from gamma ray bursts. Physical Review D, 2017, 96, .	1.6	7
87	A Search for Low-energy Neutrinos Correlated with Gravitational Wave Events GW 150914, GW 151226, and GW 170104 with the Borexino Detector. Astrophysical Journal, 2017, 850, 21.	1.6	26
88	Polarization modes of gravitational wave for viable f (R) \$f(R)\$ models. Astrophysics and Space Science, 2017, 362, 1.	0.5	11
89	Matter effects on LIGO/Virgo searches for gravitational waves from merging neutron stars. Classical and Quantum Gravity, 2017, 34, 245003.	1.5	11
90	Projected constraints on the dispersion of gravitational waves using advanced ground- and space-based interferometers. Physical Review D, 2017, 96, .	1.6	16
91	Revealing Black Holes with Gaia. Astrophysical Journal Letters, 2017, 850, L13.	3.0	65

#	Article	IF	Citations
92	Vector theory of gravity: Universe without black holes and solution of dark energy problem. Physica Scripta, 2017, 92, 125001.	1.2	11
93	Tensor perturbations in anisotropically curved cosmologies. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 022-022.	1.9	6
94	Parameter estimation of gravitational wave echoes from exotic compact objects. Physical Review D, 2017, 96, .	1.6	58
95	Measurement of Hubble constant with stellar-mass binary black holes. Physical Review D, 2017, 96, .	1.6	23
96	Perturbation theory for cosmologies with nonlinear structure. Physical Review D, 2017, 96, .	1.6	12
97	Detection of relic gravitational waves in thermal case by using Adv.LIGO data of GW150914. European Physical Journal C, 2017, 77, 1.	1.4	5
98	Spontaneous scalarization with an extremely massive field and heavy neutron stars. Physical Review D, 2017, 96, .	1.6	18
99	Gravitational wave source localization for eccentric binary coalesce with a ground-based detector network. Physical Review D, 2017, 96, .	1.6	18
100	Challenges for testing the no-hair theorem with current and planned gravitational-wave detectors. Physical Review D, 2017, 96, .	1.6	38
101	The linear stability of the post-Newtonian triangular equilibrium in the three-body problem. Celestial Mechanics and Dynamical Astronomy, 2017, 129, 487-507.	0.5	3
102	Fixing extensions to general relativity in the nonlinear regime. Physical Review D, 2017, 96, .	1.6	51
103	General treatment of quantum and classical spinning particles in external fields. Physical Review D, 2017, 96, .	1.6	41
104	Metamorphoses of a photon sphere. Physical Review D, 2017, 96, .	1.6	14
105	Probing Intrinsic Properties of Short Gamma-Ray Bursts with Gravitational Waves. Physical Review Letters, 2017, 119, 181102.	2.9	12
106	Gravitational wave bursts from Primordial Black Hole hyperbolic encounters. Physics of the Dark Universe, 2017, 18, 123-126.	1.8	30
107	Very massive stars, pair-instability supernovae and intermediate-mass black holes with the sevn code. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4739-4749.	1.6	216
108	Effect of heat treatment and aging on the mechanical loss and strength of hydroxide catalysis bonds between fused silica samples. Physical Review D, 2017, 96, .	1.6	1
109	Recent searches for continuous gravitational waves. Modern Physics Letters A, 2017, 32, 1730035.	0.5	108

		CITATION RE	PORT	
#	Article		IF	CITATIONS
110	Statistical gravitational waveform models: What to simulate next?. Physical Review D,	2017, 96, .	1.6	40
111	Systematic challenges for future gravitational wave measurements of precessing binar Physical Review D, 2017, 96, .	y black holes.	1.6	17
112	First narrow-band search for continuous gravitational waves from known pulsars in adv detector data. Physical Review D, 2017, 96, .	/anced	1.6	47
113	Light-Ring Stability for Ultracompact Objects. Physical Review Letters, 2017, 119, 251	102.	2.9	184
114	Nonradial oscillation modes of compact stars with a crust. Physical Review C, 2017, 96), .	1.1	37
115	Spins of primordial black holes formed in the matter-dominated phase of the Universe. D, 2017, 96, .	Physical Review	1.6	89
116	CMB bounds on disk-accreting massive primordial black holes. Physical Review D, 2017	7, 96, .	1.6	196
117	Evolution of small-mass-ratio binaries with a spinning secondary. Physical Review D, 20	17, 96, .	1.6	43
118	Sub-radian-accuracy gravitational waveforms of coalescing binary neutron stars in num relativity. Physical Review D, 2017, 96, .	nerical	1.6	72
119	Calibration uncertainty for Advanced LIGO's first and second observing runs. Physi 96, .	cal Review D, 2017,	1.6	97
120	Spline based search method for unmodeled transient gravitational wave chirps. Physics 2017, 96, .	al Review D,	1.6	4
121	Classifier for gravitational-wave inspiral signals in nonideal single-detector data. Physic 2017, 96, .	al Review D,	1.6	9
122	Gravitational spin-orbit coupling in binary systems, post-Minkowskian approximation, a one-body theory. Physical Review D, 2017, 96, .	and effective	1.6	53
123	Foundations of an effective-one-body model for coalescing binaries on eccentric orbits Review D, 2017, 96, .	. Physical	1.6	65
124	Gravitational wave signatures of highly compact boson star binaries. Physical Review D	0, 2017, 96, .	1.6	109
125	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>r</mml:mi></mml:math> -process nucleosynthesis from ma binary neutron star mergers. Physical Review D, 2017, 96, .	tter ejected in	1.6	132
126	Accurate inspiral-merger-ringdown gravitational waveforms for nonspinning black-hole including the effect of subdominant modes. Physical Review D, 2017, 96, .	binaries	1.6	30
127	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophys Letters, 2017, 851, L35.	sical Journal	3.0	968

		CITATION RE	PORT	
#	Article		IF	CITATIONS
128	Hidden simplicity of the gravity action. Journal of High Energy Physics, 2017, 2017, 1.		1.6	38
129	Probing stellar binary black hole formation in galactic nuclei via the imprint of their cen acceleration on their gravitational wave signal. Physical Review D, 2017, 96, .	ter of mass	1.6	59
130	Merger rate of primordial black-hole binaries. Physical Review D, 2017, 96, .		1.6	282
131	Gravitational effective action at second order in curvature and gravitational waves. Eur Physical Journal C, 2017, 77, 589.	opean	1.4	26
132	Where Are LIGO's Big Black Holes?. Astrophysical Journal Letters, 2017, 851, L25.		3.0	160
133	Impact of Bayesian Priors on the Characterization of Binary Black Hole Coalescences. P Letters, 2017, 119, 251103.	hysical Review	2.9	66
134	A Tale of Two Transients: GW 170104 and GRBÂ170105A. Astrophysical Journal, 2017	, 845, 152.	1.6	29
135	iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma Astrophysical Journal, 2017, 847, 54.	a-Ray Trigger.	1.6	23
136	Detecting Binary Compact-object Mergers with Gravitational Waves: Understanding ar Sensitivity of the PyCBC Search. Astrophysical Journal, 2017, 849, 118.	ıd Improving the	1.6	148
137	Toward Rapid Transient Identification and Characterization of Kilonovae. Astrophysical Journal, 2017, 849, 12.		1.6	33
138	Pre-explosion Spiral Mass Loss of a Binary Star Merger. Astrophysical Journal, 2017, 85	0, 59.	1.6	70
139	Observations of the GRB Afterglow ATLAS17aeu and Its Possible Association with GW Astrophysical Journal, 2017, 850, 149.	170104.	1.6	38
140	The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gf Astrophysical Journal Letters, 2017, 848, L24.		3.0	309
141	mathvariant="script">O <mml:mo stretchy="false">(<mml:mn>10</mml:mn><mml:mo) 0.784314<br="" 1="" etqq1="" tj="">stretchy="false">⊙<td></td><td>222 Td (st 1.6</td><td>retçhy="fals</td></mml:mo)></mml:mo 		222 Td (st 1.6	retçhy="fals
142	holes and string axion dark matter. Physical Review D, 2017, 96, . Low frequency electromagnetic radiation from gravitational waves generated by neutre Physical Review D, 2017, 96, .		1.6	6
143	Space gravitational wave antenna DECIGO and B-DECIGO. CEAS Space Journal, 2017, 9), 371-377.	1.1	3
144	Gravitational waves from first-order phase transitions: towards model separation by bu nucleation rate. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 050-050.	bble	1.9	38
145	Hierarchical analysis of gravitational-wave measurements of binary black hole spin–c misalignments. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2801-2	rbit 811.	1.6	152

#	Article	IF	CITATIONS
146	Quasinormal Modes of Static Modified Gravity (MOG) Black Holes. Journal of Physics: Conference Series, 2017, 942, 012014.	0.3	5
147	The first confirmed gravitational wave detection in LIGO's second observational run. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	2.0	4
148	Electromagnetic counterparts to structured jets from gravitational wave detected mergers. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4953-4964.	1.6	117
149	The cosmic merger rate of stellar black hole binaries from the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2422-2435.	1.6	135
150	Outflow-driven Transients from the Birth of Binary Black Holes. II. Primary-induced Accretion Transients. Astrophysical Journal, 2017, 851, 53.	1.6	5
151	Afterglows and Kilonovae Associated with Nearby Low-luminosity Short-duration Gamma-Ray Bursts: Application to GW170817/GRB 170817A. Astrophysical Journal Letters, 2017, 850, L41.	3.0	31
152	A More Stringent Constraint on the Mass Ratio of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L45.	3.0	23
153	Very high-frequency gravitational waves from magnetars and gamma-ray bursts. Chinese Physics C, 2017, 41, 125101.	1.5	4
154	Outflow-driven Transients from the Birth of Binary Black Holes. I. Tidally Locked Secondary Supernovae. Astrophysical Journal, 2017, 851, 52.	1.6	8
155	Demonstration of a switchable damping system to allow low-noise operation of high- Q low-mass suspension systems. Physical Review D, 2017, 96, .	1.6	0
156	Gravitational scattering of two black holes at the fourth post-Newtonian approximation. Physical Review D, 2017, 96, .	1.6	53
157	The binary black hole merger rate from ultraluminous X-ray source progenitors. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3683-3691.	1.6	9
158	Energizing the last phase of common-envelope removal. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4839-4843.	1.6	29
159	Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes. European Physical Journal Plus, 2017, 132, 1.	1.2	103
160	All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the AntaresÂneutrino telescope. European Physical Journal C, 2017, 77, 1.	1.4	13
161	Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation. Monthly Notices of the Royal Astronomical Society, 0, , stw3392.	1.6	102
162	On the host galaxy properties of stellar binary black hole mergers. Proceedings of the International Astronomical Union, 2017, 13, 14-21.	0.0	0
163	Deep-Learning the Time Domain. Proceedings of the International Astronomical Union, 2017, 14, 165-171.	0.0	0

		CITATION R	EPORT	
#	Article		IF	CITATIONS
164	Dark Energy, QCD Axion, and Trans-Planckian-Inflaton Decay Constant. Universe, 2017	', 3, 68.	0.9	1
165	METRIC: A Dedicated Earth-Orbiting Spacecraft for Investigating Gravitational Physics Environment. Aerospace, 2017, 4, 38.	and the Space	1.1	3
166	Spin Interaction under the Collision of Two Kerr-(Anti-)de Sitter Black Holes. Entropy, 2	2017, 19, 691.	1.1	2
167	J-GEM observations of an electromagnetic counterpart to the neutron star merger GW Publication of the Astronomical Society of Japan, 2017, 69, .	170817.	1.0	155
168	Dilaton field released under collision of dilatonic black holes with Gauss–Bonnet terr Physical Journal C, 2017, 77, 1.	n. European	1.4	5
169	Comments on gravitoelectromagnetism of Ummarino and Gallerati in "Supercondı static gravitational field―vs other versions. European Physical Journal C, 2017, 77, 1.	ictor in a weak	1.4	12
170	BOSS-LDG: A Novel Computational Framework That Brings Together Blue Waters, Ope Shifter and the LIGO Data Grid to Accelerate Gravitational Wave Discovery. , 2017, , .	n Science Grid,		6
171	Cryogenic Model of the Gravitational Antenna OGRAN. Physics of Atomic Nuclei, 2017	, 80, 1606-1612.	0.1	3
172	Capability of detecting ultraviolet counterparts of gravitational waves with GLUV. Mor of the Royal Astronomical Society, 2017, 472, 4521-4531.	ithly Notices	1.6	5
174	Evaporation and Antievaporation Instabilities. Symmetry, 2017, 9, 249.		1.1	5
175	Reanalysis of LIGO black-hole coalescences with alternative prior assumptions. Proceed International Astronomical Union, 2017, 13, 22-28.	lings of the	0.0	2
176	The black hole at the Galactic Center: observations and models in a nutshell. Journal of Conference Series, 2017, 934, 012037.	Physics:	0.3	6
177	The detection of gravitational waves. Journal of Physics: Conference Series, 2017, 912	, 012018.	0.3	0
178	Strong-lensing of Gravitational Waves by Galaxy Clusters. Proceedings of the Internati Astronomical Union, 2017, 13, 98-102.	onal	0.0	19
179	Cosmology with Gravitational Waves in DES and LSST. Proceedings of the Internationa Union, 2017, 13, 65-71.	al Astronomical	0.0	0
180	Double inflation as a single origin of primordial black holes for all dark matter and LIGC observations. Physical Review D, 2018, 97, .		1.6	116
181	Gravitational waves from orbiting binaries without general relativity. American Journal 2018, 86, 186-197.	of Physics,	0.3	13
182	Scattering of point particles by black holes: Gravitational radiation. Physical Review D,	2018, 97, .	1.6	14

	CITATION R	EPORT	
#	Article	IF	CITATIONS
183	Astronomical Distance Determination in the Space Age. Space Science Reviews, 2018, 214, 1.	3.7	24
184	Quantum hair of black holes out of equilibrium. Physical Review D, 2018, 97, .	1.6	12
185	Constraints from microlensing experiments on clustered primordial black holes. Physics of the Dark Universe, 2018, 19, 144-148.	1.8	50
186	Machine learning for Gravity Spy: Glitch classification and dataset. Information Sciences, 2018, 444, 172-186.	4.0	54
187	A blind search for a common signal in gravitational wave detectors. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 013-013.	1.9	12
188	Parametrized tests of the strong-field dynamics of general relativity using gravitational wave signals from coalescing binary black holes: Fast likelihood calculations and sensitivity of the method. Physical Review D, 2018, 97, .	1.6	40
189	Black hole spectroscopy: Systematic errors and ringdown energy estimates. Physical Review D, 2018, 97, .	1.6	72
190	Thermodynamics of black holes in Rastall gravity. International Journal of Modern Physics D, 2018, 27, 1850069.	0.9	52
191	Can black hole superradiance be induced by galactic plasmas?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 780, 169-173.	1.5	32
192	P ython O pen source W aveform E xtracto R (POWER): an open source, Python package to monitor and post-process numerical relativity simulations. Classical and Quantum Gravity, 2018, 35, 027002.	1.5	8
193	The gravitational wave stress–energy (pseudo)-tensor in modified gravity. Classical and Quantum Gravity, 2018, 35, 055011.	1.5	14
194	Effect of elevated substrate temperature deposition on the mechanical losses in tantala thin film coatings. Classical and Quantum Gravity, 2018, 35, 075001.	1.5	26
195	Disks around merging binary black holes: From GW150914 to supermassive black holes. Physical Review D, 2018, 97, .	1.6	29
196	Probing Planckian Corrections at the Horizon Scale with LISA Binaries. Physical Review Letters, 2018, 120, 081101.	2.9	95
197	Wandering off the centre: a characterization of the random motion of intermediate-mass black holes in star clusters. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1574-1586.	1.6	12
198	Accreting Black Hole Binaries in Globular Clusters. Astrophysical Journal, 2018, 852, 29.	1.6	50
199	Black hole perturbations in vector-tensor theories: the odd-mode analysis. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 048-048.	1.9	23
200	Primordial black hole dark matter from single field inflation. Physical Review D, 2018, 97, .	1.6	209

		CITATION R	EPORT	
#	Article		IF	CITATIONS
201	How well can ultracompact bodies imitate black hole ringdowns?. Physical Review D, 20	18, 97, .	1.6	21
202	High-energy gravitational scattering and the general relativistic two-body problem. Phys 2018, 97, .	cal Review D,	1.6	198
203	Deep neural networks to enable real-time multimessenger astrophysics. Physical Review	D, 2018, 97, .	1.6	166
204	How Black Holes Shape Globular Clusters: Modeling NGC 3201. Astrophysical Journal Le L15.	tters, 2018, 855,	3.0	60
205	Primordial black holes as dark matter: constraints from compact ultra-faint dwarfs. Mon of the Royal Astronomical Society, 2018, 476, 2-11.	thly Notices	1.6	18
206	GW170817: Implications for the Stochastic Gravitational-Wave Background from Comp Coalescences. Physical Review Letters, 2018, 120, 091101.	act Binary	2.9	166
207	Back reaction of the gravitational radiation on the metric of spacetime. International Jou Modern Physics D, 2018, 27, 1850071.	rnal of	0.9	0
208	Accuracy of Estimating Highly Eccentric Binary Black Hole Parameters with Gravitational Detections. Astrophysical Journal, 2018, 855, 34.	-wave	1.6	46
209	Gravitational wave detection using laser interferometry beyond the standard quantum li Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2 20170289.		1.6	7
210	Constraining the range of Yukawa gravity interaction from S2 star orbits III: improvemer expectations for graviton mass bounds. Journal of Cosmology and Astroparticle Physics, 050-050.	t 2018, 2018,	1.9	37
211	First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing Black Binaries. Physical Review Letters, 2018, 120, 161102.	≀-Hole	2.9	161
212	Exotic energy injection with <tt>ExoCLASS</tt> : application to the Higgs portal model a evaporating black holes. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 0	nd 18-018.	1.9	59
213	Gravitational entropy and the cosmological no-hair conjecture. Physical Review D, 2018,	97, .	1.6	11
214	Implications from GW170817 and I-Love-Q relations for relativistic hybrid stars. Physical 2018, 97, .	Review D,	1.6	192
215	Gravitational waves in Einstein- $\tilde{A}^{}_{1}$ ther and generalized TeVeS theory after GW170817. F 2018, 97, .	Physical Review D,	1.6	71
216	Scalar Hairy Black Holes in Four Dimensions are Unstable. Physical Review Letters, 2018	120, 171101.	2.9	35
217	Lensing convergence in galaxy clustering in $\hat{\flat}CDM$ and beyond. Journal of Cosmology ar Physics, 2018, 2018, 033-033.	d Astroparticle	1.9	21
218	Gravitational-wave astronomy: delivering on the promises. Philosophical Transactions Se Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170279.	ries A,	1.6	13

#	Article	IF	CITATIONS
219	Bondi mass with a cosmological constant. Physical Review D, 2018, 97, .	1.6	11
220	Optimal Search for an Astrophysical Gravitational-Wave Background. Physical Review X, 2018, 8, .	2.8	65
221	Topology of black hole binary–single interactions. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1548-1560.	1.6	32
222	Effective image differencing with convolutional neural networks for real-time transient hunting. Monthly Notices of the Royal Astronomical Society, 2018, 476, 5365-5376. Multipole analysis in the radiation field for linearized <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math 	1.6	29
223	display="inline"> <mml:mrow><mml:mi>f</mml:mi><mml:mo stretchy="false">(<mml:mi>R</mml:mi><mml:mo) (stre<="" 0="" 10="" 50="" 572="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>tchy="fals</td><td>e"³)</td></mml:mo)></mml:mo </mml:mrow>	tchy="fals	e" ³)
224	Physical Review D, 2018, 97 Quasi-monolithic mirror suspensions in ground-based gravitational-wave detectors: an overview and look to the future. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170281.	1.6	4
225	Development of mirror coatings for gravitational-wave detectors. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170282.	1.6	19
226	The promises of gravitational-wave astronomy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20180105.	1.6	1
227	Single progenitor model for GW150914 and GW170104. Physical Review D, 2018, 97, .	1.6	24
228	Gravitational quasinormal modes of static Einstein-Gauss-Bonnet anti-de Sitter black holes. Chinese Physics C, 2018, 42, 045101.	1.5	3
229	Observational signature of high spin at the Event Horizon Telescope. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3829-3853.	1.6	59
230	Binary black hole mergers within the LIGO horizon: statistical properties and prospects for detecting electromagnetic counterparts. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4228-4240.	1.6	18
231	Extreme gravity tests with gravitational waves from compact binary coalescences: (I) inspiral–merger. General Relativity and Gravitation, 2018, 50, 1.	0.7	187
232	The maximal-density mass function for primordial black hole dark matter. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 007-007.	1.9	22
233	Hangup effect in unequal mass binary black hole mergers and further studies of their gravitational radiation and remnant properties. Physical Review D, 2018, 97, .	1.6	35
234	Prospects for Detecting Gravitational Waves at 5ÂHz with Ground-Based Detectors. Physical Review Letters, 2018, 120, 141102.	2.9	47
235	Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy. Physical Review Letters, 2018, 120, 141103.	2.9	140
236	Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai–Lidov Effect. Astrophysical Journal, 2018, 856, 140.	1.6	210

#	Article	IF	CITATIONS
237	Measuring the Binary Black Hole Mass Spectrum with an Astrophysically Motivated Parameterization. Astrophysical Journal, 2018, 856, 173.	1.6	154
238	Binary neutron star merger rate via the luminosity function of short gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4275-4284.	1.6	18
239	Primordial black holes from polynomial potentials in single field inflation. Physical Review D, 2018, 97,	1.6	99
240	Solving the relativistic inverse stellar problem through gravitational waves observation of binary neutron stars. Physical Review D, 2018, 97, .	1.6	16
241	Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Physical Review Letters, 2018, 120, 151101.	2.9	225
242	Relativistic stars in vector-tensor theories. Physical Review D, 2018, 97, .	1.6	23
243	On the progenitors of Type la supernovae. Physics Reports, 2018, 736, 1-23.	10.3	144
244	The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars. Astrophysical Journal, Supplement Series, 2018, 235, 37.	3.0	448
245	Gravitational Waves from Accreting Neutron Stars Undergoing Common-envelope Inspiral. Astrophysical Journal, 2018, 857, 38.	1.6	11
246	Gravitational lensing of gravitational waves: a statistical perspective. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2220-2229.	1.6	108
247	Atomic Interferometric Gravitational-Wave Space Observatory (AIGSO). Communications in Theoretical Physics, 2018, 69, 37.	1.1	24
248	General theories of linear gravitational perturbations to a Schwarzschild black hole. Physical Review D, 2018, 97, .	1.6	47
249	Fate of global symmetries in the Universe: QCD axion, quintessential axion and trans-Planckian inflaton decay constant. International Journal of Modern Physics A, 2018, 33, 1830002.	0.5	10
250	Planckian charged black holes in ultraviolet self-complete quantum gravity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 778, 88-93.	1.5	14
251	Do photons travel faster than gravitons?. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 035-035.	1.9	0
252	Connecting traces of galaxy evolution: the missing core mass–morphological fine structure relation. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L94-L100.	1.2	5
253	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	1.5	18
254	GW170817 falsifies dark matter emulators. Physical Review D, 2018, 97, .	1.6	120

#	Article	IF	CITATIONS
255	Nonpolynomial Lagrangian approach to regular black holes. International Journal of Modern Physics D, 2018, 27, 1830002.	0.9	16
256	Short gamma-ray bursts and gravitational-wave observations from eccentric compact binaries. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1331-1339.	1.6	10
257	Double-black-hole solutions of the Einstein-Maxwell-dilaton theory in five dimensions. Physical Review D, 2018, 97, .	1.6	2
258	The Impact of Nuclear Reaction Rate Uncertainties on the Evolution of Core-collapse Supernova Progenitors. Astrophysical Journal, Supplement Series, 2018, 234, 19.	3.0	38
259	Schumann resonance transients and the search for gravitational waves. Modern Physics Letters A, 2018, 33, 1850023.	0.5	5
260	Electromagnetic Chirps from Neutron Star–Black Hole Mergers. Astrophysical Journal, 2018, 853, 123.	1.6	21
261	Dissipative Evolution of Unequal-mass Binary–single Interactions and Its Relevance to Gravitational-wave Detections. Astrophysical Journal, 2018, 853, 140.	1.6	46
262	Detecting Lorentz Violations with Gravitational Waves From Black Hole Binaries. Physical Review Letters, 2018, 120, .	2.9	19
263	On the motion of hairy black holes in Einstein-Maxwell-dilaton theories. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 026-026.	1.9	37
264	Neutrino transport in black hole-neutron star binaries: Neutrino emission and dynamical mass ejection. Physical Review D, 2018, 97, .	1.6	57
265	Scalar scattering from charged black holes on the brane. Classical and Quantum Gravity, 2018, 35, 065007.	1.5	2
266	Relationship between Bondi–Sachs quantities and source of gravitational radiation in asymptotically de Sitter spacetime. International Journal of Modern Physics D, 2018, 27, 1850046.	0.9	7
267	On the Interpretation of the Fermi-GBM Transient Observed in Coincidence with LIGO Gravitational-wave Event GW150914. Astrophysical Journal Letters, 2018, 853, L9.	3.0	30
268	Primordial black holes—perspectives in gravitational wave astronomy. Classical and Quantum Gravity, 2018, 35, 063001.	1.5	551
269	M/R estimates for two neutron stars in LMXBs with possible r-mode frequencies detected. Monthly Notices of the Royal Astronomical Society, 2018, 476, 354-358.	1.6	3
270	Gravitational wave as probe of superfluid dark matter. Physical Review D, 2018, 97, .	1.6	25
271	Quasinormal modes of scale dependent black holes in (<mml:math) 0="" 10="" 112="" 50="" etqq0="" overlock="" rgbt="" tc<br="" tf="" tj="">Einstein-power-Maxwell theory. Physical Review D, 2018, 97, .</mml:math)>	l (xmlns:m 1.6	ml="http://w 92
272	The black hole at the Galactic Center: Observations and models. International Journal of Modern Physics D, 2018, 27, 1841009.	0.9	25

#	Article	IF	CITATIONS
273	Localizing gravitational wave sources with single-baseline atom interferometers. Physical Review D, 2018, 97, .	1.6	24
274	Precise LIGO lensing rate predictions for binary black holes. Physical Review D, 2018, 97, .	1.6	92
275	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	2.9	68
276	Gravitational Waves: Physics at the Extreme. European Review, 2018, 26, 90-99.	0.4	1
277	What if LIGO's gravitational wave detections are strongly lensed by massive galaxy clusters?. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3823-3828.	1.6	71
278	Estimation of the gravitational wave polarizations from a nontemplate search. Physical Review D, 2018, 97, .	1.6	7
279	Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers. Physical Review D, 2018, 97, .	1.6	100
280	Hořava gravity after GW170817. Physical Review D, 2018, 97, .	1.6	84
281	Dark energy survivals in massive gravity after GW170817: SO(3) invariant. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 044-044.	1.9	19
282	The future of gravitational theories in the era of the gravitational wave astronomy. International Journal of Modern Physics D, 2018, 27, 1850060.	0.9	18
283	How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?. Astrophysical Journal Letters, 2018, 852, L3.	3.0	60
284	Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-13.	1.9	40
285	Quasinormal modes of modified gravity (MOG) black holes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 779, 492-497.	1.5	36
286	The Formation Rate of Short Gamma-Ray Bursts and Gravitational Waves. Astrophysical Journal, 2018, 852, 1.	1.6	37
287	Could GRB170817A be really correlated to an NS–NS merging?. International Journal of Modern Physics D, 2018, 27, 1841001.	0.9	2
288	I-Love-Q relations for neutron stars in dynamical Chern Simons gravity. Classical and Quantum Gravity, 2018, 35, 025009.	1.5	21
289	One parameter binary black hole inverse problem using a sparse training set. International Journal of Modern Physics D, 2018, 27, 1850043.	0.9	2
290	Searching for the full symphony of black hole binary mergers. Physical Review D, 2018, 97, .	1.6	46

#	Article	IF	CITATIONS
291	Distinguishing short duration noise transients in LIGO data to improve the PyCBC search for gravitational waves from high mass binary black hole mergers. Classical and Quantum Gravity, 2018, 35, 035016.	1.5	62
292	Massive gravity and the suppression of anisotropies and gravitational waves in a matter-dominated contracting universe. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 011-011.	1.9	12
293	Sensitivity of gravitational wave searches to the full signal of intermediate-mass black hole binaries during the first observing run of Advanced LIGO. Physical Review D, 2018, 97, .	1.6	29
294	Extracting the orbital axis from gravitational waves of precessing binary systems. Physical Review D, 2018, 97, .	1.6	0
295	Primordial black hole evolution in two-fluid cosmology. Monthly Notices of the Royal Astronomical Society, 2018, 473, 5385-5392.	1.6	6
296	Semiclassical approach to atomic decoherence by gravitational waves. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 025005.	0.6	1
297	An excess of massive stars in the local 30 Doradus starburst. Science, 2018, 359, 69-71.	6.0	164
298	Characterizing transient noise in the LIGO detectors. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170286.	1.6	49
299	Properties of Kilonovae from Dynamical and Post-merger Ejecta of Neutron Star Mergers. Astrophysical Journal, 2018, 852, 109.	1.6	105
300	Inverse Compton Scattered Merger-nova: Late X-Ray Counterpart of Gravitational-wave Signals from NS–NS/BH Mergers. Astrophysical Journal Letters, 2018, 853, L6.	3.0	0
301	Evolution of the Black Hole Mass Function in Star Clusters from Multiple Mergers. Astrophysical Journal Letters, 2018, 858, L8.	3.0	14
302	Three waves for quantum gravity. European Physical Journal C, 2018, 78, 1.	1.4	16
303	Gravitational waves in theories with a non-minimal curvature-matter coupling. European Physical Journal C, 2018, 78, 1.	1.4	53
304	Strong first order EWPT & strong gravitational waves in Z3-symmetric singlet scalar extension. Journal of High Energy Physics, 2018, 2018, 1.	1.6	47
305	Axial quasinormal modes of static neutron stars in the nonminimal derivative coupling sector of Horndeski gravity: Spectrum and universal relations for realistic equations of state. Physical Review D, 2018, 97, .	1.6	22
306	Constraining Alternative Theories of Gravity Using Pulsar Timing Arrays. Physical Review Letters, 2018, 120, 181101.	2.9	30
307	Detectability of thermal neutrinos from binary neutron-star mergers and implications for neutrino physics. Physical Review D, 2018, 97, .	1.6	28
308	Probing near-horizon fluctuations with black hole binary mergers. Journal of High Energy Physics, 2018, 2018, 1.	1.6	5

#	Article	IF	CITATIONS
309	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
310	Primordial black holes survive SN lensing constraints. Physics of the Dark Universe, 2018, 20, 95-100.	1.8	49
311	An Empirical Study of Contamination in Deep, Rapid, and Wide-field Optical Follow-up of Gravitational Wave Events. Astrophysical Journal, 2018, 858, 18.	1.6	10
312	Gravitational wave searches with pulsar timing arrays: Cancellation of clock and ephemeris noises. Physical Review D, 2018, 97, .	1.6	3
313	Numerical relativity in spherical coordinates with the Einstein Toolkit. Physical Review D, 2018, 97, .	1.6	15
314	Innermost stable circular orbit of spinning particle in charged spinning black hole background. Physical Review D, 2018, 97, .	1.6	27
315	The 1.5 post-Newtonian radiative quadrupole moment in the context of a nonlocal field theory of gravity. Classical and Quantum Gravity, 2018, 35, 075008.	1.5	5
316	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>>ml:mi>SENR</mml:mi><mml:mo>/</mml:mo><mml:mi>NRPy</mml:mi><mml:r : Numerical relativity in singular curvilinear coordinate systems. Physical Review D, 2018, 97, .</mml:r </mml:math>	no ⊵. € <td>າl:ສຣ></td>	າ l:ສ ຣ>
317	Brane-world extra dimensions in light of GW170817. Physical Review D, 2018, 97, .	1.6	94
318	New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories. Physical Review Letters, 2018, 120, 131103.	2.9	373
319	Spontaneous Scalarization of Black Holes and Compact Stars from a Gauss-Bonnet Coupling. Physical Review Letters, 2018, 120, 131104.	2.9	391
320	Fundamentals of the orbit and response for TianQin. Classical and Quantum Gravity, 2018, 35, 095008.	1.5	76
321	Impact of infrasound atmospheric noise on gravity detectors used for astrophysical and geophysical applications. Physical Review D, 2018, 97, .	1.6	41
322	On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits. Astrophysical Journal, Supplement Series, 2018, 234, 41.	3.0	66
323	Supernova and Prompt Gravitational-wave Precursors to LIGO Gravitational-wave Sources and Short GRBs. Astrophysical Journal Letters, 2018, 855, L12.	3.0	8
324	Mass ejection in failed supernovae: variation with stellar progenitor. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2366-2383.	1.6	76
325	Gravitational-Wave Luminosity of Binary Neutron Stars Mergers. Physical Review Letters, 2018, 120, 111101.	2.9	76
326	Localization accuracy of compact binary coalescences detected by the third-generation gravitational-wave detectors and implication for cosmology. Physical Review D, 2018, 97, .	1.6	95

		CITATION REPORT	
#	Article	IF	CITATIONS
327	Black hole dynamics in Einstein-Maxwell-dilaton theory. Physical Review D, 2018, 97, .	1.6	59
328	Constraining the mass of dark photons and axion-like particles through black-hole superradiance. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 043-043.	1.9	156
329	Two families of astrophysical diverging lens models. Monthly Notices of the Royal Astronomical Society, 2018, 475, 867-878.	1.6	45
330	Constraints on Horndeski theory using the observations of Nordtvedt effect, Shapiro time delay a binary pulsars. European Physical Journal C, 2018, 78, 1.	nd 1.4	28
331	Shadows and strong gravitational lensing: a brief review. General Relativity and Gravitation, 2018, 1.	50, 0.7	317
332	Exploring short-GRB afterglow parameter space for observations in coincidence with gravitational waves. Monthly Notices of the Royal Astronomical Society, 2018, 474, 5340-5350.	1.6	9
333	Critical emission from a high-spin black hole. Physical Review D, 2018, 97, .	1.6	15
334	Confronting Models of Massive Star Evolution and Explosions with Remnant Mass Measurements Astrophysical Journal, 2018, 856, 35.	. 1.6	42
335	Targeted numerical simulations of binary black holes for GW170104. Physical Review D, 2018, 97	,. 1.6	23
336	The dawn of multi-messenger astronomy. Lettera Matematica, 2018, 6, 9-12.	0.1	0
337	Image-based deep learning for classification of noise transients in gravitational wave detectors. Classical and Quantum Gravity, 2018, 35, 095016.	1.5	63
338	Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation $\hat{a} \in \mathbb{C}$ II. Monthly Notices of the Royal Astronomical Society, 2018, 47 909-926.	73, 1.6	116
339	Formation of the First Star Clusters and Massive Star Binaries by Fragmentation of Filamentary Primordial Gas Clouds. Astrophysical Journal, 2018, 855, 17.	1.6	31
340	Gravitational Theories near the Galactic Center. Astrophysical Journal, 2018, 855, 70.	1.6	15
341	Neutron star mergers as a probe of modifications of general relativity with finite-range scalar forces. Physical Review D, 2018, 97, .	1.6	61
342	Reconstructing the calibrated strain signal in the Advanced LIGO detectors. Classical and Quantur Gravity, 2018, 35, 095015.	n 1.5	57
343	The recent development of interferometer prototype for Chinese gravitational wave detection pathfinder mission. Optics and Laser Technology, 2018, 105, 146-151.	2.2	29
344	Using Spin to Understand the Formation of LIGO and Virgo's Black Holes. Astrophysical Journ Letters, 2018, 854, L9.	al 3.0	108

#	ARTICLE	IF	CITATIONS
345	A drop in the pond: the effect of rapid mass-loss on the dynamics and interaction rate of collisionless particles. Monthly Notices of the Royal Astronomical Society, 2018, 473, 498-512.	1.6	4
346	Black hole shadow in an asymptotically flat, stationary, and axisymmetric spacetime: The Kerr-Newman and rotating regular black holes. Physical Review D, 2018, 97, .	1.6	125
347	Gravitational wave searches for aligned-spin binary neutron stars using nonspinning templates. Journal of the Korean Physical Society, 2018, 72, 1-5.	0.3	4
348	Numerically modeling Brownian thermal noise in amorphous and crystalline thin coatings. Classical and Quantum Gravity, 2018, 35, 025017.	1.5	5
349	Accretion-induced spin-wandering effects on the neutron star in Scorpius X-1: Implications for continuous gravitational wave searches. Physical Review D, 2018, 97, .	1.6	28
350	Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappings. Classical and Quantum Gravity, 2018, 35, 084002.	1.5	130
351	Rates of short-GRB afterglows in association with binary neutron star mergers. Monthly Notices of the Royal Astronomical Society, 2018, 475, 699-707.	1.6	10
352	Subaru Hyper Suprime-Cam Survey for an optical counterpart of GW170817. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	13
353	Unbound motion on a Schwarzschild background: Practical approaches to frequency domain computations. Physical Review D, 2018, 97, .	1.6	12
354	Decoherence of gravitational wave oscillations in bigravity. Physical Review D, 2018, 97, .	1.6	13
354 355	Decoherence of gravitational wave oscillations in bigravity. Physical Review D, 2018, 97, . Spin-multipole effects in binary black holes and the test-body limit. Physical Review D, 2018, 97, .	1.6 1.6	13 28
355	Spin-multipole effects in binary black holes and the test-body limit. Physical Review D, 2018, 97, . Einstein's quadrupole formula from the kinetic-conformal Hořava theory. International Journal of	1.6	28
355 356	 Spin-multipole effects in binary black holes and the test-body limit. Physical Review D, 2018, 97, . Einstein's quadrupole formula from the kinetic-conformal Hořava theory. International Journal of Modern Physics D, 2018, 27, 1750174. Bulk and shear mechanical loss of titania-doped tantala. Physics Letters, Section A: General, Atomic 	1.6 0.9	28 7
355 356 357	 Spin-multipole effects in binary black holes and the test-body limit. Physical Review D, 2018, 97, . Einstein's quadrupole formula from the kinetic-conformal Hořava theory. International Journal of Modern Physics D, 2018, 27, 1750174. Bulk and shear mechanical loss of titania-doped tantala. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2282-2288. 	1.6 0.9 0.9	28 7 10
355 356 357 358	 Spin-multipole effects in binary black holes and the test-body limit. Physical Review D, 2018, 97, . Einstein's quadrupole formula from the kinetic-conformal Hořava theory. International Journal of Modern Physics D, 2018, 27, 1750174. Bulk and shear mechanical loss of titania-doped tantala. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2282-2288. Black Hole Quasinormal Modes in the Era of LIGO. Brazilian Journal of Physics, 2018, 48, 102-109. Optical properties of amorphous SiO2-TiO2 multi-nanolayered coatings for 1064-nm mirror 	1.6 0.9 0.9 0.7	28 7 10 16
355 356 357 358 359	Spin-multipole effects in binary black holes and the test-body limit. Physical Review D, 2018, 97, . Einstein's quadrupole formula from the kinetic-conformal Ho™ava theory. International Journal of Modern Physics D, 2018, 27, 1750174. Bulk and shear mechanical loss of titania-doped tantala. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2282-2288. Black Hole Quasinormal Modes in the Era of LICO. Brazilian Journal of Physics, 2018, 48, 102-109. Optical properties of amorphous SiO2-TiO2 multi-nanolayered coatings for 1064-nm mirror technology. Optical Materials, 2018, 75, 94-101. Testing general relativity using gravitational wave signals from the inspiral, merger and ringdown of	1.6 0.9 0.9 0.7 1.7	28 7 10 16 28

#	Article	IF	CITATIONS
363	Post-Newtonian templates for binary black-hole inspirals: the effect of the horizon fluxes and the secular change in the black-hole masses and spins. Classical and Quantum Gravity, 2018, 35, 024001.	1.5	28
364	Counting black holes: The cosmic stellar remnant population and implications for LIGO. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1186-1194.	1.6	51
365	A Triple Origin for the Heavy and Low-spin Binary Black Holes Detected by LIGO/VIRGO. Astrophysical Journal, 2018, 863, 7.	1.6	89
366	Gravitational wave signature of a mini creation event (MCE). Classical and Quantum Gravity, 2018, 35, 135003.	1.5	0
367	The Impact of Vector Resonant Relaxation on the Evolution of Binaries near a Massive Black Hole: Implications for Gravitational-wave Sources. Astrophysical Journal, 2018, 865, 2.	1.6	95
368	Dark Matter as a Non-Relativistic Bose–Einstein Condensate with Massive Gravitons. Symmetry, 2018, 10, 520.	1.1	7
369	Development of a pulling machine to produce micron diameter fused silica fibres for use in prototype advanced gravitational wave detectors. Classical and Quantum Gravity, 2018, 35, 165004.	1.5	0
370	Inverse spectrum problem for quasi-stationary states. Journal of Physics Communications, 2018, 2, 025029.	0.5	8
371	Techniques for gravitational-wave detection of compact binary coalescence. , 2018, , .		0
372	Oscillation modes of hybrid stars within the relativistic Cowling approximation. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 031-031.	1.9	35
373	Fab Four effective field theory treatment. European Physical Journal C, 2018, 78, 1.	1.4	9
374	Greybody factors and quasinormal modes for a nonminimally coupled scalar field in a cloud of strings in (2 + 1)-dimensional background. European Physical Journal C, 2018, 78, 1.	1.4	31
375	Primordial black hole abundance from random Gaussian curvature perturbations and a local density threshold. Progress of Theoretical and Experimental Physics, 2018, 2018, .	1.8	100
376	Bound Outflows, Unbound Ejecta, and the Shaping of Bipolar Remnants during Stellar Coalescence. Astrophysical Journal, 2018, 868, 136.	1.6	63
377	Predicting Stellar-mass Black Hole Populations in Globular Clusters. Astrophysical Journal, 2018, 864, 13.	1.6	36
378	Mapping incoherent gravitational wave backgrounds. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4650-4661.	1.6	33
379	Regression of non-linear coupling of noise in LIGO detectors. Classical and Quantum Gravity, 2018, 35, 055008.	1.5	3
380	Improving performance of SEOBNRv3 by â^1⁄4300×. Classical and Quantum Gravity, 2018, 35, 155003.	1.5	10

#	Article	IF	CITATIONS
381	CMB spectral distortions from black holes formed by vacuum bubbles. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 059-059.	1.9	21
382	The possibility of phased network developing for gravitational waves registration by the compact high sensitive system SQUID-magnetostrictor. Journal of Physics: Conference Series, 2018, 1051, 012016.	0.3	0
383	Implementing a semicoherent search for continuous gravitational waves using optimally constructed template banks. Physical Review D, 2018, 97, .	1.6	24
384	Constraining Black Hole Spins with Gravitational-wave Observations. Astrophysical Journal, 2018, 868, 140.	1.6	45
385	<tt>CoRe</tt> database of binary neutron star merger waveforms. Classical and Quantum Gravity, 2018, 35, 24LT01.	1.5	81
386	On the formation history of Galactic double neutron stars. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4009-4029.	1.6	189
387	Post-Newtonian dynamics in dense star clusters: Formation, masses, and merger rates of highly-eccentric black hole binaries. Physical Review D, 2018, 98, .	1.6	173
388	Characterization of low-significance gravitational-wave compact binary sources. Physical Review D, 2018, 98, .	1.6	10
390	Detecting Black Hole Binaries by Gaia. Astrophysical Journal, 2018, 861, 21.	1.6	47
391	Runaway Coalescence at the Onset of Common Envelope Episodes. Astrophysical Journal, 2018, 863, 5.	1.6	56
392	A Simultaneous Search for Prompt Radio Emission Associated with the Short GRB 170112A Using the All-sky Imaging Capability of the OVRO-LWA. Astrophysical Journal, 2018, 864, 22.	1.6	24
393	Black Hole Formation in Fallback Supernova and the Spins of LIGO Sources. Astrophysical Journal Letters, 2018, 862, L3.	3.0	38
394	Observational Implications of Lowering the LIGO-Virgo Alert Threshold. Astrophysical Journal Letters, 2018, 861, L24.	3.0	7
395	Constraints on alternative theories of gravity with observations of the Galactic Center. EPJ Web of Conferences, 2018, 191, 01010.	0.1	8
396	Characterization of binary black holes by heterogeneous gravitational-wave networks. Physical Review D, 2018, 98, .	1.6	16
397	Light-Like Shockwaves in Scalar-Tensor Theories. Universe, 2018, 4, 44.	0.9	2
398	Comparing the birth rate of stellar black holes in binary black hole mergers and long gamma-ray bursts. Astronomy and Astrophysics, 2018, 610, A58.	2.1	1
399	Estimation of the sensitive volume for gravitational-wave source populations using weighted Monte Carlo integration. Classical and Quantum Gravity, 2018, 35, 145009.	1.5	51

#	Article	IF	CITATIONS
400	Parameter estimation and model selection of gravitational wave signals contaminated by transient detector noise glitches. Classical and Quantum Gravity, 2018, 35, 155017.	1.5	32
401	The spin of the second-born black hole in coalescing binary black holes. Astronomy and Astrophysics, 2018, 616, A28.	2.1	145
402	Particle swarm optimization based search for gravitational waves from compact binary coalescences: Performance improvements. Physical Review D, 2018, 98, .	1.6	9
403	Testing general relativity with black hole-pulsar binaries. Physical Review D, 2018, 98, .	1.6	16
404	Solitons and black hole in shift symmetric scalar-tensor gravity with cosmological constant. Journal of High Energy Physics, 2018, 2018, 1.	1.6	7
405	Expected intermediate mass black holes in the Virgo cluster. II. Late-type galaxies. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	19
406	An Overview of Research into Low Internal Friction Optical Coatings by the Gravitational Wave Detection Community. Materials Research, 2018, 21, .	0.6	6
407	Inflationary gravitational waves from unified spinor fields. European Physical Journal Plus, 2018, 133, 1.	1.2	9
408	Gravitational Waves from Single Neutron Stars: An Advanced Detector Era Survey. Astrophysics and Space Science Library, 2018, , 673-736.	1.0	32
409	Testing the multipole structure of compact binaries using gravitational wave observations. Physical Review D, 2018, 98, .	1.6	33
410	Multiwindow Nonharmonic Analysis Method for Gravitational Waves. IEEE Access, 2018, 6, 48645-48655.	2.6	11
411	LIGO and Gravitational Waves II: Nobel Lecture, December 8, 2017. Annalen Der Physik, 2019, 531, 1800357.	0.9	4
412	Wolf–Rayet stars in the Small Magellanic Cloud as testbed for massive star evolution. Astronomy and Astrophysics, 2018, 611, A75.	2.1	30
413	Implications of a density dependent IMF for the statistics of progenitors of gravitational wave sources. Proceedings of the International Astronomical Union, 2018, 14, 464-467.	0.0	0
414	Non-parametric characterization of gravitational-wave polarizations. , 2018, , .		4
415	Strangeness in Neutron Star Cooling. , 2018, , .		0
416	Dynamical versus isolated formation channels of gravitational wave sources. Proceedings of the International Astronomical Union, 2018, 14, 397-416.	0.0	0
417	A MODEST review. Computational Astrophysics and Cosmology, 2018, 5, .	22.7	6

ARTICLE IF CITATIONS # A new hybrid technique for modeling dense star clusters. Computational Astrophysics and 22.7 12 418 Cosmology, 2018, 5, . On Conformally Coupled General Relativity. EPJ Web of Conferences, 2018, 191, 07001. 0.1 Implementing tidal and gravitational wave energy losses in few-body codes: A fast and easy drag force 420 1.6 20 model. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5436-5444. Embedding Black Holes and Other Inhomogeneities in the Universe in Various Theories of Gravity: A 421 0.9 Short Review. Universe, 2018, 4, 109. Black hole mergers from globular clusters observable by LISA II. Resolved eccentric sources and the gravitational wave background. Monthly Notices of the Royal Astronomical Society, 2018, 481, 422 1.6 62 4775-4785. Observational properties of massive black hole binary progenitors. Astronomy and Astrophysics, 2018, 2.1 609, A94. 424 Supergiants and their shells in young globular clusters. Astronomy and Astrophysics, 2018, 612, A55. 2.1 10 Low-mass X-ray binaries from black hole retaining globular clusters. Monthly Notices of the Royal 425 1.6 Astronomical Śociety, 2018, 477, 1853-<u>1879.</u> Stellar-mass black holes in young massive and open stellar clusters and their role in 426 gravitational-wave generation III: dissecting black hole dynamics. Monthly Notices of the Royal 1.6 40 Astronomical Society, 2018, 481, 5123-5145. Black hole demography at the dawn of gravitational-wave astronomy: state-of-the art and future perspectives. Journal of Physics: Conference Series, 2018, 957, 012001. Surprises from the spins: astrophysics and relativity with detections of spinning black-hole mergers. 428 3 0.3 Journal of Physics: Conference Series, 2018, 957, Ó12014. Listening for the Cosmic Hum of Black Holes. Physics Magazine, 2018, 11, . 0.1 ON SIGNAL ESTIMATION, DETECTION AND INTERFERENCE MITIGATION IN LIGO., 2018, , . 430 1 Modeling an experiment to measure the speed of gravity: optimization of the quadrupole mass. Journal of Physics: Conference Series, 2018, 1141, 012045. 0.3 Gravity, Lorentz violation, and effective field theory. Journal of Physics: Conference Series, 2018, 952, 432 2 0.3012004. High mass X-ray binaries as progenitors of gravitational wave sources. Proceedings of the International Astronomical Union, 2018, 14, 417-425. Phase-Continuous Frequency Line Track-Before-Detect of a Tone With Slow Frequency Variation. IEEE 434 3.26 Transactions on Signal Processing, 2018, 66, 6434-6442. Towards a Fourier domain waveform for non-spinning binaries with arbitrary eccentricity. Classical 1.5 and Quantum Gravity, 2018, 35, 235006.

#	Article	IF	CITATIONS
436	The formation of high-mass binary star systems. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2235-2242.	1.6	11
437	Gravitational waves and mass ejecta from binary neutron star mergers: Effect of large eccentricities. Physical Review D, 2018, 98, .	1.6	36
438	Tracking Black Hole Kicks from Gravitational-Wave Observations. Physical Review Letters, 2018, 121, 191102.	2.9	42
439	Anisotropies in the stochastic gravitational-wave background: Formalism and the cosmic string case. Physical Review D, 2018, 98, .	1.6	68
440	Modified gravity revealed along geodesic tracks. European Physical Journal C, 2018, 78, 916.	1.4	34
441	Identifying correlations between LIGO's astronomical range and auxiliary sensors using lasso regression. Classical and Quantum Gravity, 2018, 35, 225002.	1.5	16
442	Quantum noise cancellation in asymmetric speed metres with balanced homodyne readout. New Journal of Physics, 2018, 20, 103040.	1.2	5
443	Hairy binary black holes in Einstein-Maxwell-dilaton theory and their effective-one-body description. Physical Review D, 2018, 98, .	1.6	31
444	Kerr–(anti–)de Sitter black holes: Perturbations and quasinormal modes in the slow rotation limit. Physical Review D, 2018, 98, .	1.6	17
445	Thermodynamics and Cosmic Censorship Conjecture in Kerr–Newman–de Sitter Black Hole. Entropy, 2018, 20, 855.	1.1	17
446	Measuring stochastic gravitational-wave energy beyond general relativity. Physical Review D, 2018, 98,	1.6	22
447	Lorentz-violating scalar Hamiltonian and the equivalence principle in a static metric. Physical Review D, 2018, 98, .	1.6	6
448	Phase decomposition of the template metric for continuous gravitational-wave searches. Physical Review D, 2018, 98, .	1.6	3
449	Detecting lensing-induced diffraction in astrophysical gravitational waves. Physical Review D, 2018, 98, .	1.6	72
450	Quantum fluctuations of spacetime generate quantum entanglement between gravitationally polarizable subsystems. European Physical Journal C, 2018, 78, 1.	1.4	3
451	Chaotic shadow of a non-Kerr rotating compact object with quadrupole mass moment. Physical Review D, 2018, 98, .	1.6	48
452	Quasinormal modes of weakly charged Einstein-Maxwell-dilaton black holes. Physical Review D, 2018, 98, .	1.6	22
453	Fourier domain gravitational waveforms for precessing eccentric binaries. Physical Review D, 2018, 98,	1.6	39

#	Article	IF	CITATIONS
454	The Spectroscopic Hertzsprung–Russell Diagram of Hot Massive Stars in the Small Magellanic Cloud. Astrophysical Journal, 2018, 868, 57.	1.6	21
455	Distribution of primordial black holes and 21cm signature. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 041-041.	1.9	13
456	Axial quasinormal modes of neutron stars in R2 gravity. Physical Review D, 2018, 98, .	1.6	19
457	New observational constraints on <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>f</mml:mi><mml:mo stretchy="false">(<mml:mi>T</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mo </mml:math> gravity through gravitational-wave astronomy. Physical Review D, 2018, 98, .	1.6	61
458	Limit on graviton mass using stacked galaxy cluster catalogs from SPT-SZ, Planck-SZ and SDSS-redMaPPer. Annals of Physics, 2018, 399, 85-92.	1.0	14
459	Using final black hole spins and masses to infer the formation history of the observed population of gravitational wave sources. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	34
460	Can we detect quantum gravity with compact binary inspirals?. Physical Review D, 2018, 98, .	1.6	5
461	Comparison of binary black hole initial data sets. Physical Review D, 2018, 98, .	1.6	15
462	Empirical tests of the black hole no-hair conjecture using gravitational-wave observations. Physical Review D, 2018, 98, .	1.6	61
467	The Mathematical Foundations. , 2018, , 11-36.		0
468	The Gravitational Field Equations. , 2018, , 37-54.		0
469	The Solar System Tests and Astrophysical Applications. , 2018, , 55-100.		0
471	f(R) Gravity. , 2018, , 138-176.		0
474	Gravity Theories with Linear Curvature-Matter Coupling. , 2018, , 186-203.		0
475	f(R,Lm) Gravity. , 2018, , 204-218.		0
476	f(R, T) Gravity. , 2018, , 219-230.		0
477	Dark Matter as a Curvature-Matter Coupling Effect. , 2018, , 231-240.		0
478	Thermodynamical Interpretation of Curvature-Matter Coupling. , 2018, , 241-264.		0

#	Article	IF	CITATIONS
479	Quantum Cosmology of f(R, T) Gravity. , 2018, , 265-295.		0
480	Modified Gravity from Quantum Metric Fluctuations. , 2018, , 296-332.		0
484	The General Formalism. , 2018, , 342-358.		0
485	Cosmological Applications. , 2018, , 359-367.		0
486	Astrophysical Applications. , 2018, , 368-382.		0
487	Compact Stellar Objects. , 2018, , 383-409.		0
488	Hybrid Gravity Traversable Wormholes. , 2018, , 410-418.		0
492	Quantum effects in Galileon black holes. Classical and Quantum Gravity, 2018, 35, 235016.	1.5	4
493	Hidden-sector modifications to gravitational waves from binary inspirals. Classical and Quantum Gravity, 2018, 35, 235012.	1.5	26
494	Towards a framework for testing general relativity with extreme-mass-ratio-inspiral observations. Monthly Notices of the Royal Astronomical Society, 2018, 478, 28-40.	1.6	16
495	Gravitational waves and the polarizations in Hořava gravity after GW170817. Physical Review D, 2018, 98,	1.6	31
496	Axion star collisions with black holes and neutron stars in full 3D numerical relativity. Physical Review D, 2018, 98, .	1.6	38
497	Waveforms of compact binary inspiral gravitational radiation in screened modified gravity. Physical Review D, 2018, 98, .	1.6	35
498	Amorphous Silicon with Extremely Low Absorption: Beating Thermal Noise in Gravitational Astronomy. Physical Review Letters, 2018, 121, 191101.	2.9	40
499	Eccentric Black Hole Gravitational-wave Capture Sources in Galactic Nuclei: Distribution of Binary Parameters. Astrophysical Journal, 2018, 860, 5.	1.6	113
500	Monte Carlo Population Synthesis on Massive Star Binaries: Astrophysical Implications for Gravitational-wave Sources. Astrophysical Journal, 2018, 866, 151.	1.6	18
501	Dark R2 at low energy. International Journal of Modern Physics A, 2018, 33, 1845006.	0.5	2
502	Impact of inter-correlated initial binary parameters on double black hole and neutron star mergers. Astronomy and Astrophysics, 2018, 619, A77.	2.1	59

ARTICLE IF CITATIONS # On the Final Gravitational Wave Burst from Binary Black Holes Mergers. Astronomy Reports, 2018, 62, 503 0.2 0 940-952. The host galaxies of double compact objects merging in the local Universe. Monthly Notices of the 504 1.6 Royal Astronomical Society, 2018, 481, 5324-5330. Strength of hydroxide catalysis bonds between sapphire, silicon, and fused silica as a function of 505 1.6 13 time. Physical Review D, 2018, 98, . Forecasting Gammaâ€Ray Bursts Using Gravitational Waves. Annalen Der Physik, 2019, 531, 1800365. 506 0.9 Angular instability in high optical power suspended cavities. Review of Scientific Instruments, 2018, 89, 507 0.6 3 124503. The propagating speed of relic gravitational waves and their refractive index during inflation. European Physical Journal C, 2018, 78, 1. 508 1.4 Dark Energy in Light of Multi-Messenger Gravitational-Wave Astronomy. Frontiers in Astronomy and 509 1.1 146 Space Sciences, 2018, 5, . Nobel Lecture: LIGO and gravitational waves II. Reviews of Modern Physics, 2018, 90, . 16.4 Gravitational Wave (GW) Classification, Space GW Detection Sensitivities and AMIGO (Astrodynamical) Tj ETQq0 0,0,rgBT /Qverlock 10 511 Standard sirens and dark sector with Gaussian process. EPJ Web of Conferences, 2018, 168, 01008. 0.1 Angular momentum loss for a binary system in Einstein-Ćther theory. Physical Review D, 2018, 98, . 513 2 1.6 Primordial black holes and the string swampland. Physical Review D, 2018, 98, . 514 1.6 Quantum interactions between a laser interferometer and gravitational waves. Physical Review D, 515 1.6 7 2018, 98, . A Status Report on the Phenomenology of Black Holes in Loop Quantum Gravity: Evaporation, 34 Tunneling to White Holes, Dark Matter and Gravitational Waves. Universe, 2018, 4, 102. Merger of Multiple Accreting Black Holes Concordant with Gravitational-wave Events. Astrophysical 517 1.6 5 Journal, 2018, 856, 47. Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with 168 nonprecessing spins, tides, and self-spin effects. Physical Review D, 2018, 98, .

CITATION REPORT

519	Charged Gauss-Bonnet black holes with curvature induced scalarization in the extended scalar-tensor theories. Physical Review D, 2018, 98, .	1.6	86

Assessing the energetics of spinning binary black hole systems. Physical Review D, 2018, 98, .

520

#	Article	IF	CITATIONS
521	A full general relativistic neutrino radiation-hydrodynamics simulation of a collapsing very massive star and the formation of a black hole. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 477, L80-L84.	1.2	70
522	Black hole pulsar. Physical Review D, 2018, 98, .	1.6	36
523	Gravitational-wave Geodesy: A New Tool for Validating Detection of the Stochastic Gravitational-wave Background. Astrophysical Journal Letters, 2018, 869, L28.	3.0	8
524	Event Rates of Gravitational Waves from merging Intermediate mass Black Holes: based on a Runaway Path to a SMBH. EPJ Web of Conferences, 2018, 168, 05002.	0.1	0
525	Upper Limit of Radiation from Coalescence of Rotating Hayward Black Holes. EPJ Web of Conferences, 2018, 168, 09002.	0.1	1
526	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	2.9	77
527	Methods for the detection of gravitational waves from subsolar mass ultracompact binaries. Physical Review D, 2018, 98, .	1.6	26
528	Detecting stellar lensing of gravitational waves with ground-based observatories. Physical Review D, 2018, 98, .	1.6	56
529	Implications of Dedicated Seismometer Measurements on Newtonian-Noise Cancellation for Advanced LIGO. Physical Review Letters, 2018, 121, 221104.	2.9	35
530	Phenomenological aspects of black holes beyond general relativity. Physical Review D, 2018, 98, .	1.6	125
531	On the High-Energy Neutrino Emission from Active Galactic Nuclei. Universe, 2018, 4, 24.	0.9	3
532	Scalar-Tensor Black Holes Embedded in an Expanding Universe. Universe, 2018, 4, 26.	0.9	9
533	Precessing Black Hole Binaries and Their Gravitational Radiation. Universe, 2018, 4, 40.	0.9	0
534	Hidden Universality in the Merger Rate Distribution in the Primordial Black Hole Scenario. Astrophysical Journal, 2018, 854, 41.	1.6	61
535	Massive Gravitational Waves from Black Hole Inspirals in Quantum Gravity. EPJ Web of Conferences, 2018, 191, 07003.	0.1	0
536	Redshift Evolution of the Black Hole Merger Rate from Globular Clusters. Astrophysical Journal Letters, 2018, 866, L5.	3.0	96
537	Radio transients from newborn black holes. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2281-2290.	1.6	8
538	Discovering intermediate-mass black hole lenses through gravitational wave lensing. Physical Review D, 2018, 98, .	1.6	58

#	Article	IF	CITATIONS
539	GW×LSS: chasing the progenitors of merging binary black holes. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 039-039.	1.9	52
540	Black Holes and Neutron Stars in Nearby Galaxies: Insights from NuSTAR. Astrophysical Journal, 2018, 864, 150.	1.6	14
541	X-ray detectability of accreting isolated black holes in our Galaxy. Monthly Notices of the Royal Astronomical Society, 2018, 477, 791-801.	1.6	21
542	Gravitational waves from compact binaries in post-Newtonian accurate hyperbolic orbits. Physical Review D, 2018, 98, .	1.6	31
543	Gravitational plane waves in Einstein-aether theory. General Relativity and Gravitation, 2018, 50, 1.	0.7	6
544	Binary neutron star mergers and third generation detectors: Localization and early warning. Physical Review D, 2018, 97, .	1.6	62
545	Constraints on scalar–tensor theory of gravity by the recent observational results on gravitational waves. European Physical Journal C, 2018, 78, 1.	1.4	53
546	Observational tests of the black hole area increase law. Physical Review D, 2018, 97, .	1.6	42
547	Astrophysical gravitational waves in conformal gravity. Physical Review D, 2018, 98, .	1.6	14
548	Electromagnetic Emission from Supermassive Binary Black Holes Approaching Merger. Astrophysical Journal, 2018, 865, 140.	1.6	59
549	Accurate closed-form trajectories of light around a Kerr black hole using asymptotic approximants. Classical and Quantum Gravity, 2018, 35, 205009.	1.5	4
550	Driving unmodeled gravitational-wave transient searches using astrophysical information. Physical Review D, 2018, 98, .	1.6	4
551	A feasibility study on the photometric detection of quiescent black hole X-ray binaries. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4372-4380.	1.6	9
552	Very fast stochastic gravitational wave background map making using folded data. Physical Review D, 2018, 98, .	1.6	27
553	Formation of primordial black holes in an axionlike curvaton model. Physical Review D, 2018, 98, .	1.6	36
554	Limits on runaway growth of intermediate mass black holes from advanced LIGO. Physical Review D, 2018, 97, .	1.6	17
555	Dynamical formation of Proca stars and quasistationary solitonic objects. Physical Review D, 2018, 98,	1.6	43
556	\$\$f(R,T)=f(R)+lambda T\$\$ f (R , T) = f (R) + λ T gravity models as alternatives to cosmic acceleration. European Physical Journal C, 2018, 78, 1.	1.4	32

ARTICLE IF CITATIONS # Primordial black holes and second order gravitational waves from ultra-slow-roll inflation. Journal 557 1.9 113 of Cosmology and Astroparticle Physics, 2018, 2018, 007-007. Mass and spin of a Kerr black hole in modified gravity and a test of the Kerr black hole hypothesis. 1.6 Physical Review D, 2018, 97, . Long Journey toward the Detection of Gravitational Waves and New Era of Gravitational Wave 559 0.3 2 Astrophysics. Journal of the Korean Physical Society, 2018, 73, 684-700. Gravitational-wave astrophysics with effective-spin measurements: Asymmetries and selection biases. Physical Review D, 2018, 98, . Primordial black holes from inflaton fragmentation into oscillons. Physical Review D, 2018, 98, . 561 1.6 98 Total-variation methods for gravitational-wave denoising: Performance tests on Advanced LIGO data. 1.6 Physical Review D, 2018, 98, Primordial black hole dark matter and LIGO/Virgo merger rate from inflation with running spectral 563 indices: formation in the matter- and/or radiation-dominated universe. Classical and Quantum Gravity, 1.5 37 2018, 35, 235017. The cosmic merger rate of neutron stars and black holes. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4391-4398. 564 1.6 154 Gravitational self-force corrections to tidal invariants for particles on eccentric orbits in a 565 7 1.6 Schwarzschild spacetime. Physical Review D, 2018, 98, . Parametrized post-Einsteinian gravitational waveforms in various modified theories of gravity. 1.6 Physical Review D, 2018, 98, Supernova explosions of massive stars and cosmic rays. Advances in Space Research, 2018, 62, 2773-2816. 567 1.2 15 An Explosion is Triggered by the Late Collapse of the Compact Remnant from a Neutron Star Merger. 1.6 Astrophysical Journal, 2018, 864, 4. NGC 7793 P9: An Ultraluminous X-Ray Source Evolved from a Canonical Black Hole X-Ray Binary. 569 1.6 9 Astrophysical Journal, 2018, 864, 64. Effective field theory of black hole echoes. Journal of High Energy Physics, 2018, 2018, 1. 570 1.6 Primordial black hole production in inflationary models of supergravity with a single chiral 571 52 1.6 superfield. Physical Review D, 2018, 98, . All-sky radiometer for narrowband gravitational waves using folded data. Physical Review D, 2018, 98, Measuring eccentricity in binary black hole inspirals with gravitational waves. Physical Review D, 573 1.6 85 2018, 98, . Anomalies in Time Delays of Lensed Gravitational Waves and Dark Matter Substructures. Astrophysical 574 Journal, 2018, 867, 69.

#	Article	IF	CITATIONS
575	Constraining black hole horizon effects by LIGO-Virgo detections of inspiralling binary black holes. Physical Review D, 2018, 98, .	1.6	2
576	Measurements of the Young's modulus of hydroxide catalysis bonds, and the effect on thermal noise in ground-based gravitational wave detectors. Physical Review D, 2018, 97, .	1.6	0
577	Primordial black holes and uncertainties in the choice of the window function. Physical Review D, 2018, 97, .	1.6	83
578	Minimal geometric deformation in a cloud of strings. European Physical Journal C, 2018, 78, 1.	1.4	107
579	Gravitational waves from dark boson star binary mergers. Classical and Quantum Gravity, 2018, 35, 234002.	1.5	46
580	Limits on primordial magnetic fields from direct detection experiments of gravitational wave background. Physical Review D, 2018, 98, .	1.6	13
581	Inferring black-hole orbital dynamics from numerical-relativity gravitational waveforms. Physical Review D, 2018, 98, .	1.6	3
582	Multiband gravitational-wave astronomy: Observing binary inspirals with a decihertz detector, B-DECIGO. Progress of Theoretical and Experimental Physics, 2018, 2018, .	1.8	104
583	Exploring Physics of Neutron Star Matter by Gravitational Waves. , 2018, , .		0
584	Exploring the distance-redshift relation with gravitational wave standard sirens and tomographic weak lensing. Physical Review D, 2018, 98, .	1.6	5
585	A two per cent Hubble constant measurement from standard sirens within five years. Nature, 2018, 562, 545-547.	13.7	282
586	Detection and characterization of spin-orbit resonances in the advanced gravitational wave detectors era. Physical Review D, 2018, 98, .	1.6	13
587	Cosmological impact of future constraints on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml: from gravitational-wave standard sirens. Physical Review D, 2018, 98, .</mml: </mml:mrow></mml:msub></mml:mrow></mml:math 	mn>0 <td>ml26n></td>	ml 26 n>
588	Enriching the symphony of gravitational waves from binary black holes by tuning higher harmonics. Physical Review D, 2018, 98, .	1.6	175
589	Special Finslerian generalization of the Reissner-Nordström spacetime. Physical Review D, 2018, 98, .	1.6	15
590	Black hole spin constraints on the mass spectrum and number of axionlike fields. Physical Review D, 2018, 98, .	1.6	66
591	Dynamical signatures of black holes in massive Chern-Simons gravity: Quasibound modes and time evolution. Physical Review D, 2018, 98, .	1.6	10
592	Black Hole Mergers from an Evolving Population of Globular Clusters. Physical Review Letters, 2018, 121, 161103.	2.9	141

#	Article	IF	CITATIONS
593	Black Hole Mergers From Globular Clusters Observable by LISA I: Eccentric Sources Originating From Relativistic N-body Dynamics. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5445-5450.	1.6	130
594	Quasi-secular evolution of mildly hierarchical triple systems: analytics and applications for GW sources and hot Jupiters. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4907-4923.	1.6	66
595	Mining gravitational-wave catalogs to understand binary stellar evolution: A new hierarchical Bayesian framework. Physical Review D, 2018, 98, .	1.6	64
596	Spin orientations of merging black holes formed from the evolution of stellar binaries. Physical Review D, 2018, 98, .	1.6	149
597	On the merger rate of primordial black holes: effects of nearest neighbours distribution and clustering. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 043-043.	1.9	77
598	Black-hole spectroscopy by making full use of gravitational-wave modeling. Physical Review D, 2018, 98, .	1.6	85
599	Laser Power Stabilization beyond the Shot Noise Limit Using Squeezed Light. Physical Review Letters, 2018, 121, 173601.	2.9	25
600	An Analytical Portrait of Binary Mergers in Hierarchical Triple Systems. Astrophysical Journal, 2018, 864, 134.	1.6	66
601	Exclusion of standard â"i‰ gravitons by LIGO observation. Classical and Quantum Gravity, 2018, 35, 19LT02.	1.5	4
602	Exact ghost-free bigravitational waves. Physical Review D, 2018, 97, .	1.6	2
603	The signal of the gravitational wave background and the angular correlation of its energy density. Physical Review D, 2018, 97, .	1.6	41
604	Spontaneous Scalarization of Charged Black Holes. Physical Review Letters, 2018, 121, 101102.	2.9	213
605	Search for Electron Neutrinos from Gravitational Wave Events at the Baksan Underground Scintillation Telescope. JETP Letters, 2018, 107, 398-401.	0.4	2
606	Anisotropies in the astrophysical gravitational-wave background: Predictions for the detection of compact binaries by LIGO and Virgo. Physical Review D, 2018, 98, .	1.6	63
607	Curvature-matter coupling effects on axial gravitational waves. European Physical Journal C, 2018, 78, 1.	1.4	11
608	Center-of-mass angular momentum and memory effect in asymptotically flat spacetimes. Physical Review D, 2018, 98, .	1.6	45
611	Extraction of black hole coalescence waveforms from noisy data. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 784, 312-323.	1.5	12
612	Post-Newtonian approximation of gravitational waves from the inspiral phase. Journal of Physics: Conference Series, 2018, 1030, 012005.	0.3	5

		CHATION RE	FORT	
# 613	ARTICLE Orbital dynamics of a two-body system in the context of a nonlocally mixed IR–UV field theory of gravity. International Journal of Modern Physics D, 2018, 27, 1850117.		IF 0.9	Citations
614	The Polarizations of Gravitational Waves. Universe, 2018, 4, 85.		0.9	37
615	Electromagnetic response of gravitational waves passing through an alternating magnetic field: A scheme to probe high-frequency gravitational waves. Physical Review D, 2018, 98, .		1.6	6
618	The Einstein Equivalence Principle. , 0, , 11-60.			0
619	Gravitation as a Geometric Phenomenon. , 0, , 61-77.			0
620	The Parametrized Post-Newtonian Formalism. , 0, , 78-104.			0
621	Metric Theories of Gravity and Their Post-Newtonian Limits. , 0, , 105-128.			0
622	Equations of Motion in the PPN Formalism. , 0, , 129-155.			0
623	The Classical Tests. , 0, , 156-169.			0
624	Tests of the Strong Equivalence Principle. , 0, , 170-191.			0
625	Other Tests of Post-Newtonian Gravity. , 0, , 192-205.			0
626	Structure and Motion of Compact Objects. , 0, , 206-231.			0
627	Gravitational Radiation. , 0, , 232-271.			0
628	Strong-Field and Dynamical Tests of Relativistic Gravity. , 0, , 272-307.			0
630	Prospects of Constraining the Nuclear Equation of State with Gravitational-Wave Signals in the Advanced Detector Era and Beyond. , 2018, , .			0
631	The X-Ray Luminosity Function of Ultraluminous X-Ray Sources in Collisional Ring Galaxies. Astrophysical Journal, 2018, 863, 43.		1.6	15
632	Seven hints for primordial black hole dark matter. Physics of the Dark Universe, 2018, 22, 137-146.		1.8	131
633	Gravitational Waves in Einstein-Æther Theory and Generalized TeVeS Theory after GW170817. Uni 2018, 4, 84.	verse,	0.9	20

	Сітат	ion Report	
#	Article	IF	Citations
634	Merger Rate Distribution of Primordial Black Hole Binaries. Astrophysical Journal, 2018, 864, 61.	1.6	103
635	Testing the variation of the fine structure constant with strongly lensed gravitational waves. Chinese Physics C, 2018, 42, 095104.	1.5	2
636	Synergy between ground and space based gravitational wave detectors. Part II: Localisation. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 033-033.	1.9	15
637	Spin and center of mass comparison between the post-Newtonian approach and the asymptotic formulation. Physical Review D, 2018, 98, .	1.6	9
638	Cosmological constant constraints from observation-derived energy condition bounds and their application to bimetric massive gravity. European Physical Journal C, 2018, 78, 1.	1.4	5
639	Equation of state of dense nuclear matter and neutron star structure from nuclear chiral interactions. Astronomy and Astrophysics, 2018, 609, A128.	2.1	69
640	Enhancing confidence in the detection of gravitational waves from compact binaries using signal coherence. Physical Review D, 2018, 98, .	1.6	19
641	Progenitors of gravitational wave mergers: binary evolution with the stellar grid-based code ComBinE. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1908-1949.	1.6	248
642	Binary black hole mergers from globular clusters: the impact of globular cluster properties. Monthly Notices of the Royal Astronomical Society, 2018, 480, 5645-5656.	1.6	58
643	Neutron star kicks – II. Revision and further testing of the conservation of momentum †kick' mod Monthly Notices of the Royal Astronomical Society, 2018, 480, 5657-5672.	del. 1.6	49
644	Shadows of exact binary black holes. Physical Review D, 2018, 98, .	1.6	31
645	Different Ways to Estimate Graviton Mass. International Journal of Modern Physics Conference Series, 2018, 47, 1860096.	0.7	9
646	Common envelope evolution of massive stars. Proceedings of the International Astronomical Union, 2018, 14, 449-454.	0.0	11
647	Multifractal signatures of gravitational waves detected by LIGO. Proceedings of the International Astronomical Union, 2018, 14, 468-473.	0.0	3
648	The masses of 18 pairs of double neutron stars and implications for their origin. Proceedings of the International Astronomical Union, 2018, 14, 474-477.	0.0	0
649	The black hole spin in coalescing binary black holes and high-mass X-ray binaries. Proceedings of the International Astronomical Union, 2018, 14, 426-432.	0.0	0
650	Gravitational wave sources from inspiralling globular clusters in the Galactic Centre and similar environments. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4423-4442.	1.6	84
651	Massive graviton geons. Physical Review D, 2018, 97, .	1.6	11

#	Article	IF	CITATIONS
652	Merging black hole binaries: the effects of progenitor's metallicity, mass-loss rate and Eddington factor. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2959-2974.	1.6	206
653	Host galaxy identification for binary black hole mergers with long baseline gravitational wave detectors. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4385-4395.	1.6	6
654	Host galaxy properties of mergers of stellar binary black holes and their implications for advanced LIGO gravitational wave sources. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4997-5007.	1.6	41
655	GW170817: a neutron star merger in a mass-transferring triple system. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 474, L12-L16.	1.2	8
656	Gravitational waves — A review on the theoretical foundations of gravitational radiation. International Journal of Modern Physics A, 2018, 33, 1830013.	0.5	5
657	Signatures of extra dimensions in gravitational waves from black hole quasinormal modes. Physical Review D, 2018, 97, .	1.6	39
658	Inspirals into a charged black hole. Physical Review D, 2018, 97, .	1.6	7
659	Energy emission from a high curvature region and its backreaction. Physical Review D, 2018, 97, .	1.6	3
660	Probing gravitational parity violation with gravitational waves from stellar-mass black hole binaries. Physical Review D, 2018, 97, .	1.6	33
661	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	2.9	85
662	Observation of Squeezed Light in the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mn>2</mml:mn><mml:mtext> </mml:mtext><mml:mtext> mathvariant="normal">m</mml:mtext></mml:mrow></mml:math> Region. Physical Review Letters, 2018, 120, 203603.	ntext> <m 2.9</m 	ml;mi>î¼29
663	Dilatonic imprints on exact gravitational wave signatures. Physical Review D, 2018, 97, .	1.6	6
664	New Class of Quasinormal Modes of Neutron Stars in Scalar-Tensor Gravity. Physical Review Letters, 2018, 120, 201104.	2.9	37
665	Gravitational self-force on generic bound geodesics in Kerr spacetime. Physical Review D, 2018, 97, .	1.6	71
666	Classification and unsupervised clustering of LIGO data with Deep Transfer Learning. Physical Review D, 2018, 97, .	1.6	100
667	Galerkin-collocation domain decomposition method for arbitrary binary black holes. Physical Review D, 2018, 97, .	1.6	6
668	Role of strangeness to the neutron star mass and cooling. EPJ Web of Conferences, 2018, 168, 04011.	0.1	0
669	Primordial gravitational waves, precisely: the role of thermodynamics in the Standard Model. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 035-035.	1.9	134

#	Article	IF	CITATIONS
670	Application of a zero-latency whitening filter to compact binary coalescence gravitational-wave searches. Physical Review D, 2018, 97, .	1.6	4
671	Eccentric black hole mergers forming in globular clusters. Physical Review D, 2018, 97, .	1.6	205
672	Seismic cross-coupling noise in torsion pendulums. Physical Review D, 2018, 97, .	1.6	12
673	Generalized framework for testing gravity with gravitational-wave propagation. I. Formulation. Physical Review D, 2018, 97, .	1.6	121
674	Generalized framework for testing gravity with gravitational-wave propagation. II. Constraints on Horndeski theory. Physical Review D, 2018, 97, .	1.6	113
675	Optimizing signal recycling for detecting a stochastic gravitational-wave background. Classical and Quantum Gravity, 2018, 35, 125002.	1.5	1
676	Horizon surface gravity in corotating black hole binaries. Classical and Quantum Gravity, 2018, 35, 144002.	1.5	13
677	RIO: a new computational framework for accurate initial data of binary black holes. General Relativity and Gravitation, 2018, 50, 1.	0.7	5
678	SOGRO (Superconducting Omni-directional Gravitational Radiation Observatory). EPJ Web of Conferences, 2018, 168, 01005.	0.1	2
679	Localization of binary neutron star mergers with second and third generation gravitational-wave detectors. Physical Review D, 2018, 97, .	1.6	31
680	Optimization of a composite quadrupole mass at high-speed rotation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	0.8	18
681	On choosing the start time of binary black hole ringdowns. Physical Review D, 2018, 97, .	1.6	58
682	Double neutron stars: merger rates revisited. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2937-2958.	1.6	152
683	Inflation from a nonlinear magnetic monopole field nonminimally coupled to curvature. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 003-003.	1.9	20
684	Gravitational Wave Polarizations in f (R) Gravity and Scalar-Tensor Theory. EPJ Web of Conferences, 2018, 168, 01003.	0.1	28
685	ATLAS: A High-cadence All-sky Survey System. Publications of the Astronomical Society of the Pacific, 2018, 130, 064505.	1.0	569
686	Spin-orbit precession along eccentric orbits: Improving the knowledge of self-force corrections and of their effective-one-body counterparts. Physical Review D, 2018, 97, .	1.6	19
687	Quasinormal modes of black holes in Horndeski gravity. Physical Review D, 2018, 97, .	1.6	65

#	Article	IF	CITATIONS
688	Can an off-axis gamma-ray burst jet in GW170817 explain all the electromagnetic counterparts?. Progress of Theoretical and Experimental Physics, 2018, 2018, .	1.8	61
689	Dark Matter under the Microscope: Constraining Compact Dark Matter with Caustic Crossing Events. Astrophysical Journal, 2018, 857, 25.	1.6	75
690	Gravitational wave energy emission and detection rates of Primordial Black Hole hyperbolic encounters. Physics of the Dark Universe, 2018, 21, 61-69.	1.8	35
691	Analysis of the Yukawa gravitational potential in f(R) gravity. I. Semiclassical periastron advance. Physical Review D, 2018, 97, .	1.6	44
692	Compact Object Mergers Driven by Gas Fallback. Physical Review Letters, 2018, 120, 261101.	2.9	22
693	Reducing the number of templates for aligned-spin compact binary coalescence gravitational wave searches using metric-agnostic template nudging. Physical Review D, 2018, 97, .	1.6	4
694	Can a pure vector gravitational wave mimic a pure tensor one?. Physical Review D, 2018, 97, .	1.6	4
695	Low significance of evidence for black hole echoes in gravitational wave data. Physical Review D, 2018, 97, .	1.6	97
696	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>f</mml:mi><mml:mo stretchy="false">(<mml:mi>R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mo </mml:math> gravity with torsion and the Immirzi field: Signature for gravitational wave detection. Physical	1.6	10
697	Review D, 2018, 97, . Testing pseudoâ€complex general relativity with gravitational waves. Astronomische Nachrichten, 2018, 339, 298-305.	0.6	8
698	Silicon-Based Optical Mirror Coatings for Ultrahigh Precision Metrology and Sensing. Physical Review Letters, 2018, 120, 263602.	2.9	47
699	Accuracy of inference on the physics of binary evolution from gravitational-wave observations. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4685-4695.	1.6	100
700	Measuring the Hubble constant: Gravitational wave observations meet galaxy clustering. Physical Review D, 2018, 98, .	1.6	42
701	Propagation of gravitational waves in strong magnetic fields. Physical Review D, 2018, 98, .	1.6	19
702	MOCCA-SURVEY Database. I. Eccentric Black Hole Mergers during Binary–Single Interactions in Globular Clusters. Astrophysical Journal, 2018, 855, 124.	1.6	89
703	Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations. Physical Review D, 2018, 97, .	1.6	295
704	Polarizations of gravitational waves in Horndeski theory. European Physical Journal C, 2018, 78, 1.	1.4	57
705	Astrometric effects of gravitational wave backgrounds with non-Einsteinian polarizations. Physical Review D, 2018, 97, .	1.6	21

#	Article	IF	CITATIONS
706	Solar system versus gravitational-wave bounds on the graviton mass. Classical and Quantum Gravity, 2018, 35, 17LT01.	1.5	38
707	Gravitational waves from first order electroweak phase transition in models with the U(1) X gauge symmetry. Journal of High Energy Physics, 2018, 2018, 1.	1.6	35
708	Gravitational waves from phase transition in split NMSSM. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 779, 191-194.	1.5	34
709	An analytic approach for the study of pulsar spindown. Classical and Quantum Gravity, 2018, 35, 145012.	1.5	1
710	Dynamics of compact binary systems in scalar-tensor theories: Equations of motion to the third post-Newtonian order. Physical Review D, 2018, 98, .	1.6	47
711	Electromagnetic quasinormal modes of the nearly-extremal higher-dimensional Schwarzschild–de Sitter black hole. Modern Physics Letters A, 2018, 33, 1850130.	0.5	11
712	Evolution of highly eccentric binary neutron stars including tidal effects. Physical Review D, 2018, 98,	1.6	35
713	Trumpet initial data for boosted black holes. Physical Review D, 2018, 98, .	1.6	3
714	Eccentric binary black hole inspiral-merger-ringdown gravitational waveform model from numerical relativity and post-Newtonian theory. Physical Review D, 2018, 98, .	1.6	81
715	A Simflowny-based finite-difference code for high-performance computing in numerical relativity. Classical and Quantum Gravity, 2018, 35, 185007.	1.5	26
716	Accelerated motion and the self-force in Schwarzschild spacetime. Classical and Quantum Gravity, 2018, 35, 194001.	1.5	13
717	Presupernova Evolution and Explosive Nucleosynthesis of Rotating Massive Stars in the Metallicity Range â°'3Ââ‰Â[Fe/H]Âa‰ÂO. Astrophysical Journal, Supplement Series, 2018, 237, 13.	3.0	344
718	Cosmological backgrounds of gravitational waves. Classical and Quantum Gravity, 2018, 35, 163001.	1.5	490
719	Sine-Gordon soliton as a model for Hawking radiation of moving black holes and quantum soliton evaporation. Journal of Physics Communications, 2018, 2, 055016.	0.5	9
720	Precessional dynamics of black hole triples: binary mergers with near-zero effective spin. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L58-L62.	1.2	61
721	Difficulties of quantitative tests of the Kerr-hypothesis with X-ray observations of mass accreting black holes. General Relativity and Gravitation, 2018, 50, 1.	0.7	31
722	Potential observations of false deviations from general relativity in gravitational wave signals from binary black holes. Physical Review D, 2018, 98, .	1.6	18
723	Merger estimates for rotating Kerr black holes in modified gravity. Physical Review D, 2018, 98, .	1.6	27

#	Article	IF	CITATIONS
724	Absorption of electromagnetic plane waves by rotating black holes. Physical Review D, 2018, 98, .	1.6	18
725	Searching for Near-Horizon Quantum Structures in the Binary Black-Hole Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 121, 051105.	2.9	17
726	The progenitors of compact-object binaries: impact of metallicity, common envelope and natal kicks. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2011-2030.	1.6	238
727	Rapid detection of gravitational waves from compact binary mergers with PyCBC Live. Physical Review D, 2018, 98, .	1.6	87
728	Effect of Stress and Temperature on the Optical Properties of Silicon Nitride Membranes at 1,550 nm. Frontiers in Materials, 2018, 5, .	1.2	14
729	Towards New Constraints in Extended Theories of Gravity: Cosmography and Gravitational-Wave Signals from Neutron Stars. Galaxies, 2018, 6, 28.	1.1	1
730	Optimizing searches for electromagnetic counterparts of gravitational wave triggers. Monthly Notices of the Royal Astronomical Society, 2018, 478, 692-702.	1.6	51
732	Neutron star bulk viscosity, â€~spin-flip' and GW emission of newly born magnetars. Monthly Notices of the Royal Astronomical Society, 2018, 480, 1353-1362.	1.6	36
733	The Growth of Stellar Mass Black Hole Binaries Trapped in the Accretion Disks of Active Galactic Nuclei. Astrophysical Journal Letters, 2018, 859, L25.	3.0	7
734	Conformally Coupled General Relativity. Universe, 2018, 4, 38.	0.9	5
735	Investigating the Poor Match among Different Precessing Gravitational Waveforms. Universe, 2018, 4, 56.	0.9	0
736	Overcoming the Standard Quantum Limit in Gravitational Wave Detectors Using Spin Systems with a Negative Effective Mass. Physical Review Letters, 2018, 121, 031101.	2.9	37
737	Modified gravitational-wave propagation and standard sirens. Physical Review D, 2018, 98, .	1.6	115
738	Analogue simulation of gravitational waves in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>3</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn> -dimensional Bose-Einstein condensate. Physical Review D, 2018, 98, .</mml:math 	1.6	12
739	Globular Clusters in a Cosmological N-body Simulation. Astrophysical Journal, 2018, 861, 69.	1.6	33
740	The effect of inhomogeneities on dark energy constraints. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 024-024.	1.9	11
741	Primordial black holes for the LIGO events in the axionlike curvaton model. Physical Review D, 2018, 97, .	1.6	84
742	Modular suspension system with low acoustic coupling to the suspended test mass in a prototype gravitational wave detector. Review of Scientific Instruments, 2018, 89, 074501.	0.6	4

#	Article	IF	CITATIONS
743	What is the final state of a black hole merger?. Modern Physics Letters A, 2018, 33, 1850124.	0.5	2
744	dart_board: Binary Population Synthesis with Markov Chain Monte Carlo. Astrophysical Journal, Supplement Series, 2018, 237, 1.	3.0	22
745	A Note on QR-Based Model Reduction: Algorithm, Software, and Gravitational Wave Applications. Computing in Science and Engineering, 2018, 20, 10-25.	1.2	7
746	Dirichlet Process Gaussian-mixture model: An application to localizing coalescing binary neutron stars with gravitational-wave observations. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	26
747	Exploring stellar evolution with gravitational-wave observations. Monthly Notices of the Royal Astronomical Society, 2018, 479, 121-129.	1.6	19
748	A morphology-independent data analysis method for detecting and characterizing gravitational wave echoes. Physical Review D, 2018, 98, .	1.6	43
749	Stability under scalar perturbations and quasinormal modes of 4D Einstein–Born–Infeld dilaton spacetime: exact spectrum. European Physical Journal C, 2018, 78, 1.	1.4	33
750	Quasinormal modes of the BTZ black hole under scalar perturbations with a non-minimal coupling: exact spectrum. General Relativity and Gravitation, 2018, 50, 1.	0.7	9
751	Testing the anisotropy of the universe using the simulated gravitational wave events from advanced LIGO and Virgo. European Physical Journal C, 2018, 78, 1.	1.4	10
752	Searching for high-frequency gravitational waves with a ground high alternating magnetic field. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	2.0	3
753	Dark matter influence on black objects thermodynamics. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 023-023.	1.9	2
754	Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 191102.	2.9	150
755	A new ultraluminous X-ray source in the galaxy NGC 5907. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 477, L90-L95.	1.2	20
756	Massive and supermassive black holes in the contemporary and early Universe and problems in cosmology and astrophysics. Physics-Uspekhi, 2018, 61, 115-132.	0.8	30
757	Null-stream analysis of Pulsar Timing Array data: localization of resolvable gravitational wave sources. Monthly Notices of the Royal Astronomical Society, 2018, 477, 5447-5459.	1.6	8
758	Kinematic Signatures of Reverberation Mapping of Close Binaries of Supermassive Black Holes in Active Galactic Nuclei. Astrophysical Journal, 2018, 862, 171.	1.6	23
759	Black Hole and Neutron Star Binary Mergers in Triple Systems: Merger Fraction and Spin–Orbit Misalignment. Astrophysical Journal, 2018, 863, 68.	1.6	107
760	Strategies for the follow-up of gravitational wave transients with the Cherenkov Telescope Array. Monthly Notices of the Royal Astronomical Society, 2018, 477, 639-647.	1.6	9

	Сіта	CITATION REPORT	
#	Article	IF	Citations
761	Stochastic gravitational-wave background from spin loss of black holes. Physical Review D, 2018, 98, .	1.6	14
762	Gravitational spin-orbit coupling in binary systems at the second post-Minkowskian approximation. Physical Review D, 2018, 98, .	1.6	54
763	Predicting the binary black hole population of the Milky Way with cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2704-2718.	1.6	64
764	Weighing the IMBH candidate CO-0.40-0.22* in the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4684-4692.	1.6	9
765	Search for GeV Gamma-Ray Counterparts of Gravitational Wave Events by CALET. Astrophysical Journal, 2018, 863, 160.	1.6	10
766	Merger rate of a subdominant population of primordial black holes. Physical Review D, 2018, 98, .	1.6	83
767	Detection of (2,2) quasinormal mode from a population of black holes with a constructive summation method. Physical Review D, 2018, 98, .	1.6	9
768	Cogenesis of LIGO primordial black holes and dark matter. Physical Review D, 2018, 98, .	1.6	15
769	Gravitational wave echoes through new windows. Physical Review D, 2018, 98, .	1.6	83
770	Moduli stars. Journal of High Energy Physics, 2018, 2018, 1.	1.6	25
771	Gravitational wave polarization from combined Earth-space detectors. Physical Review D, 2018, 98, .	1.6	6
772	An Alternative Channel for High-mass Binary Black Holes—Dark Matter Accretion onto Black Holes. Astrophysical Journal, 2018, 863, 17.	1.6	11
773	Gravitational waves from ultra-short period exoplanets. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L28-L32.	1.2	7
775	Bounds on graviton mass using weak lensing and SZ effect in galaxy clusters. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 781, 220-226.	1.5	13
776	Time-delay interferometry and clock-noise calibration. Physical Review D, 2018, 98, .	1.6	39
777	Measuring the properties of nearly extremal black holes with gravitational waves. Physical Review D, 2018, 98, .	1.6	16
778	Scalar and axial quasinormal modes of massive static phantom wormholes. Physical Review D, 2018, 98,	1.6	50
779	Does the Black Hole Merger Rate Evolve with Redshift?. Astrophysical Journal Letters, 2018, 863, L41.	3.0	157

#	Article	IF	CITATIONS
780	Stellar binary black holes in the LISA band: a new class of standard sirens. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3485-3492.	1.6	47
781	Explaining LIGO's observations via isolated binary evolution with natal kicks. Physical Review D, 2018, 97, .	1.6	65
782	Observing the contour profile of a Kerr–Sen black hole. Modern Physics Letters A, 2018, 33, 1850099.	0.5	12
783	The evolution of kicked stellar-mass black holes in star cluster environments. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3835-3846.	1.6	11
784	Gravitational waves from quasinormal modes of a class of Lorentzian wormholes. Physical Review D, 2018, 97, .	1.6	52
785	Gravitational Waves from Binary Mergers of Subsolar Mass Dark Black Holes. Physical Review Letters, 2018, 120, 241102.	2.9	57
786	Factorization and resummation: A new paradigm to improve gravitational wave amplitudes. II. The higher multipolar modes. Physical Review D, 2018, 97, .	1.6	28
787	Deflection of light by rotating regular black holes using the Gauss-Bonnet theorem. Physical Review D, 2018, 97, .	1.6	83
788	Phase Transition Effects on the Dynamical Stability of Hybrid Neutron Stars. Astrophysical Journal, 2018, 860, 12.	1.6	76
789	Looking at cosmic near-infrared background radiation anisotropies. Reviews of Modern Physics, 2018, 90, .	16.4	45
790	Black hole echology: The observer's manual. Physical Review D, 2018, 97, .	1.6	50
791	Gravitational waves from spinning binary black holes at the leading post-Newtonian orders at all orders in spin. Physical Review D, 2018, 97, .	1.6	15
792	Numerical relativity of compact binaries in the 21st century. Reports on Progress in Physics, 2019, 82, 016902.	8.1	56
793	Charged slowly rotating toroidal black holes in the (1 + 3)-dimensional Einstein-power-Maxwell theory. International Journal of Modern Physics D, 2019, 28, 1950016.	0.9	14
794	Selected spherical photon orbits around a deformed Kerr black hole. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	7
795	Decay orbital period of the binary system on gravitational waves' detection. Journal of Physics: Conference Series, 2019, 1171, 012009.	0.3	0
796	Are fast radio bursts the most likely electromagnetic counterpart of neutron star mergers resulting in prompt collapse?. Physical Review D, 2019, 100, .	1.6	11
797	Science with the TianQin observatory: Preliminary results on massive black hole binaries. Physical Review D, 2019, 100, .	1.6	64

		REPORT	
#	Article	IF	CITATIONS
798	Massive AdS supergravitons and holography. Journal of High Energy Physics, 2019, 2019, 1.	1.6	10
799	Fusing numerical relativity and deep learning to detect higher-order multipole waveforms from eccentric binary black hole mergers. Physical Review D, 2019, 100, .	1.6	25
800	Variational Discretizations of Gauge Field Theories Using Group-Equivariant Interpolation. Foundations of Computational Mathematics, 2019, 19, 965-989.	1,5	5
801	Looking for ancillary signals around GW150914. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 007-007.	1.9	1
802	Gravitational Waves and Extra Dimensions: A Short Review. Communications in Theoretical Physics, 2019, 71, 991.	1,1	24
803	Multi-detector null-stream-based \$chi^2\$ statistic for compact binary coalescence searches. Classical and Quantum Gravity, 2019, 36, 195012.	1.5	2
804	Cosmology and dark energy from joint gravitational wave-GRB observations. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 015-015.	1.9	72
805	Conservative dynamics of binary systems to fourth post-Newtonian order in the EFT approach. I. Regularized Lagrangian. Physical Review D, 2019, 100, .	1.6	64
806	Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects. Physical Review D, 2019, 100, .	1.6	136
807	Reconstructing phenomenological distributions of compact binaries via gravitational wave observations. Physical Review D, 2019, 100, .	1.6	107
808	Testing the multipole structure and conservative dynamics of compact binaries using gravitational wave observations: The spinning case. Physical Review D, 2019, 100, .	1.6	21
809	Gravitational-wave amplitudes for compact binaries in eccentric orbits at the third post-Newtonian order: Tail contributions and postadiabatic corrections. Physical Review D, 2019, 100, .	1.6	21
810	Black hole spin axis in numerical relativity. Physical Review D, 2019, 99, .	1.6	6
811	Random projections in gravitational wave searches of compact binaries. Physical Review D, 2019, 99, .	1.6	2
812	First search for a stochastic gravitational-wave background from ultralight bosons. Physical Review D, 2019, 99, .	1.6	56
813	Signals for Lorentz violation in gravitational waves. Physical Review D, 2019, 99, .	1.6	54
814	Constraining the parameters of GW150914 and GW170104 with numerical relativity surrogates. Physical Review D, 2019, 99, .	1.6	32
815	Comparison of various methods to extract ringdown frequency from gravitational wave data. Physical Review D, 2019, 99, .	1.6	32

#	Article	IF	CITATIONS
816	Search for electron neutrinos associated with gravitational-wave events at the Baksan Underground Scintillation Telescope. Journal of Physics: Conference Series, 2019, 1181, 012058.	0.3	0
817	Post-Newtonian dynamics in dense star clusters: Binary black holes in the LISA band. Physical Review D, 2019, 99, .	1.6	73
818	How post-Newtonian dynamics shape the distribution of stationary binary black hole LISA sources in nearby globular clusters. Physical Review D, 2019, 99, .	1.6	16
819	Preliminary study on parameter estimation accuracy of supermassive black hole binary inspirals for TianQin. Physical Review D, 2019, 99, .	1.6	46
820	Observational constraints in nonlocal gravity: the Deser-Woodard case. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 045-045.	1.9	20
821	Black Holes in General Relativity and Beyond. Proceedings (mdpi), 2019, 17, .	0.2	2
822	Observing the Dark Sector. Universe, 2019, 5, 137.	0.9	6
823	Black hole and neutron star mergers in galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2019, 488, 47-63.	1.6	130
824	Constraining the Inclinations of Binary Mergers from Gravitational-wave Observations. Astrophysical Journal, 2019, 877, 82.	1.6	42
825	CG X-1: An Eclipsing Wolf–Rayet ULX in the Circinus Galaxy. Astrophysical Journal, 2019, 877, 57.	1.6	23
826	Constraining Compact Object Formation with 2M0521. Astrophysical Journal Letters, 2019, 878, L4.	3.0	22
827	Rainbow scattering of gravitational plane waves by a compact body. Physical Review D, 2019, 100, .	1.6	9
828	Classifying the unknown: Discovering novel gravitational-wave detector glitches using similarity learning. Physical Review D, 2019, 99, .	1.6	29
829	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	1.6	60
830	Quasi-periodicity of Supermassive Binary Black Hole Accretion Approaching Merger. Astrophysical Journal, 2019, 879, 76.	1.6	37
831	Probing a regular non-minimal Einstein-Yang-Mills black hole with gravitational lensings. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 795, 475-481.	1.5	40
832	On-axis scattering of scalar fields by charged rotating black holes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 795, 496-501.	1.5	11
833	Gravitational waves in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>F</mml:mi><mml:mo stretchy="false">(<mml:mi>R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mo </mml:math> gravity: Scalar waves and the chameleon mechanism. Physical Review D. 2019. 99	1.6	34

#	Article	IF	CITATIONS
834	Radio emission from accreting isolated black holes in our galaxy. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2099-2107.	1.6	11
835	Dependence of the outer boundary condition on protoneutron star asteroseismology with gravitational-wave signatures. Physical Review D, 2019, 99, .	1.6	27
836	Quasinormal modes of regular black holes with non-linear electrodynamical sources. European Physical Journal Plus, 2019, 134, 1.	1.2	34
837	Multipole analysis for linearized \$\$f(R,{mathcal {C}})\$\$ gravity with irreducible Cartesian tensors. European Physical Journal C, 2019, 79, 1.	1.4	3
838	Modification of photon trapping orbits as a diagnostic of non-Kerr spacetimes. Physical Review D, 2019, 99, .	1.6	29
839	Gravitational self-force regularization in the Regge-Wheeler and easy gauges. Physical Review D, 2019, 99, .	1.6	10
840	Hair-dressing Horndeski: An approach for obtaining hairy solutions in cubic Horndeski gravity. Physical Review D, 2019, 99, .	1.6	9
841	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	2.9	370
842	Grids of stellar models with rotation. Astronomy and Astrophysics, 2019, 627, A24.	2.1	53
843	The astrophysics of nanohertz gravitational waves. Astronomy and Astrophysics Review, 2019, 27, 1.	9.1	166
844	Design and experimental demonstration of a laser modulation system for future gravitational-wave detectors. Classical and Quantum Gravity, 2019, 36, 205009.	1.5	4
845	Conformal gravity: light deflection revisited and the galactic rotation curve failure. Classical and Quantum Gravity, 2019, 36, 245014.	1.5	9
846	From primordial black holes abundance to primordial curvature power spectrum (and back). Journal of Cosmology and Astroparticle Physics, 2019, 2019, 031-031.	1.9	70
847	How an induced Kerr–Newman black hole releases gravitational waves without a mini black hole explosion. Journal of Physics: Conference Series, 2019, 1275, 012051.	0.3	2
848	Traversable Lorentzian wormholes in higher dimensional theories of gravity. Journal of Physics: Conference Series, 2019, 1330, 012001.	0.3	10
849	Early structure formation in primordial black hole cosmologies. Physical Review D, 2019, 100, .	1.6	85
850	Exciting black hole modes via misaligned coalescences. I. Inspiral, transition, and plunge trajectories using a generalized Ori-Thorne procedure. Physical Review D, 2019, 100, .	1.6	31
851	Constraining the Mass of the Graviton with the Planetary Ephemeris INPOP. Physical Review Letters, 2019, 123, 161103.	2.9	23

#	Article	IF	CITATIONS
852	A new possible accretion scenario for ultra-luminous X-ray sources. Monthly Notices of the Royal Astronomical Society, 2019, 489, 366-384.	1.6	7
853	Effects of the merger history on the merger rate density of primordial black hole binaries. European Physical Journal C, 2019, 79, 1.	1.4	40
854	Characteristic electromagnetic waves caused by tensorial and possible nontensorial thermal high-frequency gravitational waves from magnetars. Nuclear Physics B, 2019, 949, 114796.	0.9	0
855	Quasinormal Modes of Modified Gravity (MOG) Black Holes. Journal of Undergraduate Reports in Physics, 2019, 29, .	0.1	4
856	On the expected production of gravitational waves during preheating. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 012-012.	1.9	5
857	Revisiting constraints on asteroid-mass primordial black holes as dark matter candidates. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 031-031.	1.9	164
858	Enhanced cosmological perturbations and the merger rate of PBH binaries. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 043-043.	1.9	17
859	Gravitational waveforms and radiation powers of the triple system PSR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">J<mml:mn>0337</mml:mn><mml:mo>+</mml:mo><mml:mn>1715</mml:mn> in modified theories of gravity. Physical Review D. 2019. 100.</mml:mi </mml:mrow></mml:math 	1 i6 <td>row></td>	row>
860	Black Hole and Neutron Star Binary Mergers in Triple Systems. II. Merger Eccentricity and Spin–Orbit Misalignment. Astrophysical Journal, 2019, 881, 41.	1.6	46
861	Tidal Disruptions of Stars by Black Hole Remnants in Dense Star Clusters. Astrophysical Journal, 2019, 881, 75.	1.6	36
862	Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation. Astrophysical Journal, Supplement Series, 2019, 243, 10.	3.0	860
863	Viewing Angle Constraints on S190425z and S190426c and the Joint Gravitational-wave/Gamma-Ray Detection Fractions for Binary Neutron Star Mergers. Astrophysical Journal Letters, 2019, 881, L40.	3.0	15
864	Continuous gravitational wave from magnetized white dwarfs and neutron stars: possible missions for LISA, DECIGO, BBO, ET detectors. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2692-2705.	1.6	27
865	Matter effects and coherent effect of neutrinos produced from -ray bursts *. Chinese Physics C, 2019, 43, 105102.	1.5	0
866	On the Thermodynamic Origin of Gravitational Force by Applying Spacetime Entanglement Entropy and the Unruh Effect. Entropy, 2019, 21, 296.	1.1	0
867	Small-scale structure of primordial black hole dark matter and its implications for accretion. Physical Review D, 2019, 100, .	1.6	49
868	Stochastic gravitational wave background from accreting primordial black hole binaries during early inspiral stage. Physical Review D, 2019, 100, .	1.6	3
869	Constraints on the binary black hole nature of GW151226 and GW170608 from the measurement of spin-induced quadrupole moments. Physical Review D, 2019, 100, .	1.6	23

#	Article	IF	CITATIONS
870	Engineering first-order quantum phase transitions for weak signal detection. Journal of Applied Physics, 2019, 126, .	1.1	15
871	Analytic description of primordial black hole formation from scalar field fragmentation. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 077-077.	1.9	94
872	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	1.6	52
873	On combining information from multiple gravitational wave sources. Physical Review D, 2019, 99, .	1.6	25
874	Fundamental Physics Implications for Higher-Curvature Theories from Binary Black Hole Signals in the LIGO-Virgo Catalog GWTC-1. Physical Review Letters, 2019, 123, 191101.	2.9	101
875	New gravitational self-force analytical results for eccentric equatorial orbits around a Kerr black hole: Gyroscope precession. Physical Review D, 2019, 100, .	1.6	10
876	Determination of properties of protoneutron stars toward black hole formation via gravitational wave observations. Physical Review D, 2019, 100, .	1.6	22
877	Gravitational-wave amplitudes for compact binaries in eccentric orbits at the third post-Newtonian order: Memory contributions. Physical Review D, 2019, 100, .	1.6	19
878	Gravitational waves as a probe of the extra dimension. Physical Review D, 2019, 100, .	1.6	7
879	Constraints on higher curvature gravity from time delay between GW170817 and GRB 170817A. Physical Review D, 2019, 100, .	1.6	5
880	Testing gravity with gravitational waves from binary black hole mergers: Contributions from amplitude corrections. Physical Review D, 2019, 100, .	1.6	28
881	Continuous Gravitational Waves from Neutron Stars: Current Status and Prospects. Universe, 2019, 5, 217.	0.9	71
882	Primordial gravitational waves in nonstandard cosmologies. Physical Review D, 2019, 100, .	1.6	47
883	AGILE search for gamma-ray counterparts of gravitational wave events. Rendiconti Lincei, 2019, 30, 71-77.	1.0	9
884	Fermi-GBM Follow-up of LIGO-Virgo Binary Black Hole Mergers: Detection Prospects. Astrophysical Journal, 2019, 882, 53.	1.6	7
885	Statistical Study of Gamma-Ray Bursts with a Plateau Phase in the X-Ray Afterglow. Astrophysical Journal, Supplement Series, 2019, 245, 1.	3.0	50
886	Black holes: basic concepts and popular misconceptions. Physics Education, 2019, 54, 065015.	0.3	2
887	The host galaxies of double compact objects across cosmic time. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4622-4631.	1.6	25

#	Article	IF	CITATIONS
888	Light propagation in the field of the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>N</mml:mi></mml:math> -body system and its application in the TianQin mission. Physical Review D, 2019, 100, .	1.6	5
889	Hierarchical search strategy for the efficient detection of gravitational waves from nonprecessing coalescing compact binaries with aligned-spins. Physical Review D, 2019, 99, .	1.6	5
890	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	2.9	119
891	Characterization of numerical relativity waveforms of eccentric binary black hole mergers. Physical Review D, 2019, 100, .	1.6	17
892	Merging Rates of Compact Binaries in Galaxies: Perspectives for Gravitational Wave Detections. Astrophysical Journal, 2019, 881, 157.	1.6	41
893	A First Search for Prompt Radio Emission from a Gravitational-wave Event. Astrophysical Journal Letters, 2019, 877, L39.	3.0	22
894	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	3.0	566
895	Testing dispersion of gravitational waves from eccentric extreme-mass-ratio inspirals. International Journal of Modern Physics D, 2019, 28, 1950166.	0.9	3
896	Numerical black hole initial data and shadows in dynamical Chern–Simons gravity. Classical and Quantum Gravity, 2019, 36, 054001.	1.5	16
897	Scalar charges and scaling relations in massless scalar–tensor theories. Classical and Quantum Gravity, 2019, 36, 165003.	1.5	11
898	The SXS collaboration catalog of binary black hole simulations. Classical and Quantum Gravity, 2019, 36, 195006.	1.5	217
899	A 3PN Fourier domain waveform for non-spinning binaries with moderate eccentricity. Classical and Quantum Gravity, 2019, 36, 185003.	1.5	52
900	Follow-up procedure for gravitational wave searches from isolated neutron stars using the time-domain \$oldsymbol {mathcal{F}}\$ -statistic method. Classical and Quantum Gravity, 2019, 36, 225008.	1.5	5
901	Unraveling the origin of black holes from effective spin measurements with LIGO-Virgo. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 022-022.	1.9	51
902	Convolutional neural networks: A magic bullet for gravitational-wave detection?. Physical Review D, 2019, 100, .	1.6	79
903	Improved limits on a stochastic gravitational-wave background and its anisotropies from Advanced LIGO O1 and O2 runs. Physical Review D, 2019, 100, .	1.6	30
904	Reduced-order surrogate models for scalar-tensor gravity in the strong field regime and applications to binary pulsars and GW170817. Physical Review D, 2019, 100, .	1.6	22
905	Correlated magnetic noise from anisotropic lightning sources and the detection of stochastic gravitational waves. Physical Review D, 2019, 100, .	1.6	16

#	Article	IF	CITATIONS
906	Spectral Lines of Quantized, Spinning Black Holes and their Astrophysical Relevance. Physical Review Letters, 2019, 123, 171104.	2.9	16
907	Eikonal quasinormal modes of black holes beyond general relativity. Physical Review D, 2019, 100, .	1.6	39
908	The afterglow and kilonova of the short GRB 160821B. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	78
909	Science with the TianQin observatory: Preliminary results on testing the no-hair theorem with ringdown signals. Physical Review D, 2019, 100, .	1.6	51
910	Systematic calibration error requirements for gravitational-wave detectors via the Cramér–Rao bound. Classical and Quantum Gravity, 2019, 36, 205006.	1.5	6
911	Introduction to Black Holes. Journal of Physics: Conference Series, 2019, 1263, 012007.	0.3	2
912	Probing the black hole merger history in clusters using stellar tidal disruptions. Physical Review D, 2019, 100, .	1.6	18
913	Quantum coherence of relic gravitons and Hanbury Brown-Twiss interferometry. Physical Review D, 2019, 99, .	1.6	4
914	Blip glitches in Advanced LIGO data. Classical and Quantum Gravity, 2019, 36, 155010.	1.5	84
915	Strong equivalence principle and gravitational wave polarizations in Horndeski theory. European Physical Journal C, 2019, 79, 1.	1.4	6
916	Geometrization of gravito-electromagnetic interactions from boundary conditions in the variational principle. European Physical Journal C, 2019, 79, 1.	1.4	2
917	Gravitational waves in the presence of viscosity. International Journal of Modern Physics D, 2019, 28, 1950133.	0.9	12
918	Black holes: The next generation—repeated mergers in dense star clusters and their gravitational-wave properties. Physical Review D, 2019, 100, .	1.6	201
919	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	2.8	2,022
920	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	1.6	200
921	Applicability Study of the PRIMAD Model to LIGO Gravitational Wave Search Workflows. , 2019, , .		1
922	Repeated faint quasinormal bursts in extreme-mass-ratio inspiral waveforms: Evidence from frequency-domain scalar self-force calculations on generic Kerr orbits. Physical Review D, 2019, 100, .	1.6	19
923	Multi-messenger Astrophysics at Ultra-High Energy with the Pierre Auger Observatory. EPJ Web of Conferences, 2019, 210, 03002.	0.1	0

#	Article	IF	CITATIONS
924	Angular momentum transport in massive stars and natal neutron star rotation rates. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4338-4355.	1.6	25
925	Dynamical environments of relativistic binaries: The phenomenon of resonance shifting. Physical Review D, 2019, 100, .	1.6	0
926	Testing the No-Hair Theorem with GW150914. Physical Review Letters, 2019, 123, 111102.	2.9	220
927	Testing general relativity with the Doppler magnification effect. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3759-3771.	1.6	8
928	Effect of distant encounters on black hole binaries in globular clusters: Systematic increase of in-cluster mergers in the LISA band. Physical Review D, 2019, 100, .	1.6	19
929	Hierarchical Test of General Relativity with Gravitational Waves. Physical Review Letters, 2019, 123, 121101.	2.9	34
930	Gravitational lensing of gravitational waves: Rotation of polarization plane. Physical Review D, 2019, 100, .	1.6	21
931	On the application of T-norms to gravitational wave data fusion: A confirmatory study. International Journal of Approximate Reasoning, 2019, 113, 372-390.	1.9	0
932	No hair theorem for bound-state massless static scalar fields outside horizonless Neumann compact stars. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 796, 65-67.	1.5	4
933	Forming Pop III binaries in self-gravitating discs: how to keep the orbital angular momentum. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2658-2672.	1.6	25
934	Analytic computation of the secular effects of encounters on a binary: third-order perturbation, octupole, and post-Newtonian terms; steady-state distribution. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5192-5209.	1.6	15
935	Modeling the dynamics of black holes through balanced equations of motion in the null gauge. International Journal of Geometric Methods in Modern Physics, 2019, 16, 1950131.	0.8	1
936	Conformal cosmological black holes: Towards restoring determinism to Einstein theory. European Physical Journal Plus, 2019, 134, 1.	1.2	5
937	A dedicated methodology for irreversible compression of Gravitational Waves Sound with high quality reconstruction. Physica A: Statistical Mechanics and Its Applications, 2019, 535, 122206.	1.2	0
938	Searching for black hole echoes from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	1.6	60
939	Sensitivity functions for space-borne gravitational wave detectors. Physical Review D, 2019, 100, .	1.6	20
940	Primordial black holes from inflation with nonminimal derivative coupling. Physical Review D, 2019, 100, .	1.6	91
941	Enhancing gravitational waveform models through dynamic calibration. Physical Review D, 2019, 99, .	1.6	6

#	Article	IF	CITATIONS
942	Quadrupolar power radiation by a binary system in de Sitter background. International Journal of Modern Physics D, 2019, 28, 1950025.	0.9	4
943	Observing the shadows of stellar-mass black holes with binary companions. Classical and Quantum Gravity, 2019, 36, 055007.	1.5	16
944	Tidal Love numbers of black holes and neutron stars in the presence of higher dimensions: Implications of GW170817. Physical Review D, 2019, 99, .	1.6	32
945	The influence of the distribution of cosmic star formation at different metallicities on the properties of merging double compact objects. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5012-5017.	1.6	72
946	Probing ultralight bosons with binary black holes. Physical Review D, 2019, 99, .	1.6	134
947	High-Accuracy Mass, Spin, and Recoil Predictions of Generic Black-Hole Merger Remnants. Physical Review Letters, 2019, 122, 011101.	2.9	86
948	Massive Spin Zero Fields in Cosmology and the Tail-Free Property. Symmetry, 2019, 11, 36.	1.1	4
949	Role of Supergiants in the Formation of Globular Clusters. Astrophysical Journal, 2019, 871, 20.	1.6	16
950	1-OGC: The First Open Gravitational-wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO Data. Astrophysical Journal, 2019, 872, 195.	1.6	144
951	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	3.0	145
952	Formation of Primordial Black Hole Clusters from Phase Transitions in the Early Universe. Bulletin of the Lebedev Physics Institute, 2019, 46, 97-99.	0.1	1
953	Gravitational wave bounds on dirty black holes. Astronomische Nachrichten, 2019, 340, 116-120.	0.6	8
954	The massive Dirac equation in the Kerr-Newman-de Sitter and Kerr-Newman black hole spacetimes. Journal of Physics Communications, 2019, 3, 035026.	0.5	18
955	Gravitational-wave emission from binary black holes formed in open clusters. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3942-3950.	1.6	64
956	On the inverse spectrum problem of neutron stars. Classical and Quantum Gravity, 2019, 36, 115002.	1.5	11
957	Towards closing the window of primordial black holes as dark matter: The case of large clustering. Physical Review D, 2019, 99, .	1.6	31
958	A no-hair test for binary black holes. Physical Review D, 2019, 99, .	1.6	17
959	Charged scalar fields around Einstein-power-Maxwell black holes. General Relativity and Gravitation, 2019, 51, 1.	0.7	15

<u></u>						
Сіт	ΑΤΙ	ON	I K	FΡ	OI	۶T

#	Article	IF	CITATIONS
960	Machine learning on difference image analysis: A comparison of methods for transient detection. Astronomy and Computing, 2019, 28, 100284.	0.8	17
961	Constraining the Neutron Star Radius with Joint Gravitational-wave and Short Gamma-Ray Burst Observations of Neutron Star–Black Hole Coalescing Binaries. Astrophysical Journal, 2019, 877, 94.	1.6	17
962	Propagation of polar gravitational waves in f(R,ÂT) scenario. General Relativity and Gravitation, 2019, 51, 1.	0.7	36
963	Posterior samples of the parameters of binary black holes from Advanced LIGO, Virgo's second observing run. Scientific Data, 2019, 6, 81.	2.4	7
964	Gravitational perturbations of a Kerr black hole in f(R) gravity. Physical Review D, 2019, 99, .	1.6	19
965	Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 2019, 36, 143001.	1.5	451
966	Bounding the mass of graviton in a dynamic regime with binary pulsars. Physical Review D, 2019, 99, .	1.6	14
967	Spectral classification of gravitational-wave emission and equation of state constraints in binary neutron star mergers. Journal of Physics G: Nuclear and Particle Physics, 2019, 46, 113002.	1.4	41
968	Identifying extra high frequency gravitational waves generated from oscillons with cuspy potentials using deep neural networks. New Journal of Physics, 2019, 21, 043005.	1.2	4
969	Gravitation by Nonaxisymmetric Rotating Objects and Generation of High-Energy Particle Populations. Plasma Physics Reports, 2019, 45, 438-444.	0.3	1
970	Neutrino spin oscillations in external fields in curved spacetime. Physical Review D, 2019, 99, .	1.6	22
971	A scalable framework for adaptive computational general relativity on heterogeneous clusters. , 2019, , .		3
972	Optimal Integration of the Components of the Global Network of Gravitational-Wave Antennas. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta,) Tj ETQq0 0 0 rgBT	/O.1erlock	±20 Tf 50 25
973	Autoimmune Epilepsy. Neurotherapeutics, 2019, 16, 685-702.	2.1	83
974	Black hole mergers induced by tidal encounters with a galactic centre black hole. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1200-1209.	1.6	13
975	Host galaxies of merging compact objects: mass, star formation rate, metallicity, and colours. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1675-1688.	1.6	67
976	Electromagnetic emissions from near-horizon region of an extreme Kerr-Taub-NUT black hole. European Physical Journal C, 2019, 79, 1.	1.4	9
977	Quasinormal modes of Dirac field in Einstein–Born–Infeld dilaton black hole. General Relativity and Gravitation, 2019, 51, 1.	0.7	0

#	Article	IF	CITATIONS
978	Black hole formation from a general quadratic action for inflationary primordial fluctuations. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 016-016.	1.9	74
979	Optimal Feedback Cooling of a Charged Levitated Nanoparticle with Adaptive Control. Physical Review Letters, 2019, 122, 223602.	2.9	77
980	Estimation of spectrum and parameters of relic gravitational waves using space-borne interferometers. Research in Astronomy and Astrophysics, 2019, 19, 024.	0.7	5
981	The properties of merging black holes and neutron stars across cosmic time. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2-13.	1.6	96
982	Gravitational dynamics in a <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn><ml:mo> decomposed spacetime along nonorthogonal double foliations: Hamiltonian evolution and gauge fixing. Physical Review D, 2019, 99, .</ml:mo></mml:mrow></mml:math>	+1.6	o>៹mml:mn>
983	Gravitational-wave Merging Events from the Dynamics of Stellar-mass Binary Black Holes around the Massive Black Hole in a Galactic Nucleus. Astrophysical Journal, 2019, 877, 87.	1.6	21
984	Accelerating parameter inference with graphics processing units. Physical Review D, 2019, 99, .	1.6	38
985	Spontaneous scalarization of charged black holes at the approach to extremality. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 792, 244-250.	1.5	39
986	Understanding photon sphere and black hole shadow in dynamically evolving spacetimes. Physical Review D, 2019, 99, .	1.6	60
987	Thermal Sunyaev-Zel'dovich anisotropy due to primordial black holes. Physical Review D, 2019, 99, .	1.6	5
988	Leading higher-derivative corrections to Kerr geometry. Journal of High Energy Physics, 2019, 2019, 1.	1.6	58
989	Exact amplitudes of six polarization modes for gravitational waves. Physical Review D, 2019, 99, .	1.6	11
990	Phenomenology of minimal theory of quasidilaton massive gravity. Physical Review D, 2019, 99, .	1.6	4
991	Ready-to-use Fourier domain templates for compact binaries inspiraling along moderately eccentric orbits. Physical Review D, 2019, 99, .	1.6	27
992	Mirror Coating Solution for the Cryogenic Einstein Telescope. Physical Review Letters, 2019, 122, 231102.	2.9	24
993	Phenomenological inclusion of alternative dispersion relations to the Teukolsky equation and its application to bounding the graviton mass with gravitational-wave measurements. Physical Review D, 2019, 99, .	1.6	7
994	Merging black holes in young star clusters. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2947-2960.	1.6	187
995	New bounds on dark energy induced fifth forces. Physical Review D, 2019, 99, .	1.6	2

		CITATION	Report	
#	Article		IF	CITATIONS
996	Free-fall of photons in a planar optical cavity. Journal of Physics Communications, 2019	, 3, 045007.	0.5	2
997	An independent search of gravitational waves in the first observation run of advanced L cross-correlation. General Relativity and Gravitation, 2019, 51, 1.	JGO using	0.7	9
998	Time-evolution of NIR absorption in hydroxide-catalysis bonds. Materialia, 2019, 6, 100	331.	1.3	1
999	Frequency response of space-based interferometric gravitational-wave detectors. Physic 2019, 99, .	cal Review D,	1.6	29
1000	All-sky search for long-duration gravitational-wave transients in the second Advanced Li observing run. Physical Review D, 2019, 99, .	IGO	1.6	22
1001	New exact spherically symmetric solutions in <i>f</i> (<i>R</i> , i, <i>X</i>) gravity by No approach. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 016-016.	bether's symmetry	1.9	29
1002	Gravitational Waves Induced by Non-Gaussian Scalar Perturbations. Physical Review Let 201101.	tters, 2019, 122,	2.9	271
1003	Probing an Extended Uncertainty Principle black hole with gravitational lensings. Mode Letters A, 2019, 34, 1950152.	rn Physics	0.5	17
1004	Parameter estimation and statistical significance of echoes following black hole signals Advanced LIGO observing run. Physical Review D, 2019, 99, .	in the first	1.6	42
1005	Secular evolution of compact binaries revolving around a spinning massive black hole. Review D, 2019, 99, .	Physical	1.6	13
1006	To see the invisible: Image of the event horizon within the black hole shadow. Internation Modern Physics D, 2019, 28, 1941005.	onal Journal of	0.9	14
1007	Limits on Electromagnetic Counterparts of Gravitational-wave-detected Binary Black Ho Astrophysical Journal, 2019, 875, 49.	ble Mergers.	1.6	14
1008	Advanced quantum techniques for future gravitational-wave detectors. Living Reviews 2019, 22, 1.	in Relativity,	8.2	39
1009	Measurement of Tidal Deformability in the Gravitational Wave Parameter Estimation fo Binary Neutron Star Mergers. Journal of the Korean Physical Society, 2019, 74, 842-846		0.3	2
1010	Diagnosing the remnants of binary neutron star merger from GW170817/GRB170817/ Notices of the Royal Astronomical Society, 2019, 486, 4479-4484.	A event. Monthly	1.6	8
1011	Tests of gravity theories with Galactic Center observations. International Journal of Mod D, 2019, 28, 1941003.	dern Physics	0.9	11
1012	Full 3D numerical relativity simulations of neutron star–boson star collisions with BA and Quantum Gravity, 2019, 36, 025002.	M. Classical	1.5	19
1013	Numerical simulation of time delay interferometry for TAIJI and new LISA. Research in As Astrophysics, 2019, 19, 058.	stronomy and	0.7	19

#	Article	IF	CITATIONS
1014	The effects of surface fossil magnetic fields on massive star evolution: I. Magnetic field evolution, mass-loss quenching, and magnetic braking. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5843-5860.	1.6	47
1016	Initial data for general relativistic simulations of multiple electrically charged black holes with linear and angular momenta. Physical Review D, 2019, 99, .	1.6	12
1017	The Lanczos Equation on Light-Like Hypersurfaces in a Cosmologically Viable Class of Kinetic Gravity Braiding Theories. Symmetry, 2019, 11, 616.	1.1	3
1018	Measurement Accuracy of Inspiraling Eccentric Neutron Star and Black Hole Binaries Using Gravitational Waves. Astrophysical Journal, 2019, 871, 178.	1.6	55
1019	How Does the Earth's Rotation Affect Predictions of Gravitational Wave Strong Lensing Rates?. Astrophysical Journal, 2019, 874, 139.	1.6	21
1020	Optical Follow-up of Gravitational-wave Events during the Second Advanced LIGO/VIRGO Observing Run with the DLT40 Survey. Astrophysical Journal, 2019, 875, 59.	1.6	18
1021	The Population of Eccentric Binary Black Holes: Implications for mHz Gravitational-wave Experiments. Astrophysical Journal, 2019, 875, 75.	1.6	15
1022	Detecting Supermassive Black Hole–induced Binary Eccentricity Oscillations with LISA. Astrophysical Journal Letters, 2019, 875, L31.	3.0	52
1023	Neutron star collapse and gravitational waves with a non-convex equation of state. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4980-5008.	1.6	28
1024	Gravitational Waves from Mirror World. Physics, 2019, 1, 67-75.	0.5	4
1024 1025		0.5	4
	Gravitational Waves from Mirror World. Physics, 2019, 1, 67-75. Gravitational waves from inspiralling compact binaries in conformal gravity. Physical Review D, 2019,		
1025	Gravitational Waves from Mirror World. Physics, 2019, 1, 67-75. Gravitational waves from inspiralling compact binaries in conformal gravity. Physical Review D, 2019, 99, . The Concept of a Multi-Functional Astronomy Complex and Dynamically Integrated Database Applied to	1.6	5
1025 1026	 Gravitational Waves from Mirror World. Physics, 2019, 1, 67-75. Gravitational waves from inspiralling compact binaries in conformal gravity. Physical Review D, 2019, 99,. The Concept of a Multi-Functional Astronomy Complex and Dynamically Integrated Database Applied to Multi-Channel Observations with the MASTER Global Network. Astronomy Reports, 2019, 63, 293-309. Convenient filtering techniques for LIGO strain of the GW150914 event. Journal of Cosmology and 	1.6 0.2	5 19
1025 1026 1027	Gravitational Waves from Mirror World. Physics, 2019, 1, 67-75. Gravitational waves from inspiralling compact binaries in conformal gravity. Physical Review D, 2019, 99, . The Concept of a Multi-Functional Astronomy Complex and Dynamically Integrated Database Applied to Multi-Channel Observations with the MASTER Clobal Network. Astronomy Reports, 2019, 63, 293-309. Convenient filtering techniques for LIGO strain of the GW150914 event. Journal of Cosmology and Astroparticle Physics, 2019, 032-032. Cosmological inference from standard sirens without redshift measurements. Journal of Cosmology	1.6 0.2 1.9	5 19 1
1025 1026 1027 1028	Gravitational Waves from Mirror World. Physics, 2019, 1, 67-75. Gravitational waves from inspiralling compact binaries in conformal gravity. Physical Review D, 2019, 99,. The Concept of a Multi-Functional Astronomy Complex and Dynamically Integrated Database Applied to Multi-Channel Observations with the MASTER Global Network. Astronomy Reports, 2019, 63, 293-309. Convenient filtering techniques for LIGO strain of the GW150914 event. Journal of Cosmology and Astroparticle Physics, 2019, 032-032. Cosmological inference from standard sirens without redshift measurements. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 033-033. Stochastic Gravitational-wave Background from Binary Black Holes and Binary Neutron Stars and	1.6 0.2 1.9 1.9	5 19 1 25
1025 1026 1027 1028 1029	Cravitational Waves from Mirror World. Physics, 2019, 1, 67-75. Gravitational waves from inspiralling compact binaries in conformal gravity. Physical Review D, 2019, 99, . The Concept of a Multi-Functional Astronomy Complex and Dynamically Integrated Database Applied to Multi-Channel Observations with the MASTER Global Network. Astronomy Reports, 2019, 63, 293-309. Convenient filtering techniques for LIGO strain of the GW150914 event. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 032-032. Cosmological inference from standard sirens without redshift measurements. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 033-033. Stochastic Gravitational-wave Background from Binary Black Holes and Binary Neutron Stars and Implications for LISA. Astrophysical Journal, 2019, 871, 97.	1.6 0.2 1.9 1.9 1.6	 5 19 1 25 73

#	Article	IF	CITATIONS
1033	The Classifications of Double Neutron Stars and their Correlations with the Binary Orbital Parameters. Publications of the Astronomical Society of the Pacific, 2019, 131, 064201.	1.0	9
1034	Testing general relativity using binary extreme-mass-ratio inspirals. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 485, L29-L33.	1.2	15
1035	Template-based gravitational-wave echoes search using Bayesian model selection. Physical Review D, 2019, 99, .	1.6	47
1036	Boosted Kerr black holes in general relativity. Physical Review D, 2019, 99, .	1.6	4
1037	Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy. Astrophysical Journal, Supplement Series, 2019, 241, 27.	3.0	526
1038	Massively Parallel Simulations of Binary Black Hole Intermediate-Mass-Ratio Inspirals. SIAM Journal of Scientific Computing, 2019, 41, C97-C138.	1.3	34
1039	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	1.6	30
1040	Constraining the non-Einsteinian polarizations of gravitational waves by pulsar timing array. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	5
1041	Constraints on cosmic curvature with lensing time delays and gravitational waves. Physical Review D, 2019, 99, .	1.6	20
1042	Constraints on generalized Eddington-inspired Born-Infeld branes. Physical Review D, 2019, 99, .	1.6	1
1043	Exotic compact object behavior in black hole analogues. Physical Review D, 2019, 99, .	1.6	1
1044	Towards the nonlinear regime in extensions to GR: assessing possible options. Classical and Quantum Gravity, 2019, 36, 084001.	1.5	39
1045	Gravitational waves from bubble dynamics: beyond the envelope. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 060-060.	1.9	75
1046	Gravitational waves from conformal symmetry breaking. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 009-009.	1.9	53
1047	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	1.6	61
1048	Scalar tops and perturbed quadrupoles: probing fundamental physics with spin-precessing binaries. Classical and Quantum Gravity, 2019, 36, 10LT02.	1.5	9
1049	GW150914 peak frequency: a novel consistency test of strong-field general relativity. Classical and Quantum Gravity, 2019, 36, 105009.	1.5	13
1050	Directed searches for gravitational waves from ultralight bosons. Physical Review D, 2019, 99, .	1.6	65

#	Article	IF	CITATIONS
1051	The Wave Nature of Continuous Gravitational Waves from Microlensing. Astrophysical Journal, 2019, 875, 139.	1.6	30
1052	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	1.6	71
1053	Effects of the surrounding primordial black holes on the merger rate of primordial black hole binaries. Physical Review D, 2019, 99, .	1.6	44
1054	Consistent derivation of the Hawking effect for both nonextremal and extremal Kerr black holes. Physical Review D, 2019, 99, .	1.6	3
1055	PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals. Publications of the Astronomical Society of the Pacific, 2019, 131, 024503.	1.0	156
1056	Anisotropies in the Astrophysical Gravitational-Wave Background: The Impact of Black Hole Distributions. Physical Review Letters, 2019, 122, 111101.	2.9	43
1057	Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	43
1058	<i>r</i> -process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos. Journal of Physics G: Nuclear and Particle Physics, 2019, 46, 083001.	1.4	115
1059	lsospin properties in quark matter and quark stars within isospin-dependent quark mass models. Physical Review C, 2019, 99, .	1.1	19
1060	Spin-induced deformations and tests of binary black hole nature using third-generation detectors. Physical Review D, 2019, 99, .	1.6	27
1061	Primordial-black-hole mergers in dark-matter spikes. Physical Review D, 2019, 99, .	1.6	29
1062	Gravitational wave emission from collisions of compact scalar solitons. Physical Review D, 2019, 99, .	1.6	50
1063	Scalar stochastic gravitational-wave background in Brans-Dicke theory of gravity. Physical Review D, 2019, 99, .	1.6	5
1064	Gravitational-Wave Background Sky Maps from Advanced LIGO O1 Data. Physical Review Letters, 2019, 122, 081102.	2.9	21
1065	Relaxations of perturbations of spacetimes in general relativity coupled to nonlinear electrodynamics. Physical Review D, 2019, 99, .	1.6	48
1066	Prospects of detecting the nonlinear gravitational wave memory. Physical Review D, 2019, 99, .	1.6	24
1067	Constraints on <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>f</mml:mi><mml:mo stretchy="false">(<mml:mi>R</mml:mi><mml:mo) (stre<="" 0="" 10="" 50="" 97="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>tchy_ra''false</td><td>e">≱⊄/mml:mc</td></mml:mo)></mml:mo </mml:mrow></mml:math>	tchy _r a''false	e"> ≱ ⊄/mml:mc
1068	Review D, 2019, 99, . A quantisation procedure in the presence of an initial Kasner singularity: primordial gravitational waves from triaxially anisotropic pre-inflation. Classical and Quantum Gravity, 2019, 36, 085007.	1.5	1

		Citation Report	
#	Article	IF	Citations
1069	Deep and rapid observations of strong-lensing galaxy clusters within the sky localization of GW170814. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5180-5191.	1.6	19
1070	Moment of inertia–mass universal relations for neutron stars in scalar-tensor theory with self-interacting massive scalar field. European Physical Journal C, 2019, 79, 1.	1.4	15
1071	Quasinormal modes of compact objects in alternative theories of gravity. European Physical Journal Plus, 2019, 134, 1.	1.2	31
1072	Eccentric Black Hole Mergers in Dense Star Clusters: The Role of Binary–Binary Encounters. Astrophysical Journal, 2019, 871, 91.	1.6	158
1073	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	1.6	26
1074	Amplitudes, observables, and classical scattering. Journal of High Energy Physics, 2019, 2019, 1.	1.6	252
1075	Gravitational waves and electroweak baryogenesis in a global study of the extended scalar singlet model. Journal of High Energy Physics, 2019, 2019, 1.	1.6	63
1076	Evolution of dwarf galaxies hosting GW150914-like events. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3219-3232.	1.6	15
1077	Bayesian inference analysis of unmodelled gravitational-wave transients. Classical and Quantum Gravity, 2019, 36, 035011.	1.5	4
1078	Probing screening and the graviton mass with gravitational waves. Classical and Quantum Gravity, 2019, 36, 055013.	1.5	13
1079	The MEGaN project II. Gravitational waves from intermediate-mass and binary black holes around a supermassive black hole. Monthly Notices of the Royal Astronomical Society, 2019, 483, 152-171.	1.6	58
1080	Selecting models of first-order phase transitions using the synergy between collider and gravitational-wave experiments. Physical Review D, 2019, 99, .	1.6	40
1081	Gravitational axial perturbations and quasinormal modes of loop quantum black holes. European Physical Journal C, 2019, 79, 1.	1.4	20
1082	Criticality and extended phase space thermodynamics of AdS black holes in higher curvature massiv gravity. European Physical Journal C, 2019, 79, 1.	ve 1.4	32
1083	How Initial Size Governs Core Collapse in Globular Clusters. Astrophysical Journal, 2019, 871, 38.	1.6	71
1084	Pulsar timing in extreme mass ratio binaries: a general relativistic approach. Monthly Notices of the Royal Astronomical Society, 2019, 486, 360-377.	1.6	16
1085	Primordial gravitational waves in Horndeski gravity. Physical Review D, 2019, 99, .	1.6	31
1086	Charged scalar-tensor solitons and black holes with (approximate) Anti-de Sitter asymptotics. Journ of High Energy Physics, 2019, 2019, 1.	al 1.6	5

#	Article	IF	CITATIONS
1087	Busting up binaries: encounters between compact binaries and a supermassive black hole. General Relativity and Gravitation, 2019, 51, 1.	0.7	6
1088	Improving the sensitivity of Advanced LIGO using noise subtraction. Classical and Quantum Gravity, 2019, 36, 055011.	1.5	69
1089	Formation and evolution of primordial black hole binaries in the early universe. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 018-018.	1.9	207
1090	Classification of gravitational-wave glitches via dictionary learning. Classical and Quantum Gravity, 2019, 36, 075005.	1.5	12
1091	Magnetic braking and damping of differential rotation in massive stars. Physical Review D, 2019, 99, .	1.6	11
1092	Hunting the gravitational waves: From Einstein to LIGO. International Journal of Modern Physics D, 2019, 28, 1930008.	0.9	0
1093	A Search for Optical Emission from Binary Black Hole Merger GW170814 with the Dark Energy Camera. Astrophysical Journal Letters, 2019, 873, L24.	3.0	14
1094	Probing the pre-BBN universe with gravitational waves from cosmic strings. Journal of High Energy Physics, 2019, 2019, 1.	1.6	101
1095	Gravitational waves and degrees of freedom in higher derivative gravity. Physical Review D, 2019, 99, .	1.6	7
1096	Clusters of Primordial Black Holes. European Physical Journal C, 2019, 79, 1.	1.4	126
1097	The Star Clusters That Make Black Hole Binaries across Cosmic Time. Astrophysical Journal, 2019, 873, 100.	1.6	33
1098	Shadows of Kerr-like black holes in a modified gravity theory. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 046-046.	1.9	51
1099	Eccentricity distributions of eccentric binary black holes in galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2019, 486, 570-581.	1.6	14
1100	Probing the nature of central objects in extreme-mass-ratio inspirals with gravitational waves. Physical Review D, 2019, 99, .	1.6	37
1101	Quantum field theory with classical sources—linearized quantum gravity. Classical and Quantum Gravity, 2019, 36, 015011.	1.5	3
1102	Graviton-photon mixing. Physical Review D, 2019, 99, .	1.6	12
1103	Possible Electromagnetic Manifestations of Merging Black Holes. Astronomy Reports, 2019, 63, 1-14.	0.2	8
1104	Binaries as Sources of Gravitational Waves. , 2019, , 191-207.		0

#	Article	IF	CITATIONS
1105	Effectual template banks for upcoming compact binary searches in Advanced-LIGO and Virgo data. Physical Review D, 2019, 99, .	1.6	36
1106	Quasinormal modes of a black hole with quadrupole moment. Physical Review D, 2019, 99, .	1.6	22
1107	Hamiltonians and canonical coordinates for spinning particles in curved space-time. Classical and Quantum Gravity, 2019, 36, 075003.	1.5	26
1108	Supporting High-Performance and High-Throughput Computing for Experimental Science. Computing and Software for Big Science, 2019, 3, 1.	1.3	9
1109	Intrinsic curvature and topology of shadows in Kerr spacetime. Physical Review D, 2019, 99, .	1.6	58
1110	Magnetized accretion disks around Kerr black holes with scalar hair: Constant angular momentum disks. Physical Review D, 2019, 99, .	1.6	15
1111	Simple procedures to reduce eccentricity of binary black hole simulations. Physical Review D, 2019, 99, .	1.6	18
1112	Binary black hole growth by gas accretion in stellar clusters. Astronomy and Astrophysics, 2019, 621, L1.	2.1	15
1113	Using LISA-like gravitational wave detectors to search for primordial black holes. Physical Review D, 2019, 99, .	1.6	16
1114	Massive and charged scalar field in Kerr-Newman spacetime: Absorption and superradiance. Physical Review D, 2019, 99, .	1.6	22
1115	Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO. Physical Review D, 2019, 99, .	1.6	77
1116	Can We Probe Planckian Corrections at the Horizon Scale with Gravitational Waves?. Physical Review Letters, 2019, 122, 081301.	2.9	32
1117	Interaction of weak gravitational waves with a small gyroscope universal-mounted in a macroscopic shell. General Relativity and Gravitation, 2019, 51, 1.	0.7	0
1118	Merging black hole binaries with the SEVN code. Monthly Notices of the Royal Astronomical Society, 2019, 485, 889-907.	1.6	178
1119	Constraints on binary black hole populations from LIGO–Virgo detections. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4216-4229.	1.6	90
1120	Topological black hole in the theory with nonminimal derivative coupling with power-law Maxwell field and its thermodynamics. Physical Review D, 2019, 99, .	1.6	16
1121	Efficient effective one body time-domain gravitational waveforms. Physical Review D, 2019, 99, .	1.6	46
1122	Quasinormal mode spectra for odd parity perturbations in spacetimes with smeared matter sources. Physical Review D, 2019, 99, .	1.6	1

#	Article	IF	CITATIONS
1123	Observing the post-merger signal of GW170817-like events with improved gravitational-wave detectors. Physical Review D, 2019, 99, .	1.6	67
1124	Gravastar formation: What can be the evidence of a black hole?. Physical Review D, 2019, 99, .	1.6	17
1125	Minimal geometric deformation in a Reissner–Nordström background. European Physical Journal C, 2019, 79, 1.	1.4	66
1126	Excitations of the Myers-Perry black holes. Journal of High Energy Physics, 2019, 2019, 1.	1.6	9
1127	Astrophysical signal consistency test adapted for gravitational-wave transient searches. Physical Review D, 2019, 100, .	1.6	6
1128	Coalescence of Kerr Black Holes—Binary Systems from GW150914 to GW170814. Entropy, 2019, 21, 1017.	1.1	3
1129	Non-exploding and exploding core-collapse supernova models and the multimessenger predictions. Proceedings of the International Astronomical Union, 2019, 15, 267-273.	0.0	0
1130	Motion deviation of test body induced by spin and cosmological constant in extreme mass ratio inspiral binary system. European Physical Journal C, 2019, 79, 1.	1.4	7
1131	Limits on the Electromagnetic Counterpart of Binary Black Hole Coalescence at Visible Wavelengths. Astrophysical Journal, 2019, 886, 73.	1.6	4
1132	Scalar quasinormal modes of nonlinear charged black holes in Rastall gravity. Europhysics Letters, 2019, 128, 50006.	0.7	11
1133	Mind the Gap: The Location of the Lower Edge of the Pair-instability Supernova Black Hole Mass Gap. Astrophysical Journal, 2019, 887, 53.	1.6	209
1134	Pulsational Pair-instability Supernovae. I. Pre-collapse Evolution and Pulsational Mass Ejection. Astrophysical Journal, 2019, 887, 72.	1.6	66
1135	Search for Neutrinos in Super-Kamiokande Associated with Gravitational Wave Events. Universe, 2019, 5, 7.	0.9	2
1136	Long term measurements from the MÃ _i tra Gravitational and Geophysical Laboratory. European Physical Journal: Special Topics, 2019, 228, 1693-1743.	1.2	5
1137	Impact of a Spinning Supermassive Black Hole on the Orbit and Gravitational Waves of a Nearby Compact Binary. Astrophysical Journal, 2019, 887, 210.	1.6	22
1138	Frequency response of time-delay interferometry for space-based gravitational wave antenna. Physical Review D, 2019, 100, .	1.6	18
1139	Gravitational Radiation from Close Binaries with Time-varying Masses. Astrophysical Journal, 2019, 882, 39.	1.6	8
1140	Bayesian inference for binary neutron star inspirals using a Hamiltonian MonteÂCarlo algorithm. Physical Review D, 2019, 100, .	1.6	4

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
1141	NAT black holes. European Physical Journal C, 2019, 79, 1.		1.4	2
1142	Constraining chameleon field driven warm inflation with Planck 2018 data. European F C, 2019, 79, 1.	Physical Journal	1.4	32
1143	Cosmoparticle physics of dark matter. EPJ Web of Conferences, 2019, 222, 01006.		0.1	3
1144	A Gravitational Wave Background from Primordial Black Hole Lattices in Matter Domin Communications in Theoretical Physics, 2019, 71, 1196.	ated Era.	1.1	0
1145	Periodic Orbits Around Kerr Sen Black Holes*. Communications in Theoretical Physics,	2019, 71, 1461.	1.1	15
1146	IMR consistency tests with higher modes on gravitational signals from the second obs LIGO and Virgo. Classical and Quantum Gravity, 2019, 36, 245019.	erving run of	1.5	11
1147	Supernovae in massive binaries and compact object mergers near supermassive black Cosmology and Astroparticle Physics, 2019, 2019, 045-045.	noles. Journal of	1.9	1
1148	Search for events in the LVD detector coinciding with gravitational signals from the co close binary systems. Journal of Physics: Conference Series, 2019, 1390, 012088.	llapse of	0.3	0
1149	The gravitational dynamics of the primordial black holes cluster. Journal of Physics: Cor Series, 2019, 1390, 012090.	ıference	0.3	2
1150	Populations of Stellar-mass Black Holes from Binary Systems. Astrophysical Journal, 20	19, 885, 1.	1.6	47
1151	A WKB formula for echoes. International Journal of Geometric Methods in Modern Phy. 1950181.	sics, 2019, 16,	0.8	5
1152	Measuring the Star Formation Rate with Gravitational Waves from Binary Black Holes. Journal Letters, 2019, 886, L1.	Astrophysical	3.0	75
1153	Gravitational wave signatures from an extended inert doublet dark matter model. Journ Cosmology and Astroparticle Physics, 2019, 2019, 062-062.	nal of	1.9	16
1154	Constraining the primordial black hole abundance with 21-cm cosmology. Physical Rev	iew D, 2019, 100,	1.6	63
1155	Gravitational wave signatures of dark matter cores in binary neutron star mergers by u numerical simulations. Physical Review D, 2019, 100, .	sing	1.6	34
1156	Analytical analysis on the orbits of Taiji spacecrafts. Physical Review D, 2019, 100, .		1.6	6
1157	Effect of orbital eccentricity on the dynamics of precessing compact binaries. Physical 100, .	Review D, 2019,	1.6	10
1158	Theory-agnostic framework for dynamical scalarization of compact binaries. Physical R 100, .	eview D, 2019,	1.6	18

#	Article	IF	CITATIONS
1159	Post-Newtonian phase accuracy requirements for stellar black hole binaries with LISA. Physical Review D, 2019, 99, .	1.6	20
1160	Viewing Angle of Binary Neutron Star Mergers. Physical Review X, 2019, 9, .	2.8	24
1161	Black Hole Ringdown: The Importance of Overtones. Physical Review X, 2019, 9, .	2.8	133
1162	Highlights from the HAWC Observatory. Nuclear and Particle Physics Proceedings, 2019, 306-308, 12-19.	0.2	0
1163	Wider look at the gravitational-wave transients from GWTC-1 using an unmodeled reconstruction method. Physical Review D, 2019, 100, .	1.6	23
1164	Physics of eccentric binary black hole mergers: A numerical relativity perspective. Physical Review D, 2019, 100, .	1.6	26
1165	Improved constraints on modified gravity with eccentric gravitational waves. Physical Review D, 2019, 100, .	1.6	12
1166	Binary neutron star mergers: Effects of spin and post-merger dynamics. Physical Review D, 2019, 100, .	1.6	27
1167	Waveform of gravitational waves in the ghost-free parity-violating gravities. Physical Review D, 2019, 100, .	1.6	35
1168	Template bank for compact binary coalescence searches in gravitational wave data: A general geometric placement algorithm. Physical Review D, 2019, 99, .	1.6	20
1169	Pulsar timing array constraints on the induced gravitational waves. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 059-059.	1.9	72
1170	Tailoring cosmologies in cubic shift-symmetric Horndeski gravity. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 058-058.	1.9	6
1171	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	1.6	470
1172	The Cosmic Distance Duality Relation with Strong Lensing and Gravitational Waves: An Opacity-free Test. Astrophysical Journal, 2019, 885, 70.	1.6	24
1173	Multi-messenger astronomy with the Î ³ -ray satellite AGILE: gravitational wave events and ultra-high energy astrophysical neutrinos. Nuclear and Particle Physics Proceedings, 2019, 306-308, 53-60.	0.2	1
1174	Stability of Macroscopic Binary Systems*. Communications in Theoretical Physics, 2019, 71, 1335.	1.1	3
1175	Traversable wormhole magnetic monopoles from Dymnikova metric. European Physical Journal Plus, 2019, 134, 1.	1.2	8
1176	Non-Hermitian ringÂlaser gyroscopes with enhanced Sagnac sensitivity. Nature, 2019, 576, 70-74.	13.7	183

#	Article	IF	CITATIONS
1177	Hawking emission of charged particles from an electrically charged spherical black hole with scalar hair. European Physical Journal C, 2019, 79, 1.	1.4	5
1178	Weak and strong deflection gravitational lensing by a renormalization group improved Schwarzschild black hole. European Physical Journal C, 2019, 79, 1.	1.4	44
1179	Gravitational waves induced from string axion model of inflation. International Journal of Modern Physics A, 2019, 34, 1950213.	0.5	7
1180	Surrogate model of hybridized numerical relativity binary black hole waveforms. Physical Review D, 2019, 99, .	1.6	153
1181	Merger Rate of Stellar Black Hole Binaries above the Pair-instability Mass Gap. Astrophysical Journal Letters, 2019, 883, L27.	3.0	29
1182	Future constraints on dynamical dark-energy using gravitational-wave standard sirens. Physical Review D, 2019, 100, .	1.6	35
1183	Quantum expander for gravitational-wave observatories. Light: Science and Applications, 2019, 8, 118.	7.7	21
1184	Using deep learning to localize gravitational wave sources. Physical Review D, 2019, 100, .	1.6	20
1185	Observatory science with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	50
1186	Black hole spins in coalescing binary black holes. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3288-3306.	1.6	26
1187	Expanded evasion of the black hole no-hair theorem in dilatonic Einstein-Gauss-Bonnet theory. Physical Review D, 2019, 99, .	1.6	17
1188	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	2.8	728
1189	The eccentric behavior of inspiralling compact binaries. Classical and Quantum Gravity, 2019, 36, 025004.	1.5	21
1190	Stellar black hole binary mergers in open clusters. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1233-1246.	1.6	47
1191	Double gravitational wave mergers. Monthly Notices of the Royal Astronomical Society, 2019, 482, 30-39.	1.6	20
1192	Head-on collisions and orbital mergers of Proca stars. Physical Review D, 2019, 99, .	1.6	51
1193	Gravitational waves in modified gravity. International Journal of Modern Physics D, 2019, 28, 1942002.	0.9	31
1194	Modeling the dynamics of black holes through balanced equations of motion. International Journal of Geometric Methods in Modern Physics, 2019, 16, 1950034.	0.8	2

		CITATION REPORT		
#	Article		IF	CITATIONS
1195	Unveiling the enigma of ATLAS17aeu. Astronomy and Astrophysics, 2019, 621, A81.		2.1	1
1196	The gravitational rainbow beyond Einstein gravity. International Journal of Modern Phy 28, 1942003.	sics D, 2019,	0.9	6
1197	Unknown branch of the total-transmission modes for the Kerr geometry. Physical Revie	ew D, 2019, 99, .	1.6	3
1198	KAGRA: 2.5 generation interferometric gravitational wave detector. Nature Astronomy	, 2019, 3, 35-40.	4.2	331
1199	Enhanced black hole mergers in binary–binary interactions. Monthly Notices of the F Astronomical Society, 2019, 483, 4060-4069.	λοyal	1.6	80
1200	Quasinormal modes of static and spherically symmetric black holes with the derivative General Relativity and Gravitation, 2019, 51, 1.	coupling.	0.7	5
1201	Observing black holes spin. Nature Astronomy, 2019, 3, 41-47.		4.2	107
1202	Primordial black holes from Affleck-Dine mechanism. Journal of Cosmology and Astrop 2019, 2019, 027-027.	article Physics,	1.9	11
1203	Gravitational waveforms, polarizations, response functions, and energy losses of triple Einstein-aether theory. Physical Review D, 2019, 99, .	systems in	1.6	21
1204	A consistent estimate for gravitational wave and electromagnetic transient rates. Mon the Royal Astronomical Society, 2019, 482, 870-880.	thly Notices of	1.6	86
1205	A complete analytic gravitational wave model for undergraduates. European Journal of 40, 025603.	Physics, 2019,	0.3	6
1206	A new data analysis framework for the search of continuous gravitational wave signals and Quantum Gravity, 2019, 36, 015008.	. Classical	1.5	31
1207	Stochastic gravitational wave backgrounds. Reports on Progress in Physics, 2019, 82,	016903.	8.1	176
1208	Squeezed vacuum states of light for gravitational wave detectors. Reports on Progress 2019, 82, 016905.	s in Physics,	8.1	74
1209	Probing primordial gravitational waves: Ali CMB Polarization Telescope. National Scien 2019, 6, 145-154.	ce Review,	4.6	59
1210	Bayesian nonparametric spectral density estimation using B-spline priors. Statistics an 2019, 29, 67-78.	d Computing,	0.8	29
1211	Effective field theories of post-Newtonian gravity: a comprehensive review. Reports on Physics, 2020, 83, 075901.	Progress in	8.1	121
1212	ZAIGA: Zhaoshan long-baseline atom interferometer gravitation antenna. International Modern Physics D, 2020, 29, 1940005.	Journal of	0.9	87

#	Article	IF	CITATIONS
1213	Extraction of gravitational wave signals with optimized convolutional neural network. Frontiers of Physics, 2020, 15, 1.	2.4	4
1214	Theoretical cosmology. Classical and Quantum Gravity, 2020, 37, 013001.	1.5	24
1215	Waveform of gravitational waves in the general parity-violating gravities. Physical Review D, 2020, 101,	1.6	61
1216	Black hole formation in relativistic Oscillaton collisions. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 027-027.	1.9	14
1217	Quasinormal modes of five-dimensional black holes in non-commutative geometry. European Physical Journal Plus, 2020, 135, 1.	1.2	18
1218	Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks. Frontiers of Physics, 2020, 15, 1.	2.4	16
1219	Gravitational wave denoising of binary black hole mergers with deep learning. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 800, 135081.	1.5	61
1220	A Laser Interferometer Prototype with Pico-Meter Measurement Precision for Taiji Space Gravitational Wave Detection Missionin China. Microgravity Science and Technology, 2020, 32, 331-338.	0.7	11
1221	Charged black hole chemistry with massive gravitons. Classical and Quantum Gravity, 2020, 37, 024001.	1.5	17
1222	Fermionic origin of dark energy in the inflationary universe from unified spinor fields. Physica Scripta, 2020, 95, 035303.	1.2	4
1223	Stellar-mass black holes in young massive and open stellar clusters – IV. Updated stellar-evolutionary and black hole spin models and comparisons with the LIGO-Virgo O1/O2 merger-event data. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3002-3026.	1.6	69
1224	Fluid pulsation modes from strange stars in a higher-dimensional spacetime. Physical Review D, 2020, 102, .	1.6	3
1225	Tests of Gravitational Theories with Observations of the Galactic Center and the Center of the Galaxy M87. Physics of Particles and Nuclei, 2020, 51, 750-756.	0.2	0
1226	Existence of conserved quantities and their algebra in curved spacetime. International Journal of Modern Physics A, 2020, 35, 2050162.	0.5	0
1227	Modeling ringdown. II. Aligned-spin binary black holes, implications for data analysis and fundamental theory. Physical Review D, 2020, 102, .	1.6	23
1228	Implications for dark matter direct detection in the presence of LIGO-motivated primordial black holes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 807, 135566.	1.5	11
1229	Hunting for the host galaxy groups of binary black holes and the application in constraining Hubble constant. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1786-1800.	1.6	25
1230	Bayesian metric reconstruction with gravitational wave observations. Physical Review D, 2020, 102, .	1.6	28

#	Article	IF	CITATIONS
1231	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
1232	Measuring the eccentricity of GW170817 and GW190425. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1966-1971.	1.6	32
1233	Subtracting compact binary foreground sources to reveal primordial gravitational-wave backgrounds. Physical Review D, 2020, 102, .	1.6	48
1234	Classical and quantum scattering in post-Minkowskian gravity. Physical Review D, 2020, 102, .	1.6	115
1235	Analytical and numerical treatment of perturbed black holes in horizon-penetrating coordinates. Physical Review D, 2020, 102, .	1.6	4
1237	The Sagnac effect on a scale-dependent rotating BTZ black hole background. Classical and Quantum Gravity, 2020, 37, 175003.	1.5	16
1238	Tidal Deformations of Hybrid Stars with Sharp Phase Transitions and Elastic Crusts. Astrophysical Journal, 2020, 895, 28.	1.6	25
1239	The formation of single neutron stars from double white-dwarf mergers via accretion-induced collapse. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3422-3431.	1.6	18
1240	Probing the post-Minkowskian approximation using recursive addition of self-interactions. Physical Review D, 2020, 102, .	1.6	1
1241	Single-single gravitational-wave captures in globular clusters: Eccentric deci-Hertz sources observable by DECIGO and Tian-Qin. Physical Review D, 2020, 101, .	1.6	35
1242	Revisiting a family of wormholes: geometry, matter, scalar quasinormal modes and echoes. European Physical Journal C, 2020, 80, 1.	1.4	35
1243	Quasicircular inspirals and plunges from nonspinning effective-one-body Hamiltonians with gravitational self-force information. Physical Review D, 2020, 101, .	1.6	34
1244	Spectral Cauchy-characteristic extraction of the gravitational wave news function. Physical Review D, 2020, 102, .	1.6	13
1245	Ruppeiner geometry, phase transitions and microstructures of black holes in massive gravity. International Journal of Modern Physics A, 2020, 35, 2050120.	0.5	28
1246	An astrophysically motivated ranking criterion for low-latency electromagnetic follow-up of gravitational wave events. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1841-1852.	1.6	20
1247	Distinguishing double neutron star from neutron star-black hole binary populations with gravitational wave observations. Physical Review D, 2020, 102, .	1.6	16
1248	Accelerating black holes: Quasinormal modes and late-time tails. Physical Review D, 2020, 102, .	1.6	41
1249	Strong deflection gravitational lensing by a Lee-Wick ultracompact object. European Physical Journal C, 2020, 80, 1.	1.4	23

#	Article	IF	CITATIONS
1250	Phase-sensitive optomechanical amplifier for quantum noise reduction in laser interferometers. Physical Review A, 2020, 102, .	1.0	4
1251	Search for gravitational waves from five low mass x-ray binaries in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2020, 102, .	1.6	18
1252	Multipolar effective one body waveform model for spin-aligned black hole binaries. Physical Review D, 2020, 102, .	1.6	67
1253	Second post-Newtonian order radiative dynamics of inspiralling compact binaries in the effective field theory approach. Physical Review D, 2020, 101, .	1.6	24
1254	The impact of fallback on the compact remnants and chemical yields of core-collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3751-3762.	1.6	45
1255	Imprints of the redshift evolution of double neutron star merger rate on the signal-to-noise ratio distribution. Monthly Notices of the Royal Astronomical Society, 2020, 496, 523-531.	1.6	2
1256	Primordial black holes from no-scale supergravity. Physical Review D, 2020, 102, .	1.6	20
1257	Constraints on scalar–tensor theory of gravity by solar system tests. European Physical Journal C, 2020, 80, 1.	1.4	7
1258	Gravitational radiation by magnetic field: application to millisecond magnetars. Monthly Notices of the Royal Astronomical Society, 2020, 498, 110-127.	1.6	1
1259	Exploring Primordial Black Holes from the Multiverse with Optical Telescopes. Physical Review Letters, 2020, 125, 181304.	2.9	66
1260	Forecast constraints on anisotropic stress in dark energy using gravitational waves. Monthly Notices of the Royal Astronomical Society, 2020, 497, 879-893.	1.6	11
1261	Orbital spin dynamics of a millisecond pulsar around a massive BH with a general mass quadrupole. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5421-5431.	1.6	8
1262	Polar gravitational perturbations and quasinormal modes of a loop quantum gravity black hole. Physical Review D, 2020, 102, .	1.6	10
1263	Dirac quasinormal modes of Born-Infeld black hole spacetimes *. Chinese Physics C, 2020, 44, 095102.	1.5	7
1264	Cross-correlation of the astrophysical gravitational-wave background with galaxy clustering. Physical Review D, 2020, 102, .	1.6	30
1265	Shadows of charged rotating black holes: Kerr–Newman versus Kerr–Sen. International Journal of Modern Physics D, 2020, 29, 2041005.	0.9	36
1266	Time delay of photons coupled to Weyl tensor in a regular phantom black hole. European Physical Journal C, 2020, 80, 1.	1.4	24
1267	Black hole spectroscopy for KAGRA future prospect in O5. Physical Review D, 2020, 102, .	1.6	7

#	Article	IF	CITATIONS
1268	Tidal Love numbers of Proca stars. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 029-029.	1.9	13
1269	Distinguishing primordial black holes from astrophysical black holes by Einstein Telescope and Cosmic Explorer. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 039-039.	1.9	71
1270	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	1.6	394
1271	Spinning Test Particle in Four-Dimensional Einstein–Gauss–Bonnet Black Holes. Universe, 2020, 6, 103.	0.9	54
1272	Dynamics of black hole–neutron star binaries in young star clusters. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1563-1570.	1.6	60
1273	Binary black holes in young star clusters: the impact of metallicity. Monthly Notices of the Royal Astronomical Society, 2020, 498, 495-506.	1.6	92
1274	Gravitational waves from SGRs and AXPs as fast-spinning white dwarfs. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4426-4432.	1.6	8
1275	Beyond the Standard Models with cosmic strings. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 032-032.	1.9	80
1276	Multipolar effective-one-body waveforms for precessing binary black holes: Construction and validation. Physical Review D, 2020, 102, .	1.6	182
1277	Numerical relativity injection analysis of signals from generically spinning intermediate mass black hole binaries in Advanced LIGO data. Physical Review D, 2020, 102, .	1.6	15
1278	Quasi-normal modes and stability of Einstein–Born–Infeld black holes in de Sitter space. European Physical Journal C, 2020, 80, 1.	1.4	11
1279	Precessing and periodic motions around a black-bounce/traversable wormhole. European Physical Journal C, 2020, 80, 1.	1.4	31
1280	Reissner-Nordström perturbation framework with gravitational wave applications. Physical Review D, 2020, 102, .	1.6	4
1281	Dynamical bar-mode instability in spinning bosonic stars. Physical Review D, 2020, 102, .	1.6	35
1282	Analytic post-Newtonian expansion of the energy and angular momentum radiated to infinity by eccentric-orbit nonspinning extreme-mass-ratio inspirals to the 19th order. Physical Review D, 2020, 102, .	1.6	15
1283	Effect of torsion on the radiation fields in curved spacetime. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 810, 135778.	1.5	0
1284	Topological approach to derive the global Hawking temperature of (massive) BTZ black hole. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 810, 135788.	1.5	11
1285	Testing the equivalence principle and discreteness of spacetime through the t3 gravitational phase with quantum information technology. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 810, 135792.	1.5	2

#	Article	IF	CITATIONS
1286	From NANOGrav to LIGO with metastable cosmic strings. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 811, 135914.	1.5	96
1287	Scale-dependent slowly rotating black holes with flat horizon structure. Physics of the Dark Universe, 2020, 30, 100725.	1.8	11
1288	Source properties of the lowest signal-to-noise-ratio binary black hole detections. Physical Review D, 2020, 102, .	1.6	18
1289	Irreducible background of gravitational waves from a cosmic defect network: Update and comparison of numerical techniques. Physical Review D, 2020, 102, .	1.6	25
1290	Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: Circular orbits on a cone. Physical Review D, 2020, 102, .	1.6	28
1291	Enhancing the sensitivity of transient gravitational wave searches with Gaussian mixture models. Physical Review D, 2020, 102, .	1.6	6
1292	Constraining black hole mimickers with gravitational wave observations. Physical Review D, 2020, 102, .	1.6	27
1293	Exploring nonsingular black holes in gravitational perturbations. Physical Review D, 2020, 102, .	1.6	14
1294	Next-to-leading order spin-orbit effects in the equations of motion, energy loss, and phase evolution of binaries of compact bodies in the effective field theory approach. Physical Review D, 2020, 102, .	1.6	11
1295	Average nonlinear dynamics of particles in gravitational pulses: Effective Hamiltonian, secular acceleration, and gravitational susceptibility. Physical Review D, 2020, 102, .	1.6	5
1296	Gauge transformation of scalar induced gravitational waves. Physical Review D, 2020, 102, .	1.6	19
1297	The impact on distant fly-bys on the rate of binary primordial black hole mergers. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 036-036.	1.9	15
1299	Reconstructing gravitational wave signals from binary black hole mergers with minimal assumptions. Physical Review D, 2020, 102, .	1.6	19
1300	Bayesian inference for compact binary coalescences with <scp>bilby</scp> : validation and application to the first LIGO–Virgo gravitational-wave transient catalogue. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3295-3319.	1.6	213
1301	Tests of weak equivalence principle with the gravitational wave signals in the LIGO–Virgo catalogue GWTC-1. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 499, L53-L57.	1.2	5
1302	Formation rate of LB-1-like systems through dynamical interactions. Publication of the Astronomical Society of Japan, 2020, 72, .	1.0	7
1303	Combined search for anisotropic birefringence in the gravitational-wave transient catalog GWTC-1. Physical Review D, 2020, 101, .	1.6	35
1304	Dark matter simulations with primordial black holes in the early Universe. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4854-4862.	1.6	14

#	Article	IF	CITATIONS
1305	Astrometric effects of gravitational wave backgrounds with nonluminal propagation speeds. Physical Review D, 2020, 101, .	1.6	9
1306	Multipolar effective one body model for nonspinning black hole binaries. Physical Review D, 2020, 101, .	1.6	53
1308	GW Interferometer Euro-Asian Network: Detection Characteristics for Signals of Known Shape. Universe, 2020, 6, 140.	0.9	2
1309	Very extreme mass-ratio bursts in the Galaxy and neighbouring galaxies in relation to space-borne detectors. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 498, L61-L65.	1.2	5
1310	Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Physical Review D, 2020, 102, .	1.6	196
1311	Universal infrared scaling of gravitational wave background spectra. Physical Review D, 2020, 102, .	1.6	79
1312	Electromagnetic absorption, emission and scattering spectra of black holes with tidal charge. European Physical Journal Plus, 2020, 135, 1.	1.2	3
1313	Surrogate model for gravitational wave signals from comparable and large-mass-ratio black hole binaries. Physical Review D, 2020, 101, .	1.6	57
1314	Full orbital solution for the binary system in the northern Galactic disc microlensing event Gaia16aye. Astronomy and Astrophysics, 2020, 633, A98.	2.1	19
1315	Electromagnetic counterparts to gravitational wave events from <i>Gaia</i> . Monthly Notices of the Royal Astronomical Society, 2020, 493, 3264-3273.	1.6	4
1316	Gravitational Waves from Coalescing Binaries. Synthesis Lectures on Wave Phenomena in the Physical Sciences, 2020, 2, 1-115.	0.0	0
1317	Constraining Black Hole Populations in Globular Clusters Using Microlensing: Application to Omega Centauri. Astrophysical Journal Letters, 2020, 894, L9.	3.0	2
1318	Numerical relativity in spherical coordinates: A new dynamical spacetime and general relativistic MHD evolution framework for the Einstein Toolkit. Physical Review D, 2020, 101, .	1.6	19
1319	Probing the gravitational wave background from cosmic strings with LISA. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 034-034.	1.9	164
1320	Common-envelope Dynamics of a Stellar-mass Black Hole: General Relativistic Simulations. Astrophysical Journal, 2020, 894, 147.	1.6	21
1321	Shock propagation in accretion discs around merging black holes: self-similar solution. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5520-5533.	1.6	2
1322	Echoes from braneworld black holes. Physical Review D, 2020, 101, .	1.6	45
1323	Motion of massive particles around a charged Weyl black hole and the geodetic precession of orbiting gyroscopes. European Physical Journal C, 2020, 80, 1.	1.4	12

		CITATION REF	PORT	
#	Article		IF	CITATIONS
1324	Gravitational waves with orbital angular momentum. European Physical Journal C, 2020), 80, 1.	1.4	6
1325	Forecasting the interaction in dark matter-dark energy models with standard sirens fro telescope. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 021-021.	m the Einstein	1.9	27
1326	Disc tearing and Bardeen–Petterson alignment in GRMHD simulations of highly tilted discs. Monthly Notices of the Royal Astronomical Society, 2021, 507, 983-990.	I thin accretion	1.6	53
1327	Periodic orbits around brane-world black holes. European Physical Journal C, 2020, 80,	1.	1.4	38
1328	Improved binary pulsar constraints on the parametrized post-Einsteinian framework. Pl D, 2020, 101, .	ıysical Review	1.6	5
1329	A protocol of potential advantage in the low frequency range to gravitational wave det space based optical atomic clocks. European Physical Journal D, 2020, 74, 1.	ection with	0.6	3
1330	Quantum-enhanced interferometry for axion searches. Physical Review D, 2020, 101, .		1.6	17
1331	Generic searches for alternative gravitational wave polarizations with networks of inter detectors. Physical Review D, 2020, 101, .	ferometric	1.6	25
1332	Search for neutrino counterparts of gravitational-wave events detected by LIGO and Vi run O2 with the ANTARES telescope. European Physical Journal C, 2020, 80, 1.	rgo during	1.4	9
1333	<pre><mml:math display="inline" id=" altimg=" si5.svg"="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>F</mml:mi><mml:mrow><mml:mo>(</mml:mo></mml:mrow></mml:mrow></mml:math></pre>	no> <mml:mi>R</mml:mi> <r< td=""><td>nml:mo>) 1.0</td><td></td></r<>	nml:mo>) 1.0	
1334	Forecasting interacting vacuum-energy models using gravitational waves. Journal of Co Astroparticle Physics, 2020, 2020, 050-050.	osmology and	1.9	23
1335	Constraint on the radius of five-dimensional dS spacetime with GW170817 and GRB 1 Review D, 2020, 101, .	70817A. Physical	1.6	9
1336	Evolution of close binary stars: theory and observations. Physics-Uspekhi, 2020, 63, 20	9-244.	0.8	14
1337	Full analytical formulas for frequency response of space-based gravitational wave deter Physical Review D, 2020, 101, .	ttors.	1.6	14
1338	Explosions Driven by the Coalescence of a Compact Object with the Core of a Massive inside a Common Envelope: Circumstellar Properties, Light Curves, and Population Star Astrophysical Journal, 2020, 892, 13.	star Companion tistics.	1.6	57
1339	Gravitational Waves From Binary Black Hole Mergers: Modeling and Observations. From Astronomy and Space Sciences, 2020, 7, .	itiers in	1.1	10
1340	Quasinormal modes of an improved Schwarzschild black hole. Physics of the Dark Univ 100639.	erse, 2020, 30,	1.8	21
1341	Pulsar Timing Array Constraints on Primordial Black Holes with NANOGrav 11-Year Dat Review Letters, 2020, 124, 251101.	aset. Physical	2.9	97

#	Article	IF	CITATIONS
1342	Geodesics and periodic orbits around quantum-corrected black holes. Physics of the Dark Universe, 2020, 30, 100629.	1.8	43
1343	Scalar absorption: Black holes versus wormholes. Physical Review D, 2020, 101, .	1.6	20
1344	Robust Optical-Levitation-Based Metrology of Nanoparticle's Position and Mass. Physical Review Letters, 2020, 124, 223603.	2.9	50
1345	Stellar mass primordial black holes as cold dark matter. Monthly Notices of the Royal Astronomical Society, 2020, 496, 60-66.	1.6	3
1346	Does gravitational radiation impact the stellar habitable zone?. International Journal of Modern Physics D, 2020, 29, 2041017.	0.9	0
1347	Science with the TianQin observatory: Preliminary results on stellar-mass binary black holes. Physical Review D, 2020, 101, .	1.6	46
1348	Propagation of gravitational waves in a cosmological background. Physical Review D, 2020, 101, .	1.6	37
1349	Static topological black hole with a nonminimal derivative coupling and a nonlinear electromagnetic field of Born-Infeld type. Physical Review D, 2020, 101, .	1.6	1
1350	Some optimizations on detecting gravitational wave using convolutional neural network. Frontiers of Physics, 2020, 15, 1.	2.4	21
1351	A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1–100 kHz range*. Chinese Physics B, 2020, 29, 034205.	0.7	7
1352	Gravitational wave interference via gravitational lensing: Measurements of luminosity distance, lens mass, and cosmological parameters. Physical Review D, 2020, 101, .	1.6	31
1353	Note on the mass–radius relations for spherical compact objects in general relativity with semi-classical corrections. European Physical Journal C, 2020, 80, 1.	1.4	0
1354	Introducing the Search for Intermediate-mass Black Holes in Nearby Galaxies (SIBLING) Survey. Astrophysical Journal, 2020, 889, 113.	1.6	22
1355	Detecting gravitational self-lensing from stellar-mass binaries composed of black holes or neutron stars. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1506-1517.	1.6	9
1356	Investigation of Infrasound Background Noise at MÃįtra Gravitational and Geophysical Laboratory (MGGL). Universe, 2020, 6, 10.	0.9	2
1357	Searching for primordial black holes with stochastic gravitational-wave background in the space-based detector frequency band. Physical Review D, 2020, 101, .	1.6	13
1358	Merger estimates for Kerr-Sen black holes. Physical Review D, 2020, 101, .	1.6	10
1359	Quasinormal Modes of Charged Black Holes in Higher-Dimensional Einstein-Power-Maxwell Theory. Axioms, 2020, 9, 33.	0.9	14

#	Article	IF	CITATIONS
1360	Analytical analysis on the orbits of Taiji spacecrafts to infinite order of the orbital eccentricity. Physical Review D, 2020, 101, .	1.6	1
1361	Testing the no-hair nature of binary black holes using the consistency of multipolar gravitational radiation. Physical Review D, 2020, 101, .	1.6	18
1362	Fingerprints of Binary Black Hole Formation Channels Encoded in the Mass and Spin of Merger Remnants. Astrophysical Journal, 2020, 894, 133.	1.6	70
1363	Demonstration of the Multimaterial Coating Concept to Reduce Thermal Noise in Gravitational-Wave Detectors. Physical Review Letters, 2020, 125, 011102.	2.9	15
1364	Detecting the anisotropic astrophysical gravitational wave background in the presence of shot noise through cross-correlations. Physical Review D, 2020, 102, .	1.6	31
1365	Quasinormal modes of black holes with a scalar hair in Einstein-Maxwell-dilaton theory. Physica Scripta, 2020, 95, 085303.	1.2	14
1366	Measuring the speed of gravitational waves from the first and second observing run of Advanced LIGO and Advanced Virgo. Physical Review D, 2020, 102, .	1.6	18
1367	DDF operators, open string coherent states and their scattering amplitudes. Nuclear Physics B, 2020, 952, 114943.	0.9	19
1368	Two-colour interferometry and switching through optomechanical dark mode excitation. Nature Communications, 2020, 11, 2208.	5.8	25
1369	Impact of subdominant modes on the interpretation of gravitational-wave signals from heavy binary black hole systems. Physical Review D, 2020, 101, .	1.6	28
1370	Could acceleration of a pulsar affect braking index?. European Physical Journal C, 2020, 80, 1.	1.4	2
1371	Ultra-long-lived quasi-normal modes of neutron stars in massive scalar-tensor gravity. Europhysics Letters, 2020, 130, 50002.	0.7	30
1372	INO: Interplanetary network of optical lattice clocks. International Journal of Modern Physics D, 2020, 29, 1940002.	0.9	9
1373	Merger rate density of binary black holes formed in open clusters. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4268-4278.	1.6	44
1374	Binary–binary scattering in the secular limit. Monthly Notices of the Royal Astronomical Society, 2020, 494, 850-867.	1.6	5
1375	\$f(mathcal{G})\$ gravity after GW170817. Astrophysics and Space Science, 2020, 365, 1.	0.5	3
1376	Constraining Screened Modified Gravity with Spaceborne Gravitational-wave Detectors. Astrophysical Journal, 2020, 890, 163.	1.6	13
1377	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	1.5	188

#	ARTICLE Primordial black holes dark matter from inflection point models of inflation and the effects of	IF	CITATIONS
1378	reheating. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 037-037.	1.9	60
1379	Mass and star formation rate of the host galaxies of compact binary mergers across cosmic time. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3419-3434.	1.6	35
1380	A self-consistent method to estimate the rate of compact binary coalescences with a Poisson mixture model. Classical and Quantum Gravity, 2020, 37, 045007.	1.5	35
1381	Gravity and Nonlinear Symmetry Realization. Universe, 2020, 6, 12.	0.9	5
1382	Gravitational slingshots around black holes in a binary. European Physical Journal Plus, 2020, 135, 1.	1.2	1
1383	Quasi-normal modes of static spherically symmetric black holes in f(R) theory. European Physical Journal C, 2020, 80, 1.	1.4	11
1384	Singularities of plane gravitational waves in Einstein's general relativity. General Relativity and Gravitation, 2020, 52, 1.	0.7	3
1385	SOGRO — Terrestrial full-tensor detector for mid-frequency gravitational waves. International Journal of Modern Physics D, 2020, 29, 1940001.	0.9	10
1386	Echoes from quantum black holes. Physical Review D, 2020, 101, .	1.6	54
1387	Gravitational instability of exotic compact objects. European Physical Journal C, 2020, 80, 36.	1.4	15
1388	Gravitational wave detector OGRAN as multi-messenger project of RAS-MSU. International Journal of Modern Physics A, 2020, 35, 2040007.	0.5	4
1389	Photon trajectories on a first order scale-dependent static BTZ black hole. Classical and Quantum Gravity, 2020, 37, 075004.	1.5	20
1390	Should highly cited items be excluded in impact factor calculation? The effect of review articles on journal impact factor. Scientometrics, 2020, 122, 1697-1706.	1.6	28
1391	Gravitational waves from fast-spinning white dwarfs. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5949-5955.	1.6	12
1392	Comparison of post-Newtonian mode amplitudes with numerical relativity simulations of binary black holes. Classical and Quantum Gravity, 2020, 37, 065006.	1.5	18
1393	Effects of water adsorption on properties of electron-beam HfO2/SiO2 high-reflection coatings. Thin Solid Films, 2020, 697, 137826.	0.8	6
1394	A Galactic centre gravitational-wave Messenger. Scientific Reports, 2020, 10, 7054.	1.6	3
1395	A morphology-independent search for gravitational wave echoes in data from the first and second observing runs of Advanced LIGO and Advanced Virgo. Physical Review D, 2020, 101, .	1.6	41

#	Article	IF	CITATIONS
1396	Gravitational collider physics. Physical Review D, 2020, 101, .	1.6	66
1397	A tale of two exponentiations in \$\$ mathcal{N} \$\$ = 8 supergravity at subleading level. Journal of High Energy Physics, 2020, 2020, 1.	1.6	56
1398	Gravitational-wave signal recognition of LIGO data by deep learning. Physical Review D, 2020, 101, .	1.6	37
1399	Reframing SU(1,1) Interferometry. Advanced Quantum Technologies, 2020, 3, 1900138.	1.8	24
1400	Binary white dwarfs and decihertz gravitational wave observations: From the Hubble constant to supernova astrophysics. Astronomy and Astrophysics, 2020, 635, A120.	2.1	13
1401	Fast evaluation of multidetector consistency for real-time gravitational wave searches. Physical Review D, 2020, 101, .	1.6	51
1402	Rotating black holes with an anisotropic matter field. Physical Review D, 2020, 101, .	1.6	16
1403	First survey of spinning eccentric black hole mergers: Numerical relativity simulations, hybrid waveforms, and parameter estimation. Physical Review D, 2020, 101, .	1.6	35
1404	Stochastic gravitational wave background anisotropies in the mHz band: astrophysical dependencies. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 493, L1-L5.	1.2	29
1405	Eikonal quasinormal modes of black holes beyond general relativity. II. Generalized scalar-tensor perturbations. Physical Review D, 2020, 101, .	1.6	24
1406	Merger history of primordial black-hole binaries. Physical Review D, 2020, 101, .	1.6	42
1407	Range of novel black hole phase transitions via massive gravity: Triple points and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi> -fold reentrant phase transitions. Physical Review D, 2020, 101, .</mml:math 	1.6	20
1408	A Comprehensive Statistical Study of Gamma-Ray Bursts. Astrophysical Journal, 2020, 893, 77.	1.6	28
1409	The Galactic Center Black Hole, Sgr A*, as a Probe of New Gravitational Physics with the Scalaron Fifth Force. Astrophysical Journal, 2020, 893, 31.	1.6	14
1410	Spicing up the recipe for echoes from exotic compact objects: Orbital differences and corrections in rotating backgrounds. Physical Review D, 2020, 101, .	1.6	12
1411	Dark matter signals on a laser interferometer. Physical Review D, 2020, 101, .	1.6	9
1412	Peculiar acceleration of stellar-origin black hole binaries: Measurement and biases with LISA. Physical Review D, 2020, 101, .	1.6	39
1413	New binary black hole mergers in the second observing run of Advanced LIGO and Advanced Virgo. Physical Review D. 2020, 101	1.6	225

ARTICLE IF CITATIONS # Electrodynamics effects on colliding gravitational waves background. Modern Physics Letters A, 0.5 0 1414 2020, 35, 2050150. The origin of spin in binary black holes. Astronomy and Astrophysics, 2020, 635, A97. 1415 2.1 Constraining extra-spatial dimensions with observations of GW170817. Classical and Quantum Gravity, 1416 1.5 36 2020, 37, 105004. Numerical black hole solutions in modified gravity theories: Spherical symmetry case. Physical Review 1417 D, 2020, 101, . Solar System tests and chameleon effect in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>f</mml:mi><mml:mo 1418 mathvariant="bold" stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo mathvariant="bold") Tj ETQq0 0 0 rgBT /Overlock 10 T Gauge dependence of gravitational waves generated at second order from scalar perturbations. Physical Review D, 2020, 101, . 1419 1.6 Optically targeted search for gravitational waves emitted by core-collapse supernovae during the 1420 1.6 69 first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, . Corrections to the gravitational wave phasing. Physical Review D, 2020, 101, . 1421 1.6 Distinguishing Brans–Dicke–Kerr type naked singularities and black holes with their thin disk 1422 1.4 17 electromagnetic radiation properties. European Physical Journal C, 2020, 80, 1. 1423 Quantum Black Holes in the Sky. Universe, 2020, 6, 43. 38 Quasinormal spectra of scale-dependent Schwarzschild–de Sitter black holes. Physics of the Dark 1424 28 1.8 Universe, 2021, 31, 100743. Asymmetric nuclear matter and realistic potentials. Indian Journal of Physics, 2021, 95, 1499-1508. 1425 0.9 1426 Gravitational wave echoes from black holes in massive gravity. Physical Review D, 2021, 103, . 1.6 23 Improving Gravitational Wave Detection with 2D Convolutional Neural Networks., 2021, , . 1427 1428 Formation Channels of Single and Binary Stellar-Mass Black Holes., 2021, , 1-65. 27 Archival searches for stellar-mass binary black holes in LISA data. Physical Review D, 2021, 103, . 1429 Gravitational waves in $\$mathof {f(R)}$ gravity power law model. Indian Journal of Physics, 2022, 96, 1430 0.9 16 637-646. 1431 Gravitational Waves in Scalar–Tensor–Vector Gravity Theory. Universe, 2021, 7, 9.

#	Article	IF	CITATIONS
1432	Hybrid post-Newtonian effective-one-body scheme for spin-precessing compact-binary waveforms up to merger. Physical Review D, 2021, 103, .	1.6	26
1433	Inflationary gravitational waves in consistent <i>D</i> → 4 Einstein-Gauss-Bonnet gravity. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 054-054.	1.9	28
1434	New sensitivity curves for gravitational-wave signals from cosmological phase transitions. Journal of High Energy Physics, 2021, 2021, 1.	1.6	148
1435	Cosmic String Interpretation of NANOGrav Pulsar Timing Data. Physical Review Letters, 2021, 126, 041304.	2.9	163
1436	Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo. SoftwareX, 2021, 13, 100658.	1.2	275
1437	General relativistic formulas for mass and spin of a Kerr black hole in terms of redshifts and orbital parameters. Astronomische Nachrichten, 2021, 342, 198-204.	0.6	3
1438	Primordial Black Holes from Long-Range Scalar Forces and Scalar Radiative Cooling. Physical Review Letters, 2021, 126, 041101.	2.9	46
1439	Gravitational Measurements in Higher Dimensions. Galaxies, 2021, 9, 4.	1.1	3
1440	Gauge transformation of scalar induced tensor perturbation during matter domination. Physical Review D, 2021, 103, .	1.6	15
1441	Static spherically symmetric black hole's solution in Einstein–Maxwell–Yang–Mills-dilaton theory. International Journal of Modern Physics A, 2021, 36, 2150034.	0.5	5
1442	Gravitational redshift/blueshift of light emitted by geodesic test particles, frame-dragging and pericentre-shift effects, in the Kerr–Newman–de Sitter and Kerr–Newman black hole geometries. European Physical Journal C, 2021, 81, 1.	1.4	19
1443	Echoes of compact objects in scalar-tensor theories of gravity. Physical Review D, 2021, 103, .	1.6	13
1444	Lensing rates of gravitational wave signals displaying beat patterns detectable by DECIGO and B-DECIGO. Physical Review D, 2021, 103, .	1.6	10
1445	How can amorphous silicon improve current gravitational-wave detectors?. Physical Review D, 2021, 103, .	1.6	5
1446	How loud are echoes from exotic compact objects?. Physical Review D, 2021, 103, .	1.6	18
1447	Signatures of Einstein-Maxwell dilaton-axion gravity from the observed jet power and the radiative efficiency. Physical Review D, 2021, 103, .	1.6	6
1448	Regular rotating MOG dark compact object. European Physical Journal C, 2021, 81, 1.	1.4	4
1449	Detectability of gravitational waves from a population of inspiralling black holes in Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3932-3941.	1.6	6

C				БТ
L	IIAI	ION	Repo	ואי

#	Article	IF	CITATIONS
1450	Identifying Strong Gravitational-wave Lensing during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2021, 908, 97.	1.6	40
1451	"Conserved charges―of the Bondi-Metzner-Sachs algebra in the Brans-Dicke theory *. Chinese Physics C, 2021, 45, 023122.	1.5	11
1452	Searching for dynamical black holes in various theories of gravity. Physical Review D, 2021, 103, .	1.6	13
1453	Argon bubble formation in tantalum oxide-based films for gravitational wave interferometer mirrors. Optical Materials Express, 2021, 11, 707.	1.6	7
1454	Electromagnetic counterparts of compact binary mergers. Journal of Plasma Physics, 2021, 87, .	0.7	13
1455	Ground-based gravitational wave detection and its implications. Journal of the Korean Physical Society, 2021, 78, 975-984.	0.3	0
1456	Evolution of Galaxy Star Formation and Metallicity: Impact on Double Compact Object Mergers. Astrophysical Journal, 2021, 907, 110.	1.6	27
1457	thornado-hydro: A Discontinuous Galerkin Method for Supernova Hydrodynamics with Nuclear Equations of State*. Astrophysical Journal, Supplement Series, 2021, 253, 21.	3.0	6
1458	Primordial black holes and secondary gravitational waves from the Higgs field. Physical Review D, 2021, 103, .	1.6	26
1459	Primordial black holes and scalar-induced secondary gravitational waves from inflationary models with a noncanonical kinetic term. Physical Review D, 2021, 103, .	1.6	46
1460	Detection of gravitational waves using Bayesian neural networks. Physical Review D, 2021, 103, .	1.6	25
1461	Time series anomaly detection for gravitational-wave detectors based on the Hilbert–Huang transform. Journal of the Korean Physical Society, 2021, 78, 878-885.	0.3	5
1462	Sensitivity functions of spaceborne gravitational wave detectors for arbitrary time-delay interferometry combinations. Physical Review D, 2021, 103, .	1.6	15
1463	Charged black hole mergers: orbit circularisation and chirp mass bias. Classical and Quantum Gravity, 2021, 38, 075017.	1.5	12
1464	Implications of the NANOGrav result on primordial gravitational waves in nonstandard cosmologies. Physical Review D, 2021, 103, .	1.6	26
1465	Shadow cast by a rotating black hole with anisotropic matter. Physical Review D, 2021, 103, .	1.6	29
1466	Maxwell fields in boosted Kerr black holes. Physical Review D, 2021, 103, .	1.6	1
1467	Theoretical and observational constraints on regularized 4D Einstein-Gauss-Bonnet gravity. Physical Review D, 2021, 103, .	1.6	15

# 1468	ARTICLE Molecular contrails – triggered contraction by passages of massive objects through molecular clouds. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4466-4473.	IF 1.6	Citations 2
1469	Probing a black-bounce, traversable wormhole with weak deflection gravitational lensing. Physical Review D, 2021, 103, .	1.6	39
1470	Template bank for spinning compact binary mergers in the second observation run of Advanced LIGO and the first observation run of Advanced Virgo. Physical Review D, 2021, 103, .	1.6	14
1471	Quasinormal modes for dynamical black holes. Physical Review D, 2021, 103, .	1.6	6
1472	Gravitational Waves as Probes for Nuclear Physics. Nuclear Physics News, 2021, 31, 5-8.	0.1	0
1473	Reconstruction of primordial power spectrum of curvature perturbation from the merger rate of primordial black hole binaries. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 031.	1.9	26
1474	Primordial black holes and secondary gravitational waves from ultraslow roll and punctuated inflation. Physical Review D, 2021, 103, .	1.6	71
1475	Novel black-bounce spacetimes: Wormholes, regularity, energy conditions, and causal structure. Physical Review D, 2021, 103, .	1.6	80
1476	String memories lost and regained. Nuclear Physics B, 2021, 965, 115356.	0.9	11
1477	Statistical and systematic uncertainties in extracting the source properties of neutron star-black hole binaries with gravitational waves. Physical Review D, 2021, 103, .	1.6	12
1478	Modeling and searching for a stochastic gravitational-wave background from ultralight vector bosons. Physical Review D, 2021, 103, .	1.6	37
1479	Massive Star Modeling and Nucleosynthesis. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	3
1480	Characteristics of interaction between gravitons and photons. European Physical Journal Plus, 2021, 136, 1.	1.2	3
1481	Ergoregion instability and echoes for braneworld black holes: Scalar, electromagnetic, and gravitational perturbations. Physical Review D, 2021, 103, .	1.6	26
1482	Laser interferometer in presence of scalar field on gravitational wave background. Classical and Quantum Gravity, 2021, 38, 105010.	1.5	2
1483	The effect of floating-point precision on narrow-band all-sky continuous gravitational-wave search algorithm. Astronomy and Computing, 2021, 35, 100452 Mechanisms of producing primordial black holes by breaking the <mml:math< td=""><td>0.8</td><td>0</td></mml:math<>	0.8	0
1484	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi>SU</mml:mi><mml:mo stretchy="false">(<mml:mn>2<mml:mo>,</mml:mo><mml:mtext> </mml:mtext><mu< td=""><td></td><td></td></mu<></mml:mn></mml:mo </mml:mrow>		
1485	stretchy="false">(<mml:mn>2</mml:mn> mml:mo) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 77 Td (stre Characterization of lensing selection effects for LISA massive black hole binary mergers. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3610-3618.	tchy="fals 1.6	21

#	Article	IF	CITATIONS
1486	Dirac Equation on the Kerr–Newman Spacetime and Heun Functions. Advances in High Energy Physics, 2021, 2021, 1-10.	0.5	7
1487	Brans-Dicke analogue of the Roberts geometry. Physical Review D, 2021, 103, .	1.6	1
1488	High frequency background gravitational waves from spontaneous emission of gravitons by hydrogen and helium. European Physical Journal C, 2021, 81, 1.	1.4	2
1489	The Merger Rate of Black Holes in a Primordial Black Hole Cluster. Physics, 2021, 3, 372-378.	0.5	4
1490	Tidal effects in the motion of gas clouds around boson stars. Physical Review D, 2021, 103, .	1.6	3
1491	Influence of bulk mass distribution on orbital precession of S2 star in Yukawa gravity. European Physical Journal D, 2021, 75, 1.	0.6	10
1492	Could PBHs and secondary GWs have originated from squeezed initial states?. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 010.	1.9	11
1493	Critical behavior of charged AdS black holes surrounded by quintessence via an alternative phase space. Physical Review D, 2021, 103, .	1.6	13
1494	Light echos and coherent autocorrelations in a black hole spacetime. Classical and Quantum Gravity, 2021, 38, 125006.	1.5	13
1495	Einstein-Æther gravity in the light of event horizon telescope observations of M87*. Physics of the Dark Universe, 2021, 32, 100835.	1.8	46
1496	Inner horizon instability and the unstable cores of regular black holes. Journal of High Energy Physics, 2021, 2021, 1.	1.6	43
1497	Gravitational wave signatures from domain wall and strong first-order phase transitions in a two complex scalar extension of the Standard Model. Journal of High Energy Physics, 2021, 2021, 1.	1.6	10
1499	Identifying type II strongly lensed gravitational-wave images in third-generation gravitational-wave detectors. Physical Review D, 2021, 103, .	1.6	28
1500	Sky localization of space-based gravitational wave detectors. Physical Review D, 2021, 103, .	1.6	15
1501	Confusing Head-On Collisions with Precessing Intermediate-Mass Binary Black Hole Mergers. Physical Review Letters, 2021, 126, 201101.	2.9	46
1502	Probing planetary-mass primordial black holes with continuous gravitational waves. Physics of the Dark Universe, 2021, 32, 100836.	1.8	35
1504	Improved analysis of GW190412 with a precessing numerical relativity surrogate waveform model. Physical Review D, 2021, 103, .	1.6	15
1505	Reconstruction method in the kinetic gravity braiding theory with shift-symmetric. European Physical Journal Plus, 2021, 136, 1.	1.2	6

#	Article	IF	CITATIONS
1506	A brief overview of 8 m prototype facility of laser interferometer for Taiji pathfinder mission. Applied Physics B: Lasers and Optics, 2021, 127, 1.	1.1	4
1507	Gravitational wave complementarity and impact of NANOGrav data on gravitational leptogenesis. Journal of High Energy Physics, 2021, 2021, 1.	1.6	53
1508	Measuring the primordial gravitational wave background in the presence of other stochastic signals. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 052.	1.9	9
1509	Accuracy of parameter estimations with a spaceborne gravitational wave observatory. Physical Review D, 2021, 103, .	1.6	10
1510	Primordial black holes and secondary gravitational waves from chaotic inflation. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	23
1511	Testing gravity of a disformal Kerr black hole in quadratic degenerate higher-order scalar-tensor theories by quasi-periodic oscillations. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 043.	1.9	7
1512	Robust approach to thermal resummation: Standard Model meets a singlet. Journal of High Energy Physics, 2021, 2021, 1.	1.6	38
1513	Regular black holes with stable cores. Physical Review D, 2021, 103, .	1.6	32
1514	Editorial: Black Holes, Extended Phase Space Thermodynamics and Phase Transitions. Frontiers in Physics, 2021, 9, .	1.0	0
1515	Analytical effective one-body formalism for extreme-mass-ratio inspirals with eccentric orbits. Communications in Theoretical Physics, 2021, 73, 085401.	1.1	7
1516	Effect of gravitational wave on shadow of a Schwarzschild black hole. European Physical Journal C, 2021, 81, 1.	1.4	8
1517	Double peaks of gravitational wave spectrum induced from inflection point inflation. European Physical Journal C, 2021, 81, 1.	1.4	14
1518	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103, .	1.6	338
1519	Assessing the impact of transient orbital resonances. Physical Review D, 2021, 103, .	1.6	24
1520	Constraints on quasinormal-mode frequencies with LIGO-Virgo binary–black-hole observations. Physical Review D, 2021, 103, .	1.6	43
1521	Numerical Simulations of Arm-locking for Taiji Space Gravitational Waves Detection. Microgravity Science and Technology, 2021, 33, 1.	0.7	4
1522	Order in the chaos. Astronomy and Astrophysics, 2021, 650, A189.	2.1	26
1523	Big bounce and future time singularity resolution in Bianchi I cosmologies: The projective invariant Nieh-Yan case. Physical Review D, 2021, 103, .	1.6	30

#	Article	IF	CITATIONS
1524	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	2.8	1,097
1525	Generalised gravitational wave burst generation with generative adversarial networks. Classical and Quantum Gravity, 2021, 38, 155005.	1.5	11
1526	On the feasibility of truncated Israel–Stewart model in the context of late acceleration. Classical and Quantum Gravity, 2021, 38, 145016.	1.5	4
1527	GstLAL: A software framework for gravitational wave discovery. SoftwareX, 2021, 14, 100680.	1.2	37
1528	Primordial Black Holes Formation and Secondary Gravitational Waves in Nonminimal Derivative Coupling Inflation. Astrophysical Journal, 2021, 915, 118.	1.6	14
1529	Multimessenger Detection Rates and Distributions of Binary Neutron Star Mergers and Their Cosmological Implications. Astrophysical Journal, 2021, 916, 54.	1.6	28
1530	First- and second-generation black hole and neutron star mergers in 2+2 quadruples: population statistics. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5345-5360.	1.6	23
1531	Upper limits on the temperature of inspiraling astrophysical black holes. European Physical Journal C, 2021, 81, 1.	1.4	3
1532	An interactive gravitational-wave detector model for museums and fairs. American Journal of Physics, 2021, 89, 702-712.	0.3	1
1533	High eccentricities and high masses characterize gravitational-wave captures in galactic nuclei as seen by Earth-based detectors. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1665-1696.	1.6	34
1534	Improved gravitational-wave constraints on higher-order curvature theories of gravity. Physical Review D, 2021, 104, .	1.6	56
1535	Features of the inflaton potential and the power spectrum of cosmological perturbations. Physical Review D, 2021, 104, .	1.6	28
1536	Tunable Amplification and Cooling of a Diamond Resonator with a Microscope. Physical Review Applied, 2021, 16, .	1.5	2
1537	Prospects for estimating parameters from gravitational waves of superspinar binaries. Physical Review D, 2021, 104, .	1.6	1
1538	Small scale induced gravitational waves from primordial black holes, aÂstringent lower mass bound, and the imprints of an early matter toÂradiation transition. Physical Review D, 2021, 104, .	1.6	21
1539	Multipole analysis on gyroscopic precession in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>f</mml:mi><mml:mo stretchy="false">(<mml:mi>R</mml:mi><mml:mo stretchy="false">)</mml:mo> gravity with irreducible Cartesian tensors. Physical Review D. 2021, 104</mml:mo </mml:math 	1.6	3
1540	Tensor spectrum of turbulence-sourced gravitational waves as a constraint on graviton mass. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 015.	1.9	4
1541	Revealing optical loss from modal frequency degeneracy in a long optical cavity. Optics Express, 2021, 29, 23902.	1.7	2

#	Article	IF	CITATIONS
1542	Accretion-modified Stars in Accretion Disks of Active Galactic Nuclei: Gravitational-wave Bursts and Electromagnetic Counterparts from Merging Stellar Black Hole Binaries. Astrophysical Journal Letters, 2021, 916, L17.	3.0	26
1543	Gravitational lensing by a quantum deformed Schwarzschild black hole. European Physical Journal C, 2021, 81, 1.	1.4	26
1544	Baryogenesis from ultralight primordial black holes and strong gravitational waves from cosmic strings. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 021.	1.9	46
1545	Calibrating systematic errors in the distance determination with the luminosity–distance space large-scale structure of dark sirens and its potential applications. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3381-3386.	1.6	1
1546	Primordial black holes and secondary gravitational waves from natural inflation. Nuclear Physics B, 2021, 969, 115480.	0.9	32
1547	Distinguish the f(T) model from \$\$Lambda \$\$CDM model with Gravitational Wave observations. European Physical Journal C, 2021, 81, 1.	1.4	5
1548	Newtonian-noise characterization at Terziet in Limburg—the Euregio Meuse–Rhine candidate site for Einstein Telescope. Classical and Quantum Gravity, 2022, 39, 025009.	1.5	8
1549	Morphology-independent test of the mixed polarization content of transient gravitational wave signals. Physical Review D, 2021, 104, .	1.6	12
1550	Gravitational-wave Signatures from Compact Object Binaries in the Galactic Center. Astrophysical Journal, 2021, 917, 76.	1.6	17
1551	GrailQuest: hunting for atoms of space and time hidden in the wrinkle of Space-Time. Experimental Astronomy, 2021, 51, 1255-1297.	1.6	7
1552	Spherical inhomogeneous solutions of Einstein and scalar–tensor gravity: A map of the land. Physics Reports, 2021, 925, 1-58.	10.3	25
1553	Gravitational Capture Cross-Section of Particles by Schwarzschild-Tangherlini Black Holes. Universe, 2021, 7, 307.	0.9	3
1554	Effect of data gaps on the detectability and parameter estimation of massive black hole binaries with LISA. Physical Review D, 2021, 104, .	1.6	17
1555	Holographic bound on area of a compact binary merger remnant. Physical Review D, 2021, 104, .	1.6	1
1556	Comparison of the characteristics of magnetars born in death of massive stars and merger of compact objects with <i>swift</i> gamma-ray burst data. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2505-2514.	1.6	6
1557	Shadow analysis for rotating black holes in the presence of plasma for an expanding universe. Physical Review D, 2021, 104, .	1.6	44
1558	Double-peaked inflation model: Scalar induced gravitational waves and primordial-black-hole suppression from primordial non-Gaussianity. Physical Review D, 2021, 104, .	1.6	26
1559	Capture of Massless and Massive Particles by Parameterized Black Holes. Galaxies, 2021, 9, 65.	1.1	4

#	Article	IF	CITATIONS
1560	Strongly magnetized hot QCD matter and stochastic gravitational wave background. Physical Review D, 2021, 104, .	1.6	7
1561	A large-scale heuristic modification of Newtonian gravity as an alternative approach to dark energy and dark matter. Journal of Astrophysics and Astronomy, 2021, 42, .	0.4	4
1562	Lensing magnification: gravitational waves from coalescing stellar-mass binary black holes. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1253-1261.	1.6	6
1563	EHT tests of the strong-field regime of general relativity. Classical and Quantum Gravity, 2021, 38, 21LT01.	1.5	38
1564	Looking for extra dimensions in the observed quasi-periodic oscillations of black holes. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 037.	1.9	10
1565	Detecting gravitational waves in data with non-stationary and non-Gaussian noise. Physical Review D, 2021, 104, .	1.6	28
1566	Constraining bright optical counterparts of fast radio bursts. Astronomy and Astrophysics, 2021, 653, A119.	2.1	10
1567	Radio signatures from encounters between neutron stars and QCD-axion minihalos around primordial blackÂholes. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 004.	1.9	16
1568	Reaction force of gravitational radiation in an effective-one-body theory based on the post-Minkowskian approximation. European Physical Journal C, 2021, 81, 1.	1.4	0
1569	Improving significance of binary black hole mergers in Advanced LIGO data using deep learning: Confirmation of GW151216. Physical Review D, 2021, 104, .	1.6	12
1570	Spins of primordial black holes formed in different cosmological scenarios. Physical Review D, 2021, 104, .	1.6	24
1571	Polar Quasinormal Modes of Neutron Stars in Massive Scalar-Tensor Theories. Frontiers in Physics, 2021, 9, .	1.0	9
1572	Toward optomechanical parametric instability prediction in ground-based gravitational wave detectors. Applied Optics, 2021, 60, 8540.	0.9	2
1573	Fundamental limits and optimal estimation of the resonance frequency of a linear harmonic oscillator. Communications Physics, 2021, 4, .	2.0	4
1574	Decoding the phases of early and late time reheating through imprints on primordial gravitational waves. Physical Review D, 2021, 104, .	1.6	22
1575	Phase-sensitive manipulation of squeezed vacuum via a dual-recycled michelson interferometer. Optics Express, 2021, 29, 34826-34834.	1.7	2
1576	Non-singular black holes and mass inflation in modified gravity. Physics of the Dark Universe, 2021, 33, 100853.	1.8	8
1577	Prototype superfluid gravitational wave detector. Physical Review D, 2021, 104, .	1.6	9

#	Article	IF	CITATIONS
1578	Recognizing black holes in gravitational-wave observations: Challenges in telling apart impostors in mass-gap binaries. Physical Review D, 2021, 104, .	1.6	13
1579	Refined clock-jitter reduction in the Sagnac-type time-delay interferometry combinations. Physical Review D, 2021, 104, .	1.6	10
1580	Time-frequency-domain method for thrust noise characteristics of electric thrusters. Acta Astronautica, 2021, 188, 308-325.	1.7	8
1581	Geometric transformations on a topological black hole and their applications. Chinese Journal of Physics, 2021, 74, 53-59.	2.0	4
1582	Four dimensional Einstein-power-Maxwell black hole solutions in scale-dependent gravity. Physics of the Dark Universe, 2021, 31, 100783.	1.8	14
1583	Energy map and effective metric in an effective-one-body theory based on the second-post-Minkowskian approximation. European Physical Journal C, 2021, 81, 1.	1.4	4
1584	Minimally modified gravity with an auxiliary constraint: A Hamiltonian construction. Physical Review D, 2021, 103, .	1.6	18
1585	Periastron shift of compact stellar orbits from general relativistic and tidal distortion effects near Sgr A*. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3761-3768.	1.6	5
1586	New effects in gravitational waves and memory. Physical Review D, 2021, 103, .	1.6	4
1587	Electromagnetic emission from circumbinary disk of merging black holes. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20200801.	0.3	1
1588	Tests of general relativity using multiband observations of intermediate mass binary black hole mergers. Physical Review D, 2021, 103, .	1.6	20
1589	Gravitational memory effects and Bondi-Metzner-Sachs symmetries in scalar-tensor theories. Journal of High Energy Physics, 2021, 2021, 1.	1.6	22
1590	Second-order post-Minkowskian scattering in arbitrary dimensions. Journal of High Energy Physics, 2020, 2020, 1.	1.6	82
1591	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
1594	Low-metallicity massive single stars with rotation. Astronomy and Astrophysics, 2019, 623, A8.	2.1	17
1595	BSE versus StarTrack: Implementations of new wind, remnant-formation, and natal-kick schemes in NBODY7 and their astrophysical consequences. Astronomy and Astrophysics, 2020, 639, A41.	2.1	73
1596	Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes. Astronomy and Astrophysics, 2020, 636, A104.	2.1	256
1597	Synthetic catalog of black holes in the Milky Way. Astronomy and Astrophysics, 2020, 638, A94.	2.1	40

#	Article	IF	CITATIONS
1598	Predictions for the hydrogen-free ejecta of pulsational pair-instability supernovae. Astronomy and Astrophysics, 2020, 640, A56.	2.1	51
1599	Numerical investigation of plasma-driven superradiant instabilities. Classical and Quantum Gravity, 2020, 37, 175006.	1.5	25
1600	Analyses of residual accelerations for TianQin based on the global MHD simulation. Classical and Quantum Gravity, 2020, 37, 185017.	1.5	14
1601	Testing the Kerr nature of supermassive and intermediate-mass black hole binaries using spin-induced multipole moment measurements. Classical and Quantum Gravity, 2020, 37, 205019.	1.5	11
1602	Critical heat engines in massive gravity. Classical and Quantum Gravity, 2020, 37, 205020.	1.5	8
1603	The missing link in gravitational-wave astronomy: discoveries waiting in the decihertz range. Classical and Quantum Gravity, 2020, 37, 215011.	1.5	90
1604	Axisymmetric hydrodynamics in numerical relativity using a multipatch method. Classical and Quantum Gravity, 2020, 37, 235010.	1.5	2
1605	A fixed point for black hole distributions. Classical and Quantum Gravity, 2021, 38, 045012.	1.5	6
1606	Spiky CMB distortions from primordial bubbles. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 037-037.	1.9	4
1607	Merger of dark matter axion clumps and resonant photon emission. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 067-067.	1.9	38
1608	Cosmology and gravitational waves in consistent <i>D</i> → 4 Einstein-Gauss-Bonnet gravity. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 014-014.	1.9	52
1609	Gravitational waves induced by scalar perturbations with a lognormal peak. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 037-037.	1.9	91
1610	Primordial black holes from QCD axion bubbles. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 060-060.	1.9	17
1611	Diffraction losses of a Fabry-Perot cavity with nonidentical non-spherical mirrors. Journal of Optics (United Kingdom), 2020, 22, 115603.	1.0	1
1612	Convolutional neural network classifier for the output of the time-domain \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves. Machine Learning: Science and Technology, 2020, 1, 025016.	2.4	18
1613	Searching for cross-correlation between stochastic gravitational-wave background and galaxy number counts. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1666-1672.	1.6	19
1614	Implications of Einstein–Maxwell dilaton–axion gravity from the black hole continuum spectrum. Monthly Notices of the Royal Astronomical Society, 2020, 500, 481-492.	1.6	7
1615	PS15cey and PS17cke: prospective candidates from the Pan-STARRS Search for kilonovae. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4213-4228.	1.6	13

#	Article	IF	CITATIONS
1616	Are stellar-mass binary black hole mergers isotropically distributed?. Monthly Notices of the Royal Astronomical Society, 2020, 501, 970-977.	1.6	13
1617	Intermediate mass black hole formation in compact young massive star clusters. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5257-5273.	1.6	60
1618	Model-independent discovery prospects for primordial black holes at LIGO. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	7
1619	Polarization whorls from M87* at the event horizon telescope. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190618.	1.0	11
1620	Gravitational wave generation in a viable scenario of inflationary magnetogenesis. Physical Review D, 2020, 101, .	1.6	12
1621	Probing resonant excitations in exotic compact objects via gravitational waves. Physical Review D, 2020, 102, .	1.6	7
1622	Bayesian analysis of LIGO-Virgo mergers: Primordial versus astrophysical black hole populations. Physical Review D, 2020, 102, .	1.6	75
1623	Parameter estimation of stellar-mass black hole binaries with LISA. Physical Review D, 2020, 102, .	1.6	28
1624	Application of the third RIT binary black hole simulations catalog to parameter estimation of gravitational-wave signals from the LIGO-Virgo O1 and O2 observational runs. Physical Review D, 2020, 102, .	1.6	7
1625	Binary black hole spectroscopy: A no-hair test of GW190814 and GW190412. Physical Review D, 2020, 102, .	1.6	21
1626	Black hole-neutron star coalescence: Effects of the neutron star spin on jet launching and dynamical ejecta mass. Physical Review D, 2020, 102, .	1.6	15
1627	Thermal noise from icy mirrors in gravitational wave detectors. Physical Review Research, 2019, 1, .	1.3	9
1628	Surrogate models for precessing binary black hole simulations with unequal masses. Physical Review Research, 2019, 1, .	1.3	213
1629	CAMELOT: design and performance verification of the detector concept and localization capability. , 2018, , .		11
1630	Shadows of rotating Hayward–de Sitter black holes with astrometric observables. European Physical Journal C, 2020, 80, 1.	1.4	21
1631	Shadow of a disformal Kerr black hole in quadratic degenerate higher-order scalar–tensor theories. European Physical Journal C, 2020, 80, 1.	1.4	32
1632	Exploring the CPT violation and birefringence of gravitational waves with ground- and space-based gravitational-wave interferometers. European Physical Journal C, 2020, 80, 1.	1.4	9
1633	PhaseTracer: tracing cosmological phases and calculating transition properties. European Physical Journal C, 2020, 80, 1.	1.4	20

#	Article	IF	CITATIONS
1634	Waves from the centre: probing PBH and other macroscopic dark matter with LISA. European Physical Journal C, 2020, 80, 1.	1.4	8
1635	Formation of the first stars. , 2019, , 67-97.		19
1636	Astrodynamical middle-frequency interferometric gravitational wave observatory AMIGO: Mission concept and orbit design. International Journal of Modern Physics D, 2020, 29, 1940007.	0.9	13
1637	High dynamic range thermally actuated bimorph mirror for gravitational wave detectors. Applied Optics, 2020, 59, 2784.	0.9	17
1639	Radio Follow-up of a Candidate Î ³ -Ray Transient in the Sky Localization Area of GW170608. Astrophysical Journal, 2019, 884, 16.	1.6	3
1640	Calibrating the Cosmic Distance Ladder Using Gravitational-wave Observations. Astrophysical Journal, 2019, 886, 71.	1.6	13
1641	Common Envelope Wind Tunnel: The Effects of Binary Mass Ratio and Implications for the Accretion-driven Growth of LIGO Binary Black Holes. Astrophysical Journal, 2020, 897, 130.	1.6	29
1642	The Cosmic Merger Rate Density Evolution of Compact Binaries Formed in Young Star Clusters and in Isolated Binaries. Astrophysical Journal, 2020, 898, 152.	1.6	75
1643	Formation and Evolution of Compact-object Binaries in AGN Disks. Astrophysical Journal, 2020, 898, 25.	1.6	207
1644	Black Hole Genealogy: Identifying Hierarchical Mergers with Gravitational Waves. Astrophysical Journal, 2020, 900, 177.	1.6	94
1645	Gravitational-wave Capture in Spinning Black Hole Encounters. Astrophysical Journal, 2020, 900, 175.	1.6	5
1646	Neutron Star–Black Hole Mergers from Gravitational-wave Captures. Astrophysical Journal, 2020, 903, 8.	1.6	21
1647	Constraining the Kilonova Rate with Zwicky Transient Facility Searches Independent of Gravitational Wave and Short Gamma-Ray Burst Triggers. Astrophysical Journal, 2020, 904, 155.	1.6	26
1648	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	3.0	406
1649	An Early-warning System for Electromagnetic Follow-up of Gravitational-wave Events. Astrophysical Journal Letters, 2020, 905, L25.	3.0	48
1650	How a Laser Physics Induced Kerr-Newman Black Hole Can Release Gravitational Waves without Igniting the Black Hole Bomb (Explosion of a Mini Black Hole in a Laboratory). Journal of High Energy Physics Gravitation and Cosmology, 2018, 04, 743-778.	0.3	1
1651	Formation and evolution of binary neutron stars: mergers and their host galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1557-1586.	1.6	17
1652	A new experiment for gravitational wave detection. Canadian Journal of Physics, 2021, 99, 975-981.	0.4	1

ARTICLE IF CITATIONS Primordial black holes and stochastic gravitational wave background from inflation with a 1653 42 1.6 noncanonical spectator field. Physical Review D, 2021, 104, . A template-free approach for waveform extraction of gravitational wave events. Scientific Reports, 1654 1.6 2021, 11, 20507 Testing no-hair theorem by quasi-periodic oscillations: the quadrupole of GRO J1655–40. Journal of 1655 1.9 5 Cosmology and Astroparticle Physics, 2021, 2021, 003. Lensing by primordial black holes: Constraints from gravitational wave observations. Physical Review D, 2021, 104, . High-Energy Alerts in the Multi-Messenger Era. Universe, 2021, 7, 393. 1657 0.9 5 Poisson-Arago spot for gravitational waves. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1. Rotations of the polarization of a gravitational wave propagating in universe. Nuclear Physics B, 2021, 1659 0.9 0 973, 115578. Using Barbour's Ephemeris Time, and Padmanabhan's Inflaton Value, plus Will's Massive Graviton Velocity to Isolate Rest Energy of Massive Graviton as Compared to Racetrack Inflation Results of Graviton Physics and Modified Wheeler de Witt Results of Wormhole Physics. Journal of High Energy Physics Gravitation and Cosmology. 2017. 03. 754-775. 1660 0.3 LIGO spots gravitational waves for third time. Nature, 0, , . 1661 13.7 0 SEARCH FOR RADIO COUNTERPARTS OF GRAVITATIONAL-WAVE EVENTS DETECTED BY LIGO/VIRGO EXPERIMENTS IN THE DATA OF DAILY SURVEY OF BSA LPI AT 110 MHZ. Radio Physics and Radio Astronomy, 0.1 2017, 22, 284-293. Symmetries in Evolving Space-Time and Their Connection to High-Frequency Gravitational Wave 1663 0 0.3 Production. Journal of High Energy Physics Gravitation and Cosmology, 2018, 04, 492-503. Introduction to the Standard Model and Quark Flavour. Springer Theses, 2018, , 5-24. 1664 0.0 Astronomical Distance Determination in the Space Age. Space Sciences Series of ISSI, 2018, , 283-351. 1666 0.0 0 Identifying a Kaluza Klein Treatment of a Graviton Permitting a Deceleration Parameter <i>q</i>(<i>z</i>) as an Alternative to Standard DE. Journal of High Energy Physics Gravitation and Cosmology, 2019, 05, 193-207. 1667 0.3 1668 Weak Fields and Gravitational Waves. Compact Textbooks in Mathematics, 2019, , 119-165. 0.1 0 A Kaluza Klein Treatment of a Graviton and Deceleration Parameter Q(Z) as an Alternative to Standard DE and Its Possible Link to Standard DE Equation of State as Given by Li, Li, Wang and Wang, in 2017. Journal of High Energy Physics Gravitation and Cosmology, 2019, 05, 208-217, Refining Black Hole Physics to Obtain Planck's Constant from Information Shared from Cosmological 1670 Cycle to Cycle (Avoiding Super-Radiance). Journal of High Energy Physics Gravitation and Cosmology, 0.3 1 2019, 05, 464-472. Hearing the Nature of Compact Objects. Tutorials, Schools, and Workshops in the Mathematical 1671 Sciences, 2019, , 333-343.

#	Article	IF	CITATIONS
1674	Characterizing High Level LIGO Gravitational Wave Data Using Deep Learning. Advances in Intelligent Systems and Computing, 2020, , 848-860.	0.5	0
1675	Who Ordered That? On the Origin of LIGO's Merging Binary Black Holes. , 2019, , 243-257.		0
1676	Double end-mirror sloshing cavity for optical dilution of thermal noise in mechanical resonators. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1643.	0.9	1
1677	Gravitational wave echoes from interacting quark stars. Physical Review D, 2021, 104, .	1.6	11
1678	Parameter estimation for space-based gravitational wave detectors with ringdown signals. Physical Review D, 2021, 104, .	1.6	11
1679	Enhanced on-chip phase measurement by inverse weak value amplification. Nature Communications, 2021, 12, 6247.	5.8	9
1680	Topics on Strong Gravity. , 2020, , .		0
1681	Lensed gravitational waves: Scattering and applications. Chinese Science Bulletin, 2021, 66, 2516-2528.	0.4	1
1682	Modernization and Methods of Maintaining the Operating Mode of the OGRAN (Optoacoustic Gravity) Tj ETQqO	08.1gBT/	Overlock 10
1683	Gravitational Higgs mechanism and resulting observational effects. Physical Review D, 2020, 102, .	1.6	2
1684	Echoes from a singularity. Physical Review D, 2020, 102, .	1.6	12
1687	Interpreting gravitational-wave burst detections: constraining source properties without astrophysical models. Classical and Quantum Gravity, 2020, 37, 105011.	1.5	1
1688	The Gravitational-wave physics II: Progress. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	54
1689	Tidal heating of black holes and exotic compact objects on the brane. Physical Review D, 2021, 104, .	1.6	12
1690	Echoes of novel black-bounce spacetimes. Physical Review D, 2021, 104, .	1.6	26
1691	Rotating black hole in ?(?) theory. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 007.	1.9	7

1692	Gaussian mixture models of the total mass distribution of stellar black holes from LIGO-Virgo GWTC-2: Implications on the origin of GW190521. Physical Review D, 2021, 104, .	1.6	0
1693	Electromagnetic response to high-frequency gravitational waves having additional polarization states: distinguishing and probing tensor-mode, vector-mode and scalar-mode gravitons. European Physical Journal C, 2020, 80, 1.	1.4	7

#	Article	IF	Citations
1694	Gravity induced quantum interference on gravitational wave background. Modern Physics Letters A, 2020, 35, 2050290.	0.5	0
1695	Has LIGO detected primordial black hole dark matter? - tidal disruption in binary black hole formation. Research in Astronomy and Astrophysics, 2020, 20, 185.	0.7	0
1696	P-stars in the gravitational wave era. European Physical Journal Plus, 2020, 135, 1.	1.2	0
1697	MASTER Follow-up Observations of LIGO GW170104 Event. Research Notes of the AAS, 2020, 4, 211.	0.3	1
1698	Dynamics of charged test particles around quantum-corrected Schwarzschild black holes. European Physical Journal C, 2021, 81, 1.	1.4	25
1699	The Panchromatic Afterglow of GW170817: The Full Uniform Data Set, Modeling, Comparison with Previous Results, and Implications. Astrophysical Journal, 2021, 922, 154.	1.6	27
1700	Self-Similar Perturbation of an Accretion Disc around Merging Black Holes. Astronomy Reports, 2021, 65, 1102-1121.	0.2	1
1701	Polarized image of a Schwarzschild black hole with a thin accretion disk as photon couples to Weyl tensor. European Physical Journal C, 2021, 81, 1.	1.4	20
1702	Can QCD axion stars explain Subaru HSC microlensing?. Physical Review D, 2021, 104, .	1.6	3
1703	Primordial Black Holes And Gravitational Waves Based On No-Scale Supergravity. Journal of Physics: Conference Series, 2021, 2105, 012008.	0.3	2
1704	Intensity and anisotropies of the stochastic gravitational wave background from merging compact binaries in galaxies. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 032.	1.9	21
1705	Accretion onto a quintessence contaminated rotating black hole: violating the lower limit for eta over s. European Physical Journal C, 2021, 81, 1.	1.4	1
1706	Novel relations in massive gravity at Hawking-Page transition. Physical Review D, 2021, 104, .	1.6	10
1707	Gravitational wave propagation beyond general relativity: waveform distortions and echoes. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 048.	1.9	24
1708	Extended reduced-order surrogate models for scalar-tensor gravity in the strong field and applications to binary pulsars and gravitational waves. Physical Review D, 2021, 104, .	1.6	8
1709	Time delay interferometry using laser frequency comb as the direct signal source. Optics and Lasers in Engineering, 2022, 151, 106938.	2.0	6
1710	Polar modes of gravitational waves in Rastall cosmology. Classical and Quantum Gravity, 2021, 38, 025008.	1.5	8
1711	Bound orbits around modified Hayward black holes. Modern Physics Letters A, 2021, 36, .	0.5	11

#	Article	IF	CITATIONS
1712	AGILE Observations of the LIGO-Virgo Gravitational-wave Events of the GWTC-1 Catalog. Astrophysical Journal, 2022, 924, 80.	1.6	6
1713	NANOGrav hints on planet-mass primordial black holes. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	53
1714	Weak deflection angle of Kazakov–Solodukhin black hole in plasma medium using Gauss–Bonnet theorem and its greybody bonding. European Physical Journal Plus, 2022, 137, 1.	1.2	31
1715	Imprint of early dark energy in stochastic gravitational wave background. Physical Review D, 2022, 105,	1.6	6
1716	Precessing and periodic orbits around Lee–Wick black holes. European Physical Journal Plus, 2022, 137, 1.	1.2	17
1717	Constraints on the Nieh-Yan modified teleparallel gravity with gravitational waves. Physical Review D, 2022, 105, .	1.6	25
1718	Constraining the orbital eccentricity of inspiralling compact binary systems with Advanced LIGO. Physical Review D, 2022, 105, .	1.6	20
1719	Analytic Integral Solutions for Induced Gravitational Waves. Astrophysical Journal, 2022, 925, 102.	1.6	14
1720	Estimating the final spin of binary black holes merger in STU supergravity. Nuclear Physics B, 2022, 975, 115665.	0.9	1
1721	The Second AGILE MCAL Gamma-Ray Burst Catalog: 13 yr of Observations. Astrophysical Journal, 2022, 925, 152.	1.6	8
1722	Is It Possible to See the Breaking Point of General Relativity near the Galactic Center Black Hole? Consideration of Scalaron and Higher-dimensional Gravity. Astrophysical Journal, 2022, 925, 126.	1.6	7
1723	Spin Dynamics of Moving Bodies in Rotating Black Hole Spacetimes. Annalen Der Physik, 2022, 534, .	0.9	2
1724	Investigating the relation between gravitational wave tests of general relativity. Physical Review D, 2022, 105, .	1.6	13
1725	Probing a self-complete and Generalized-Uncertainty-Principle black hole with precessing and periodic motion. Astrophysics and Space Science, 2022, 367, 1.	0.5	15
1726	Hawking effect in an extremal Kerr black hole spacetime. Physical Review D, 2022, 105, .	1.6	0
1727	Non-trivial time crystal-like ground state for gravitational perturbation in quadratic gravity. Physics of the Dark Universe, 2022, 35, 100976.	1.8	1
1728	Constraining spinning primordial black holes with global 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4236-4241.	1.6	9
1729	Primordial black holes and secondary gravitational waves from string inspired general no-scale supergravity. Physical Review D, 2021, 104, .	1.6	14

#	Article	IF	CITATIONS
1730	Ease of excitation of black hole ringing: Quantifying the importance of overtones by the excitation factors. Physical Review D, 2021, 104, .	1.6	22
1731	Real-time Search for Compact Binary Mergers in Advanced LIGO and Virgo's Third Observing Run Using PyCBC Live. Astrophysical Journal, 2021, 923, 254.	1.6	30
1732	The NANOGrav 12.5-year Data Set: Search for Non-Einsteinian Polarization Modes in the Gravitational-wave Background. Astrophysical Journal Letters, 2021, 923, L22.	3.0	30
1733	The Gravity Collective: A Search for the Electromagnetic Counterpart to the Neutron Star–Black Hole Merger GW190814. Astrophysical Journal, 2021, 923, 258.	1.6	19
1734	Gravitational Waves from the Vacuum Decay with Lisa. SSRN Electronic Journal, 0, , .	0.4	0
1735	Five dimensional rotating regular black holes and shadow. General Relativity and Gravitation, 2022, 54, 1.	0.7	14
1736	Strong deflection gravitational lensing by an Einstein–Lovelock ultracompact object. European Physical Journal C, 2022, 82, 1.	1.4	13
1737	Gravitational wave constraints on Lorentz and parity violations in gravity: High-order spatial derivative cases. Physical Review D, 2022, 105, .	1.6	21
1738	Quantum gravity phenomenology at the dawn of the multi-messenger era—A review. Progress in Particle and Nuclear Physics, 2022, 125, 103948.	5.6	175
1739	Constraining the Hubble constant to a precision of about 1% using multi-band dark standard siren detections. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	23
1740	Motion of test particle in rotating boson star. Physical Review D, 2022, 105, .	1.6	3
1741	Sensitivity of third-generation interferometers to extra polarizations in the stochastic gravitational wave background. Physical Review D, 2022, 105, .	1.6	7
1742	Quasar continuum spectrum disfavors black holes with a magnetic monopole charge. Physical Review D, 2022, 105, .	1.6	3
1743	Gravitational waves from global cosmic strings and cosmic archaeology. Journal of High Energy Physics, 2022, 2022, 1.	1.6	25
1744	Compact objects in quadratic Palatini gravity generated by a free scalar field. Physical Review D, 2022, 105, .	1.6	2
1745	Interplay of spin-precession and higher harmonics in the parameter estimation of binary black holes. Physical Review D, 2022, 105, .	1.6	15
1746	Model systematics in time domain tests of binary black hole evolution. Physical Review D, 2022, 105, .	1.6	5
1747	Interstellar gas heating by primordial black holes. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 017.	1.9	12

#	Article	IF	CITATIONS
1748	Why Masses of Binary Black Hole Mergers Are Overestimated?. Galaxies, 2022, 10, 52.	1.1	2
1749	Understanding How Fast Black Holes Spin by Analyzing Data from the Second Gravitational-wave Catalogue. Astrophysical Journal, 2022, 928, 75.	1.6	14
1750	Oscillatory amplitude of stochastic gravitational wave spectrum. Indian Journal of Physics, 0, , 1.	0.9	2
1751	Polarization modes of gravitational waves in Palatini-Horndeski theory. Physical Review D, 2022, 105, .	1.6	10
1752	Constraining the cosmological parameters using gravitational wave observations of massive black hole binaries and statistical redshift information. Physical Review Research, 2022, 4, .	1.3	24
1753	Stochastic Background of Gravitational Waves Generated by Black Hole MACHO Binaries in the Galaxy. Brazilian Journal of Physics, 2022, 52, 1.	0.7	0
1754	Parameter estimation with gravitational waves. Reviews of Modern Physics, 2022, 94, .	16.4	30
1755	Applications of the close-limit approximation: horizonless compact objects and scalar fields. Classical and Quantum Gravity, 2022, 39, 105005.	1.5	2
1756	Gravitational waves from cosmic strings after a first-order phase transition *. Chinese Physics C, 2022, 46, 043104.	1.5	4
1757	Detecting residues of cosmic events using residual neural network. , 2021, , .		0
1758	Lensing Magnification Seen by Gravitational Wave Detectors. Universe, 2022, 8, 19.	0.9	4
1759	Populating the Black Hole Mass Gaps in Stellar Clusters: General Relations and Upper Limits. Astrophysical Journal, 2021, 923, 126.	1.6	10
1760	Imprint of black hole area quantization and Hawking radiation on inspiraling binary. Physical Review D, 2021, 104, .	1.6	9
1761	Testing General Relativity with Gravitational Waves: An Overview. Universe, 2021, 7, 497.	0.9	14
1762	Lensing of gravitational waves as a novel probe of graviton mass. Physical Review D, 2021, 104, .	1.6	10
1763	The Eccentric and Accelerating Stellar Binary Black Hole Mergers in Galactic Nuclei: Observing in Ground and Space Gravitational-wave Observatories. Astrophysical Journal, 2021, 923, 139.	1.6	11
1764	The Role of Longitudinal Polarizations in Horndeski and Macroscopic Gravity: Introducing Gravitational Plasmas. Universe, 2021, 7, 496.	0.9	7
1765	Heavy particle non-decoupling in flavor-changing gravitational interactions. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	0

#	Article	IF	CITATIONS
1766	Close limit approximation for modified gravity: Scalar instabilities in binary black hole spacetimes. Physical Review D, 2021, 104, .	1.6	4
1767	A Fast Data Processing Technique for Continuous Gravitational Wave Searches. Universe, 2021, 7, 486.	0.9	Ο
1768	Primordial black holes and scalar induced gravitational waves from the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>E</mml:mi> model with a Gauss-Bonnet term. Physical Review D, 2022, 105, .</mml:math 	1.6	21
1769	Effect of the magnetic charge on weak deflection angle and greybody bound of the black hole in Einstein-Gauss-Bonnet gravity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 829, 137114.	1.5	24
1771	Self-consistent effective-one-body theory for spinless binaries based on post-Minkowskian approximation I: Hamiltonian and decoupled equation for \$\$psi _4^{m{B}}\$. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	11
1772	Deriving the Hawking Temperature of (Massive) Global Monopole Spacetime via a Topological Formula. Entropy, 2022, 24, 634.	1.1	3
1773	Bardeen-Kiselev black hole with a cosmological constant. Physical Review D, 2022, 105, .	1.6	15
1774	The Formation of Intermediate-mass Black Holes in Galactic Nuclei. Astrophysical Journal Letters, 2022, 929, L22.	3.0	26
1775	Five-dimensional Yang–Mills black holes in massive gravity's rainbow. European Physical Journal C, 2022, 82, 1.	1.4	8
1776	Chaotic shadows of black holes: a short review. Communications in Theoretical Physics, 2022, 74, 097401.	1.1	14
1777	Bound Orbits and Epicyclic Motions around Renormalization Group Improved Schwarzschild Black Holes. Universe, 2022, 8, 278.	0.9	14
1778	Deciphering signatures of Bardeen black holes from the observed quasi-periodic oscillations. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 020.	1.9	4
1779	Novel hairy black hole solutions in Einstein–Maxwell–Gauss–Bonnet-scalar theory. International Journal of Modern Physics A, 2022, 37, .	0.5	6
1780	Parametrized tests of post-Newtonian theory using principal component analysis. Physical Review D, 2022, 105, .	1.6	10
1781	Population inference of spin-induced quadrupole moments as a probe for nonblack hole compact binaries. Physical Review D, 2022, 105, .	1.6	11
1782	Detection of gravitational wave mixed polarization with single space-based detectors. Physical Review D, 2022, 105, .	1.6	5
1783	NANOGrav signal and LIGO-Virgo primordial black holes from the Higgs field. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 046.	1.9	16
1784	Topology of black hole thermodynamics in Gauss-Bonnet gravity. Physical Review D, 2022, 105, .	1.6	39

#	Article	IF	CITATIONS
1785	Gravitational lensing by a black-bounce-Reissner–Nordström spacetime. European Physical Journal C, 2022, 82, .	1.4	17
1786	Stability of black holes with non-minimally coupled scalar hair to the Einstein tensor. General Relativity and Gravitation, 2022, 54, .	0.7	8
1787	Effect of inhomogeneities on the propagation of gravitational waves from binaries of compact objects. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 021.	1.9	4
1788	The Existence and Stability of the Photon Spheres and Time-like Circular Orbits in the Spacetime of magnetic Gauss-Bonnet Black Hole. Canadian Journal of Physics, 0, , .	0.4	0
1789	Radiation reaction for spinning black-hole scattering. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 832, 137258.	1.5	30
1790	In Search of Short Gamma-Ray Burst Optical Counterparts with the Zwicky Transient Facility. Astrophysical Journal, 2022, 932, 40.	1.6	3
1791	A simple theoretical model for estimating the frequency characteristics of black hole mergers. Canadian Journal of Physics, 0, , .	0.4	0
1792	Evolution of a primordial binary black hole due to interaction with cold dark matter and the formation rate of gravitational wave events. Physical Review D, 2022, 105, .	1.6	8
1793	Primordial black holes from an electroweak phase transition. Physical Review D, 2022, 105, .	1.6	29
1794	Formation Channels of Single and Binary Stellar-Mass Black Holes. , 2022, , 705-769.		2
1795	The ringing of quantum corrected Schwarzschild black hole with GUP. Communications in Theoretical Physics, 2022, 74, 085404.	1.1	5
1796	On the stability of covariant BSSN formulation. Classical and Quantum Gravity, 0, , .	1.5	0
1797	Gravitational waves in gauge theory gravity with a negative cosmological constant. Classical and Quantum Gravity, 2022, 39, 175005.	1.5	1
1798	Source localizations with the network of space-based gravitational wave detectors. Physical Review D, 2022, 106, .	1.6	6
1799	Effective-one-body waveforms for precessing coalescing compact binaries with post-Newtonian twist. Physical Review D, 2022, 106, .	1.6	24
1800	Electromagnetic precursor flares from the late inspiral of neutron star binaries. Monthly Notices of the Royal Astronomical Society, 2022, 515, 2710-2724.	1.6	11
1801	Geometric approach for the modified second generation time delay interferometry. Physical Review D, 2022, 106, .	1.6	7
1802	Doubly peaked induced stochastic gravitational wave background: testing baryogenesis from primordial black holes. Journal of High Energy Physics, 2022, 2022, .	1.6	33

#	Article	IF	CITATIONS
1803	Observational Optical Constraints of Regular Black Holes. SSRN Electronic Journal, 0, , .	0.4	2
1804	Nonorthogonal wavelet transformation for reconstructing gravitational wave signals. Physical Review Research, 2022, 4, .	1.3	1
1805	A New Way to Explore Cosmological Tensions Using Gravitational Waves and Strong Gravitational Lensing. Astrophysical Journal, 2022, 934, 108.	1.6	15
1806	Quasinormal modes of massive scalar fields in four-dimensional wormholes: Anomalous decay rate. Physical Review D, 2022, 106, .	1.6	18
1807	Evidence for subdominant multipole moments and precession in merging black-hole-binaries from GWTC-2.1. Physical Review D, 2022, 106, .	1.6	12
1808	New nonrelativistic quantum theory of cold dark matter. International Journal of Modern Physics A, 2022, 37, .	0.5	3
1809	Quasinormal modes of nonlinearly charged black holes surrounded by a cloud of strings in Rastall gravity. International Journal of Geometric Methods in Modern Physics, 2023, 20, .	0.8	16
1810	New self-consistent effective one-body theory for spinless binaries based on the post-Minkowskian approximation. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	2.0	10
1811	Gravitational wave modes in matter. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 017.	1.9	6
1812	Parametrized black holes: scattering investigation. European Physical Journal C, 2022, 82, .	1.4	4
1813	Modified time-delay interferometry with an optical frequency comb. Physical Review D, 2022, 106, .	1.6	3
1814	Correlated signals of first-order phase transitions and primordial black hole evaporation. Journal of High Energy Physics, 2022, 2022, .	1.6	10
1815	Gravitational wave luminosity distance in viscous cosmological models. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 064.	1.9	1
1816	Non-metricity signatures on the Higgs boson signal strengths at the LHC. Journal of High Energy Physics, 2022, 2022, .	1.6	0
1817	Gravitational Waves from Coalescing Binaries. Synthesis Lectures on Wave Phenomena in the Physical Sciences, 2020, , 7-36.	0.0	0
1818	Search for Gravitational-Neutrino Correlations on Ground-Based Detectors. Universe, 2022, 8, 446.	0.9	0
1819	Dynamical spontaneous scalarization in Einstein-Maxwell-scalar models in anti–de Sitter spacetime. Physical Review D, 2022, 106, .	1.6	5
1820	Image of Bonnor black dihole with a thin accretion disk and its polarization information. European Physical Journal C, 2022, 82, .	1.4	6

#	Article	IF	CITATIONS
1821	Study of eccentric binaries in Horndeski gravity. Physical Review D, 2022, 106, .	1.6	8
1822	Topology of critical points and Hawking-Page transition. Physical Review D, 2022, 106, .	1.6	31
1823	Bounds from multimessenger astronomy on the superheavy dark matter. Physical Review D, 2022, 106, .	1.6	0
1824	Some Remarks on Non-Singular Spherically Symmetric Space-Times. Astronomy, 2022, 1, 99-125.	0.6	9
1825	Waveforms from amplitudes. Physical Review D, 2022, 106, .	1.6	49
1826	Revisiting constraints on WIMPs around primordial black holes. Physical Review D, 2022, 106, .	1.6	4
1827	Gravity at the tip of the throat. Journal of High Energy Physics, 2022, 2022, .	1.6	0
1828	Probing a black-bounce-Reissner–Nordström spacetime with precessing and periodic motion. European Physical Journal C, 2022, 82, .	1.4	11
1829	Uso de vÃdeos em atividades de divulgações cientÃfica sobre buracos negros e ondas gravitacionais. , 0, , e022003.		0
1830	Optimizing Large Gravitational-Wave Classifier Through a Custom Cross-System Mirrored Strategy Approach. , 2022, , .		0
1831	Extended minimal theories of massive gravity. Physical Review D, 2022, 106, .	1.6	2
1832	Statefinder analysis of scale-dependent cosmology. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 071.	1.9	4
1833	Testing the Wave-Particle Duality of Gravitational Wave Using the Spin-Orbital-Hall Effect of Structured Light. Universe, 2022, 8, 535.	0.9	2
1834	NLO deflections for spinning particles and Kerr black holes. Journal of High Energy Physics, 2022, 2022, .	1.6	16
1835	Circularly polarized scalar induced gravitational waves from the Chern-Simons modified gravity. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 054.	1.9	11
1836	Bardeen solution with a cloud of strings. Physical Review D, 2022, 106, .	1.6	11
1837	Probing the speed of gravity with LVK, LISA, and joint observations. General Relativity and Gravitation, 2022, 54, .	0.7	5
1838	Quasinormal-mode filters: A new approach to analyze the gravitational-wave ringdown of binary black-hole mergers. Physical Review D, 2022, 106, .	1.6	18

	CITATION	ICLF OK I	
#	Article	IF	Citations
1839	Probing horizon scale quantum effects with Love. Classical and Quantum Gravity, 2022, 39, 225016.	1.5	5
1840	Quasinormal ringing of regular black holes in asymptotically safe gravity: the importance of overtones. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 091.	1.9	25
1841	Experimental system to detect the electromagnetic response of high-frequency gravitational waves. Physical Review D, 2022, 106, .	1.6	2
1842	Analytical study of gravitational lensing in Kerr-Newman black-bounce spacetime. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 006.	1.9	22
1843	Echoes of charged black-bounce spacetimes. European Physical Journal C, 2022, 82, .	1.4	2
1844	Gravitational waves in f(R, T)-rainbow gravity: even modes and the Huygens principle. Physica Scripta, 2022, 97, 125013.	1.2	1
1845	Convolutional Transformer for Fast and Accurate Gravitational Wave Detection. , 2022, , .		2
1846	Innermost stable circular orbit of spinning particles around a rotating black hole surrounded by perfect fluid dark matter. Modern Physics Letters A, 2022, 37, .	0.5	2
1847	Arm locking in conjunction with time-delay interferometry. Physical Review D, 2022, 106, .	1.6	0
1848	Probing Lorentz symmetry violation using the first image of Sagittarius A*: Constraints on standard-model extension coefficients. Physical Review D, 2022, 106, .	1.6	26
1849	Detection of early-universe gravitational-wave signatures and fundamental physics. General Relativity and Gravitation, 2022, 54, .	0.7	34
1850	Repeated Mergers of Black Hole Binaries: Implications for GW190521. Astrophysical Journal, 2022, 941, 4.	1.6	4
1851	Echoes from braneworld wormholes. Physical Review D, 2022, 106, .	1.6	5
1852	Wave effect of gravitational waves intersected with a microlens field: A new algorithm and supplementary study. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	0
1853	Modeling compact binary merger waveforms beyond general relativity. Physical Review D, 2023, 107, .	1.6	4
1854	Gravitational waves from no-scale supergravity. European Physical Journal C, 2023, 83, .	1.4	3
1855	Two body dynamics in a quadratic modification of general relativity. , 2023, , .		0
1856	Primordial gravity waves in a rainbow background. General Relativity and Gravitation, 2023, 55, .	0.7	2

#	Article	IF	CITATIONS
1857	Small-tilt measurement based on weak-value-amplification with balanced homodyne detection. Applied Physics Letters, 2023, 122, .	1.5	2
1858	Optimizing the placement of numerical relativity simulations using a mismatch predicting neural network. Physical Review D, 2023, 107, .	1.6	0
1859	Improving performance for gravitational-wave parameter inference with an efficient and highly-parallelized algorithm. Physical Review D, 2023, 107, .	1.6	6
1860	Quiescent and Active Galactic Nuclei as Factories of Merging Compact Objects in the Era of Gravitational Wave Astronomy. Universe, 2023, 9, 138.	0.9	2
1861	On the angular momentum of compact binary coalescence. Communications in Theoretical Physics, 2023, 75, 045403.	1.1	1
1862	Tachyonic instability of Reissner-Nordström-Melvin black holes in Einstein-Maxwell-scalar theory. Nuclear Physics B, 2023, 987, 116110.	0.9	1
1863	Gravitational waves from inspiraling black holes in quadratic gravity. Physical Review D, 2023, 107, .	1.6	2
1864	Detecting Isolated Stellar-mass Black Holes with the Roman Telescope. Astronomical Journal, 2023, 165, 96.	1.9	6
1865	Primordial Black Hole Formation in Non-Standard Post-Inflationary Epochs. Galaxies, 2023, 11, 35.	1.1	5
1866	The Star Formation History of the Milky Way's Nuclear Star Cluster. Astrophysical Journal, 2023, 944, 79.	1.6	12
1867	Gravitational wave constraints on spatial covariant gravities. Physical Review D, 2023, 107, .	1.6	8
1868	The gravitational field outside a spatially compact stationary source in a generic fourth-order theory of gravity. Journal of High Energy Physics, 2023, 2023, .	1.6	1
1869	Signatures of regular black holes from the quasar continuum spectrum. European Physical Journal C, 2023, 83, .	1.4	1
1870	New total transmission modes of the Kerr geometry with Schwarzschild limit frequencies at complex infinity. Physical Review D, 2023, 107, .	1.6	0
1871	Conformal model for gravitational waves and dark matter: a status update. Journal of High Energy Physics, 2023, 2023, .	1.6	21
1872	New Estimates of the Merger Rate of Primordial Black Holes with Allowance for Clustering Dark Matter. Astronomy Letters, 2022, 48, 561-567.	0.1	0
1873	Accumulating Errors in Tests of General Relativity with Gravitational Waves: Overlapping Signals and Inaccurate Waveforms. Astrophysical Journal, 2023, 945, 103.	1.6	5
1874	Phase transition and stiffer core fluid in neutron stars: effects on stellar configurations, dynamical stability, and tidal deformability. European Physical Journal C, 2023, 83, .	1.4	2

#	Article	IF	CITATIONS
1875	Odd-parity perturbations in the most general scalar–vector–tensor theory. Classical and Quantum Gravity, 2023, 40, 085017.	1.5	1
1876	The growth of intermediate mass black holes through tidal captures and tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2023, 521, 2930-2948.	1.6	5
1877	Testing gravitational wave propagation with multiband detections. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 044.	1.9	3
1878	A review on analytical studies in gravitational lensing. Frontiers in Physics, 0, 11, .	1.0	8
1879	Discerning singlet and triplet scalars at the electroweak phase transition and gravitational wave. Physical Review D, 2023, 107, .	1.6	2
1880	Primordial black holes and scalar-induced gravitational waves from the generalized Brans-Dicke theory. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 048.	1.9	14
1881	Perturbations of general relativity to all orders and the general nth order terms. Journal of High Energy Physics, 2023, 2023, .	1.6	2
1882	Black hole images: A review. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	15
1883	Can two ultrarelativistic objects lose almost all their energy to gravitational radiation?. Physical Review D, 2023, 107, .	1.6	3
1884	Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3. Physical Review X, 2023, 13, .	2.8	195
1885	Cadabra and Python algorithms in general relativity and cosmology II: Gravitational waves. Computer Physics Communications, 2023, 289, 108748.	3.0	1
1886	Unified model for the LISA measurements and instrument simulations. Physical Review D, 2023, 107, .	1.6	9
1887	Searches for continuous-wave gravitational radiation. Living Reviews in Relativity, 2023, 26, .	8.2	24
1888	Probing minimal grand unification through gravitational waves, proton decay, and fermion masses. Journal of High Energy Physics, 2023, 2023, .	1.6	6
1889	Precessing and periodic orbits around hairy black holes in Horndeski's Theory. European Physical Journal C, 2023, 83, .	1.4	5
1890	Gravitational Waves fromÂCosmic Strings. Springer Theses, 2022, , 419-499.	0.0	0