Three-dimensional integration of nanotechnologies for single chip

Nature 547, 74-78 DOI: 10.1038/nature22994

Citation Report

#	Article	IF	CITATIONS
1	The carbon nanotube integrated circuit goes three-dimensional. Physics Today, 2017, 70, 14-16.	0.3	1
2	3D nanosystems enable embedded abundant-data computing. , 2017, , .		6
3	Memristive computing devices and applications. Journal of Electroceramics, 2017, 39, 4-20.	2.0	47
4	On-Chip Sorting of Long Semiconducting Carbon Nanotubes for Multiple Transistors along an Identical Array. ACS Nano, 2017, 11, 11497-11504.	14.6	13
5	3D integration advances computing. Nature, 2017, 547, 38-39.	27.8	12
6	Energy efficient computing and sensing in the Zettabyte era: From silicon to the cloud. , 2017, , .		28
7	All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy, 2018, 47, 410-426.	16.0	249
8	Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nature Catalysis, 2018, 1, 326-331.	34.4	61
9	Studies on transient characteristics of unipolar resistive switching processes in TiO ₂ thin film grown by atomic layer deposition. Journal Physics D: Applied Physics, 2018, 51, 215101.	2.8	12
10	Aligning Solutionâ€Derived Carbon Nanotube Film with Full Surface Coverage for Highâ€Performance Electronics Applications. Advanced Materials, 2018, 30, e1707068.	21.0	21
11	Continuous adjustment of threshold voltage in carbon nanotube field-effect transistors through gate engineering. Applied Physics Letters, 2018, 112, .	3.3	25
10	xnins.nim= nttp://www.ws.org/1998/Math/MathML_altimg= sits.gir		
12			

TION REDO

#	Article	IF	CITATIONS
19	Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nature Communications, 2018, 9, 244.	12.8	1,034
20	Biodegradable Electronic Systems in 3D, Heterogeneously Integrated Formats. Advanced Materials, 2018, 30, 1704955.	21.0	72
21	PRINS: Processing-in-Storage Acceleration of Machine Learning. IEEE Nanotechnology Magazine, 2018, 17, 889-896.	2.0	29
22	Fully memristive neural networks for pattern classification with unsupervised learning. Nature Electronics, 2018, 1, 137-145.	26.0	787
23	Tunable Tribotronic Dualâ€Gate Logic Devices Based on 2DÂMoS ₂ and Black Phosphorus. Advanced Materials, 2018, 30, e1705088.	21.0	105
24	Negative Capacitance Carbon Nanotube FETs. IEEE Electron Device Letters, 2018, 39, 304-307.	3.9	39
25	The future of electronics based on memristive systems. Nature Electronics, 2018, 1, 22-29.	26.0	1,369
26	Process-morphology scaling relations quantify self-organization in capillary densified nanofiber arrays. Physical Chemistry Chemical Physics, 2018, 20, 3876-3881.	2.8	21
27	Stillinger–Weber potential for elastic and fracture properties in graphene and carbon nanotubes. Journal of Physics Condensed Matter, 2018, 30, 055901.	1.8	33
28	Heterogeneous Memristive Devices Enabled by Magnetic Tunnel Junction Nanopillars Surrounded by Resistive Silicon Switches. Advanced Electronic Materials, 2018, 4, 1700461.	5.1	13
29	Scalable Preparation of High-Density Semiconducting Carbon Nanotube Arrays for High-Performance Field-Effect Transistors. ACS Nano, 2018, 12, 627-634.	14.6	57
30	Brain-inspired computing exploiting carbon nanotube FETs and resistive RAM: Hyperdimensional computing case study. , 2018, , .		84
31	Brain-Inspired technologies: Towards chips that think?. , 2018, , .		13
32	Gigahertz integrated circuits based on carbon nanotube films. Nature Electronics, 2018, 1, 40-45.	26.0	132
33	Configurable multifunctional integrated circuits based on carbon nanotube dual-material gate devices. Nanoscale, 2018, 10, 21857-21864.	5.6	9
34	In-memory direct processing based on nanoscale perpendicular magnetic tunnel junctions. Nanoscale, 2018, 10, 21225-21230.	5.6	22
35	Protrusion of Cu-TSV under different strain states. , 2018, , .		0
36	Precompensation, BIST and Analogue Berger Codes for Self-Healing of Neuromorphic RRAM. , 2018, , .		1

IF ARTICLE CITATIONS # MIComp., 2018,,. 37 1 Benchmarking Digital Die-to-Die Channels in 2.5-D and 3-D Heterogeneous Integration Platforms. IEEE Transactions on Electron Devices, 2018, 65, 5460-5467. 39 TruffleBot: Low-Cost Multi-Parametric Machine Olfaction., 2018,,. 5 OTA-C Filters for Biomedical Signal Processing Applications using Hybrid CMOS-CNFET Technology., 2018,,. Three-dimensional integration of plasmonics and nanoelectronics. Nature Electronics, 2018, 1, 644-651. 41 26.0 32 Perspective: Organic electronic materials and devices for neuromorphic engineering. Journal of Applied Physics, 2018, 124, 151902. 2.5 Hyperdimensional Computing Exploiting Carbon Nanotube FETs, Resistive RAM, and Their Monolithic 3D 43 5.4 49 Integration. IEEE Journal of Solid-State Circuits, 2018, 53, 3183-3196. Tunable <i>n</i>-Type Doping of Carbon Nanotubes through Engineered Atomic Layer Deposition HfO_X Films. ACS Nano, 2018, 12, 10924-10931. 44 14.6 Optoelectronic Synapse Based on IGZOâ€Alkylated Graphene Oxide Hybrid Structure. Advanced 45 14.9 280 Functional Materials, 2018, 28, 1804397. Understanding Energy Efficiency Benefits of Carbon Nanotube Field-Effect Transistors for Digital VLSI. IEEE Nanotechnology Magazine, 2018, 17, 1259-1269. TRIG: Hardware Accelerator for Inference-Based Applications and Experimental Demonstration Using 47 3 Carbon Nanotube FETs., 2018,,. Suppression of single-wall carbon nanotube redox reaction by adsorbed proteins. Applied Physics 2.4 Express, 2018, 11, 075101. Entropy-driven stability of chiral single-walled carbon nanotubes. Science, 2018, 362, 212-215. 49 12.6 75 The Roadmap to Realize Memristive Three-Dimensional Neuromorphic Computing System., 0, , . Switchable counterion gradients around charged metallic nanoparticles enable reception of radio 51 10.3 16 waves. Science Advances, 2018, 4, eaau3546. Efficient Implementation of Boolean and Full-Adder Functions With 1T1R RRAMs for Beyond Von Neumann In-Memory Computing. IEEE Transactions on Electron Devices, 2018, 65, 4659-4666. Solution processed flexible resistive switching memory based on Al-In-O self-mixing layer. Journal of 53 2.5 14 Applied Physics, 2018, 124, . 54 The End of the Road for 2D Scaling of Silicon CMOS and the Future of Device Technology., 2018, , .

ARTICLE IF CITATIONS # Review of memristor devices in neuromorphic computing: materials sciences and device challenges. 55 2.8 326 Journal Physics D: Applied Physics, 2018, 51, 503002. RRAM fabric for neuromorphic and reconfigurable compute-in-memory systems., 2018,,. Flatlands in the Holy Land: The Evolution of Layered Materials Research in Israel. Advanced Materials, 57 21.0 7 2018, 30, e1706581. Artificial neural networks based on memristive devices. Science China Information Sciences, 2018, 61, 1. 58 Phototunable Biomemory Based on Lightâ€Mediated Charge Trap. Advanced Science, 2018, 5, 1800714. 59 11.2 99 Aligned Carbon Nanotube Synaptic Transistors for Large-Scale Neuromorphic Computing. ACS Nano, 14.6 128 2018, 12, 7352-7361. Opportunities and Challenges of Multiscale Heterogeneous Material Integration on Si Platforms for 61 1 Enhanced Functionality and Performance., 2018, , 45-69. Carbon nanotube-based flexible electronics. Journal of Materials Chemistry C, 2018, 6, 7714-7727. 5.5 DISC-FETs: Dual Independent Stacked Channel Field-Effect Transistors. IEEE Electron Device Letters, 63 3.9 4 2018, 39, 1250-1253. 64 TRIG., 2018,,. Scaling a Fluorescent Detection System by Polymer-Assisted 3-D Integration of Heterogeneous Dies. 65 2.5 6 Journal of Microelectromechanical Systems, 2018, 27, 896-909. Correlated Transmission and Detection of Concentration-Modulated Chemical Vapor Plumes. IEEE 4.7 Sensors Journal, 2018, 18, 6504-6509. Highâ€Mobility Helical Tellurium Fieldâ€Effect Transistors Enabled by Transferâ€Free, Lowâ€Temperature 67 21.0 71 Direct Growth. Advanced Materials, 2018, 30, e1803109. Lithography-free control of the position of single-walled carbon nanotubes on a substrate by focused ion beam induced deposition of catalyst and chemical vapor deposition. Applied Physics 2.4 Express, 2018, 11, 085101. Vertical Graphene Nanoribbon Interconnects at the End of the Roadmap. IEEE Transactions on 69 3.0 29 Electron Devices, 2018, 65, 2632-2637. Flexible cation-based threshold selector for resistive switching memory integration. Science China 14 Information Sciences, 2018, 61, 1. Coming Up N3XT, After 2D Scaling of Si CMOS., 2018, , . 7 71 Integration of Nanomaterials into Three-Dimensional Vertical Architectures. ACS Applied Materials & Interfaces, 2018, 10, 28262-28268.

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
73	Capacitive neural network with neuro-transistors. Nature Communications, 2018, 9, 3208.	12.8	199
74	Why portable electricity with hydrogen fuel cells?. , 2018, , 1-13.		0
75	The era of hyper-scaling in electronics. Nature Electronics, 2018, 1, 442-450.	26.0	375
76	Low-Voltage, Flexible, and Self-Encapsulated Ultracompact Organic Thin-Film Transistors Based on Nanomembranes. Nano Letters, 2018, 18, 5552-5561.	9.1	26
77	Seamlessly fused digital-analogue reconfigurable computing using memristors. Nature Communications, 2018, 9, 2170.	12.8	38
78	Beyond-Silicon Devices: Considerations for Circuits and Architectures. , 2019, , 1-19.		0
79	Computing of temporal information in spiking neural networks with ReRAM synapses. Faraday Discussions, 2019, 213, 453-469.	3.2	29
80	Atom/molecular nanoarchitectonics for devices and related applications. Nano Today, 2019, 28, 100762.	11.9	77
81	Chirality manifestation in elastic coupling between the layers of double-walled carbon nanotubes. Nanoscale, 2019, 11, 16092-16102.	5.6	8
82	RRAM fabric for neuromorphic and reconfigurable compute-in-memory systems. , 2019, , .		1
83	Linkages between grain structure and protrusion of TSV in 3D packaging. , 2019, , .		3
84	Ultra-wide temperature electronic synapses based on self-rectifying ferroelectric memristors. Nanotechnology, 2019, 30, 464001.	2.6	17
85	Self-selective van der Waals heterostructures for large scale memory array. Nature Communications, 2019, 10, 3161.	12.8	139
86	Structural colour QR codes for multichannel information storage with enhanced optical security and life expectancy. Nanotechnology, 2019, 30, 405301.	2.6	10
87	3D-printed optical-electronic integrated devices. Science China Chemistry, 2019, 62, 1398-1404.	8.2	7
88	Micro/Nanoscale 3D Assembly by Rolling, Folding, Curving, and Buckling Approaches. Advanced Materials, 2019, 31, e1901895.	21.0	84
89	Graphene-based detectors for directional dark matter detection. European Physical Journal C, 2019, 79, 1.	3.9	8
90	A Variation-Aware Ternary Spin-Hall Assisted STT-RAM Based on Hybrid MTJ/GAA-CNTFET Logic. IEEE Nanotechnology Magazine, 2019, 18, 598-605.	2.0	47

#	Article	IF	CITATIONS
91	First principles calculations of intrinsic mobilities in tin-based oxide semiconductors SnO, SnO2, and Ta2SnO6. Journal of Applied Physics, 2019, 126, .	2.5	47
92	Back-End-of-Line Compatible Transistors for Monolithic 3-D Integration. IEEE Micro, 2019, 39, 8-15.	1.8	73
93	Three-Dimensional Superconducting Nanohelices Grown by He ⁺ -Focused-Ion-Beam Direct Writing. Nano Letters, 2019, 19, 8597-8604.	9.1	52
94	Molecular/Nanostructured Functional Metal Oxide Stacks for Nanoscale Nanosecond Information Storage. Advanced Functional Materials, 2019, 29, 1902642.	14.9	2
95	Functional Demonstration of a Memristive Arithmetic Logic Unit (MemALU) for Inâ€Memory Computing. Advanced Functional Materials, 2019, 29, 1905660.	14.9	54
96	Processing-Structure-Protrusion Relationship of 3-D Cu TSVs: Control at the Atomic Scale. IEEE Journal of the Electron Devices Society, 2019, 7, 1270-1276.	2.1	6
97	Leading-Edge Thin-Layer MOSFET Potential Modeling Toward Short-Channel Effect Suppression and Device Optimization. IEEE Journal of the Electron Devices Society, 2019, 7, 1293-1301.	2.1	6
98	Asymmetric gating for reducing leakage current in carbon nanotube field-effect transistors. Applied Physics Letters, 2019, 115, .	3.3	19
99	A Hybridized Metal/Polydimethylsiloxane Sponge for Multidirectional Pressure Energy Harvesting. , 2019, , .		0
100	Neuromorphic Spiking Neural Networks and Their Memristor-CMOS Hardware Implementations. Materials, 2019, 12, 2745.	2.9	71
101	Polymer Encapsulants for Threshold Voltage Control in Carbon Nanotube Transistors. ACS Applied Materials & Interfaces, 2019, 11, 36027-36034.	8.0	7
102	Highly selective detection of methanol over ethanol by a handheld gas sensor. Nature Communications, 2019, 10, 4220.	12.8	215
103	Nanosystems, Edge Computing, and the Next Generation Computing Systems. Sensors, 2019, 19, 4048.	3.8	32
104	Material Design of New p-Type Tin Oxyselenide Semiconductor through Valence Band Engineering and Its Device Application. ACS Applied Materials & Interfaces, 2019, 11, 40214-40221.	8.0	17
105	Ultrafast Oatterning Vertically Aligned Carbon Nanotube Forest on Al Foil and Si Substrate Using Chemical Vapor Deposition (CVD). Nanomaterials, 2019, 9, 1332.	4.1	3
106	Repeater Insertion to Reduce Delay and Power in Copper and Carbon Nanotube-Based Nanointerconnects. IEEE Access, 2019, 7, 13622-13633.	4.2	16
107	Low-Temperature Side Contact to Carbon Nanotube Transistors: Resistance Distributions Down to 10 nm Contact Length. Nano Letters, 2019, 19, 1083-1089.	9.1	42
108	Small footprint transistor architecture for photoswitching logic and in situ memory. Nature Nanotechnology, 2019, 14, 662-667.	31.5	168

#	Article	IF	CITATIONS
109	Speeding up carbon nanotube integrated circuits through three-dimensional architecture. Nano Research, 2019, 12, 1810-1816.	10.4	20
110	RRAM/memristor for computing. , 2019, , 539-583.		4
111	Conductive Oxide Interfaces for Field Effect Devices. Advanced Materials Interfaces, 2019, 6, 1900480.	3.7	27
112	Oxygen-Migration-Based Spintronic Device Emulating a Biological Synapse. Physical Review Applied, 2019, 11, .	3.8	32
113	Mini-Review: Modeling and Performance Analysis of Nanocarbon Interconnects. Applied Sciences (Switzerland), 2019, 9, 2174.	2.5	27
114	Devices and Circuits Using Novel 2-D Materials: A Perspective for Future VLSI Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 1486-1503.	3.1	30
115	Low-frequency noise in nanowire and planar III-V MOSFETs. Microelectronic Engineering, 2019, 215, 110986.	2.4	12
116	Mimicking Neuroplasticity in a Hybrid Biopolymer Transistor by Dual Modes Modulation. Advanced Functional Materials, 2019, 29, 1902374.	14.9	149
117	X3D: Heterogeneous Monolithic 3D Integration of "X―(Arbitrary) Nanowires: Silicon, Ill–V, and Carbon Nanotubes. IEEE Nanotechnology Magazine, 2019, 18, 270-273.	2.0	6
118	Storage of Information Using Small Organic Molecules. ACS Central Science, 2019, 5, 911-916.	11.3	70
119	Fully Printed All-Solid-State Organic Flexible Artificial Synapse for Neuromorphic Computing. ACS Applied Materials & Interfaces, 2019, 11, 16749-16757.	8.0	70
120	Memristive crossbar arrays for brain-inspired computing. Nature Materials, 2019, 18, 309-323.	27.5	1,058
121	Microsystems using three-dimensional integration and TSV technologies: Fundamentals and applications. Microelectronic Engineering, 2019, 210, 35-64.	2.4	53
122	Carbon Nanotube CMOS Analog Circuitry. IEEE Nanotechnology Magazine, 2019, 18, 845-848.	2.0	38
123	Reinforcement learning with analogue memristor arrays. Nature Electronics, 2019, 2, 115-124.	26.0	247
124	Mechanisms of copper protrusion in through-silicon-via structures at the nanoscale. Japanese Journal of Applied Physics, 2019, 58, 016502.	1.5	5
125	Simultaneous synthesis and integration of two-dimensional electronic components. Nature Electronics, 2019, 2, 164-170.	26.0	95
126	One-step fabrication of 2D circuits. Nature Electronics, 2019, 2, 142-143.	26.0	0

ARTICLE IF CITATIONS # Deformation induced new pathways in silicon. Nanoscale, 2019, 11, 9862-9868. 127 5.6 10 Fully Printed Flexible Crossbar Memory Devices with Tipâ€Enhanced Micro/Nanostructures. Advanced 5.1 Electronic Materials, 2019, 5, 1900131. 129 Graphene–Si CMOS oscillators. Nanoscale, 2019, 11, 3619-3625. 5.6 6 Functional Nonâ€Volatile Memory Devices: From Fundamentals to Photoâ€Tunable Properties. Physica 2.4 Status Solidi - Rapid Research Letters, 2019, 13, 1800644. 3D Neuromorphic Wireless Power Transfer and Energy Transmission Based Synaptic Plasticity. IEEE 131 4.2 2 Access, 2019, 7, 16594-16615. Robust and well-controlled TiO₂â€"Al₂O₃ binary nanoarray-integrated ceramic honeycomb for efficient propane combustion. CrystEngComm, 2019, 21, 2.6 2727-2735. 133 Scalable 3D Ta:SiO x Memristive Devices. Advanced Electronic Materials, 2019, 5, 1800958. 5.1 2 Design of CNFET based power- and variability-aware nonvolatile RRAM cell. Microelectronics Journal, 134 2019, 86, 7-14. 135 Time Series Feature Extraction for Machine Olfaction., 2019,,. 1 A Volatile RRAM Synapse for Neuromorphic Computing., 2019,,. Brain-inspired Co-design of Algorithm/Architecture for CNN Accelerators., 2019,,. 137 2 Performing Memristor-Aided Logic (MAGIC) using STT-MRAM., 2019, , . 138 Redox transistors for neuromorphic computing. IBM Journal of Research and Development, 2019, 63, 139 3.1 28 9:1-9:9. Carbon Nanotube Transistors as Gas Sensors: Response Differentiation Using Polymer Gate 140 4.4 Dielectrics. ACS Applied Polymer Materials, 2019, 1, 3269-3278. 141 Monolithic 3-D Integration. IEEE Micro, 2019, 39, 16-27. 1.8 24 Monolithically Integrated RRAM- and CMOS-Based In-Memory Computing Optimizations for Efficient 142 1.8 Deep Learning. IEEE Micro, 2019, 39, 54-63. A TaO_x-Based Electronic Synapse With High Precision for Neuromorphic Computing. IEEE 143 4.2 6 Access, 2019, 7, 184700-184706. Wafer-scalable, aligned carbon nanotube transistors operating at frequencies of over 100 GHz. Nature 144 26.0 Electronics, 2019, 2, 530-539.

#	Article	IF	CITATIONS
145	Adding a new layer to â€~more than Moore'. Nature Electronics, 2019, 2, 497-498.	26.0	8
146	Monolithic integration of high-voltage thin-film electronics on low-voltage integrated circuits using a solution process. Nature Electronics, 2019, 2, 540-548.	26.0	56
147	Carbon nanotube digital electronics. Nature Electronics, 2019, 2, 499-505.	26.0	111
148	Process-in-Memory Using a Magnetic-Tunnel-Junction Synapse and a Neuron Based on a Carbon Nanotube Field-Effect Transistor. IEEE Magnetics Letters, 2019, 10, 1-5.	1.1	33
149	Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nature Electronics, 2019, 2, 439-450.	26.0	155
150	Carbon Nanotube Chemical Sensors. Chemical Reviews, 2019, 119, 599-663.	47.7	732
151	The N3XT Approach to Energy-Efficient Abundant-Data Computing. Proceedings of the IEEE, 2019, 107, 19-48.	21.3	71
152	Organic Memristor Utilizing Copper Phthalocyanine Nanowires with Infrared Response and Cation Regulating Properties. Advanced Electronic Materials, 2019, 5, 1800793.	5.1	44
153	Data-driven and probabilistic learning of the process-structure-property relationship in solution-grown tellurene for optimized nanomanufacturing of high-performance nanoelectronics. Nano Energy, 2019, 57, 480-491.	16.0	44
154	30-nm Contacted Gate Pitch Back-Gate Carbon Nanotube FETs for Sub-3-nm Nodes. IEEE Nanotechnology Magazine, 2019, 18, 132-138.	2.0	21
155	Self-powered electronic skin based on the triboelectric generator. Nano Energy, 2019, 56, 252-268.	16.0	205
156	On-Chip Thermionic Electron Emitter Arrays Based on Horizontally Aligned Single-Walled Carbon Nanotubes. IEEE Transactions on Electron Devices, 2019, 66, 1069-1074.	3.0	10
157	Hybrid Optical/Electric Memristor for Light-Based Logic and Communication. ACS Applied Materials & Interfaces, 2019, 11, 4649-4653.	8.0	22
158	Robotic materials for robot autonomy. , 2019, , 295-307.		0
159	Designing of low temperature-grown Al x In y O self-mixing layer for flexible RRAM. Materials Research Express, 2019, 6, 016413.	1.6	2
160	Reconfigurable horizontal–vertical carrier transport in graphene/HfZrO field-effect transistors. Nanotechnology, 2020, 31, 025203.	2.6	1
161	Artificial Sensory Memory. Advanced Materials, 2020, 32, e1902434.	21.0	200
162	Ultra-sensitive NO2 gas sensors based on single-wall carbon nanotube field effect transistors: Monitoring from ppm to ppb level. Carbon, 2020, 157, 631-639.	10.3	74

#	Article	IF	Citations
163	A multilevel vertical photonic memory transistor based on organic semiconductor/inorganic perovskite quantum dot blends. Journal of Materials Chemistry C, 2020, 8, 2861-2869.	5.5	29
164	Nanoparticleâ€Assisted Alignment of Carbon Nanotubes on DNA Origami. Angewandte Chemie - International Edition, 2020, 59, 4892-4896.	13.8	33
165	Memristive and CMOS Devices for Neuromorphic Computing. Materials, 2020, 13, 166.	2.9	83
166	Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nature Nanotechnology, 2020, 15, 53-58.	31.5	153
167	Carbon nanotube electronics for IoT sensors. Nano Futures, 2020, 4, 012001.	2.2	40
168	2D Layered Materials for Memristive and Neuromorphic Applications. Advanced Electronic Materials, 2020, 6, 1901107.	5.1	85
169	Recent Progress in Photonic Synapses for Neuromorphic Systems. Advanced Intelligent Systems, 2020, 2, 1900136.	6.1	132
170	Energy-Efficient Ternary Arithmetic Logic Unit Design in CNTFET Technology. Circuits, Systems, and Signal Processing, 2020, 39, 3265-3288.	2.0	25
171	Nonvolatile Associative Memory Design Based on Spintronic Synapses and CNTFET Neurons. IEEE Transactions on Emerging Topics in Computing, 2022, 10, 428-437.	4.6	31
172	Flexible and Green Electronics Manufactured by Origami Folding of Nanosilicate-Reinforced Cellulose Paper. ACS Applied Materials & Interfaces, 2020, 12, 48027-48039.	8.0	24
173	A 2D-SnSe film with ferroelectricity and its bio-realistic synapse application. Nanoscale, 2020, 12, 21913-21922.	5.6	28
174	Vertical Integration of 2D Building Blocks for Allâ€⊋D Electronics. Advanced Electronic Materials, 2020, 6, 2000550.	5.1	20
175	Ultrasound-induced wireless energy harvesting: From materials strategies to functional applications. Nano Energy, 2020, 77, 105131.	16.0	69
177	Ultrasensitive Magnetic Sensors Enabled by Heterogeneous Integration of Graphene Hall Elements and Silicon Processing Circuits. ACS Nano, 2020, 14, 17606-17614.	14.6	9
178	Near-sensor and in-sensor computing. Nature Electronics, 2020, 3, 664-671.	26.0	385
179	Recent advances in optical and optoelectronic data storage based on luminescent nanomaterials. Nanoscale, 2020, 12, 23391-23423.	5.6	47
180	Crystal structure and photochromism of auxochrome-introduced Spiro[indoline-quinoline]oxazine deriatives. Journal of Molecular Structure, 2020, 1219, 128574.	3.6	6
181	Neuromorphic Engineering for Hardware Computational Acceleration and Biomimetic Perception Motion Integration. Advanced Intelligent Systems, 2020, 2, 2000124.	6.1	17

ARTICLE IF CITATIONS # Molybdenum oxide on carbon nanotube: Doping stability and correlation with work function. Journal 182 2.5 6 of Applied Physics, 2020, 128, 045111. Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. 6.1 Advanced Intelligent Systems, 2020, 2, 2000117. Electromechanical coupling effects for data storage and synaptic devices. Nano Energy, 2020, 77, 184 16.0 16 105156. Strengthened Complementary Metal–Oxide–Semiconductor Logic for Small-Band-Gap 14.6 Semiconductor-Based High-Performance and Low-Power Application. ACS Nano, 2020, 14, 15267-15275. BEOL-Embedded 3D Polylithic Integration: Thermal and Interconnection Considerations., 2020,,. 186 12 Giant Gate-Tunability of Complex Refractive Index in Semiconducting Carbon Nanotubes. ACS Photonics, 2020, 7, 2896-2905. 6.6 188 Manufacturing Methodology for Carbon Nanotube Electronics., 2020,,. 0 3D superconducting hollow nanowires with tailored diameters grown by focused He⁺ 2.8 9 beam direct writing. Beilstein Journal of Nanotechnology, 2020, 11, 1198-1206. 190 DNA Nanotechnology. Topics in Current Chemistry Collections, 2020, , . 0.5 0 The real demonstration of High-Quality Carbon Nano-Tubes (CNTs) as the electrical connection for the potential application in a vertical 3D integrated technology., 2020, , . Single-Grain Gate-All-Around Si Nanowire FET Using Low-Thermal-Budget Processes for Monolithic 192 4 2.9 Three-Dimensional Integrated Circuits. Micromachines, 2020, 11, 741. BVA-NQSL: A Bio-Inspired Variation-Aware Nonvolatile Quaternary Spintronic Latch. IEEE Magnetics 1.1 Letters, 2020, 11, 1-5. True Random Number Generator for Reliable Hardware Security Modules Based on a Neuromorphic 194 2.0 26 Variation-Tolerant Spintronic Structure. IEEE Nanotechnology Magazine, 2020, 19, 784-791. Nano energy for miniaturized systems. Nano Materials Science, 2020, , . 8.8 196 Logic-in-memory based on an atomically thin semiconductor. Nature, 2020, 587, 72-77. 27.8 243 The Unscented Transform as a Tool to Assess Circuit Variability for Emergent Technologies., 2020,,. Monolithic 3D Carbon Nanotube Memory for Enhanced Yield and Integration Density. IEEE 198 5.49 Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 2431-2441. 2D materials beyond graphene toward Si integrated infrared optoelectronic devices. Nanoscale, 2020, 199 5.6 12, 11784-11807.

#	Article	IF	Citations
200	Silicon-Waveguide-Integrated Carbon Nanotube Optoelectronic System on a Single Chip. ACS Nano, 2020, 14, 7191-7199.	14.6	30
201	Resolving Triblock Terpolymer Morphologies by Vapor-Phase Infiltration. Chemistry of Materials, 2020, 32, 5309-5316.	6.7	14
202	In-memory computing to break the memory wall*. Chinese Physics B, 2020, 29, 078504.	1.4	28
203	Demolding improvement for multidirectional nanostructures by nanoimprint lithography. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 032603.	1.2	0
204	Traditional three-dimensional printing technology versus three-dimensional printing mirror model technology in the treatment of isolated acetabular fractures: a retrospective analysis. Journal of International Medical Research, 2020, 48, 030006052092425.	1.0	5
205	Reconfigurable logic gates in nanowires with Rashba spin-orbit interaction. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 120, 114064.	2.7	0
206	Carbon Nanotube and Resistive Random Access Memory Based Unbalanced Ternary Logic Gates and Basic Arithmetic Circuits. IEEE Access, 2020, 8, 104701-104717.	4.2	38
207	Advanced Room Temperature Single-Electron Transistor of a Germanium Nanochain with Two and Multitunnel Junctions. ACS Applied Electronic Materials, 2020, 2, 1843-1848.	4.3	4
208	Organic small molecule-based RRAM for data storage and neuromorphic computing. Journal of Materials Chemistry C, 2020, 8, 12714-12738.	5.5	76
209	Design of the gas sensor prototype with CNTs-based sensitive element and application of the FFT technique for gas identification. , 2020, , .		0
210	Nonvolatile ferroelectric field-effect transistors. Nature Communications, 2020, 11, 2811.	12.8	87
211	Optical Phonon Scattering Dominated Transport in Individual Suspended Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2020, 257, 2000103.	1.5	1
212	A Crossbar-Based In-Memory Computing Architecture. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 4224-4232.	5.4	15
213	Analysis of the Impact of Process Variations and Manufacturing Defects on the Performance of Carbon-Nanotube FETs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 1513-1526.	3.1	23
214	Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems. Chemical Reviews, 2020, 120, 3941-4006.	47.7	203
215	Memory devices and applications for in-memory computing. Nature Nanotechnology, 2020, 15, 529-544.	31.5	968
216	Memristive devices based on 2D-BiOI nanosheets and their applications to neuromorphic computing. Applied Physics Letters, 2020, 116, .	3.3	13
217	Hyperdimensional computing nanosystem: in-memory computing using monolithic 3D integration of RRAM and CNFET. , 2020, , 195-219.		2

#	Article	IF	CITATIONS
218	Making Largeâ€Area Titanium Disulfide Films at Reduced Temperature by Balancing the Kinetics of Sulfurization and Roughening. Advanced Functional Materials, 2020, 30, 2003617.	14.9	6
219	Two-dimensional materials for next-generation computing technologies. Nature Nanotechnology, 2020, 15, 545-557.	31.5	521
220	Quantifying the Benefits of Monolithic 3D Computing Systems Enabled by TFT and RRAM. , 2020, , .		3
221	Aptamer-Functionalized DNA Nanostructures for Biological Applications. Topics in Current Chemistry, 2020, 378, 21.	5.8	27
222	Neuromorphic nanoelectronic materials. Nature Nanotechnology, 2020, 15, 517-528.	31.5	464
223	Tailoring synaptic plasticity in a perovskite QD-based asymmetric memristor. Journal of Materials Chemistry C, 2020, 8, 2985-2992.	5.5	41
224	Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chemical Reviews, 2020, 120, 2693-2758.	47.7	278
225	Fabrication of Aerospace-grade Epoxy and Bismaleimide Matrix Nanocomposites with High Density Aligned Carbon Nanotube Reinforcement. , 2020, , .		3
226	A Flexible Carbon Nanotube Senâ€Memory Device. Advanced Materials, 2020, 32, e1907288.	21.0	48
227	Nanoparticleâ€Assisted Alignment of Carbon Nanotubes on DNA Origami. Angewandte Chemie, 2020, 132, 4922-4926.	2.0	7
228	Design, Fabrication, and Comparison of 3D Multimode Optical Interconnects on Silicon Interposer. Journal of Lightwave Technology, 2020, 38, 3454-3460.	4.6	5
229	Chiralityâ€Enriched Carbon Nanotubes for Nextâ€Generation Computing. Advanced Materials, 2020, 32, e1905654.	21.0	39
230	Three-dimensional memristor circuits as complex neural networks. Nature Electronics, 2020, 3, 225-232.	26.0	242
231	Fabrication technology and electrophysical properties of a composite memristor-diode crossbar used as a basis for hardware implementation of a biomorphic neuroprocessor. Microelectronic Engineering, 2021, 236, 111471.	2.4	9
232	Neuromorphic computing systems based on flexible organic electronics. , 2021, , 531-574.		6
233	Roadmap on emerging hardware and technology for machine learning. Nanotechnology, 2021, 32, 012002.	2.6	104
234	Building Functional Memories and Logic Circuits with 2D Boron Nitride. Advanced Functional Materials, 2021, 31, 2004733.	14.9	22
235	A TPA-DCPP organic semiconductor film-based room temperature NH3 sensor for insight into the sensing properties. Sensors and Actuators B: Chemical, 2021, 327, 128940.	7.8	25

#	Article	IF	CITATIONS
236	Nanoscale Patterning of Carbon Nanotubes: Techniques, Applications, and Future. Advanced Science, 2021, 8, 2001778.	11.2	48
237	First Principles Design of High Hole Mobility <i>p</i> -Type Sn–O– <i>X</i> Ternary Oxides: Valence Orbital Engineering of Sn ²⁺ in Sn ²⁺ –O– <i>X</i> by Selection of Appropriate Elements <i>X</i> . Chemistry of Materials, 2021, 33, 212-225.	6.7	24
238	The <i>Why</i> , <i>What</i> , and <i>How</i> of Artificial General Intelligence Chip Development. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14, 333-347.	3.8	13
239	CNTFET Technology for RF Applications: Review and Future Perspective. IEEE Journal of Microwaves, 2021, 1, 275-287.	6.5	23
240	Three-Dimensional Integration of Functional Oxides and Crystalline Silicon for Optical Neuromorphic Computing Using Nanometer-Scale Oxygen Scavenging Barriers. ACS Applied Nano Materials, 2021, 4, 2153-2159.	5.0	7
241	Substrate adhesion evolves non-monotonically with processing time in millimeter-scale aligned carbon nanotube arrays. Nanoscale, 2021, 13, 261-271.	5.6	4
242	Principles of carbon nanotube dielectrophoresis. Nano Research, 2021, 14, 2188-2206.	10.4	14
243	Multi-Channel Near-Field Terahertz Communications Using Reprogrammable Graphene-Based Digital Metasurface. Journal of Lightwave Technology, 2021, 39, 6893-6907.	4.6	17
244	Warpage Analysis and Prediction of the Advanced Fan-Out Technology Based on Process Mechanics. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 2201-2213.	2.5	9
245	Compact Formulation for the Bias Dependent Quasi-Static Mobile Charge in Schottky-Barrier CNTFETs. IEEE Nanotechnology Magazine, 2021, 20, 754-760.	2.0	3
246	Electromagnetic-Based Wireless Nano-Sensors Network: Architectures and Applications. Journal of Communications, 2021, , 8-19.	1.6	7
247	3D Nanofabric: Layout Challenges and Solutions for Ultra-scaled Logic Designs. IFIP Advances in Information and Communication Technology, 2021, , 279-300.	0.7	0
248	Multilevel Signaling for High-Speed Chiplet-to-Chiplet Communication. IFIP Advances in Information and Communication Technology, 2021, , 149-178.	0.7	1
249	Recent advances in metal nanoparticleâ€based floating gate memory. Nano Select, 2021, 2, 1245-1265.	3.7	25
250	Synaptic transistors and neuromorphic systems based on carbon nano-materials. Nanoscale, 2021, 13, 7498-7522.	5.6	28
251	Bandgap oupled Template Autocatalysis toward the Growth of Highâ€Purity sp ² Nanocarbons. Advanced Science, 2021, 8, 2003078.	11.2	8
252	Selective Transfer of Si Thin-Film Microchips by SiO2 Terraces on Host Chips for Fluidic Self-Assembly. Applied Mechanics, 2021, 2, 16-24.	1.5	2
253	Three-Dimensional Visualization Algorithm Simulation of Construction Management Based on GIS and VR Technology. Complexity, 2021, 2021, 1-13.	1.6	3

#	Article	IF	CITATIONS
254	Vertical Noise Reduction in 3-D Mixed-Signal Integrated Circuits With Graphene Nanoribbon and Carbon Nanotube Interconnects. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 302-311.	2.5	5
255	Electric Field Gradientâ€Controlled Domain Switching for Size Effectâ€Resistant Multilevel Operations in HfO ₂ â€Based Ferroelectric Fieldâ€Effect Transistor. Advanced Functional Materials, 2021, 31, 2011077.	14.9	40
256	Influence of adsorption small molecules atrazine on nonvolatile resistive switching behavior in Co–Al layered double hydroxide films. Journal of Materials Science: Materials in Electronics, 2021, 32, 8304-8316.	2.2	1
257	One Transistor One Electrolyteâ€Gated Transistor Based Spiking Neural Network for Powerâ€Efficient Neuromorphic Computing System. Advanced Functional Materials, 2021, 31, 2100042.	14.9	46
258	Non-Volatile In-Ga-Zn-O Transistors for Neuromorphic Computing. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	6
259	Carbon nanotube transistor technology for More-Moore scaling. Nano Research, 2021, 14, 3051-3069.	10.4	29
260	A low-power embedded poly-Si micro-heater for gas sensor platform based on a FET transducer and its application for NO2 sensing. Sensors and Actuators B: Chemical, 2021, 334, 129642.	7.8	41
261	Scalable and selective N-type conversion for carbon nanotube transistors via patternable polyvinyl alcohol stacked with hydrophobic layers and their application to complementary logic circuits. Journal of Materials Research and Technology, 2021, 12, 243-256.	5.8	7
262	High-Performance Spintronic Nonvolatile Ternary Flip-Flop and Universal Shift Register. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 916-924.	3.1	26
263	Adaptive Extreme Edge Computing for Wearable Devices. Frontiers in Neuroscience, 2021, 15, 611300.	2.8	67
264	Area-Efficient Multiplier Designs Using a 3D Nanofabric Process Flow. , 2021, , .		1
265	MTMR-SNQM: Multi-Tunnel Magnetoresistance Spintronic Non-volatile Quaternary Memory. , 2021, , .		10
266	Layerâ€By‣ayer Printing Strategy for Highâ€Performance Flexible Electronic Devices with Lowâ€Temperature Catalyzed Solutionâ€Processed SiO 2. Small Methods, 2021, 5, 2100263.	8.6	8
267	Precise Synthesis of Carbon Nanotubes and <scp>Oneâ€Dimensional</scp> Hybrids from Templates ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1726-1744.	4.9	18
268	Emerging 2D Memory Devices for Inâ€Memory Computing. Advanced Materials, 2021, 33, e2007081.	21.0	92
269	Host–Guest Molecular Interaction Enabled Separation of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2021, 143, 10120-10130.	13.7	44
270	Pseudo-3D Physical Design Flow for Monolithic 3D ICs: Comparisons and Enhancements. ACM Transactions on Design Automation of Electronic Systems, 2021, 26, 1-25.	2.6	1
271	Radiofrequency transistors based on aligned carbon nanotube arrays. Nature Electronics, 2021, 4, 405-415.	26.0	67

#	Article	IF	CITATIONS
272	Multimodal Tuning of Synaptic Plasticity Using Persistent Luminescent Memitters. Advanced Materials, 2022, 34, e2101895.	21.0	31
273	Machine Learning Integrated Pseudo-3-D Flow for Monolithic 3-D ICs. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2021, 7, 35-42.	1.5	0
274	Ultraviolet-electrical erasing response characteristics of Ag@SiO2 core-shell functional floating gate organic memory. Organic Electronics, 2021, 93, 106149.	2.6	5
275	Modeling of nanohole silicon pin/nip photodetectors: Steady state and transient characteristics. Nanotechnology, 2021, 32, 365201.	2.6	6
276	Boron nitride and molybdenum disulfide as 2D composite element selectors with flexible threshold switching. Journal of Alloys and Compounds, 2021, 869, 159321.	5.5	10
277	Memristive Crossbar Arrays for Storage and Computing Applications. Advanced Intelligent Systems, 2021, 3, 2100017.	6.1	80
278	Low-Temperature Co-hydroxylated Cu/SiO ₂ Hybrid Bonding Strategy for a Memory-Centric Chip Architecture. ACS Applied Materials & Interfaces, 2021, 13, 38866-38876.	8.0	21
279	Ohmicâ€Contactâ€Gated Carbon Nanotube Transistors for Highâ€Performance Analog Amplifiers. Advanced Materials, 2021, 33, e2100994.	21.0	7
280	A Marr's Threeâ€Level Analytical Framework for Neuromorphic Electronic Systems. Advanced Intelligent Systems, 2021, 3, 2100054.	6.1	3
281	Highly sensitive gas sensing platforms based on field effect Transistor-A review. Analytica Chimica Acta, 2021, 1172, 338575.	5.4	26
282	Carbon nanotube-based CMOS transistors and integrated circuits. Science China Information Sciences, 2021, 64, 1.	4.3	4
283	The capabilities of nanoelectronic 2-D materials for bio-inspired computing and drug delivery indicate their significance in modern drug design. Life Sciences, 2021, 279, 119272.	4.3	11
284	Designer Nanomaterials through Programmable Assembly. Angewandte Chemie, 2022, 134, .	2.0	7
285	Three-dimensional hybrid circuits: the future of neuromorphic computing hardware. Nano Express, 2021, 2, 031003.	2.4	0
286	Designer Nanomaterials through Programmable Assembly. Angewandte Chemie - International Edition, 2022, 61, .	13.8	37
287	A Neural Network Approach towards Generalized Resistive Switching Modelling. Micromachines, 2021, 12, 1132.	2.9	2
288	Applications of Carbon Nanotubes in the Internet of Things Era. Nano-Micro Letters, 2021, 13, 191.	27.0	28
289	Mildly-doped polythiophene with triflates for molecular recognition. Synthetic Metals, 2021, 280, 116890.	3.9	4

#	Article	IF	CITATIONS
290	Logic and in-memory computing achieved in a single ferroelectric semiconductor transistor. Science Bulletin, 2021, 66, 2288-2296.	9.0	23
291	Recent progress on two-dimensional neuromorphic devices and artificial neural network. Current Applied Physics, 2021, 31, 182-198.	2.4	26
292	Ion transport through gated carbon nanotubes: Molecular dynamics simulations using polarizable water. Journal of Molecular Structure, 2021, 1245, 131022.	3.6	5
293	GIRAF: General Purpose In-Storage Resistive Associative Framework. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 276-287.	5.6	10
294	Carbon Nanotube Field Effect Transistor (CNTFET) and Resistive Random Access Memory (RRAM) Based Ternary Combinational Logic Circuits. Electronics (Switzerland), 2021, 10, 79.	3.1	41
295	Organic synaptic devices based on ionic gel with reduced leakage current. Chemical Communications, 2021, 57, 1907-1910.	4.1	13
296	Reversible multiplexing optical information storage and photoluminescence switching in Eu ²⁺ -doped fluorophosphate-based tunable photochromic materials. Journal of Materials Chemistry C, 2021, 9, 5930-5944.	5.5	18
297	Graded Crystalline HfOâ,, Gate Dielectric Layer for High-k/Ge MOS Gate Stack. IEEE Journal of the Electron Devices Society, 2021, 9, 295-299.	2.1	6
298	Illusion of large on-chip memory by networked computing chips for neural network inference. Nature Electronics, 2021, 4, 71-80.	26.0	15
299	Simple and rapid gas sensing using a single-walled carbon nanotube field-effect transistor-based logic inverter. Nanoscale Advances, 2021, 3, 1582-1587.	4.6	16
300	Observation of Resistive Switching Behavior in Crossbar Core–Shell Ni/NiO Nanowires Memristor. Small, 2018, 14, 1703153.	10.0	58
301	Large-area growth of MoS ₂ at temperatures compatible with integrating back-end-of-line functionality. 2D Materials, 2021, 8, 025008.	4.4	14
302	Layout Considerations of Logic Designs Using an N-layer 3D Nanofabric Process Flow. , 2020, , .		3
303	3D-ReG. ACM Journal on Emerging Technologies in Computing Systems, 2020, 16, 1-24.	2.3	14
304	Review—A Review of Advanced Electronic Applications Based on Carbon Nanomaterials. ECS Journal of Solid State Science and Technology, 2020, 9, 071002.	1.8	7
305	3D Nanophotonic device fabrication using discrete components. Nanophotonics, 2020, 9, 1373-1390.	6.0	15
306	Emerging Devices Based on Two-Dimensional Monolayer Materials for Energy Harvesting. Research, 2019, 2019, 7367828.	5.7	39
307	Ternary Arithmetic Logic Unit Design Utilizing Carbon Nanotube Field Effect Transistor (CNTFET) and Resistive Random Access Memory (RRAM). Micromachines, 2021, 12, 1288.	2.9	11

#	Article	IF	CITATIONS
308	Highâ€Purity Monochiral Carbon Nanotubes with a 1.2Ânm Diameter for Highâ€Performance Fieldâ€Effect Transistors. Advanced Functional Materials, 2022, 32, 2107119.	14.9	16
309	MemSor: Emergence of the Inâ€Memory Sensing Technology for the Digital Transformation. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100528.	1.8	4
310	Device design and optimization of CNTFETs for high-frequency applications. Journal of Computational Electronics, 2021, 20, 2492-2500.	2.5	5
311	Memristive Computing Devices and Applications. Kluwer International Series in Electronic Materials: Science and Technology, 2022, , 5-32.	0.5	0
312	Storing and Reading Information in Mixtures of Fluorescent Molecules. ACS Central Science, 2021, 7, 1728-1735.	11.3	29
313	Integration via 3rd dimension: 3D power scaling. , 2018, , .		0
314	System-level Trade-offs and Optimization for Data-Driven Applications. International Symposium on Microelectronics, 2018, 2018, 000023-000028.	0.0	0
315	Surface third and fifth harmonic generation at crystalline Si for non-invasive inspection of Si wafer's inter-layer defects. Optics Express, 2018, 26, 32812.	3.4	10
316	MBWU: Benefit Quantification for Data Access Function Offloading. Lecture Notes in Computer Science, 2019, , 198-213.	1.3	0
317	Materials selection and fabrication nanotechnology of the composite memristor-diode crossbar — the basis of neuroprocessor hardware implementation. Tyumen State University Herald Physical and Mathematical Modeling Oil Gas Energy, 2019, 5, 200-219.	0.2	1
318	Microstructural Evolution and Protrusion Simulations of Cu-TSVs Under Different Loading Conditions. Journal of Electronic Packaging, Transactions of the ASME, 2020, 142, .	1.8	4
319	Study of the ITO sublayer influence on the tubular carbon nanostructures formation. Journal of Physics: Conference Series, 2019, 1410, 012043.	0.4	0
320	Sol-gel-processed amorphous-phase ZrO ₂ based resistive random access memory. Materials Research Express, 2021, 8, 116301.	1.6	10
321	A Magnetic Reconfigurable Ternary NOR/NAND Logic for Logic-in-Memory Applications. Spin, 0, , .	1.3	2
322	Neuromorphic computing: Devices, hardware, and system application facilitated by two-dimensional materials. Applied Physics Reviews, 2021, 8, .	11.3	39
323	The influence of the temperature and Ti and TiN sublayer material on carbon nanotubes growth. Journal of Physics: Conference Series, 2020, 1695, 012038.	0.4	0
324	Silicon compatible optical interconnect and monolithic 3-D integration. , 2020, , .		3
325	The demonstration of Carbon Nano-Tubes (CNTs) as a promising high Aspect Ratio (>25) Through Silicon Vias (TSVs) material for the vertical connection in the high dense 3DICs. , 2020, , .		7

#	Article	IF	CITATIONS
326	A ReRAM Memory Compiler for Monolithic 3D Integrated Circuits in a Carbon Nanotube Process. ACM Journal on Emerging Technologies in Computing Systems, 2022, 18, 1-20.	2.3	0
327	High-Dimensional Time Series Feature Extraction for Low-Cost Machine Olfaction. IEEE Sensors Journal, 2020, , 1-1.	4.7	11
328	Arbeit in einer künftigen digitalen Gesellschaftsordnung. Technik Im Fokus, 2020, , 17-63.	0.2	0
329	Heterogeneous 3D Nano-systems: The N3XT Approach?. The Frontiers Collection, 2020, , 127-151.	0.2	6
330	Advances in Carbon Nanotube Technologies. , 2020, , .		1
331	Current and emerging opportunities in biological mediumâ€based computing and digital data storage. Nano Select, 2022, 3, 883-902.	3.7	2
332	Schottky Contacts Regularized Linear Regression for Signal Inconsistency Circumvent in Resistive Gas Microâ€Nanosensors. Small Methods, 2021, 5, e2101194.	8.6	2
333	The Road for 2D Semiconductors in the Silicon Age. Advanced Materials, 2022, 34, e2106886.	21.0	57
334	Artificial Intelligence in Building Information Modeling Research: Country and Document-based Citation and Bibliographic Coupling Analysis. Celal Bayar Universitesi Fen Bilimleri Dergisi, 2020, 16, 269-279.	0.5	3
335	Electrothermally triggered selective shape memory capabilities of CNT doped nanocomposites by Digital Light Processing. Composites Science and Technology, 2022, 218, 109185.	7.8	5
336	Challenges on DTCO Methodology Towards Deep Submicron Interconnect Technology. , 2021, , .		1
337	Progress and Challenges for Memtransistors in Neuromorphic Circuits and Systems. Advanced Materials, 2022, 34, e2108025.	21.0	40
338	Multi-Symmetric Level (MSL) Optimization Technique Based on Genetic Algorithm for Photonic Devices Design. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2021, 20, 790-800.	0.7	0
339	Stabilization of Polyoxometalate Charge Carriers via Redoxâ€Driven Nanoconfinement in Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2022, 61, e202115619.	13.8	35
340	A Multiply-and-Accumulate Array for Machine Learning Applications Based on a 3D Nanofabric Flow. IEEE Nanotechnology Magazine, 2021, 20, 873-882.	2.0	3
341	Thermal Reliability Considerations of Resistive Synaptic Devices for 3D CIM System Performance. , 2021, , ,		4
342	Architecture of Computing System based on Chiplet. Micromachines, 2022, 13, 205.	2.9	13
343	Emerging Internet of Things driven carbon nanotubes-based devices. Nano Research, 2022, 15, 4613-4637.	10.4	23

#	Article	IF	CITATIONS
344	Stabilization of Polyoxometalate Charge Carriers via Redoxâ€Driven Nanoconfinement in Singleâ€Walled Carbon Nanotubes. Angewandte Chemie, 2022, 134, .	2.0	1
345	The Demonstration of High-Quality Carbon Nanotubes as Through-Silicon Vias (TSVs) for Three-Dimensional Connection Stacking and Power-Via Technology. IEEE Transactions on Electron Devices, 2022, 69, 1600-1603.	3.0	5
346	CHIMERA: A 0.92-TOPS, 2.2-TOPS/W Edge AI Accelerator With 2-MByte On-Chip Foundry Resistive RAM for Efficient Training and Inference. IEEE Journal of Solid-State Circuits, 2022, 57, 1013-1026.	5.4	15
347	Process-Structure-Property Relations in Dense Aligned Carbon Nanotube/Aerospace-grade Epoxy Nanocomposites. , 2022, , .		3
348	Phase-Change Controlled Magnetic Tunnel Junction for Multifunctional In-Sensor Computing. IEEE Electron Device Letters, 2022, 43, 482-485.	3.9	7
349	Volatile and Nonvolatile Memristive Devices for Neuromorphic Computing. Advanced Electronic Materials, 2022, 8, .	5.1	94
350	Power-Efficient Gas-Sensing and Synaptic Diodes Based on Lateral Pentacene/a-IGZO PN Junctions. ACS Applied Materials & Interfaces, 2022, 14, 9368-9376.	8.0	10
351	Review on 3D growth engineering and integration of nanowires for advanced nanoelectronics and sensor applications. Nanotechnology, 2022, 33, 222002.	2.6	4
352	Laminated three-dimensional carbon nanotube integrated circuits. Nanoscale, 2022, 14, 7049-7054.	5.6	1
353	Fabrication and electrical properties of printed three-dimensional integrated carbon nanotube PMOS inverters on flexible substrates. Nanoscale, 2022, 14, 4679-4689.	5.6	6
354	Towards three-dimensional nanoarchitectures: highly ordered bi-layer assembly of tailored magnetic nanowire arrays <i>via</i> template-assisted electrodeposition. Materials Advances, 2022, 3, 4548-4555.	5.4	3
355	Multimode modulated memristors for in-sensor computing system. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 148502.	0.5	2
356	Engineering of the Properties of Low Dimensional Materials via Inhomogeneous Strain. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.5	0
357	Evaluating the Performances of the Ultralow Power Magnetoelectric Random Access Memory With a Physics-Based Compact Model of the Antiferromagnet/Ferromagnet Bilayer. IEEE Transactions on Electron Devices, 2022, 69, 2331-2337.	3.0	7
358	Performance Enhancement of Transparent and Flexible Triboelectric Nanogenerator Based on One-Dimensionally Hybridized Copper/Polydimethylsiloxane Film. SSRN Electronic Journal, 0, , .	0.4	0
359	Carbon based electronic technology in post-Moore era: progress, applications and challenges. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 068503.	O.5	4
360	Cotrollable growth of monolayer MoS2 films and the application in devices. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.5	0
361	Surface topography by water jet-guided laser texturing on wettability of monocrystalline silicon. International Journal of Advanced Manufacturing Technology, 2022, 120, 2747-2761.	3.0	3

#	Article	IF	CITATIONS
362	Physics and applications of nanotubes. Journal of Applied Physics, 2022, 131, .	2.5	9
363	Recent Advances in Structure Separation of Singleâ€Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics. Advanced Science, 2022, 9, e2200054.	11.2	39
364	A Low Powerâ€consumption and Transient Nonvolatile Memory Based on Highly Dense Allâ€Inorganic Perovskite Films. Advanced Electronic Materials, 0, , 2101412.	5.1	5
365	Universal Map of Gas-Dependent Kinetic Selectivity in Carbon Nanotube Growth. ACS Nano, 2022, , .	14.6	7
366	Comprehensive Study on High Purity Semiconducting Carbon Nanotube Extraction. Advanced Electronic Materials, 2022, 8, .	5.1	5
367	Wafer-scale fabrication of carbon-nanotube-based CMOS transistors and circuits with high thermal stability. Nano Research, 2022, 15, 9875-9880.	10.4	6
368	Multifunctional Half-Floating-Gate Field-Effect Transistor Based on MoS ₂ –BN–Graphene van der Waals Heterostructures. Nano Letters, 2022, 22, 2328-2333.	9.1	32
369	Carbon Nanotube SRAM in 5-nm Technology Node Design, Optimization, and Performance Evaluation—Part I: CNFET Transistor Optimization. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30, 432-439.	3.1	10
370	Multilevel memory and artificial synaptic plasticity in P(VDF-TrFE)-based ferroelectric field effect transistors. Nano Energy, 2022, 98, 107252.	16.0	26
371	Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature, 2022, 604, 65-71.	27.8	108
372	Carbon Nanotube SRAM in 5-nm Technology Node Design, Optimization, and Performance Evaluation—Part II: CNT Interconnect Optimization. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30, 440-448.	3.1	3
373	Stateful implication logic based on perpendicular magnetic tunnel junctions. Science China Information Sciences, 2022, 65, 1.	4.3	10
374	ParaMitE: Mitigating Parasitic CNFETs in the Presence of Unetched CNTs. , 2021, , .		0
375	High-density logic-in-memory devices using vertical indium arsenide nanowires on silicon. Nature Electronics, 2021, 4, 914-920.	26.0	22
376	Backâ€End CMOS Compatible and Flexible Ferroelectric Memories for Neuromorphic Computing and Adaptive Sensing. Advanced Intelligent Systems, 2022, 4, .	6.1	17
377	Recent Advances in New Materials for 6G Communications. Advanced Electronic Materials, 2022, 8, .	5.1	6
379	Evaluation of Stacked-CNTFET Structures for High-performance Applications. , 2021, , .		0
380	A four-megabit compute-in-memory macro with eight-bit precision based on CMOS and resistive random-access memory for AI edge devices. Nature Electronics, 2021, 4, 921-930.	26.0	36

#	Article	IF	CITATIONS
381	Monolithic 3D Integration of Logic, Memory and Computing-In-Memory for One-Shot Learning. , 2021, , .		17
382	Ge Single-Crystal-Island (Ge-SCI) Technique and BEOL Ge FinFET Switch Arrays on Top of Si Circuits for Monolithic 3D Voltage Regulators. , 2021, , .		0
383	Bio-inspired Sensory Systems with Integrated Capabilities of Sensing, Data Storage and Processing. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.5	0
384	Heterogeneous and Monolithic 3D Integration of Ill–V-Based Radio Frequency Devices on Si CMOS Circuits. ACS Nano, 2022, 16, 9031-9040.	14.6	14
385	Artificial intelligence deep learning for 3D IC reliability prediction. Scientific Reports, 2022, 12, 6711.	3.3	4
386	Performance Enhancement of Transparent and Flexible Triboelectric Nanogenerator Based on One-Dimensionally Hybridized Copper/Polydimethylsiloxane Film. SSRN Electronic Journal, 0, , .	0.4	0
387	The Influence of the PECVD Parameters on the Growth of Carbon Nanotubes for Nanopiezotronic Devices. Technical Physics, 2022, 67, 34-40.	0.7	1
388	System technology co-optimization and design challenges for 3D IC. , 2022, , .		3
389	Interfaceâ€Modulated Resistive Switching in Moâ€Irradiated ReS ₂ for Neuromorphic Computing. Advanced Materials, 2022, 34, .	21.0	25
390	Interlayer Engineering of Band Cap and Hole Mobility in p-Type Oxide SnO. ACS Applied Materials & Interfaces, 2022, 14, 25670-25679.	8.0	8
391	A Bioâ€Inspired Neuromorphic Sensory System. Advanced Intelligent Systems, 2022, 4, .	6.1	18
392	Band gap regulation and a selective preparation method for single-walled silicon carbide nanotubes. Results in Physics, 2022, 38, 105658.	4.1	6
393	Nonvolatile Memories in Spiking Neural Network Architectures: Current and Emerging Trends. Electronics (Switzerland), 2022, 11, 1610.	3.1	8
394	Performance enhancement of transparent and flexible triboelectric nanogenerator based on one-dimensionally hybridized copper/polydimethylsiloxane film. Nano Energy, 2022, 99, 107423.	16.0	12
395	Efficient and Highly Reliable Spintronic Non-volatile Quaternary Memory Based on Carbon Nanotube FETs and Multi-TMR MTJs. ECS Journal of Solid State Science and Technology, 2022, 11, 061007.	1.8	15
396	Lego-like reconfigurable AI chips. Nature Electronics, 2022, 5, 327-328.	26.0	4
398	Reconfigurable heterogeneous integration using stackable chips with embedded artificial intelligence. Nature Electronics, 2022, 5, 386-393.	26.0	57
399	Broadband Dielectric Spectroscopic Detection of Ethanol: A Side-by-Side Comparison of ZnO and HKUST-1 MOFs as Sensing Media. Chemosensors, 2022, 10, 241.	3.6	4

#	Article	IF	CITATIONS
401	Heterogeneous Integration by the 3D Stacking of Thin Silicon Die. , 2022, , .		1
402	Emerging Memristive Devices for Brain-Inspired Computing and Artificial Perception. Frontiers in Nanotechnology, 0, 4, .	4.8	6
404	Inâ \in Sensor Computing: Materials, Devices, and Integration Technologies. Advanced Materials, 2023, 35, .	21.0	63
405	Twin physically unclonable functions based on aligned carbon nanotube arrays. Nature Electronics, 2022, 5, 424-432.	26.0	19
406	Tightly Linking 3D Via Allocation Towards Routing Optimization for Monolithic 3D ICs. , 2022, , .		0
407	Novel approach for damage detection in multiscale CNT-reinforced composites via wireless Joule heating monitoring. Composites Science and Technology, 2022, 227, 109614.	7.8	5
408	Frequency-Dependent Synapse Weight Tuning in 1S1R with a Short-Term Plasticity TiO <i>_x</i> -Based Exponential Selector. ACS Applied Materials & Interfaces, 2022, 14, 35959-35968.	8.0	9
409	High Performance and Low Power Spintronic Binarized Neural Network Hardware Accelerator. , 2022, , ,		5
410	Learning about nanodevices using experimental characterization equipment. , 2022, , .		0
411	Air Stable High Mobility ALD ZnO TFT with HfO ₂ Passivation Layer Suitable for CMOS-BEOL Integration. , 2022, , .		0
412	A computing-in-memory macro based on three-dimensional resistive random-access memory. Nature Electronics, 2022, 5, 469-477.	26.0	51
413	Heteroepitaxy of semiconducting 2H-MoTe2 thin films on arbitrary surfaces for large-scale heterogeneous integration. , 2022, 1, 701-708.		15
414	2D semiconductors for specific electronic applications: from device to system. Npj 2D Materials and Applications, 2022, 6, .	7.9	53
415	Lowâ€Powerâ€Consumption, Reversible 3D Optical Storage Based on Selectively Laserâ€Induced Photoluminescence Degradation in CsPbBr ₃ Quantum Dots Doped Glass. Advanced Materials Technologies, 2022, 7, .	5.8	3
416	Sub-nanometer misalignment sensing for lithography with structured illumination. Optics Letters, 2022, 47, 4427.	3.3	3
417	Neuromorphic Liquids, Colloids, and Gels: A Review. ChemPhysChem, 2023, 24, .	2.1	11
418	Polyoxometalate Accelerated Cationic Migration for Reservoir Computing. Advanced Functional Materials, 2022, 32, .	14.9	10
419	Nondestructive Sequencing of Enantiopure Oligoesters by Nuclear Magnetic Resonance Spectroscopy. Jacs Au, 2022, 2, 2108-2118.	7.9	5

#	Article	IF	CITATIONS
420	Characterization and modeling of resistive switching phenomena in IGZO devices. AIP Advances, 2022, 12, .	1.3	3
421	Capillary-force-driven self-assembly of carbon nanotubes: from <i>ab initio</i> calculations to modeling of self-assembly. Nanoscale Advances, 2022, 4, 4131-4137.	4.6	3
422	Physical properties of carbon nanotubes and nanoribbons. , 2022, , 305-332.		0
423	From 2.5D to 3D Chiplet Systems: Investigation of Thermal Implications with HotSpot 7.0. , 2022, , .		2
424	Wireless On-Chip Communications for Scalable In-memory Hyperdimensional Computing. , 2022, , .		4
425	Multiferroic antiferromagnetic artificial synapse. Journal of Applied Physics, 2022, 132, 084102.	2.5	Ο
426	Length-dependent alignment of large-area semiconducting carbon nanotubes self-assembly on a liquid-liquid interface. Nano Research, 2023, 16, 1568-1575.	10.4	7
427	Graphene nanopattern as a universal epitaxy platform for single-crystal membrane production and defect reduction. Nature Nanotechnology, 2022, 17, 1054-1059.	31.5	25
428	Advancements in materials, devices, and integration schemes for a new generation of neuromorphic computers. Materials Today, 2022, 59, 80-106.	14.2	11
429	Ultraâ€Confined Catalytic Growth Integration of Subâ€10Ânm 3D Stacked Silicon Nanowires Via a Selfâ€Delimited Droplet Formation Strategy. Small, 2022, 18, .	10.0	4
430	Heterogeneous and Monolithic 3D Integration Technology for Mixed-Signal ICs. Electronics (Switzerland), 2022, 11, 3013.	3.1	4
431	Low temperature interfacial reaction in 3D IC nanoscale materials. Materials Science and Engineering Reports, 2022, 151, 100701.	31.8	6
432	Vertically Integrated Electronics: New Opportunities from Emerging Materials and Devices. Nano-Micro Letters, 2022, 14, .	27.0	8
433	Transistors and logic circuits enabled by 2D transition metal dichalcogenides: a state-of-the-art survey. Journal of Materials Chemistry C, 2022, 10, 17002-17026.	5.5	6
434	Orientation Independent Growth of Uniform Ferroelectric Hf _{0.5} Zr _{0.5} O ₂ Thin Films on Silicon for Highâ€Đensity 3D Memory Applications. Advanced Functional Materials, 2022, 32, .	14.9	11
435	Bioinspired interactive neuromorphic devices. Materials Today, 2022, 60, 158-182.	14.2	55
436	Atomic-scale tuning of ultrathin memristors. Communications Physics, 2022, 5, .	5.3	3
437	An End-to-end Computer Vision System Architecture. , 2022, , .		2

#	Article	IF	CITATIONS
438	High performance carbon nanotubes thin film transistors by selective ferric chloride doping. Journal of Information Display, 2023, 24, 109-118.	4.0	0
439	Resistive-Switching Memories. Springer Handbooks, 2023, , 1043-1092.	0.6	0
440	Redox memristors with volatile threshold switching behavior for neuromorphic computing. Journal of Electronic Science and Technology, 2022, 20, 100177.	3.6	4
441	Challenges and Opportunities of Chemiresistors Based on Microelectromechanical Systems for Chemical Olfaction. ACS Nano, 2022, 16, 17778-17801.	14.6	6
442	Carbon-Based Field-Effect Transistors. Springer Handbooks, 2023, , 905-930.	0.6	0
443	Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. Nature Electronics, 2022, 5, 752-760.	26.0	51
444	Carbon nanotube transistors: Making electronics from molecules. Science, 2022, 378, 726-732.	12.6	29
445	Efficient Hardware Architectures for Accelerating Deep Neural Networks: Survey. IEEE Access, 2022, 10, 131788-131828.	4.2	14
446	Universal logic-in-memory cell enabling all basic Boolean algebra logic. Scientific Reports, 2022, 12, .	3.3	4
447	Direct Multitier Synthesis of Two-Dimensional Semiconductor 2H-MoTe ₂ . ACS Applied Electronic Materials, 2022, 4, 5733-5738.	4.3	1
448	Molecular Evolutionary Growth of Ultralong Semiconducting Doubleâ€Walled Carbon Nanotubes. Advanced Science, 0, , 2205025.	11.2	1
449	Review of the Intelligent Sensorâ€Memory ontrol Fusion Systems. , 2023, 2, .		1
450	Interface Defects Tuning in Polymerâ€Perovskite Phototransistors for Visual Synapse and Adaptation Functions. Advanced Functional Materials, 2023, 33, .	14.9	14
451	Three-dimensional transistors and integration based on low-dimensional materials for the post-Moore's law era. Materials Today, 2022, , .	14.2	4
452	Recent progress on bumpless Cu/SiO ₂ hybrid bonding for 3D heterogeneous integration. Microelectronics International, 2023, 40, 115-131.	0.6	6
453	Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications. Chemical Society Reviews, 2023, 52, 1215-1272.	38.1	26
454	3-D Heterogeneous Integration of RRAM-Based Compute-In-Memory: Impact of Integration Parameters on Inference Accuracy. IEEE Transactions on Electron Devices, 2023, 70, 485-492.	3.0	4
455	A Variation-Aware Ternary True Random Number Generator Using Magnetic Tunnel Junction at Subcritical Current Regime. IEEE Transactions on Magnetics, 2023, 59, 1-8.	2.1	6

#	Article	IF	CITATIONS
456	Threeâ€Terminal Artificial Olfactory Sensors based on Emerging Materials: Mechanism and Application. Advanced Functional Materials, 2023, 33, .	14.9	12
457	CsPbBr3/graphene nanowall artificial optoelectronic synapses for controllable perceptual learning. PhotoniX, 2023, 4, .	13.5	13
458	Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating Human Brains. , 2023, , 259-296.		5
459	Inorganic Halide Perovskite Quantum Dots: A Versatile Nanomaterial Platform for Electronic Applications. Nano-Micro Letters, 2023, 15, .	27.0	36
460	WHYPE: A Scale-Out Architecture With Wireless Over-the-Air Majority for Scalable In-Memory Hyperdimensional Computing. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2023, 13, 137-149.	3.6	1
461	Heterogeneous Integration of Atomicallyâ€Thin Indium Tungsten Oxide Transistors for Lowâ€Power 3D Monolithic Complementary Inverter. Advanced Science, 0, , 2205481.	11.2	2
462	BC-MVLiM: A Binary-Compatible Multi-Valued Logic-in-Memory Based on Memristive Crossbars. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70, 2048-2061.	5.4	2
463	Hybrid MTJ/CNTFET-Based Binary Synapse and Neuron for Process-in-Memory Architecture. IEEE Magnetics Letters, 2023, 14, 1-5.	1.1	4
464	Van der Waals Layer Transfer of 2D Materials for Monolithic 3D Electronic System Integration: Review and Outlook. ACS Nano, 2023, 17, 1831-1844.	14.6	22
465	Novel materials-based devices to mitigate challenges. , 2023, , 119-157.		0
465 466	Novel materials-based devices to mitigate challenges. , 2023, , 119-157. Application and Prospect of Artificial Intelligence Methods in Signal Integrity Prediction and Optimization of Microsystems. Micromachines, 2023, 14, 344.	2.9	0
465 466 467	Novel materials-based devices to mitigate challenges. , 2023, , 119-157. Application and Prospect of Artificial Intelligence Methods in Signal Integrity Prediction and Optimization of Microsystems. Micromachines, 2023, 14, 344. Thermal-Stress Coupling Optimization for Coaxial through Silicon Via. Symmetry, 2023, 15, 264.	2.9 2.2	0 3 3
465 466 467 468	Novel materials-based devices to mitigate challenges., 2023, , 119-157. Application and Prospect of Artificial Intelligence Methods in Signal Integrity Prediction and Optimization of Microsystems. Micromachines, 2023, 14, 344. Thermal-Stress Coupling Optimization for Coaxial through Silicon Via. Symmetry, 2023, 15, 264. A Hybrid Computing-In-Memory Architecture by Monolithic 3D Integration of BEOL CNT/IGZO-based CFET Logic and Analog RRAM., 2022, , .	2.9 2.2	0 3 3 7
465 466 467 468	Novel materials-based devices to mitigate challenges., 2023, , 119-157.Application and Prospect of Artificial Intelligence Methods in Signal Integrity Prediction and Optimization of Microsystems. Micromachines, 2023, 14, 344.Thermal-Stress Coupling Optimization for Coaxial through Silicon Via. Symmetry, 2023, 15, 264.A Hybrid Computing-In-Memory Architecture by Monolithic 3D Integration of BEOL CNT/IGZO-based CFET Logic and Analog RRAM., 2022, , .Recent progress of photodetector based on carbon nanotube film and application in optoelectronic integration., 2023, 2, e9120058.	2.9	0 3 3 7 18
 465 466 467 468 469 470 	Novel materials-based devices to mitigate challenges., 2023, , 119-157.Application and Prospect of Artificial Intelligence Methods in Signal Integrity Prediction and Optimization of Microsystems. Micromachines, 2023, 14, 344.Thermal-Stress Coupling Optimization for Coaxial through Silicon Via. Symmetry, 2023, 15, 264.A Hybrid Computing-In-Memory Architecture by Monolithic 3D Integration of BEOL CNT/IGZO-based CFET Logic and Analog RRAM., 2022, , .Recent progress of photodetector based on carbon nanotube film and application in optoelectronic integration., 2023, 2, e9120058.Chirality-dependent electrical transport properties of carbon nanotubes obtained by experimental measurement. Nature Communications, 2023, 14, .	2.9 2.2 12.8	0 3 3 7 18
 465 466 467 468 469 470 471 	Novel materials-based devices to mitigate challenges., 2023, , 119-157. Application and Prospect of Artificial Intelligence Methods in Signal Integrity Prediction and Optimization of Microsystems. Micromachines, 2023, 14, 344. Thermal-Stress Coupling Optimization for Coaxial through Silicon Via. Symmetry, 2023, 15, 264. A Hybrid Computing-In-Memory Architecture by Monolithic 3D Integration of BEOL CNT/IGZO-based CFET Logic and Analog RRAM., 2022, ,. Recent progress of photodetector based on carbon nanotube film and application in optoelectronic integration., 2023, 2, e9120058. Chirality-dependent electrical transport properties of carbon nanotubes obtained by experimental measurement. Nature Communications, 2023, 14, . Will computing in memory become a new dawn of associative processors?., 2023, 4, 100033.	2.9 2.2 12.8	0 3 3 7 18 10 0
 465 466 467 468 469 470 471 472 	Novel materials-based devices to mitigate challenges., 2023, , 119-157. Application and Prospect of Artificial Intelligence Methods in Signal Integrity Prediction and Optimization of Microsystems. Micromachines, 2023, 14, 344. Thermal-Stress Coupling Optimization for Coaxial through Silicon Via. Symmetry, 2023, 15, 264. A Hybrid Computing-In-Memory Architecture by Monolithic 3D Integration of BEOL CNT/IGZO-based CFET Logic and Analog RRAM., 2022, , . Recent progress of photodetector based on carbon nanotube film and application in optoelectronic integration., 2023, 2, e9120058. Chirality-dependent electrical transport properties of carbon nanotubes obtained by experimental measurement. Nature Communications, 2023, 14, . Will computing in memory become a new dawn of associative processors?, 2023, 4, 100033. In-Depth Physical Mechanism Analysis and Wearable Applications of HfO <i> csub>x</i>	2.9 2.2 12.8 8.0	0 3 3 7 18 10 0 22

#	Article	IF	CITATIONS
474	Energy Efficient Circuit Design of Single Edge Triggered Ternary Shift Registers Using CNT Technology. IEEE Nanotechnology Magazine, 2023, 22, 102-111.	2.0	3
475	Horizontal Arrays of One-Dimensional van der Waals Heterostructures as Transistor Channels. ACS Applied Materials & Interfaces, 2023, 15, 10965-10973.	8.0	4
476	High-Performance Shortwave Infrared Detector Based on Multilayer Carbon Nanotube Films. ACS Applied Materials & Interfaces, 2023, 15, 13508-13516.	8.0	2
477	Three-dimensional inter-layer optical signal transmission realized by a monolithically integrated semiconductor-based carrier transport structure. Optics Express, 2023, 31, 11820.	3.4	0
478	Soft Electronics for Health Monitoring Assisted by Machine Learning. Nano-Micro Letters, 2023, 15, .	27.0	23
479	Roadmap on energy harvesting materials. JPhys Materials, 2023, 6, 042501.	4.2	19
480	Silicon Waveguide-Integrated Carbon Nanotube Photodetector with Low Dark Current and 48 GHz Bandwidth. ACS Nano, 2023, 17, 7466-7474.	14.6	3
481	2D materials readiness for the transistor performance breakthrough. IScience, 2023, 26, 106673.	4.1	1
482	Highly Enhanced Polarization Switching Speed in HfO ₂ â€based Ferroelectric Thin Films via a Composition Gradient Strategy. Advanced Functional Materials, 2023, 33, .	14.9	4
483	Photonic van der Waals integration from 2D materials to 3D nanomembranes. Nature Reviews Materials, 2023, 8, 498-517.	48.7	39
484	Towards Nonvolatile Spintronic Quaternary Flip-Flop and Register Design. Spin, 2023, 13, .	1.3	4
485	The Schottky barrier transistor in emerging electronic devices. Nanotechnology, 2023, 34, 352002.	2.6	3
486	Recent Progress in Multiterminal Memristors for Neuromorphic Applications. Advanced Electronic Materials, 2023, 9, .	5.1	5
487	Monolithic threeâ€dimensional integration of aligned carbon nanotube transistors for highâ€performance integrated circuits. InformaÄnÃ-Materiály, 2023, 5, .	17.3	5
488	Study of a Stretchable Polymer for Adjustable Flexible Organic Memristor. IEEE Transactions on Electron Devices, 2023, 70, 3921-3927.	3.0	2
489	High-fidelity moulding growth and cross-section shaping of ultrathin monocrystalline silicon nanowires. Applied Surface Science, 2023, 635, 157635.	6.1	Ο
490	Monolithic Three-Dimensional Integration of Carbon Nanotube Circuits and Sensors for Smart Sensing Chips. ACS Nano, 2023, 17, 10987-10995.	14.6	5
491	Micro/Nano Circuits and Systems Design and Design Automation: Challenges and Opportunities [Point of View]. Proceedings of the IEEE, 2023, 111, 561-574.	21.3	0

#	Article	IF	CITATIONS
492	A High Swing and Low Power Associative Memory Based on Emerging Technologies. , 2022, , .		1
493	A highâ€capacity and nonvolatile spintronic associative memory hardware accelerator. IET Circuits, Devices and Systems, 2023, 17, 205-212.	1.4	3
494	Wafer-scale Ge freestanding membranes for lightweight and flexible optoelectronics. Materials Today Advances, 2023, 18, 100373.	5.2	7
495	Intelligent Multifunctional Sensing Systems based on Ordered Macroâ€Microporous Metal Organic Framework and Its Derivatives. Small Methods, 2023, 7, .	8.6	2
496	Recent progress in functional two-dimensional photovoltaic photodetectors and related emerging applications. Journal of Materials Chemistry A, 2023, 11, 11548-11571.	10.3	5
497	Full two-dimensional ambipolar CFET-like architecture for switchable logic circuits. Journal Physics D: Applied Physics, 2023, 56, 355106.	2.8	2
498	A Neural Network to Decipher Organic Electrochemical Transistors' Multivariate Responses for Cation Recognition. Electronic Materials, 2023, 4, 80-94.	1.9	2
499	Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors. Nature Nanotechnology, 2023, 18, 1044-1050.	31.5	27
500	Reconfigurable Logic-in-Memory Computing Based on a Polarity-Controllable Two-Dimensional Transistor. Nano Letters, 2023, 23, 5242-5249.	9.1	5
502	Co-multiplexing spectral and temporal dimensions based on luminescent materials. Optics Express, 2023, 31, 24667.	3.4	1
503	Thermal Nanoimprint Lithography—A Review of the Process, Mold Fabrication, and Material. Nanomaterials, 2023, 13, 2031.	4.1	5
504	Scaling aligned carbon nanotube transistors to a sub-10 nm node. Nature Electronics, 2023, 6, 506-515.	26.0	11
505	Carbon nanotube field effect transistors: an overview of device structure, modeling, fabrication and applications. Physica Scripta, 2023, 98, 082003.	2.5	4
506	Aligned Carbon Nanotubes-Based Radiofrequency Transistors for Amplitude Amplification and Frequency Conversion at Millimeter Wave Band. ACS Nano, 0, , .	14.6	0
507	Welding Model for a Carbon Nanotube Bundle with Staggered Electrodes: Implications for Conductivity with Joule Heating. ACS Applied Nano Materials, 2023, 6, 14488-14497.	5.0	1
508	Optical polarization perturbed by shear strains of ultrasonic bulk waves in anisotropic semiconductors: Multiphysics modeling and optoacoustic validation. Photoacoustics, 2023, 32, 100540.	7.8	0
509	Semiconductor Sensor Virtual Array: Gas Detection Strategy in Internet of Things to Suppress Humidity Interference. IEEE Internet of Things Journal, 2023, , 1-1.	8.7	0
510	Functionalizing nanophotonic structures with 2D van der Waals materials. Nanoscale Horizons, 2023, 8, 1345-1365.	8.0	6

#	Article	IF	CITATIONS
511	Intelligent Design Method of Thermal Through Silicon via for Thermal Management of Chiplet-Based System. IEEE Transactions on Electron Devices, 2023, , 1-8.	3.0	0
512	Tunable non-volatile memories based on 2D InSe/ <i>h</i> -BN/GaSe heterostructures towards potential multifunctionality. Nanoscale, 0, , .	5.6	0
513	Experimental considerations for integration method of Si thin-film microchips for fluidic self-assembly. Japanese Journal of Applied Physics, 2023, 62, 086501.	1.5	0
514	Carbon-based cryoelectronics: graphene and carbon nanotube. , 2023, 2, 100064.		0
515	Designing high-speed and energy-efficient dynamic comparators using complementary carbon nanotube field-effect transistors. IEICE Electronics Express, 2023, 20, 20230373-20230373.	0.8	0
516	Microneural Network System Based on MoS ₂ /h-BN/Graphene van der Waals Heterojunction Transistor. ACS Applied Nano Materials, 2023, 6, 16046-16054.	5.0	1
517	Arithmetic Logic Unit Circuit Designed for Near-Sensor Computing Architecture With Complementary Carbon Nanotube Field-Effect Transistor Technology. IEEE Nanotechnology Magazine, 2023, 22, 509-517.	2.0	0
518	Energy Efficient Artificial Olfactory System with Integrated Sensing and Computing Capabilities for Food Spoilage Detection. Advanced Science, 2023, 10, .	11.2	0
519	Monolithic 3D Integration of Analog RRAMâ€based Computingâ€inâ€Memory and Sensor for Energyâ€Efficient Nearâ€Sensor Computing. Advanced Materials, 0, , .	21.0	0
520	Physics-Integrated Machine Learning for Efficient Design and Optimization of a Nanoscale Carbon Nanotube Field-Effect Transistor. ECS Journal of Solid State Science and Technology, 2023, 12, 091005.	1.8	0
521	Four levels of in-sensor computing in bionic olfaction: from discrete components to multi-modal integrations. Nanoscale Horizons, 2023, 8, 1301-1312.	8.0	1
522	Colloidal robotics. Nature Materials, 2023, 22, 1453-1462.	27.5	3
523	Biotemplated precise assembly approach toward ultra-scaled high-performance electronics. Nature Protocols, 2023, 18, 2975-2997.	12.0	0
524	3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature, 2023, 620, 78-85.	27.8	20
525	Toward monolithic growth integration of nanowire electronics in 3D architecture: a review. Science China Information Sciences, 2023, 66, .	4.3	1
526	CMOS backend-of-line compatible memory array and logic circuitries enabled by high performance atomic layer deposited ZnO thin-film transistor. Nature Communications, 2023, 14, .	12.8	2
527	Pave the way to the batch production of SWNT arrays for carbon-based electronic devices. Nano Research, 0, , .	10.4	0
528	Highly Nonlinear Memory Selectors with Ultrathin MoS ₂ /WSe ₂ /MoS ₂ Heterojunction. Advanced Functional Materials, 0, , .	14.9	2

#	Article	IF	CITATIONS
529	Architecture-circuit-technology co-optimization for resistive random access memory-based computation-in-memory chips. Science China Information Sciences, 2023, 66, .	4.3	0
530	Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T–4R structure for high-density memory. Nature Communications, 2023, 14, .	12.8	1
531	Monolithic 3D Integration of Dendritic Neural Network with Memristive Synapse, Dendrite and Soma on Si CMOS. , 2023, , .		0
532	CNT-PUFs: Highly Robust Physical Unclonable Functions Based on Carbon Nanotubes. , 2023, , .		1
533	Recent progress in InGaZnO FETs for high-density 2TOC DRAM applications. Science China Information Sciences, 2023, 66, .	4.3	0
534	Sensing–Storage–Computing Integrated Devices Based on Carbon Nanomaterials. , 2023, , 555-568.		0
535	Reversible multiplexing analog and digital optical information storage in Eu3+ doped perovskite-type photochromic materials. Ceramics International, 2023, , .	4.8	1
536	Twoâ€Dimensional Memtransistors for Nonâ€Von Neumann Computing: Progress and Challenges. Advanced Functional Materials, 2024, 34, .	14.9	1
537	Comparative Study on Indium Precursors for Plasma-Enhanced Atomic Layer Deposition of In ₂ O ₃ and Application to High-Performance Field-Effect Transistors. ACS Applied Materials & Interfaces, 2023, 15, 51399-51410.	8.0	1
538	Monolithic three-dimensional integration of RRAM-based hybrid memory architecture for one-shot learning. Nature Communications, 2023, 14, .	12.8	3
539	Emerging metal oxide/nitride protection layers for enhanced stability of silicon photoelectrodes in photoelectrochemical catalysis: Recent advancements and challenges. Materials Today Chemistry, 2023, 34, 101795.	3.5	0
540	Post-CMOS processing challenges and design developments of CMOS-MEMS microheaters for local CNT synthesis. Microsystems and Nanoengineering, 2023, 9, .	7.0	1
541	Band-to-Band Tunneling Leakage Current Characterization and Projection in Carbon Nanotube Transistors. ACS Nano, 2023, 17, 21083-21092.	14.6	0
542	Selfâ€Rectifying Memristors for Threeâ€DimensionalÂInâ€Memory Computing. Advanced Materials, 2024, 36, .	21.0	1
543	Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nature Materials, 2023, 22, 1470-1477.	27.5	2
544	Low-Thermal-Budget Ferroelectric Field-Effect Transistors Based on CuInP ₂ S ₆ and InZnO. ACS Applied Materials & Interfaces, 2023, 15, 53671-53677.	8.0	0
545	Long Range and Collective Impact of Au Surface Adatoms on Nanofin Growth. Journal of Physical Chemistry C, 2023, 127, 22112-22118.	3.1	0
546	A Physics-Based Compact Model for the Static Drain Current in Heterojunction Barrier CNTFETs—Part I: Barrier-Related Current. IEEE Transactions on Electron Devices, 2024, 71, 23-29.	3.0	1

#	Article	IF	CITATIONS
547	SPICE Modeling of Memristive Devices-Based Neural Networks. , 2023, , .		0
548	All-2D electronics for Al processing. Nature Materials, 2023, 22, 1433-1434.	27.5	0
549	A co-optimization method of thermal-stress coupling 3D integrated system with through silicon via. Structural and Multidisciplinary Optimization, 2023, 66, .	3.5	0
550	基于二ç»Î±-MoO3 çš"å₿值å⁻å,¨ç‰¹æ€§åŠå…¶åŒé‡å⁻¼ç"µæœºå^¶ç"ç©¶. Science China Materials, 2023	, 6 6, 34773	-47081.
551	An Investigation of Hardware Implementation of Multi-Valued Logic Using Different Nanodevices. , 2023, , .		0
552	Solution-Processed Carbon Nanotube Field-Effect Transistors Treated by Material Post-Treatment Approaches. Electronics (Switzerland), 2023, 12, 4969.	3.1	0
553	Advanced 3D Through-Si-Via and Solder Bumping Technology: A Review. Materials, 2023, 16, 7652.	2.9	1
554	High-performance thin-film transistors based on aligned carbon nanotubes for mini- and micro-LED displays. Carbon, 2024, 218, 118718.	10.3	1
555	Through-chip microchannels for three-dimensional integrated circuits cooling. Thermal Science and Engineering Progress, 2024, 47, 102333.	2.7	0
556	A Memristive-Optoelectronic Sensor for Neuromorphic Visual Systems. IEEE Sensors Journal, 2023, , 1-1.	4.7	0
557	A High Throughput In-MRAM-Computing Scheme Using Hybrid p-SOT-MTJ/GAA-CNTFET. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, , 1-14.	5.4	0
558	Self-Healing, Laminated, and Low Resistance NH ₃ Sensor Based on 6,6′,6″-(Nitrilotris(benzene-4,1-diyl))tris(5-phenylpyrazine-2,3-dicarbonitrile) Sensing Material Operating at Room Temperature. ACS Sensors, 2024, 9, 171-181.	7.8	1
559	Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics. Chemical Society Reviews, 2024, 53, 1316-1353.	38.1	3
560	Recent trends in synthesis, properties, and applications of CsPbX3 quantum dots: A review. Journal of Luminescence, 2024, 269, 120462.	3.1	0
561	Pulse irradiation synthesis of metal chalcogenides on flexible substrates for enhanced photothermoelectric performance. Nature Communications, 2024, 15, .	12.8	0
562	Invited Paper: Ultra-Efficient Edge AI Using FeFET-based Monolithic 3D Integration. , 2023, , .		0
563	Advances in neuromorphic computing: Expanding horizons for AI development through novel artificial neurons and in-sensor computing. Chinese Physics B, 2024, 33, 030702.	1.4	0
564	Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arrays. Nature Electronics, 2024, 7, 157-167.	26.0	Ο

#	Article	IF	CITATIONS
565	Coupling effects of interface charge trapping and polarization switching in HfO2-based ferroelectric field effect transistors. APL Materials, 2024, 12, .	5.1	1
566	Dendrite-inspired Computing to Improve Resilience of Neural Networks to Faults in Emerging Memory Technologies. , 2023, , .		0
567	A Spatial-Designed Computing-In-Memory Architecture Based on Monolithic 3D Integration for High-Performance Systems. , 2023, , .		0
568	Nanoscale memristor devices: materials, fabrication, and artificial intelligence. Journal of Materials Chemistry C, 2024, 12, 3770-3810.	5.5	1
569	3D Integration of Flexible and Printed Electronics: Integrated Circuits, Memories, and Sensors. , 2023, 2, 199-210.		0
570	Fourier-attention network: A deep neural network for lithographic misalignment sensing. Optics and Lasers in Engineering, 2024, 176, 108054.	3.8	0
571	Chirality engineering for carbon nanotube electronics. , 2024, 1, 149-162.		0
572	Large-range two-dimensional sub-nano-misalignment sensing for lithography with a piecewise frequency regression network. Optics Letters, 2024, 49, 1485.	3.3	0
573	The Roadmap of 2D Materials and Devices Toward Chips. Nano-Micro Letters, 2024, 16, .	27.0	0
574	Hardware implementation of memristor-based artificial neural networks. Nature Communications, 2024, 15, .	12.8	0
575	Neuromorphic Optical Data Storage Enabled by Nanophotonics: A Perspective. ACS Photonics, 2024, 11, 874-891.	6.6	0
576	Theoretical approaches toward designing sensitive materials for carbon nanotube-based field-effect transistor gas sensors. Sensors and Actuators B: Chemical, 2024, 409, 135604.	7.8	0
577	Biomaterial/Organic Heterojunction Based Memristor for Logic Gate Circuit Design, Data Encryption, and Image Reconstruction. Advanced Functional Materials, 0, , .	14.9	0