An immunogenic personal neoantigen vaccine for patie

Nature 547, 217-221 DOI: 10.1038/nature22991

Citation Report

#	Article	IF	CITATIONS
1	Checkpoint Inhibition in Hodgkin Lymphoma - a Review. Oncology Research and Treatment, 2017, 40, 654-660.	0.8	19
2	Immuno-Oncology—The Translational Runway for Gene Therapy: Gene Therapeutics to Address Multiple Immune Targets. Human Gene Therapy, 2017, 28, 1130-1137.	1.4	3
3	Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution. Cell, 2017, 171, 1259-1271.e11.	13.5	968
4	Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells. Seminars in Immunology, 2017, 34, 114-122.	2.7	29
5	Toward Personalized Peptide-Based Cancer Nanovaccines: A Facile and Versatile Synthetic Approach. Bioconjugate Chemistry, 2017, 28, 2756-2771.	1.8	36
6	Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. Oncolmmunology, 2017, 6, e1386829.	2.1	209
7	The promises of immunotherapy in gliomas. Current Opinion in Neurology, 2017, 30, 650-658.	1.8	16
8	Determining T-cell specificity to understand and treat disease. Nature Biomedical Engineering, 2017, 1, 784-795.	11.6	10
9	Neoantigen Vaccines Pass the Immunogenicity Test. Trends in Molecular Medicine, 2017, 23, 869-871.	3.5	45
11	Personal training by vaccination. Nature Reviews Cancer, 2017, 17, 451-451.	12.8	5
12	Personal training by vaccination. Nature Reviews Immunology, 2017, 17, 468-468.	10.6	0
13	Tools to define the melanomaâ€associated immunopeptidome. Immunology, 2017, 152, 536-544.	2.0	14
14	Making It Personal: Neoantigen Vaccines in Metastatic Melanoma. Immunity, 2017, 47, 221-223.	6.6	31
15	Notable advances 2017. Nature Medicine, 2017, 23, 1387-1389.	15.2	0
16	Personalized peptide vaccines for cancer therapy: current progress and state of the art. Expert Review of Precision Medicine and Drug Development, 2017, 2, 371-381.	0.4	9
17	Trial watch: DNA-based vaccines for oncological indications. Oncolmmunology, 2017, 6, e1398878.	2.1	30
18	Neoantigens in the immuno-oncology space. Future Oncology, 2017, 13, 2209-2211.	1.1	3
19	Precision T-cell therapy targets tumours. Nature, 2017, 547, 165-167.	13.7	23

ARTICLE IF CITATIONS # Informatics for cancer immunotherapy. Annals of Oncology, 2017, 28, xii56-xii73. 20 0.6 19 Preclinical and clinical development of neoantigen vaccines. Annals of Oncology, 2017, 28, xii11-xii17. MCVdb: A database for knowledge discovery in Merkel cell polyomavirus with applications in T cell 22 1 immunology and vaccinology., 2017,,. Booming cancer immunotherapy fighting tumors. Science China Life Sciences, 2017, 60, 1445-1449. Novel tools to assist neoepitope targeting in personalized cancer immunotherapy. Annals of 24 0.6 31 Oncology, 2017, 28, xii3-xii10. Immunotherapy for Non-small-cell Lung Cancer: Current Status and Future Obstacles. Immune Network, 2017, 17, 378. 1.6 Melanoma: Genetic Abnormalities, Tumor Progression, Clonal Evolution and Tumor Initiating Cells. 26 1.3 22 Medical Sciences (Basel, Switzerland), 2017, 5, 28. Calling cancer's bluff with neoantigen vaccines. Nature, 2017, 552, S76-S77. 13.7 28 How T cells spot tumour cells. Nature, 2017, 551, 444-446. 13.7 15 PD-1/PD-L1 Blockade: Have We Found the Key to Unleash the Antitumor Immune Response?. Frontiers in 29 2.2 Immunology, 2017, 8, 1597. The benefits of immunotherapy combinations. Nature, 2017, 552, S67-S69. 30 13.7 111 Non-Canonical Thinking for Targeting ALK-Fusion Onco-Proteins in Lung Cancer. Cancers, 2017, 9, 164. The Potential and Challenges of Exploiting the Vast But Dynamic Neoepitope Landscape for 32 2.2 13 Immunotherapy. Frontiers in Immunology, 2017, 8, 1113. †Hotspots' of Antigen Presentation Revealed by Human Leukocyte Antigen Ligandomics for Neoantigen 2.2 133 Prioritization. Frontiers in Immunology, 2017, 8, 1367 Checkpoint Blockade Toxicity and Immune Homeostasis in the Gastrointestinal Tract. Frontiers in 34 2.2 125 Immunology, 2017, 8, 1547. An Analysis of Natural T Cell Responses to Predicted Tumor Neoepitopes. Frontiers in Immunology, 2.2 103 2017, 8, 1566. Strategies to Improve the Efficacy of Dendritic Cell-Based Immunotherapy for Melanoma. Frontiers in 36 2.2 48 Immunology, 2017, 8, 1594. The Future of Immunotherapy: A 20-Year Perspective. Frontiers in Immunology, 2017, 8, 1668. 2.2

#	Article	IF	CITATIONS
38	Neoantigens Generated by Individual Mutations and Their Role in Cancer Immunity and Immunotherapy. Frontiers in Immunology, 2017, 8, 1679.	2.2	171
39	Identification and Characterization of Neoantigens As Well As Respective Immune Responses in Cancer Patients. Frontiers in Immunology, 2017, 8, 1702.	2.2	48
40	The Potential of Donor T-Cell Repertoires in Neoantigen-Targeted Cancer Immunotherapy. Frontiers in Immunology, 2017, 8, 1718.	2.2	36
41	Neoantigen Targeting—Dawn of a New Era in Cancer Immunotherapy?. Frontiers in Immunology, 2017, 8, 1848.	2.2	73
42	Expression of the MHC class II in triple-negative breast cancer is associated with tumor-infiltrating lymphocytes and interferon signaling. PLoS ONE, 2017, 12, e0182786.	1.1	91
43	Virus like particles as a platform for cancer vaccine development. PeerJ, 2017, 5, e4053.	0.9	62
44	Vaccination-induced skin-resident memory CD8 ⁺ T cells mediate strong protection against cutaneous melanoma. Oncolmmunology, 2018, 7, e1442163.	2.1	62
45	Advances of Immune Checkpoint Inhibitors in Tumor Immunotherapy. IOP Conference Series: Materials Science and Engineering, 2018, 301, 012020.	0.3	3
46	Necroptotic cancer cells-mimicry nanovaccine boosts anti-tumor immunity with tailored immune-stimulatory modality. Biomaterials, 2018, 164, 80-97.	5.7	78
47	Computational prediction of neoantigens: do we need more data or new approaches?. Annals of Oncology, 2018, 29, 799-801.	0.6	4
48	Targeting Neoantigens for Personalised Immunotherapy. BioDrugs, 2018, 32, 99-109.	2.2	11
49	Sustained Persistence of IL2 Signaling Enhances the Antitumor Effect of Peptide Vaccines through T-cell Expansion and Preventing PD-1 Inhibition. Cancer Immunology Research, 2018, 6, 617-627.	1.6	13
50	Recent progress in Lynch syndrome and other familial colorectal cancer syndromes. Ca-A Cancer Journal for Clinicians, 2018, 68, 217-231.	157.7	117
51	Importance of immune monitoring approaches and the use of immune checkpoints for the treatment of diffuse intrinsic pontine glioma: From bench to clinic and vice versa (Review). International Journal of Oncology, 2018, 52, 1041-1056.	1.4	4
52	Optimized dendritic cell vaccination induces potent CD8 T cell responses and anti-tumor effects in transgenic mouse melanoma models. Oncolmmunology, 2018, 7, e1445457.	2.1	13
53	A facile approach to enhance antigen response for personalized cancer vaccination. Nature Materials, 2018, 17, 528-534.	13.3	313
54	Epidemiology and biology of relapse after stem cell transplantation. Bone Marrow Transplantation, 2018, 53, 1379-1389.	1.3	85
55	Systems Immunology: Learning the Rules of the Immune System. Annual Review of Immunology, 2018, 36, 813-842.	9.5	70

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
56	The role of cytokines in T ell memory in health and disease. Immunological Reviews, 2018, 283, 176-193.	2.8	135
57	Melanoma: What do all the mutations mean?. Cancer, 2018, 124, 3490-3499.	2.0	131
58	Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry. Immunology, 2018, 154, 331-345.	2.0	101
59	Quo Vadis—Do Immunotherapies Have a Role in Glioblastoma?. Current Treatment Options in Neurology, 2018, 20, 14.	0.7	22
60	Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. Cell, 2018, 173, 305-320.e10.	13.5	272
61	Emerging Concepts for Immune Checkpoint Blockade-Based Combination Therapies. Cancer Cell, 2018, 33, 581-598.	7.7	393
62	Tumor lysate-based vaccines: on the road to immunotherapy for gallbladder cancer. Cancer Immunology, Immunotherapy, 2018, 67, 1897-1910.	2.0	42
63	Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Science Translational Medicine, 2018, 10, .	5.8	326
64	Peptide Vaccine Formulation Controls the Duration of Antigen Presentation and Magnitude of Tumor-Specific CD8+ T Cell Response. Journal of Immunology, 2018, 200, 3464-3474.	0.4	16
65	Personalized cancer vaccines: adjuvants are important, too. Cancer Immunology, Immunotherapy, 2018, 67, 1911-1918.	2.0	44
66	Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer. Cancer Cell, 2018, 33, 843-852.e4.	7.7	827
67	Cancer immunotherapyâ€ŧargeted glypicanâ€3 or neoantigens. Cancer Science, 2018, 109, 531-541.	1.7	40
68	lmmunopharmacogenomics towards personalized cancer immunotherapy targeting neoantigens. Cancer Science, 2018, 109, 542-549.	1.7	45
69	Re-Emergence of Dendritic Cell Vaccines for Cancer Treatment. Trends in Cancer, 2018, 4, 119-137.	3.8	247
70	Present status and future perspective of peptideâ€based vaccine therapy for urological cancer. Cancer Science, 2018, 109, 550-559.	1.7	42
71	Breaking self-tolerance during autoimmunity and cancer immunity: Myeloid cells and type I IFN response regulation. Journal of Leukocyte Biology, 2018, 103, 1117-1129.	1.5	11
72	Therapeutic cancer vaccines: From initial findings to prospects. Immunology Letters, 2018, 196, 11-21.	1.1	75
73	Cancer immunotherapy beyond immune checkpoint inhibitors. Journal of Hematology and Oncology, 2018, 11, 8.	6.9	174

#	Article	IF	CITATIONS
74	Cell membrane-coated nanocarriers: the emerging targeted delivery system for cancer theranostics. Drug Discovery Today, 2018, 23, 891-899.	3.2	112
75	A roadmap towards personalized immunology. Npj Systems Biology and Applications, 2018, 4, 9.	1.4	43
76	A modified HLA-A*0201-restricted CTL epitope from human oncoprotein (hPEBP4) induces more efficient antitumor responses. Cellular and Molecular Immunology, 2018, 15, 768-781.	4.8	13
77	Precision medicine in diabetes: an opportunity for clinical translation. Annals of the New York Academy of Sciences, 2018, 1411, 140-152.	1.8	32
78	Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut, 2018, 67, 1168-1180.	6.1	139
79	Differential binding affinity of mutated peptides for MHC class I is a predictor of survival in advanced lung cancer and melanoma. Annals of Oncology, 2018, 29, 271-279.	0.6	106
80	Mechanisms of Resistance to PD-1 and PD-L1 Blockade. Cancer Journal (Sudbury, Mass), 2018, 24, 47-53.	1.0	287
81	Synergy effects of Polyinosinic-polycytidylic acid, CpG oligodeoxynucleotide, and cationic peptides to adjuvant HPV E7 epitope vaccine through preventive and therapeutic immunization in a TC-1 grafted mouse model. Human Vaccines and Immunotherapeutics, 2018, 14, 931-940.	1.4	20
82	Cancer transcriptome profiling at the juncture of clinical translation. Nature Reviews Genetics, 2018, 19, 93-109.	7.7	202
83	Improving Cancer Immunotherapies through Empirical Neoantigen Selection. Trends in Cancer, 2018, 4, 97-100.	3.8	15
84	Therapeutic Cancer Vaccines: How Much Closer Are We?. BioDrugs, 2018, 32, 1-7.	2.2	15
85	High-throughput and Sensitive Immunopeptidomics Platform Reveals Profound InterferonÎ ³ -Mediated Remodeling of the Human Leukocyte Antigen (HLA) Ligandome. Molecular and Cellular Proteomics, 2018, 17, 533-548.	2.5	224
86	Is It Possible to Develop Cancer Vaccines to Neoantigens, What Are the Major Challenges, and How Can These Be Overcome?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a033704.	2.3	10
87	Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell, 2018, 172, 549-563.e16.	13.5	226
88	mRNA vaccines — a new era in vaccinology. Nature Reviews Drug Discovery, 2018, 17, 261-279.	21.5	2,668
89	Quantification of a recombinant antigen in an immuno-stimulatory whole yeast cell-based therapeutic vaccine. Analytical Biochemistry, 2018, 545, 65-71.	1.1	8
90	Mechanisms of resistance to immune checkpoint inhibitors. British Journal of Cancer, 2018, 118, 9-16.	2.9	944
91	Inhibitors of the PD-1 Pathway in Tumor Therapy. Journal of Immunology, 2018, 200, 375-383.	0.4	112

	CHATORIA		
#	Article	IF	Citations
92	Hitting the Target: How T Cells Detect and Eliminate Tumors. Journal of Immunology, 2018, 200, 392-399.	0.4	67
93	Membranal and Bloodâ€Soluble HLA Class II Peptidome Analyses Using Dataâ€Dependent and Independent Acquisition. Proteomics, 2018, 18, e1700246.	1.3	32
94	The Role of Mass Spectrometry and Proteogenomics in the Advancement of HLA Epitope Prediction. Proteomics, 2018, 18, e1700259.	1.3	49
95	High-Dimensional Profiling of Tumor-Specific Immune Responses: Asking T Cells about What They "See― in Cancer. Cancer Immunology Research, 2018, 6, 2-9.	1.6	15
96	Vaccinating with Stem Cells to Stop Cancer. Trends in Molecular Medicine, 2018, 24, 524-526.	3.5	4
97	Population-level distribution and putative immunogenicity of cancer neoepitopes. BMC Cancer, 2018, 18, 414.	1.1	32
98	The perfect personalized cancer therapy: cancer vaccines against neoantigens. Journal of Experimental and Clinical Cancer Research, 2018, 37, 86.	3.5	82
99	Correlates of immune and clinical activity of novel cancer vaccines. Seminars in Immunology, 2018, 39, 119-136.	2.7	54
100	The opposing roles of <scp>CD</scp> 4 ⁺ T cells in antiâ€ŧumour immunity. Immunology, 2018, 154, 582-592.	2.0	92
101	The emerging clinical relevance of genomics in cancer medicine. Nature Reviews Clinical Oncology, 2018, 15, 353-365.	12.5	351
102	Vaccine Strategies in Gliomas. Current Treatment Options in Neurology, 2018, 20, 11.	0.7	12
104	Engineering Vaccines to Reprogram Immunity against Head and Neck Cancer. Journal of Dental Research, 2018, 97, 627-634.	2.5	31
105	Immune checkpoint blockade therapy. Journal of Allergy and Clinical Immunology, 2018, 142, 1403-1414.	1.5	79
106	Aluminum hydroxide colloid vaccine encapsulated in yeast shells with enhanced humoral and cellular immune responses. Biomaterials, 2018, 167, 32-43.	5.7	31
107	Personalized vaccines for cancer immunotherapy. Science, 2018, 359, 1355-1360.	6.0	697
108	Immune signatures predicting responses to immunomodulatory antibody therapy. Current Opinion in Immunology, 2018, 51, 91-96.	2.4	7
109	Three antigen-loading methods in dendritic cell vaccines for metastatic melanoma. Melanoma Research, 2018, 28, 211-221.	0.6	21
110	Combination immunotherapies implementing adoptive T-cell transfer for advanced-stage melanoma. Melanoma Research, 2018, 28, 171-184.	0.6	18

#	Article	IF	CITATIONS
111	Personalized neoantigen vaccines: A new approach to cancer immunotherapy. Bioorganic and Medicinal Chemistry, 2018, 26, 2842-2849.	1.4	85
112	Age and immunity: What is "immunosenescence�. Experimental Gerontology, 2018, 105, 4-9.	1.2	337
113	Combination therapy strategies for improving PDâ€1 blockade efficacy: a new era in cancer immunotherapy. Journal of Internal Medicine, 2018, 283, 110-120.	2.7	162
114	Progress in biopharmaceutical development. Biotechnology and Applied Biochemistry, 2018, 65, 306-322.	1.4	207
115	Advances in immunotherapy for pediatric acute myeloid leukemia. Expert Opinion on Biological Therapy, 2018, 18, 51-63.	1.4	13
116	Cancer vaccines on the move. Nature Reviews Clinical Oncology, 2018, 15, 9-10.	12.5	127
117	An Efficient Single-Cell RNA-Seq Approach to Identify Neoantigen-Specific T Cell Receptors. Molecular Therapy, 2018, 26, 379-389.	3.7	78
118	Immune correlates of clinical outcome in melanoma. Immunology, 2018, 153, 415-422.	2.0	9
119	Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nature Reviews Immunology, 2018, 18, 168-182.	10.6	736
120	Medical bioinformatics in melanoma. Current Opinion in Oncology, 2018, 30, 113-117.	1.1	13
121	Autologous Dendritic Cells Pulsed with Allogeneic Tumor Cell Lysate in Mesothelioma: From Mouse to Human. Clinical Cancer Research, 2018, 24, 766-776.	3.2	68
122	Veterinary Oncology Immunotherapies. Veterinary Clinics of North America - Small Animal Practice, 2018, 48, 257-277.	0.5	8
123	Immuno-oncology from the perspective of somatic evolution. Seminars in Cancer Biology, 2018, 52, 75-85.	4.3	15
125	Major Histocompatibility Complex Class II and Programmed Death Ligand 1 Expression Predict Outcome After Programmed Death 1 Blockade in Classic Hodgkin Lymphoma. Journal of Clinical Oncology, 2018, 36, 942-950.	0.8	273
126	Cancer Vaccines: Dendritic Cell-Based Vaccines and Related Approaches. , 2018, , 260-260.		0
127	Network assessment of demethylation treatment in melanoma: Differential transcriptome-methylome and antigen profile signatures. PLoS ONE, 2018, 13, e0206686.	1.1	2
129	Lost in the crowd: identifying targetable MHC class I neoepitopes for cancer immunotherapy. Expert Review of Proteomics, 2018, 15, 1065-1077.	1.3	12
130	Vaccination With a FAT1-Derived B Cell Epitope Combined With Tumor-Specific B and T Cell Epitopes Elicits Additive Protection in Cancer Mouse Models. Frontiers in Oncology, 2018, 8, 481.	1.3	18

#	Article	IF	CITATIONS
131	The Dilemma of Cure and Damage in Oligodendroglioma: Ways to Tip the Balance Away from the Damage. Cancers, 2018, 10, 431.	1.7	7
132	Perspective: cancer vaccines in the era of immune checkpoint blockade. Mammalian Genome, 2018, 29, 703-713.	1.0	20
133	Using Frameshift Peptide Arrays for Cancer Neo-Antigens Screening. Scientific Reports, 2018, 8, 17366.	1.6	13
134	The role of neoantigen in immune checkpoint blockade therapy. Experimental Hematology and Oncology, 2018, 7, 28.	2.0	99
135	Effective screening of T cells recognizing neoantigens and construction of T-cell receptor-engineered T cells. Oncotarget, 2018, 9, 11009-11019.	0.8	44
136	The 2018 Nobel Prize in medicine goes to cancer immunotherapy. BMC Cancer, 2018, 18, 1086.	1.1	54
137	A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data. Nature Genetics, 2018, 50, 1735-1743.	9.4	62
138	Cancer research in the era of immunogenomics. ESMO Open, 2018, 3, e000475.	2.0	14
139	Adoptive Cell Transfer: Is it a Promising Immunotherapy for Colorectal Cancer?. Theranostics, 2018, 8, 5784-5800.	4.6	42
140	The clinical promise of immunotherapy in triple-negative breast cancer. Cancer Management and Research, 2018, Volume 10, 6823-6833.	0.9	113
142	Progress of immune checkpoint therapy in the clinic (Review). Oncology Reports, 2019, 41, 3-14.	1.2	24
143	CD27 stimulation unveils the efficacy of linked class I/II peptide vaccines in poorly immunogenic tumors by orchestrating a coordinated CD4/CD8 T cell response. Oncolmmunology, 2018, 7, e1502904.	2.1	11
144	Recent updates in cancer immunotherapy: a comprehensive review and perspective of the 2018 China Cancer Immunotherapy Workshop in Beijing. Journal of Hematology and Oncology, 2018, 11, 142.	6.9	95
145	Recent Development and Clinical Application of Cancer Vaccine: Targeting Neoantigens. Journal of Immunology Research, 2018, 2018, 1-9.	0.9	75
146	Progresses and Perspectives of Anti-PD-1/PD-L1 Antibody Therapy in Head and Neck Cancers. Frontiers in Oncology, 2018, 8, 563.	1.3	35
147	Genomics of response to immune checkpoint therapies for cancer: implications for precision medicine. Genome Medicine, 2018, 10, 93.	3.6	121
148	Anti-tumor macrophages activated by ferumoxytol combined or surface-functionalized with the TLR3 agonist poly (I : C) promote melanoma regression. Theranostics, 2018, 8, 6307-6321.	4.6	89
149	Noncoding regions are the main source of targetable tumor-specific antigens. Science Translational Medicine, 2018, 10, .	5.8	374

#	Article	IF	CITATIONS
150	Network Representation of T-Cell Repertoire— A Novel Tool to Analyze Immune Response to Cancer Formation. Frontiers in Immunology, 2018, 9, 2913.	2.2	15
151	Transformation of Old Concepts for a New Era of Cancer Immunotherapy: Cytokine Therapy and Cancer Vaccines as Combination Partners of PD1/PD-L1 Inhibitors. Current Oncology Reports, 2018, 20, 1.	1.8	30
152	Emerging ways to treat breast cancer: will promises be met?. Cellular Oncology (Dordrecht), 2018, 41, 605-621.	2.1	43
153	Stochastic modeling of tumor progression and immune evasion. Journal of Theoretical Biology, 2018, 458, 148-155.	0.8	15
154	The prevalent Boxer MHC class la allotype dog leukocyte antigen (DLA)â€88*034:01 preferentially binds nonamer peptides with a defined motif. Hla, 2018, 92, 403-407.	0.4	7
155	Tumor-infiltrating T cells in epithelial ovarian cancer: predictors of prognosis and biological basis of immunotherapy. Gynecologic Oncology, 2018, 151, 1-3.	0.6	20
156	Automated closed-system manufacturing of human monocyte-derived dendritic cells for cancer immunotherapy. Journal of Immunological Methods, 2018, 463, 89-96.	0.6	11
157	A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell, 2018, 175, 313-326.	13.5	985
158	Open Source Tool for VH-replacement Products Discovery and Analysis. , 2018, , .		0
159	Multi-Omics Profiling of the Tumor Microenvironment: Paving the Way to Precision Immuno-Oncology. Frontiers in Oncology, 2018, 8, 430.	1.3	57
160	Protein Barcodes Enable High-Dimensional Single-Cell CRISPR Screens. Cell, 2018, 175, 1141-1155.e16.	13.5	107
161	Dendritic Cell Cancer Therapy: Vaccinating the Right Patient at the Right Time. Frontiers in Immunology, 2018, 9, 2265.	2.2	107
162	Exploring optimal sequencing of radiation and immunotherapy combinations. Advances in Radiation Oncology, 2018, 3, 494-505.	0.6	26
163	Encapsulation of Poly I:C and the natural phosphodiester CpG ODN enhanced the efficacy of a hyaluronic acid-modified cationic lipid-PLGA hybrid nanoparticle vaccine in TC-1-grafted tumors. International Journal of Pharmaceutics, 2018, 553, 327-337.	2.6	31
164	Convertion of concerning immuno good deviced from major bisto compatibility complex (MUC) close		17
	I molecules using variable epitope libraries. Immunology Letters, 2018, 204, 47-54.	1.1	1,
165	Unique true predicted neoantigens (TPNAs) correlates with anti-tumor immune control in HCC patients. Journal of Translational Medicine, 2018, 16, 286.	1.1	24
165 166	Unique true predicted neoantigens (TPNAs) correlates with anti-tumor immune control in HCC patients. Journal of Translational Medicine, 2018, 16, 286. The Mouse Hospital and Its Integration in Ultra-Precision Approaches to Cancer Care. Frontiers in Oncology, 2018, 8, 340.	1.1 1.8 1.3	24

#	Article	IF	CITATIONS
169	Immunoengineering through cancer vaccines – A personalized and multi-step vaccine approach towards precise cancer immunity. Journal of Controlled Release, 2018, 289, 125-145.	4.8	31
170	Trial watch: Peptide-based vaccines in anticancer therapy. Oncolmmunology, 2018, 7, e1511506.	2.1	121
171	TSNAdb: A Database for Tumor-specific Neoantigens from Immunogenomics Data Analysis. Genomics, Proteomics and Bioinformatics, 2018, 16, 276-282.	3.0	97
172	Immune lipoprotein nanostructures inspired relay drug delivery for amplifying antitumor efficiency. Biomaterials, 2018, 185, 205-218.	5.7	32
173	Unimicellar hyperstars as multi-antigen cancer nanovaccines displaying clustered epitopes of immunostimulating peptides. Biomaterials Science, 2018, 6, 2850-2858.	2.6	9
174	Evolutionary Pressure against MHC Class II Binding Cancer Mutations. Cell, 2018, 175, 416-428.e13.	13.5	176
175	BSA-bioinspired gold nanorods loaded with immunoadjuvant for the treatment of melanoma by combined photothermal therapy and immunotherapy. Nanoscale, 2018, 10, 21640-21647.	2.8	118
176	Immediate and substantial evolution of T-cell repertoire in peripheral blood and tumor microenvironment of patients with esophageal squamous cell carcinoma treated with preoperative chemotherapy. Carcinogenesis, 2018, 39, 1389-1398.	1.3	13
177	Combined Analysis of Antigen Presentation and T-cell Recognition Reveals Restricted Immune Responses in Melanoma. Cancer Discovery, 2018, 8, 1366-1375.	7.7	80
178	Translational Biomarkers: Application in the Clinical Development of Combination Therapies. , 2018, , 223-248.		0
179	Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy. Biomaterials, 2018, 185, 13-24.	5.7	142
180	In Silico Analysis of the Minor Histocompatibility Antigen Landscape Based on the 1000 Genomes Project. Frontiers in Immunology, 2018, 9, 1819.	2.2	31
181	Immunological-based approaches for cancer therapy. Clinics, 2018, 73, e429s.	0.6	7
182	Nanoparticle Conjugation of Human Papillomavirus 16 E7-long Peptides Enhances Therapeutic Vaccine Efficacy against Solid Tumors in Mice. Cancer Immunology Research, 2018, 6, 1301-1313.	1.6	27
183	A carboxymethyl dextran-based polymeric conjugate as the antigen carrier for cancer immunotherapy. Biomaterials Research, 2018, 22, 21.	3.2	19
184	Human Papilloma Virus Specific Immunogenicity and Dysfunction of CD8+ T Cells in Head and Neck Cancer. Cancer Research, 2018, 78, 6159-6170.	0.4	61
185	Identifying neoantigens for use in immunotherapy. Mammalian Genome, 2018, 29, 714-730.	1.0	28
186	Chromosome Y–encoded antigens associate with acute graft-versus-host disease in sex-mismatched stem cell transplant. Blood Advances, 2018, 2, 2419-2429.	2.5	11

#	Article	IF	CITATIONS
187	Subcellular Localization of Antigen in Keratinocytes Dictates Delivery of CD4+ T-cell Help for the CTL Response upon Therapeutic DNA Vaccination into the Skin. Cancer Immunology Research, 2018, 6, 835-847.	1.6	10
188	Less cholesterol means better tumor killing for cytotoxic T9 cells. Journal of Experimental Medicine, 2018, 215, 1505-1506.	4.2	1
189	Smart delivery of vaccines. Nature Materials, 2018, 17, 482-483.	13.3	18
190	Keeping Tumors in Check: A Mechanistic Review of Clinical Response and Resistance to Immune Checkpoint Blockade in Cancer. Journal of Molecular Biology, 2018, 430, 2014-2029.	2.0	42
191	Regulation of innate and adaptive antitumor immunity by IAP antagonists. Immunotherapy, 2018, 10, 787-796.	1.0	51
192	Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature, 2018, 557, 575-579.	13.7	942
193	MHCflurry: Open-Source Class I MHC Binding Affinity Prediction. Cell Systems, 2018, 7, 129-132.e4.	2.9	311
194	Novel tumour antigens and the development of optimal vaccine design. , 2018, 6, 31-47.	1.4	11
195	Combining Tumor Vaccination and Oncolytic Viral Approaches with Checkpoint Inhibitors: Rationale, Pre-Clinical Experience, and Current Clinical Trials in Malignant Melanoma. American Journal of Clinical Dermatology, 2018, 19, 657-670.	3.3	14
196	Vaccine immunotherapy with ARNAX induces tumorâ€specific memory T cells and durable antiâ€tumor immunity in mouse models. Cancer Science, 2018, 109, 2119-2129.	1.7	22
197	Chimeric Antigen Receptor Therapy. New England Journal of Medicine, 2018, 379, 64-73.	13.9	1,488
198	Challenges towards the realization of individualized cancer vaccines. Nature Biomedical Engineering, 2018, 2, 566-569.	11.6	40
199	Influenza vaccination of cancer patients during PD-1 blockade induces serological protection but may raise the risk for immune-related adverse events. , 2018, 6, 40.		110
200	Engineering PD-1-Presenting Platelets for Cancer Immunotherapy. Nano Letters, 2018, 18, 5716-5725.	4.5	172
201	Poly(propylacrylic acid)-peptide nanoplexes as a platform for enhancing the immunogenicity of neoantigen cancer vaccines. Biomaterials, 2018, 182, 82-91.	5.7	77
202	Targeting STING with cyclic di-GMP greatly augmented immune responses of glycopeptide cancer vaccines. Chemical Communications, 2018, 54, 9655-9658.	2.2	43
203	MHC class II restricted neoantigen peptides predicted by clonal mutation analysis in lung adenocarcinoma patients: implications on prognostic immunological biomarker and vaccine design. BMC Genomics, 2018, 19, 582.	1.2	42
204	Immunotherapy for glioblastoma: going viral. Nature Medicine, 2018, 24, 1094-1096.	15.2	25

	Сітатіо	n Report	
#	Article	IF	CITATIONS
205	Peptide Delivery Systems for Cancer Vaccines. Advanced Therapeutics, 2018, 1, 1800060.	1.6	30
206	Ilixadencel – an Allogeneic Cell-Based Anticancer Immune Primer for Intratumoral Administration. Pharmaceutical Research, 2018, 35, 156.	1.7	16
207	Toward Biomaterials for Enhancing Immune Checkpoint Blockade Therapy. Advanced Functional Materials, 2018, 28, 1802540.	7.8	92
208	CD4+ T cell help in cancer immunology and immunotherapy. Nature Reviews Immunology, 2018, 18, 635-647.	10.6	1,030
209	Epidermal growth factor receptor peptide vaccination induces cross-reactive immunity to human EGFR, HER2, and HER3. Cancer Immunology, Immunotherapy, 2018, 67, 1559-1569.	2.0	9
210	Pathways in melanoma development. Italian Journal of Dermatology and Venereology, 2018, 153, 68-76.	0.1	4
211	Recombinant <i>Listeria</i> promotes tumor rejection by CD8 ⁺ T cell-dependent remodeling of the tumor microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8179-8184.	3.3	60
212	An Update on Immunotherapy for Solid Tumors: A Review. Annals of Surgical Oncology, 2018, 25, 3404-3412.	0.7	66
213	Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma. Molecular and Cellular Proteomics, 2018, 17, 2132-2145.	2.5	41
214	Current Strategies and Applications for Precision Drug Design. Frontiers in Pharmacology, 2018, 9, 787.	1.6	32
215	Computational Pipeline for the PGV-001 Neoantigen Vaccine Trial. Frontiers in Immunology, 2017, 8, 1807.	2.2	57
216	Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy. Frontiers in Immunology, 2018, 9, 14.	2.2	356
217	A Recurrent Mutation in Anaplastic Lymphoma Kinase with Distinct Neoepitope Conformations. Frontiers in Immunology, 2018, 9, 99.	2.2	35
218	Targeting LAG-3 and PD-1 to Enhance T Cell Activation by Antigen-Presenting Cells. Frontiers in Immunology, 2018, 9, 385.	2.2	144
219	Combination Immunotherapy: Taking Cancer Vaccines to the Next Level. Frontiers in Immunology, 2018, 9, 610.	2.2	46
220	Photochemical Internalization of Peptide Antigens Provides a Novel Strategy to Realize Therapeutic Cancer Vaccination. Frontiers in Immunology, 2018, 9, 650.	2.2	31
221	Targeting Head and Neck Cancer by Vaccination. Frontiers in Immunology, 2018, 9, 830.	2.2	42
222	Approaches to Improve Chemically Defined Synthetic Peptide Vaccines. Frontiers in Immunology, 2018, 9, 884.	2.2	54

ARTICLE IF CITATIONS # Immune Curbing of Cancer Stem Cells by CTLs Directed to NANOG. Frontiers in Immunology, 2018, 9, 223 2.2 40 1412. Dendritic Cells in the Cross Hair for the Generation of Tailored Vaccines. Frontiers in Immunology, 224 2.2 2018, 9, 1484. Current status of immunotherapy against gastrointestinal cancers and its biomarkers: Perspective for 225 1.2 35 precision immunotherapy. Annals of Gastroenterological Surgery, 2018, 2, 289-303. Current Strategies to Enhance Anti-Tumour Immunity. Biomedicines, 2018, 6, 37. Myosin II Synergizes with F-Actin to Promote DNGR-1-Dependent Cross-Presentation of Dead 227 2.9 30 Cell-Associated Antigens. Cell Reports, 2018, 24, 419-428. Tumor Resistance against ALK Targeted Therapy-Where It Comes From and Where It Goes. Cancers, 2018, 10, 62. 1.7 Immunotherapy Combinations and Sequences in Urothelial Cancer: Facts and Hopes. Clinical Cancer 229 3.2 14 Research, 2018, 24, 6115-6124. Immune-checkpoint inhibitors in melanoma and kidney cancer: from sequencing to rational selection. 230 1.4 Therapeutic Advances in Medical Oncology, 2018, 10, 175883591877742. An Introduction to the Computational Challenges in Next Generation Sequencing. Communications in 231 0.4 0 Computer and Information Science, 2018, , 37-45. Novel frontiers in detecting cancer metastasis. Clinical and Experimental Metastasis, 2018, 35, 403-412. 1.7 Neoantigen Vaccine Delivery for Personalized Anticancer Immunotherapy. Frontiers in Immunology, 233 2.2 119 2018, 9, 1499. Update on Tumor Neoantigens and Their Utility: Why It Is Good to Be Different. Trends in Immunology, 234 2018, 39, 536-548. Vaccine therapy in hematologic malignancies. Blood, 2018, 131, 2640-2650. 235 0.6 41 Big Data Approaches for Modeling Response and Resistance to Cancer Drugs. Annual Review of 2.8 Biomedical Data Science, 2018, 1, 1-27 238 Personalized medicine: a new horizon for medical therapy. Precision Clinical Medicine, 2018, 1, 1-2. 1.3 11 Predicting Antigen Presentationâ€"What Could We Learn From a Million Peptides?. Frontiers in 2.2 159 Immunology, 2018, 9, 1716. Next Generation Cancer Vaccinesâ€"Make It Personal!. Vaccines, 2018, 6, 52. 240 2.1 20 241 Pan-cancer analysis of neoepitopes. Scientific Reports, 2018, 8, 12735. 1.6

#	Article	IF	CITATIONS
242	Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nature Genetics, 2018, 50, 1271-1281.	9.4	438
243	A cloning and expression system to probe T-cell receptor specificity and assess functional avidity to neoantigens. Blood, 2018, 132, 1911-1921.	0.6	44
244	Radiation and Local Anti-CD40 Generate an Effective in situ Vaccine in Preclinical Models of Pancreatic Cancer. Frontiers in Immunology, 2018, 9, 2030.	2.2	77
245	A cancer vaccine approach for personalized treatment of Lynch Syndrome. Scientific Reports, 2018, 8, 12122.	1.6	25
246	Intron retention is a source of neoepitopes in cancer. Nature Biotechnology, 2018, 36, 1056-1058.	9.4	212
247	PEGylated tumor cell membrane vesicles as a new vaccine platform for cancer immunotherapy. Biomaterials, 2018, 182, 157-166.	5.7	79
248	Personalized cancer neoantigen vaccines come of age. Theranostics, 2018, 8, 4238-4246.	4.6	51
249	Cytosolic Processing Governs TAP-Independent Presentation of a Critical Melanoma Antigen. Journal of Immunology, 2018, 201, 1875-1888.	0.4	20
250	Cloning and expansion of antigen-specific T cells using iPS cell technology: Possible use of regenerated T cells in personalized medicine. Personalized Medicine Universe, 2018, 7, 7-12.	0.1	0
251	PD-1 Blockade Unleashes Effector Potential of Both High- and Low-Affinity Tumor-Infiltrating T Cells. Journal of Immunology, 2018, 201, 792-803.	0.4	31
252	Immunobiology of theÂMelanoma Microenvironment. , 2018, , 133-142.		0
253	Mass cytometry of Hodgkin lymphoma reveals a CD4+ regulatory T-cell–rich and exhausted T-effector microenvironment. Blood, 2018, 132, 825-836.	0.6	121
254	Immunotherapy and next-generation sequencing guided therapy for precision oncology: what have we learnt and what does the future hold?. Expert Review of Precision Medicine and Drug Development, 2018, 3, 205-213.	0.4	7
255	Immunization with tumor neoantigens displayed on T7 phage nanoparticles elicits plasma antibody and vaccine-draining lymph node B cell responses. Journal of Immunological Methods, 2018, 460, 51-62.	0.6	23
256	Cancer immunotherapy: broadening the scope of targetable tumours. Open Biology, 2018, 8, .	1.5	162
257	Enhancement of Peptide Vaccine Immunogenicity by Increasing Lymphatic Drainage and Boosting Serum Stability. Cancer Immunology Research, 2018, 6, 1025-1038.	1.6	58
258	New tools for <scp>MHC</scp> research from machine learning and predictive algorithms to the tumour immunopeptidome. Immunology, 2018, 154, 329-330.	2.0	3
259	Functional genomics: paving the way for more successful cancer immunotherapy. Briefings in Functional Genomics, 2019, 18, 86-98.	1.3	6

#	Article	IF	Citations
260	Extraction of Immune Epitope Information. , 2019, , 39-46.		1
261	Therapeutic cancer vaccine: building the future from lessons of the past. Seminars in Immunopathology, 2019, 41, 69-85.	2.8	56
262	Next-generation sequencing technologies accelerate advances in T-cell therapy for cancer. Briefings in Functional Genomics, 2019, 18, 119-128.	1.3	4
263	Does patient age influence anti-cancer immunity?. Seminars in Immunopathology, 2019, 41, 125-131.	2.8	60
264	Proteogenomic discovery of cancer antigens: Neoantigens and beyond. Pathology International, 2019, 69, 511-518.	0.6	9
265	Engineering patient-specific cancer immunotherapies. Nature Biomedical Engineering, 2019, 3, 768-782.	11.6	123
266	Immunotherapy in Ovarian Cancer: Are We There Yet?. Journal of Clinical Oncology, 2019, 37, 2460-2471.	0.8	73
267	A stochastic individual-based model to explore the role of spatial interactions and antigen recognition in the immune response against solid tumours. Journal of Theoretical Biology, 2019, 480, 43-55.	0.8	13
268	Alternative mRNA splicing in cancer immunotherapy. Nature Reviews Immunology, 2019, 19, 675-687.	10.6	169
269	Immunotherapy for acute myeloid leukemia: from allogeneic stem cell transplant to novel therapeutics. Leukemia and Lymphoma, 2019, 60, 3350-3362.	0.6	1
270	Building on the anti-PD1/PD-L1 backbone: combination immunotherapy for cancer. Expert Opinion on Investigational Drugs, 2019, 28, 695-708.	1.9	38
271	Induced pluripotent stem cells as a novel cancer vaccine. Expert Opinion on Biological Therapy, 2019, 19, 1191-1197.	1.4	10
272	Mutation-Derived Neoantigens for Cancer Immunotherapy. Frontiers in Immunology, 2019, 10, 1856.	2.2	78
273	Therapeutic vaccine strategies to induce tumor-specific T-cell responses. Bone Marrow Transplantation, 2019, 54, 806-809.	1.3	2
274	Neoantigen-Targeting Vaccine Promotes T-Cell Response in Glioblastoma. Neurosurgery, 2019, 85, E207-E209.	0.6	0
275	A PEGylated megamer-based microRNA delivery system activatable by stepwise microenvironment stimulation. Chemical Communications, 2019, 55, 9363-9366.	2.2	14
276	Single-cell RNA sequencing of lung adenocarcinoma reveals heterogeneity of immune response–related genes. JCI Insight, 2019, 4, .	2.3	64
277	Immuno-oncology for surgeons. British Journal of Surgery, 2019, 106, 1273-1282.	0.1	2

#	Article	IF	CITATIONS
278	Proteogenomics: advances in cancer antigen research. Immunological Medicine, 2019, 42, 65-70.	1.4	10
279	Methotrexate, doxorubicin, and cisplatinum regimen is still the preferred option for osteosarcoma chemotherapy. Medicine (United States), 2019, 98, e15582.	0.4	63
280	Highly conserved influenza T cell epitopes induce broadly protective immunity. Vaccine, 2019, 37, 5371-5381.	1.7	39
281	Targeting PD-1 in cancer: Biological insights with a focus on breast cancer. Critical Reviews in Oncology/Hematology, 2019, 142, 35-43.	2.0	18
282	DeepLigand: accurate prediction of MHC class I ligands using peptide embedding. Bioinformatics, 2019, 35, i278-i283.	1.8	32
283	A Toll-like receptor 3 (TLR3) agonist ARNAX for therapeutic immunotherapy. Advanced Drug Delivery Reviews, 2019, 147, 37-43.	6.6	26
284	A surface charge dependent enhanced Th1 antigen-specific immune response in lymph nodes by transfersome-based nanovaccine-loaded dissolving microneedle-assisted transdermal immunization. Journal of Materials Chemistry B, 2019, 7, 4854-4866.	2.9	38
285	Cellular Therapy for Melanoma. , 2019, , 1-33.		0
286	Neoantigens Derived from Recurrently Mutated Genes as Potential Immunotherapy Targets for Gastric Cancer. BioMed Research International, 2019, 2019, 1-11.	0.9	24
287	Randomized phase <scp>II</scp> trial of survivin 2B peptide vaccination for patients with <scp>HLA</scp> â€A24â€positive pancreatic adenocarcinoma. Cancer Science, 2019, 110, 2378-2385.	1.7	40
288	Recent Advances in Lung Cancer Immunotherapy: Input of T-Cell Epitopes Associated With Impaired Peptide Processing. Frontiers in Immunology, 2019, 10, 1505.	2.2	34
289	Augmenting adaptive immunity: progress and challenges in the quantitative engineering and analysis of adaptive immune receptor repertoires. Molecular Systems Design and Engineering, 2019, 4, 701-736.	1.7	57
290	T cell receptorâ€based cancer immunotherapy: Emerging efficacy and pathways of resistance. Immunological Reviews, 2019, 290, 127-147.	2.8	180
291	Divergent Peptide Presentations of HLA-A*30 Alleles Revealed by Structures With Pathogen Peptides. Frontiers in Immunology, 2019, 10, 1709.	2.2	12
292	Fibroblasts in cancer: Defining target structures for therapeutic intervention. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1872, 111-121.	3.3	14
293	A multipeptide vaccine plus toll-like receptor agonists LPS or polyICLC in combination with incomplete Freund's adjuvant in melanoma patients. , 2019, 7, 163.		59
294	Reprogramming lymphocytes for the treatment of melanoma: From biology to therapy. Advanced Drug Delivery Reviews, 2019, 141, 104-124.	6.6	14
295	Immune Checkpoint Blockade Enhances Shared Neoantigen-Induced T-cell Immunity Directed against Mutated Calreticulin in Myeloproliferative Neoplasms. Cancer Discovery, 2019, 9, 1192-1207.	7.7	65

#	ARTICLE	IF 0.6	CITATIONS
290		0.0	21
297	Vaccine Strategy in Melanoma. Surgical Oncology Clinics of North America, 2019, 28, 337-351.	0.6	17
298	Alternative tumour-specific antigens. Nature Reviews Cancer, 2019, 19, 465-478.	12.8	206
299	Comparison of Three Different Assays for the Detection of Tumor Antigen-Induced Lymphocyte Transformation In Vitro. DNA and Cell Biology, 2019, 38, 1402-1410.	0.9	1
300	Therapy with multi-epitope virus-like particles of B19 parvovirus reduce tumor growth and lung metastasis in an aggressive breast cancer mouse model. Vaccine, 2019, 37, 7256-7268.	1.7	15
301	Protecting Tumors by Preventing Human Papilloma Virus Antigen Presentation: Insights from Emerging Bioinformatics Algorithms. Cancers, 2019, 11, 1543.	1.7	4
302	Monalizumab: inhibiting the novel immune checkpoint NKG2A. , 2019, 7, 263.		182
303	Neoantigen Dissimilarity to the Self-Proteome Predicts Immunogenicity and Response to Immune Checkpoint Blockade. Cell Systems, 2019, 9, 375-382.e4.	2.9	88
304	MHCquant: Automated and Reproducible Data Analysis for Immunopeptidomics. Journal of Proteome Research, 2019, 18, 3876-3884.	1.8	35
305	Three decades of messenger RNA vaccine development. Nano Today, 2019, 28, 100766.	6.2	177
306	Cellular therapy approaches harnessing the power of the immune system for personalized cancer treatment. Seminars in Immunology, 2019, 42, 101306.	2.7	17
307	Predicting HLA class II antigen presentation through integrated deep learning. Nature Biotechnology, 2019, 37, 1332-1343.	9.4	218
308	Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nature Biotechnology, 2019, 37, 1283-1286.	9.4	208
309	Teamwork by different T-cell types boosts tumour destruction by immunotherapy. Nature, 2019, 574, 639-640.	13.7	5
310	Adenosineâ€ŧoâ€Inosine RNA Editing in Mouse and Human Brain Proteomes. Proteomics, 2019, 19, 1900195.	1.3	17
311	Immunotherapy in HER2-positive breast cancer: state of the art and future perspectives. Journal of Hematology and Oncology, 2019, 12, 111.	6.9	93
312	Insights Into Mechanisms of Tumor and Immune System Interaction: Association With Wound Healing. Frontiers in Oncology, 2019, 9, 1115.	1.3	21
313	Quantitative Proteomics and Metabolomics Reveal Biomarkers of Disease as Potential Immunotherapy Targets and Indicators of Therapeutic Efficacy. Theranostics, 2019, 9, 7872-7888.	4.6	27

#	Article	IF	CITATIONS
314	Beta-Adrenergic Signaling in Tumor Immunology and Immunotherapy. Critical Reviews in Immunology, 2019, 39, 93-103.	1.0	16
315	Automated Good Manufacturing Practice–compliant generation of human monocyte-derived dendritic cells from a complete apheresis product using a hollow-fiber bioreactor system overcomes a major hurdle in the manufacture of dendritic cells for cancer vaccines. Cytotherapy, 2019, 21, 1166-1178.	0.3	10
316	Novel Targets for the Treatment of Melanoma. Current Oncology Reports, 2019, 21, 97.	1.8	15
318	An agonistic antiâ€Tollâ€like receptor 4 monoclonal antibody as an effective adjuvant for cancer immunotherapy. Immunology, 2019, 158, 136-149.	2.0	10
319	Machine Learning for Cancer Immunotherapies Based on Epitope Recognition by T Cell Receptors. Frontiers in Genetics, 2019, 10, 1141.	1.1	34
320	DeepHLApan: A Deep Learning Approach for Neoantigen Prediction Considering Both HLA-Peptide Binding and Immunogenicity. Frontiers in Immunology, 2019, 10, 2559.	2.2	84
322	Technology Opportunity Analysis: Combining SAO Networks and Link Prediction. IEEE Transactions on Engineering Management, 2021, 68, 1288-1298.	2.4	21
323	Red blood cell–derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. Science Advances, 2019, 5, eaaw6870.	4.7	228
324	A Phase Ib Study of the Combination of Personalized Autologous Dendritic Cell Vaccine, Aspirin, and Standard of Care Adjuvant Chemotherapy Followed by Nivolumab for Resected Pancreatic Adenocarcinoma—A Proof of Antigen Discovery Feasibility in Three Patients. Frontiers in Immunology, 2019, 10, 1832.	2.2	73
325	Structure Based Prediction of Neoantigen Immunogenicity. Frontiers in Immunology, 2019, 10, 2047.	2.2	77
326	Novel Biomarkers for Personalized Cancer Immunotherapy. Cancers, 2019, 11, 1223.	1.7	36
327	Neoantigen vaccine: an emerging tumor immunotherapy. Molecular Cancer, 2019, 18, 128.	7.9	398
328	Sensitive Detection and Analysis of Neoantigen-Specific T Cell Populations from Tumors and Blood. Cell Reports, 2019, 28, 2728-2738.e7.	2.9	65
329	Biomaterial-based platforms for in situ dendritic cell programming and their use in antitumor immunotherapy. , 2019, 7, 238.		33
330	Defining HLA-II Ligand Processing and Binding Rules with Mass Spectrometry Enhances Cancer Epitope Prediction. Immunity, 2019, 51, 766-779.e17.	6.6	187
331	Tumor neoantigens: from basic research to clinical applications. Journal of Hematology and Oncology, 2019, 12, 93.	6.9	266
332	Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome Medicine, 2019, 11, 56.	3.6	146
333	Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors. Journal of Clinical Investigation, 2019, 129, 2056-2070.	3.9	159

#	Article	IF	CITATIONS
334	Glycan-Modified Melanoma-Derived Apoptotic Extracellular Vesicles as Antigen Source for Anti-Tumor Vaccination. Cancers, 2019, 11, 1266.	1.7	47
335	Toward in silico Identification of Tumor Neoantigens in Immunotherapy. Trends in Molecular Medicine, 2019, 25, 980-992.	3.5	36
336	Next-generation computational tools for interrogating cancer immunity. Nature Reviews Genetics, 2019, 20, 724-746.	7.7	131
337	A poly-neoantigen DNA vaccine synergizes with PD-1 blockade to induce T cell-mediated tumor control. Oncolmmunology, 2019, 8, 1652539.	2.1	45
338	Quantifying Antibody Responses Induced by Antigen-Agnostic Immunotherapies. Molecular Therapy - Methods and Clinical Development, 2019, 14, 189-196.	1.8	3
339	False-negative errors in next-generation sequencing contribute substantially to inconsistency of mutation databases. PLoS ONE, 2019, 14, e0222535.	1.1	11
340	To each his own: a personalized vaccine for metastatic melanoma. Gland Surgery, 2019, 8, 329-333.	0.5	2
341	Particulate carrier systems as adjuvants for cancer vaccines. Biomaterials Science, 2019, 7, 4873-4887.	2.6	17
342	Safety and Efficacy of Therapeutic Cancer Vaccines Alone or in Combination With Immune Checkpoint Inhibitors in Cancer Treatment. Frontiers in Pharmacology, 2019, 10, 1184.	1.6	50
343	Development of N-Acetylated Dipalmitoyl-S-Glyceryl Cysteine Analogs as Efficient TLR2/TLR6 Agonists. Molecules, 2019, 24, 3512.	1.7	5
344	RNA Transcription and Splicing Errors as a Source of Cancer Frameshift Neoantigens for Vaccines. Scientific Reports, 2019, 9, 14184.	1.6	32
345	Positron Emission Tomography-Guided Photodynamic Therapy with Biodegradable Mesoporous Silica Nanoparticles for Personalized Cancer Immunotherapy. ACS Nano, 2019, 13, 12148-12161.	7.3	138
346	Past, Current, and Future of Immunotherapies for Prostate Cancer. Frontiers in Oncology, 2019, 9, 884.	1.3	89
347	Direct Detection and Quantification of Neoantigens. Cancer Immunology Research, 2019, 7, 1748-1754.	1.6	40
348	Machine-Learning Prediction of Tumor Antigen Immunogenicity in the Selection of Therapeutic Epitopes. Cancer Immunology Research, 2019, 7, 1591-1604.	1.6	48
349	Conceptual Development of Immunotherapeutic Approaches to Gastrointestinal Cancer. International Journal of Molecular Sciences, 2019, 20, 4624.	1.8	5
350	Epitope-loaded nanoemulsion delivery system with ability of extending antigen release elicits potent Th1 response for intranasal vaccine against Helicobacter pylori. Journal of Nanobiotechnology, 2019, 17, 6.	4.2	16
351	Detection of neoantigen-specific T cells following a personalized vaccine in a patient with glioblastoma. Oncolmmunology, 2019, 8, e1561106.	2.1	50

#	Article	IF	CITATIONS
352	Harnessing Tumor Mutations for Truly Individualized Cancer Vaccines. Annual Review of Medicine, 2019, 70, 395-407.	5.0	54
353	Cold Tumors: A Therapeutic Challenge for Immunotherapy. Frontiers in Immunology, 2019, 10, 168.	2.2	733
354	Using T Cell Receptor Repertoires to Understand the Principles of Adaptive Immune Recognition. Annual Review of Immunology, 2019, 37, 547-570.	9.5	122
355	Mechanisms of Primary and Secondary Resistance to Immune Checkpoint Inhibitors in Cancer. Medical Sciences (Basel, Switzerland), 2019, 7, 14.	1.3	33
356	Multiple Knockout of Classical HLA Class II β-Chains by CRISPR/Cas9 Genome Editing Driven by a Single Guide RNA. Journal of Immunology, 2019, 202, 1895-1903.	0.4	9
357	Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Frontiers in Immunology, 2018, 9, 3176.	2.2	261
358	Antitumoral effects of attenuated Listeria monocytogenes in a genetically engineered mouse model of melanoma. Oncogene, 2019, 38, 3756-3762.	2.6	30
359	The Development of Tumor Neoantigen Vaccine Immunotherapy. E3S Web of Conferences, 2019, 78, 01005.	0.2	0
360	A Synthetic DNA, Multi-Neoantigen Vaccine Drives Predominately MHC Class I CD8+ T-cell Responses, Impacting Tumor Challenge. Cancer Immunology Research, 2019, 7, 174-182.	1.6	75
361	Identification of candidate neoantigens produced by fusion transcripts in human osteosarcomas. Scientific Reports, 2019, 9, 358.	1.6	33
362	Epigenetic therapy in immune-oncology. Nature Reviews Cancer, 2019, 19, 151-161.	12.8	345
363	Level of neo-epitope predecessor and mutation type determine T cell activation of MHC binding peptides. , 2019, 7, 135.		18
364	Precision Medicine in Cancer Therapy. Cancer Treatment and Research, 2019, , .	0.2	4
365	Targeted Gene Sequencing Panels: Applicability for Neoantigen Profiling of Colon and Rectal Adenocarcinoma. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2019, 13, 146-153.	0.2	1
366	Precision Medicine-Enabled Cancer Immunotherapy. Cancer Treatment and Research, 2019, 178, 189-205.	0.2	9
367	Adenoviral vaccine targeting multiple neoantigens as strategy to eradicate large tumors combined with checkpoint blockade. Nature Communications, 2019, 10, 2688.	5.8	63
368	Rebalancing Protein Homeostasis Enhances Tumor Antigen Presentation. Clinical Cancer Research, 2019, 25, 6392-6405.	3.2	37
369	Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Medicine, 2019, 11, 40.	3.6	179

#	Article	IF	CITATIONS
370	Efficient identification of neoantigen-specific T-cell responses in advanced human ovarian cancer. , 2019, 7, 156.		65
371	Prospects for a personalized peptide vaccine against lung cancer. Expert Review of Vaccines, 2019, 18, 703-709.	2.0	9
372	Determinants for Neoantigen Identification. Frontiers in Immunology, 2019, 10, 1392.	2.2	99
374	Current Approaches and Challenges in the Molecular Therapeutic Targeting of Glioblastoma. World Neurosurgery, 2019, 129, 90-100.	0.7	52
375	Nanovaccines for cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1559.	3.3	76
376	Concepts of Personalized Medicine in Neuro-oncology. , 2019, , 153-158.		0
377	Quantification of Uncertainty in Peptide-MHC Binding Prediction Improves High-Affinity Peptide Selection for Therapeutic Design. Cell Systems, 2019, 9, 159-166.e3.	2.9	46
378	Cancer Immunotherapies. Veterinary Clinics of North America - Small Animal Practice, 2019, 49, 881-902.	0.5	31
379	The road map of cancer precision medicine with the innovation of advanced cancer detection technology and personalized immunotherapy. Japanese Journal of Clinical Oncology, 2019, 49, 596-603.	0.6	10
380	Combination of Immunotherapy With Targeted Therapy: Theory and Practice in Metastatic Melanoma. Frontiers in Immunology, 2019, 10, 990.	2.2	86
381	Tumor cells endowed with professional antigen-presenting cell functions prime PBLs to generate antitumor CTLs. Journal of Molecular Medicine, 2019, 97, 1139-1153.	1.7	4
382	Colorectal cancer: A paradigmatic model for cancer immunology and immunotherapy. Molecular Aspects of Medicine, 2019, 69, 123-129.	2.7	30
383	Targeting Mutated Plus Germline Epitopes Confers Pre-clinical Efficacy of an Instantly Formulated Cancer Nano-Vaccine. Frontiers in Immunology, 2019, 10, 1015.	2.2	39
384	Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chemical Society Reviews, 2019, 48, 3771-3810.	18.7	292
385	Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma. Molecular and Cellular Proteomics, 2019, 18, 1255-1268.	2.5	45
386	Injectable polypeptide hydrogel-based co-delivery of vaccine and immune checkpoint inhibitors improves tumor immunotherapy. Theranostics, 2019, 9, 2299-2314.	4.6	88
387	ACME: pan-specific peptide–MHC class I binding prediction through attention-based deep neural networks. Bioinformatics, 2019, 35, 4946-4954.	1.8	79
388	Mutational landscape of the transcriptome offers putative targets for immunotherapy of myeloproliferative neoplasms. Blood, 2019, 134, 199-210.	0.6	54

#	Article	IF	Citations
389	Immunotherapy in Older Adults with Cancer. Current Oncology Reports, 2019, 21, 56.	1.8	16
390	An Update on Adoptive T-Cell Therapy and Neoantigen Vaccines. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2019, 39, e70-e78.	1.8	35
391	HLA-Class II Artificial Antigen Presenting Cells in CD4+ T Cell-Based Immunotherapy. Frontiers in Immunology, 2019, 10, 1081.	2.2	56
392	Current Status of Immunotherapies for Treating Pancreatic Cancer. Current Oncology Reports, 2019, 21, 60.	1.8	38
393	Translation of cancer immunotherapy from the bench to the bedside. Advances in Cancer Research, 2019, 143, 1-62.	1.9	28
395	Prospect of Plasmacytoid Dendritic Cells in Enhancing Anti-Tumor Immunity of Oncolytic Herpes Viruses. Cancers, 2019, 11, 651.	1.7	12
396	Vaccination with Tumor-Ganglioside Glycomimetics Activates a Selective Immunity that Affords Cancer Therapy. Cell Chemical Biology, 2019, 26, 1013-1026.e4.	2.5	20
397	Reduced Neoantigen Expression Revealed by Longitudinal Multiomics as a Possible Immune Evasion Mechanism in Glioma. Cancer Immunology Research, 2019, 7, 1148-1161.	1.6	56
398	Balancing sensitivity and specificity in distinguishing TCR groups by CDR sequence similarity. BMC Bioinformatics, 2019, 20, 241.	1.2	18
399	Biohybrid Vaccines for Improved Treatment of Aggressive Melanoma with Checkpoint Inhibitor. ACS Nano, 2019, 13, 6477-6490.	7.3	36
400	Induction of neoantigen-reactive T cells from healthy donors. Nature Protocols, 2019, 14, 1926-1943.	5.5	78
401	Mechanisms of Resistance to Immune Checkpoint Blockade: Why Does Checkpoint Inhibitor Immunotherapy Not Work for All Patients?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2019, 39, 147-164.	1.8	459
402	High-throughput Screening of Human Tumor Antigen–specific CD4 T Cells, Including Neoantigen-reactive T Cells. Clinical Cancer Research, 2019, 25, 4320-4331.	3.2	15
403	Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nature Medicine, 2019, 25, 767-775.	15.2	282
404	Recognition of polymer configurations by unsupervised learning. Physical Review E, 2019, 99, 043307.	0.8	12
405	A library of Neo Open Reading Frame peptides (NOPs) as a sustainable resource of common neoantigens in up to 50% of cancer patients. Scientific Reports, 2019, 9, 6577.	1.6	21
406	Endogenous CD4+ T Cells Recognize Neoantigens in Lung Cancer Patients, Including Recurrent Oncogenic <i>KRAS</i> and <i>ERBB2</i> (<i>Her2</i>) Driver Mutations. Cancer Immunology Research, 2019, 7, 910-922.	1.6	68
407	Immunotherapeutic effects of intratumoral nanoplexed poly I:C. , 2019, 7, 116.		91

#	Article	IF	CITATIONS
408	Liposomal Antitumor Vaccines Targeting Mucin 1 Elicit a Lipidâ€Dependent Immunodominant Response. Chemistry - an Asian Journal, 2019, 14, 2116-2121.	1.7	25
409	BRCA1 mRNA expression modifies the effect of T cell activation score on patient survival in breast cancer. BMC Cancer, 2019, 19, 387.	1.1	17
410	ClinOmicsTrailbc: a visual analytics tool for breast cancer treatment stratification. Bioinformatics, 2019, 35, 5171-5181.	1.8	11
412	Cancer nanomedicine for combination cancer immunotherapy. Nature Reviews Materials, 2019, 4, 398-414.	23.3	658
413	Next-Generation Cancer Immunotherapy Targeting Glypican-3. Frontiers in Oncology, 2019, 9, 248.	1.3	86
414	Antigen Targets for the Development of Immunotherapies in Leukemia. International Journal of Molecular Sciences, 2019, 20, 1397.	1.8	10
415	Synthetic, Supramolecular, and Selfâ€Adjuvanting CD8 ⁺ Tâ€Cell Epitope Vaccine Increases the Therapeutic Antitumor Immunity. Advanced Therapeutics, 2019, 2, 1900010.	1.6	15
416	Performance Evaluation of MHC Class-I Binding Prediction Tools Based on an Experimentally Validated MHC–Peptide Binding Data Set. Cancer Immunology Research, 2019, 7, 719-736.	1.6	53
417	PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Human Vaccines and Immunotherapeutics, 2019, 15, 1111-1122.	1.4	297
418	Peptides as cancer vaccines. Current Opinion in Pharmacology, 2019, 47, 20-26.	1.7	75
419	Genomic correlates of response to immune checkpoint blockade. Nature Medicine, 2019, 25, 389-402.	15.2	346
420	The neoepitope landscape of breast cancer: implications for immunotherapy. BMC Cancer, 2019, 19, 200.	1.1	68
421	Identification of Novel HLA Class II-Restricted Neoantigens Derived from Driver Mutations. Cancers, 2019, 11, 266.	1.7	23
422	Microsatellite instability in endometrial cancer: New purpose for an old test. Cancer, 2019, 125, 2154-2163.	2.0	23
423	Genomic Medicine–Progress, Pitfalls, and Promise. Cell, 2019, 177, 45-57.	13.5	143
424	Immunotherapy of Melanoma: Facts and Hopes. Clinical Cancer Research, 2019, 25, 5191-5201.	3.2	181
425	Development of an Interleukin-12 Fusion Protein That Is Activated by Cleavage with Matrix Metalloproteinase 9. Journal of Interferon and Cytokine Research, 2019, 39, 233-245.	0.5	21
426	The Cellular Immunotherapy Revolution: Arming the Immune System for Precision Therapy. Trends in Immunology, 2019, 40, 292-309.	2.9	61

#	Article	IF	CITATIONS
427	Cancer vaccines: designing artificial synthetic long peptides to improve presentation of class I and class II T cell epitopes by dendritic cells. OncoImmunology, 2019, 8, e1560919.	2.1	29
428	Cancer Vaccines: Steering T Cells Down the Right Path to Eradicate Tumors. Cancer Discovery, 2019, 9, 476-481.	7.7	48
429	The immune milieu of cholangiocarcinoma: From molecular pathogenesis to precision medicine. Journal of Autoimmunity, 2019, 100, 17-26.	3.0	33
430	Cancerâ€ŧestis antigens in canine histiocytic sarcoma and other malignancies. Veterinary and Comparative Oncology, 2019, 17, 317-328.	0.8	4
431	Elevated signature of a gene module coexpressed with CDC20 marks genomic instability in glioma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6975-6984.	3.3	37
432	Induction of tumor-specific CTL responses using the C-terminal fragment of Viral protein R as cell penetrating peptide. Scientific Reports, 2019, 9, 3937.	1.6	15
433	Transcutaneous delivery of DNA/mRNA for cancer therapeutic vaccination. Journal of Gene Medicine, 2019, 21, e3089.	1.4	19
434	Attacking Tumors From All Sides: Personalized Multiplex Vaccines to Tackle Intratumor Heterogeneity. Frontiers in Immunology, 2019, 10, 824.	2.2	29
435	Cationic Nanoliposomes Are Efficiently Taken up by Alveolar Macrophages but Have Little Access to Dendritic Cells and Interstitial Macrophages in the Normal and CpG-Stimulated Lungs. Molecular Pharmaceutics, 2019, 16, 2048-2059.	2.3	9
436	Current Landscape of Immunotherapy in Breast Cancer. JAMA Oncology, 2019, 5, 1205.	3.4	260
437	Chronic lymphocytic leukaemia: the role of T cells in a B cell disease. British Journal of Haematology, 2019, 186, 220-233.	1.2	17
438	Therapeutic Cancer Vaccine and Combinations With Antiangiogenic Therapies and Immune Checkpoint Blockade. Frontiers in Immunology, 2019, 10, 467.	2.2	122
439	Emerging Nanoâ€∤Microapproaches for Cancer Immunotherapy. Advanced Science, 2019, 6, 1801847.	5.6	136
440	Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature, 2019, 566, 270-274.	13.7	681
441	Releasing the Immune System Brakes Using siRNAs Enhances Cancer Immunotherapy. Cancers, 2019, 11, 176.	1.7	18
442	Generation of an Oncolytic Herpes Simplex Virus 1 Expressing Human MelanA. Frontiers in Immunology, 2019, 10, 2.	2.2	8
443	Activation of CD8+ T Cell Responses after Melanoma Antigen Targeting to CD169+ Antigen Presenting Cells in Mice and Humans. Cancers, 2019, 11, 183.	1.7	21
444	Poly-specific neoantigen-targeted cancer vaccines delay patient derived tumor growth. Journal of Experimental and Clinical Cancer Research, 2019, 38, 78.	3.5	32

#	Article	IF	CITATIONS
445	Leveraging biomaterials for cancer immunotherapy: targeting pattern recognition receptors. Materials Today Nano, 2019, 5, 100029.	2.3	30
446	Turning the corner on therapeutic cancer vaccines. Npj Vaccines, 2019, 4, 7.	2.9	490
447	Breaking tolerance with engineered class I antigen-presenting molecules. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3136-3145.	3.3	5
448	Mutational and Antigenic Landscape in Tumor Progression and Cancer Immunotherapy. Trends in Cell Biology, 2019, 29, 396-416.	3.6	66
449	Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer. , 2019, 7, 38.		121
450	What is the future of cancer care? A technology foresight assessment of experts' expectations. Economics of Innovation and New Technology, 2019, 28, 635-652.	2.1	11
451	Peptide Super-Agonist Enhances T-Cell Responses to Melanoma. Frontiers in Immunology, 2019, 10, 319.	2.2	18
452	Updates on Oncolytic Virus Immunotherapy for Cancers. Molecular Therapy - Oncolytics, 2019, 12, 259-262.	2.0	14
453	Natural T cell autoreactivity to melanoma antigens: clonally expanded melanoma-antigen specific CD8 + memory T cells can be detected in healthy humans. Cancer Immunology, Immunotherapy, 2019, 6 709-720.	683.0	20
454	Immunotherapy for skin cancer. International Immunology, 2019, 31, 465-475.	1.8	47
455	Immunotherapy in extensive small cell lung cancer. Experimental Hematology and Oncology, 2019, 8, 5.	2.0	32
456	New Strategies for Therapeutic Cancer Vaccines. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 213-221.	0.9	8
457	Harnessing the layer-by-layer assembly technique to design biomaterials vaccines for immune modulation in translational applications. Biomaterials Science, 2019, 7, 715-732.	2.6	24
458	New emerging targets in cancer immunotherapy: the role of neoantigens. ESMO Open, 2019, 4, e000684.	2.0	20
459	A Temperature Resistant Extracts Prepared from the Perinereis aibuhitensis and Its Antioxidative Characterization. Aquatic Science and Technology, 2019, 7, 17.	0.1	1
460	PAS-MUT with Somatic Mutations in Cancer and Classified Diseases for Clinical-Genomics Research: PAS-MUT & Somatic Mutations. , 2019, , .		0
461	Cancer Vaccines. , 2019, , .		1
462	TANTIGEN 2.0: an online database and analysis platform for tumor T cell antigens. , 2019, , .		2

#	Article	IF	CITATIONS
463	Neoantigens and genome instability: impact on immunogenomic phenotypes and immunotherapy response. Genome Medicine, 2019, 11, 71.	3.6	78
464	Immunopeptidomics of colorectal cancer organoids reveals a sparse HLA class I neoantigen landscape and no increase in neoantigens with interferon or MEK-inhibitor treatment. , 2019, 7, 309.		112
465	Cancer Neoepitopes for Immunotherapy: Discordance Between Tumor-Infiltrating T Cell Reactivity and Tumor MHC Peptidome Display. Frontiers in Immunology, 2019, 10, 2766.	2.2	23
466	Ex vivo dendritic cell generation—A critical comparison of current approaches. International Review of Cell and Molecular Biology, 2019, 349, 251-307.	1.6	13
467	Immunological ignorance is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23662-23670.	3.3	40
468	Development of cancer immunotherapy based on PD-1/PD-L1 pathway blockade. RSC Advances, 2019, 9, 33903-33911.	1.7	17
469	Inducing Tumor Suppressive Microenvironments through Genome Edited CD47â^'/â^' Syngeneic Cell Vaccination. Scientific Reports, 2019, 9, 20057.	1.6	2
470	Peptide-Major Histocompatibility Complex Class I Binding Prediction Based on Deep Learning With Novel Feature. Frontiers in Genetics, 2019, 10, 1191.	1.1	21
471	Neoantigen-specific immunity in low mutation burden colorectal cancers of the consensus molecular subtype 4. Genome Medicine, 2019, 11, 87.	3.6	44
472	A Phase I/II trial comparing autologous dendritic cell vaccine pulsed either with personalized peptides (PEP-DC) or with tumor lysate (OC-DC) in patients with advanced high-grade ovarian serous carcinoma. Journal of Translational Medicine, 2019, 17, 391.	1.8	42
473	A Comprehensive Survey of Genomic Alterations in Gastric Cancer Reveals Recurrent Neoantigens as Potential Therapeutic Targets. BioMed Research International, 2019, 2019, 1-10.	0.9	16
474	Delivery strategies of cancer immunotherapy: recent advances and future perspectives. Journal of Hematology and Oncology, 2019, 12, 126.	6.9	96
475	The Immunogenicity and Anti-tumor Efficacy of a Rationally Designed Neoantigen Vaccine for B16F10 Mouse Melanoma. Frontiers in Immunology, 2019, 10, 2472.	2.2	15
476	Single-Cell Profiling Defines Transcriptomic Signatures Specific to Tumor-Reactive versus Virus-Responsive CD4+ T Cells. Cell Reports, 2019, 29, 3019-3032.e6.	2.9	50
477	High Somatic Mutation and Neoantigen Burden Do Not Correlate with Decreased Progression-Free Survival in HCC Patients not Undergoing Immunotherapy. Cancers, 2019, 11, 1824.	1.7	36
478	Is immunotherapy the holy grail for pancreatic cancer?. Immunotherapy, 2019, 11, 1435-1438.	1.0	11
479	A Non-interventional Clinical Trial Assessing Immune Responses After Radiofrequency Ablation of Liver Metastases From Colorectal Cancer. Frontiers in Immunology, 2019, 10, 2526.	2.2	29
480	Banking with precision: transfusion medicine as a potential universal application in clinical genomics. Current Opinion in Hematology, 2019, 26, 480-487.	1.2	10

		EPUKI	
#	Article	IF	CITATIONS
481	Melanoma vaccines: clinical status and immune endpoints. Melanoma Research, 2019, 29, 109-118.	0.6	19
482	Human CD4+ T Cells Specific for Merkel Cell Polyomavirus Localize to Merkel Cell Carcinomas and Target a Required Oncogenic Domain. Cancer Immunology Research, 2019, 7, 1727-1739.	1.6	23
483	The Genomic Landscape of Antigenic Targets for T Cell-Based Leukemia Immunotherapy. Frontiers in Immunology, 2019, 10, 2934.	2.2	5
484	Neoantigens in Hematological Malignancies—Ultimate Targets for Immunotherapy?. Frontiers in Immunology, 2019, 10, 3004.	2.2	18
485	The Hidden Story of Heterogeneous B-raf V600E Mutation Quantitative Protein Expression in Metastatic Melanoma—Association with Clinical Outcome and Tumor Phenotypes. Cancers, 2019, 11, 1981.	1.7	16
486	MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature, 2019, 574, 696-701.	13.7	563
487	Multiplexed activation of endogenous genes by CRISPRa elicits potent antitumor immunity. Nature Immunology, 2019, 20, 1494-1505.	7.0	83
488	Developing neoantigen-targeted T cell–based treatments for solid tumors. Nature Medicine, 2019, 25, 1488-1499.	15.2	173
489	Rationale of Immunotherapy in Hepatocellular Carcinoma and Its Potential Biomarkers. Cancers, 2019, 11, 1926.	1.7	27
490	Immunotherapy – Strategies for Expanding Its Role in the Treatment of All Major Tumor Sites. Cureus, 2019, 11, e5938.	0.2	9
491	Characterization of a Novel Bispecific Antibody That Activates T Cells In Vitro and Slows Tumor Growth In Vivo. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2019, 38, 242-254.	0.8	2
492	Understanding the Mechanisms of Resistance to CAR T-Cell Therapy in Malignancies. Frontiers in Oncology, 2019, 9, 1237.	1.3	106
493	A cycle involving HMGB1, IFN-Î ³ and dendritic cells plays a putative role in anti-tumor immunity. Cellular Immunology, 2019, 343, 103850.	1.4	17
494	A Leukocyte Infiltration Score Defined by a Gene Signature Predicts Melanoma Patient Prognosis. Molecular Cancer Research, 2019, 17, 109-119.	1.5	28
495	A Cell-Specific Nuclear Factor-Kappa B–Activating Gene Expression Strategy for Delivering Cancer Immunotherapy. Human Gene Therapy, 2019, 30, 471-484.	1.4	8
496	Cancer Immunotherapy: A Simple Guide for Interventional Radiologists of New Therapeutic Approaches. CardioVascular and Interventional Radiology, 2019, 42, 1221-1229.	0.9	5
497	The Current Status of Immunotherapy in Thoracic Malignancies. , 2019, , 45-75.		0
498	Future of Immune Checkpoint Inhibitors. , 2019, , 227-243.		2

#	Article	IF	CITATIONS
499	Dendritic Cell Membrane Vesicles for Activation and Maintenance of Antigen‧pecific T Cells. Advanced Healthcare Materials, 2019, 8, e1801091.	3.9	36
500	Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy. Acta Biomaterialia, 2019, 85, 1-26.	4.1	142
501	Immune cells track hard-to-target brain tumours. Nature, 2019, 565, 170-171.	13.7	14
502	Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature, 2019, 565, 234-239.	13.7	956
503	Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature, 2019, 565, 240-245.	13.7	637
504	Predicting tumour response to anti-PD-1 immunotherapy with computational modelling. Physics in Medicine and Biology, 2019, 64, 025017.	1.6	22
505	Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nature Biotechnology, 2019, 37, 55-63.	9.4	203
506	Ushering in Integrated T Cell Repertoire Profiling in Cancer. Trends in Cancer, 2019, 5, 85-94.	3.8	19
507	Immunotherapy strategies for mesothelioma – the role of tumor specific neoantigens in a new era of precision medicine. Expert Review of Respiratory Medicine, 2019, 13, 181-192.	1.0	13
508	A non-functional neoepitope specific CD8 ⁺ T-cell response induced by tumor derived antigen exposure <i>in vivo</i> . Oncolmmunology, 2019, 8, 1553478.	2.1	16
509	Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nature Reviews Drug Discovery, 2019, 18, 197-218.	21.5	2,005
510	Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry. Nature Methods, 2019, 16, 63-66.	9.0	235
511	Liposomal Nanostructures for Drug Delivery in Gastrointestinal Cancers. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 647-656.	1.3	21
512	Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Annals of Oncology, 2019, 30, 44-56.	0.6	1,742
513	Personalized Cancer Vaccine. , 2019, , 81-89.		0
514	Candidate Cancers for Vaccination. , 2019, , 145-152.		2
515	Concluding Remarks and Future Perspectives on Therapeutic Cancer Vaccines. , 2019, , 171-176.		1
516	Cancer Immunotherapy: Beyond Checkpoint Blockade. Annual Review of Cancer Biology, 2019, 3, 55-75.	2.3	102

#	Article	IF	CITATIONS
517	Cancer Exome-Based Identification of Tumor Neo-Antigens Using Mass Spectrometry. Methods in Molecular Biology, 2019, 1884, 203-214.	0.4	5
518	Updates in adjuvant systemic therapy for melanoma. Journal of Surgical Oncology, 2019, 119, 222-231.	0.8	35
519	High-Throughput Stability Screening of Neoantigen/HLA Complexes Improves Immunogenicity Predictions. Cancer Immunology Research, 2019, 7, 50-61.	1.6	36
521	Poly I:C-based rHBVvac therapeutic vaccine eliminates HBV via generation of HBV-specific CD8 ⁺ effector memory T cells. Gut, 2019, 68, 2032-2043.	6.1	22
522	Antigen-delivery through invariant chain (CD74) boosts CD8 and CD4 T cell immunity. Oncolmmunology, 2019, 8, 1558663.	2.1	20
523	Tumor Microenvironmental pH and Enzyme Dual Responsive Polymer-Liposomes for Synergistic Treatment of Cancer Immuno-Chemotherapy. Biomacromolecules, 2019, 20, 882-892.	2.6	68
524	The route of administration dictates the immunogenicity of peptide-based cancer vaccines in mice. Cancer Immunology, Immunotherapy, 2019, 68, 455-466.	2.0	31
525	Novel Vaccine Targeting Colonic Adenoma: a Pre-clinical Model. Journal of Gastrointestinal Surgery, 2019, 23, 626-633.	0.9	4
526	Immunotherapy in pancreatic cancer: New hope or mission impossible?. Cancer Letters, 2019, 445, 57-64.	3.2	26
527	Neoepitopes-based vaccines: challenges and perspectives. European Journal of Cancer, 2019, 108, 55-60.	1.3	20
528	Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. , 2019, 7, 6.		190
529	New Hope for Therapeutic Cancer Vaccines in the Era of Immune Checkpoint Modulation. Annual Review of Medicine, 2019, 70, 409-424.	5.0	50
530	Antibody-based Delivery of TNF to the Tumor Neovasculature Potentiates the Therapeutic Activity of a Peptide Anticancer Vaccine. Clinical Cancer Research, 2019, 25, 698-709.	3.2	32
531	The HLA ligandome landscape of chronic myeloid leukemia delineates novel T-cell epitopes for immunotherapy. Blood, 2019, 133, 550-565.	0.6	57
532	The 5th virus-like particle and nano-particle vaccines (VLPNPV) conference. Expert Review of Vaccines, 2019, 18, 1-3.	2.0	6
533	Personal Mutanomes Meet Modern Oncology Drug Discovery and Precision Health. Pharmacological Reviews, 2019, 71, 1-19.	7.1	47
534	Cancer Neoantigens. Annual Review of Immunology, 2019, 37, 173-200.	9.5	384
535	Cancer immunoediting and resistance to T cell-based immunotherapy. Nature Reviews Clinical Oncology, 2019, 16, 151-167.	12.5	1,093

		Citation Report		
#	Article		IF	CITATIONS
536	Accounting for proximal variants improves neoantigen prediction. Nature Genetics, 20	19, 51, 175-179.	9.4	43
537	Cancer Immunosurveillance by T Cells. International Review of Cell and Molecular Biolo 149-173.	gy, 2019, 342,	1.6	45
538	Standard operating procedure for somatic variant refinement of sequencing data with andÂnormal samples. Genetics in Medicine, 2019, 21, 972-981.	paired tumor	1.1	67
539	TEIPP antigens for T-cell based immunotherapy of immune-edited HLA class llow cancer Immunology, 2019, 113, 43-49.	rs. Molecular	1.0	36
540	<i>In situ</i> vaccination: Harvesting low hanging fruit on the cancer immunotherapy Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1524.	tree. Wiley	3.3	41
541	Biomimetic Nanotechnology toward Personalized Vaccines. Advanced Materials, 2020,	32, e1901255.	11.1	200
542	A comprehensive review and performance evaluation of bioinformatics tools for HLA cl peptide-binding prediction. Briefings in Bioinformatics, 2020, 21, 1119-1135.	ass I	3.2	127
543	Applications of Next-Generation Sequencing in Neoantigen Prediction and Cancer Vaco Development. Genetic Testing and Molecular Biomarkers, 2020, 24, 59-66.	tine	0.3	24
544	Precision immunization: a new trend in human vaccination. Human Vaccines and Immu 2020, 16, 513-522.	inotherapeutics,	1.4	8
545	Tumour-intrinsic resistance to immune checkpoint blockade. Nature Reviews Immunolo 25-39.	ogy, 2020, 20,	10.6	856
546	Targeting mRNA processing as an anticancer strategy. Nature Reviews Drug Discovery,	2020, 19, 112-129.	21.5	131
547	Advances of functional nanomaterials for cancer immunotherapeutic applications. Wile Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1574.	ey .	3.3	10
548	Tumor Mutational Burden as a Predictive Biomarker for Response to Immune Checkpoi Review of Current Evidence. Oncologist, 2020, 25, e147-e159.	nt Inhibitors: A	1.9	220
549	<tt>neoepiscope</tt> improves neoepitope prediction with multivariant phasing. Bioin 36, 713-720.	formatics, 2020,	1.8	23
550	Immunity, Hypoxia, and Metabolism–the Ménage à Trois of Cancer: Implications fo Physiological Reviews, 2020, 100, 1-102.	or Immunotherapy.	13.1	190
551	At the bench: Engineering the next generation of cancer vaccines. Journal of Leukocyte 108, 1435-1453.	Biology, 2020,	1.5	22
552	The immunobiology of hepatocellular carcinoma in humans and mice: Basic concepts a implications. Journal of Hepatology, 2020, 72, 167-182.	nd therapeutic	1.8	116
553	Neoantigen prediction from genomic and transcriptomic data. Methods in Enzymology 267-281.	, 2020, 635,	0.4	6

#	Article	IF	CITATIONS
554	Surgical Considerations and Systemic Therapy of Melanoma. Surgical Clinics of North America, 2020, 100, 141-159.	0.5	4
555	Identification of a neo-epitope dominating endogenous CD8 T cell responses to MC-38 colorectal cancer. Oncolmmunology, 2020, 9, 1673125.	2.1	40
556	PromPDD, a web-based tool for the prediction, deciphering and design of promiscuous peptides that bind to HLA class I molecules. Journal of Immunological Methods, 2020, 476, 112685.	0.6	3
557	Targeted therapy and immunotherapy: Emerging biomarkers in metastatic melanoma. Pigment Cell and Melanoma Research, 2020, 33, 390-402.	1.5	19
558	Non-covalent glycosylated gold nanoparticles/peptides nanovaccine as potential cancer vaccines. Chinese Chemical Letters, 2020, 31, 1162-1164.	4.8	38
559	MASS SPECTROMETRYâ€BASED PERSONALIZED DRUG THERAPY. Mass Spectrometry Reviews, 2020, 39, 523-552	.2.8	31
560	Tumor immune microenvironment modulation-based drug delivery strategies for cancer immunotherapy. Nanoscale, 2020, 12, 413-436.	2.8	49
561	Neoadjuvant PD-1 Immune Checkpoint Blockade Reverses Functional Immunodominance among Tumor Antigen–Specific T Cells. Clinical Cancer Research, 2020, 26, 679-689.	3.2	49
562	Recent progress in supramolecular peptide assemblies as virus mimics for cancer immunotherapy. Biomaterials Science, 2020, 8, 1045-1057.	2.6	20
563	Heterogeneous immunogenomic features and distinct escape mechanisms in multifocal hepatocellular carcinoma. Journal of Hepatology, 2020, 72, 896-908.	1.8	124
564	Mutation-derived Neoantigen-specific T-cell Responses in Multiple Myeloma. Clinical Cancer Research, 2020, 26, 450-464.	3.2	62
565	Generation of affinity ranged antigen-expressing tumor cell lines. Methods in Enzymology, 2020, 632, 503-519.	0.4	0
566	Nanoparticle cancer vaccines: Design considerations and recent advances. Asian Journal of Pharmaceutical Sciences, 2020, 15, 576-590.	4.3	58
567	Impact of Viral Etiologies on the Development of Novel Immunotherapy for Hepatocellular Carcinoma. Seminars in Liver Disease, 2020, 40, 131-142.	1.8	3
568	Improved MHC II epitope prediction — a step towards personalized medicine. Nature Reviews Clinical Oncology, 2020, 17, 71-72.	12.5	18
569	A supramolecular protein chaperone for vaccine delivery. Theranostics, 2020, 10, 657-670.	4.6	29
570	A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nature Biotechnology, 2020, 38, 199-209.	9.4	324
571	The programmed cell death protein-1/programmed cell death ligand 1 expression, CD3+ T cell infiltration, NY-ESO-1 expression, and microsatellite instability phenotype in primary cutaneous melanoma and mucrosal melanoma and their clinical significance and prognostic value: a study of 89 consecutive cases. Melanoma Research 2020; 30:85-101	0.6	5

#	Article	IF	CITATIONS
572	Agonists and inhibitors of the STING pathway: Potential agents for immunotherapy. Medicinal Research Reviews, 2020, 40, 1117-1141.	5.0	90
573	Identification of a CD8+ T-cell response to a predicted neoantigen in malignant mesothelioma. Oncolmmunology, 2020, 9, 1684713.	2.1	12
574	Sustained Coevolution in a Stochastic Model of Cancer–Immune Interaction. Cancer Research, 2020, 80, 811-819.	0.4	11
575	POTN: A Human Leukocyte Antigen-A2 Immunogenic Peptides Screening Model and Its Applications in Tumor Antigens Prediction. Frontiers in Immunology, 2020, 11, 02193.	2.2	3
576	Human leukocyte antigen (HLA) and cancer immunotherapy: HLA-dependent and -independent adoptive immunotherapies. Annals of Blood, 0, 5, 14-14.	0.4	13
577	Exploring Essential Issues for Improving Therapeutic Cancer Vaccine Trial Design. Cancers, 2020, 12, 2908.	1.7	8
578	The effects of p53 gene inactivation on mutant proteome expression in a human melanoma cell model. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129722.	1.1	4
579	Cancer neoantigen: Boosting immunotherapy. Biomedicine and Pharmacotherapy, 2020, 131, 110640.	2.5	37
580	Challenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell, 2020, 38, 788-802.	7.7	273
581	Tumor neoantigen heterogeneity impacts bystander immune inhibition of pancreatic cancer growth. Translational Oncology, 2020, 13, 100856.	1.7	9
582	Therapy of Primary Liver Cancer. Innovation(China), 2020, 1, 100032.	5.2	46
583	Adaptable antigen matrix platforms for peptide vaccination strategies and T cell-mediated anti-tumor immunity. Biomaterials, 2020, 262, 120342.	5.7	7
584	Recombination Monophosphoryl Lipid A-Derived Vacosome for the Development of Preventive Cancer Vaccines. ACS Applied Materials & Interfaces, 2020, 12, 44554-44562.	4.0	17
585	Clusterization in acute myeloid leukemia based on prognostic alternative splicing signature to reveal the clinical characteristics in the bone marrow microenvironment. Cell and Bioscience, 2020, 10, 118.	2.1	9
586	Present and Future of Anti-Glioblastoma Therapies: A Deep Look into Molecular Dependencies/Features. Molecules, 2020, 25, 4641.	1.7	7
587	Detecting Tumor Antigen-Specific T Cells via Interaction-Dependent Fucosyl-Biotinylation. Cell, 2020, 183, 1117-1133.e19.	13.5	66
588	Mechanisms of resistance to immune checkpoint inhibitors and strategies to reverse drug resistance in lung cancer. Chinese Medical Journal, 2020, 133, 2444-2455.	0.9	7
590	A Phase lb Trial of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-small Cell Lung Cancer, or Bladder Cancer. Cell, 2020, 183, 347-362.e24.	13.5	349

#	Article	IF	CITATIONS
591	Can Personalized Neoantigens Raise the T Cell Bar?. Cell, 2020, 183, 301-302.	13.5	4
592	Clinical Grade Production of Wilms' Tumor-1 Loaded Cord Blood-Derived Dendritic Cells to Prevent Relapse in Pediatric AML After Cord Blood Transplantation. Frontiers in Immunology, 2020, 11, 559152.	2.2	9
593	Main Strategies for the Identification of Neoantigens. Cancers, 2020, 12, 2879.	1.7	32
594	Lymph-directed immunotherapy – Harnessing endogenous lymphatic distribution pathways for enhanced therapeutic outcomes in cancer. Advanced Drug Delivery Reviews, 2020, 160, 115-135.	6.6	18
595	The Resistance Mechanisms of Lung Cancer Immunotherapy. Frontiers in Oncology, 2020, 10, 568059.	1.3	47
596	Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction. Cell, 2020, 183, 818-834.e13.	13.5	287
597	Pilot Acute Safety Evaluation of Innocellâ,,¢ Cancer Immunotherapy in Canine Subjects. Journal of Immunology Research, 2020, 2020, 1-8.	0.9	4
599	Promotion of CTL epitope presentation by a nanoparticle with environment-responsive stability and phagolysosomal escape capacity. Journal of Controlled Release, 2020, 328, 653-664.	4.8	2
600	Engineered T cells directed at tumors with defined allelic loss. Molecular Immunology, 2020, 128, 298-310.	1.0	31
601	A Genetic Vaccine Encoding Shared Cancer Neoantigens to Treat Tumors with Microsatellite Instability. Cancer Research, 2020, 80, 3972-3982.	0.4	51
602	Co-assembled Supramolecular Nanofibers With Tunable Surface Properties for Efficient Vaccine Delivery. Frontiers in Chemistry, 2020, 8, 500.	1.8	4
603	Immunoscore Guided Cold Tumors to Acquire "Temperature―Through Integrating Physicochemical and Biological Methods. BIO Integration, 2020, 1, .	0.9	13
604	Intranodal Administration of Neoantigen Peptide-loaded Dendritic Cell Vaccine Elicits Epitope-specific T Cell Responses and Clinical Effects in a Patient with Chemorefractory Ovarian Cancer with Malignant Ascites. Immunological Investigations, 2021, 50, 562-579.	1.0	29
605	T cell receptor therapy against melanoma—Immunotherapy for the future?. Scandinavian Journal of Immunology, 2020, 92, e12927.	1.3	8
606	MHCAttnNet: predicting MHC-peptide bindings for MHC alleles classes I and II using an attention-based deep neural model. Bioinformatics, 2020, 36, i399-i406.	1.8	28
607	Immunotherapy in the Treatment of Metastatic Melanoma: Current Knowledge and Future Directions. Journal of Immunology Research, 2020, 2020, 1-12.	0.9	127
608	CD4+ T-cell killing of multiple myeloma cells is mediated by resident bone marrow macrophages. Blood Advances, 2020, 4, 2595-2605.	2.5	17
609	Impact of ageâ€; cancerâ€; and treatmentâ€driven inflammation on T cell function and immunotherapy. Journal of Leukocyte Biology, 2020, 108, 953-965.	1.5	15

#	Article	IF	CITATIONS
610	Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics, 2020, 12, 663.	2.0	24
611	Predicting Cross-Reactivity and Antigen Specificity of T Cell Receptors. Frontiers in Immunology, 2020, 11, 565096.	2.2	45
612	A nanoparticle vaccine that targets neoantigen peptides to lymphoid tissues elicits robust antitumor T cell responses. Npj Vaccines, 2020, 5, 106.	2.9	30
613	Inflammasomes within Hyperactive Murine Dendritic Cells Stimulate Long-Lived T Cell-Mediated Anti-tumor Immunity. Cell Reports, 2020, 33, 108381.	2.9	86
614	TruNeo: an integrated pipeline improves personalized true tumor neoantigen identification. BMC Bioinformatics, 2020, 21, 532.	1.2	15
615	Personalized deep learning of individual immunopeptidomes to identify neoantigens for cancer vaccines. Nature Machine Intelligence, 2020, 2, 764-771.	8.3	22
616	Research on road traffic situation awareness system based on image big data. Journal of Physics: Conference Series, 2020, 1650, 032170.	0.3	2
617	Vaccination against RhoC induces long-lasting immune responses in patients with prostate cancer: results from a phase I/II clinical trial. , 2020, 8, e001157.		28
618	Shared Immunogenic Poly-Epitope Frameshift Mutations in Microsatellite Unstable Tumors. Cell, 2020, 183, 1634-1649.e17.	13.5	103
619	Identification of Mutated Peptides in Bladder Cancer From Exomic Sequencing Data Reveals Negative Correlation Between Mutation-Specific Immunoreactivity and Inflammation. Frontiers in Immunology, 2020, 11, 576603.	2.2	5
620	DC-Based Vaccines for Cancer Immunotherapy. Vaccines, 2020, 8, 706.	2.1	69
621	New viral vectors for infectious diseases and cancer. Seminars in Immunology, 2020, 50, 101430.	2.7	55
622	A Roadmap Toward the Definition of Actionable Tumor-Specific Antigens. Frontiers in Immunology, 2020, 11, 583287.	2.2	22
623	Personal Neoantigen Cancer Vaccines: A Road Not Fully Paved. Cancer Immunology Research, 2020, 8, 1465-1469.	1.6	20
624	RNA sequencing: new technologies and applications in cancer research. Journal of Hematology and Oncology, 2020, 13, 166.	6.9	229
625	SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery. , 2020, 8, e000705.		20
626	Fusion of Bacterial Flagellin to a Dendritic Cell-Targeting αCD40 Antibody Construct Coupled With Viral or Leukemia-Specific Antigens Enhances Dendritic Cell Maturation and Activates Peptide-Responsive T Cells. Frontiers in Immunology, 2020, 11, 602802.	2.2	7
627	Opportunities for Antigen Discovery in Metastatic Breast Cancer. Frontiers in Immunology, 2020, 11, 570049.	2.2	1

#	Article	IF	CITATIONS
628	Heterologous prime-boost immunization co-targeting dual antigens inhibit tumor growth and relapse. Oncolmmunology, 2020, 9, 1841392.	2.1	8
629	Adoptive T Cell Therapy Targeting Different Gene Products Reveals Diverse and Context-Dependent Immune Evasion in Melanoma. Immunity, 2020, 53, 564-580.e9.	6.6	27
630	Antitumour dendritic cell vaccination in a priming and boosting approach. Nature Reviews Drug Discovery, 2020, 19, 635-652.	21.5	148
631	The co-stimulation of anti-CD28 and IL-2 enhances the sensitivity of ELISPOT assays for detection of neoantigen-specific T cells in PBMC. Journal of Immunological Methods, 2020, 484-485, 112831.	0.6	4
632	A peripheral immune signature of responsiveness to PD-1 blockade in patients with classical Hodgkin lymphoma. Nature Medicine, 2020, 26, 1468-1479.	15.2	87
633	Discovery through clinical sequencing in oncology. Nature Cancer, 2020, 1, 774-783.	5.7	29
634	The Ways of Isolating Neoantigen-Specific T Cells. Frontiers in Oncology, 2020, 10, 1347.	1.3	19
635	Resistance Mechanisms of Anti-PD1/PDL1 Therapy in Solid Tumors. Frontiers in Cell and Developmental Biology, 2020, 8, 672.	1.8	205
636	Co-delivery of Peptide Neoantigens and Stimulator of Interferon Genes Agonists Enhances Response to Cancer Vaccines. ACS Nano, 2020, 14, 9904-9916.	7.3	97
637	Progress in Neoantigen Targeted Cancer Immunotherapies. Frontiers in Cell and Developmental Biology, 2020, 8, 728.	1.8	28
638	Escape from nonsense-mediated decay associates with anti-tumor immunogenicity. Nature Communications, 2020, 11, 3800.	5.8	61
639	Small Molecule Enhancers of Endosome-to-Cytosol Import Augment Anti-tumor Immunity. Cell Reports, 2020, 32, 107905.	2.9	40
640	Cell and tissue engineering in lymph nodes for cancer immunotherapy. Advanced Drug Delivery Reviews, 2020, 161-162, 42-62.	6.6	43
641	Engineering CD4+ T Cells to Enhance Cancer Immunity. Cells, 2020, 9, 1721.	1.8	6
642	Biotinylated Streptavidin Surface Coating Improves the Efficacy of a PLGA Microparticle-Based Cancer Vaccine. Bioconjugate Chemistry, 2020, 31, 2147-2157.	1.8	11
643	Screening Cancer Immunotherapy: When Engineering Approaches Meet Artificial Intelligence. Advanced Science, 2020, 7, 2001447.	5.6	30
644	Structural dissimilarity from self drives neoepitope escape from immune tolerance. Nature Chemical Biology, 2020, 16, 1269-1276.	3.9	53
645	Mature Dendritic Cells May Promote High-Avidity Tuning of Vaccine T Cell Responses. Frontiers in Immunology, 2020, 11, 584680.	2.2	8
#	Article	IF	CITATIONS
-----	--	------	-----------
647	Proton-driven transformable nanovaccine for cancer immunotherapy. Nature Nanotechnology, 2020, 15, 1053-1064.	15.6	194
648	Deciphering the Structural Enigma of HLA Class-II Binding Peptides for Enhanced Immunoinformatics-based Prediction of Vaccine Epitopes. Journal of Proteome Research, 2020, 19, 4655-4669.	1.8	4
649	The Immunogenic Potential of Recurrent Cancer Drug Resistance Mutations: An In Silico Study. Frontiers in Immunology, 2020, 11, 524968.	2.2	7
650	Selecting Target Antigens for Cancer Vaccine Development. Vaccines, 2020, 8, 615.	2.1	59
651	Mutation position is an important determinant for predicting cancer neoantigens. Journal of Experimental Medicine, 2020, 217, .	4.2	73
652	Resisting Resistance to Immune Checkpoint Therapy: A Systematic Review. International Journal of Molecular Sciences, 2020, 21, 6176.	1.8	19
653	Tuberculosis–Cancer Parallels in Immune Response Regulation. International Journal of Molecular Sciences, 2020, 21, 6136.	1.8	9
654	Combining Three-Dimensional Modeling with Artificial Intelligence to Increase Specificity and Precision in Peptide–MHC Binding Predictions. Journal of Immunology, 2020, 205, 1962-1977.	0.4	7
655	Identifying and Targeting Human Tumor Antigens for T Cell-Based Immunotherapy of Solid Tumors. Cancer Cell, 2020, 38, 454-472.	7.7	190
656	Nivolumab Plus Ipilimumab for Metastatic Castration-Resistant Prostate Cancer: Preliminary Analysis of Patients in the CheckMate 650 Trial. Cancer Cell, 2020, 38, 489-499.e3.	7.7	216
657	Oncolytic Immunotherapy: Can't Start a Fire Without a Spark. Cytokine and Growth Factor Reviews, 2020, 56, 94-101.	3.2	9
658	Innovative approaches to immunotherapy in breast cancer. Journal of Thoracic Disease, 2020, 12, 4536-4540.	0.6	4
659	Nano-Enhanced Cancer Immunotherapy: Immunology Encounters Nanotechnology. Cells, 2020, 9, 2102.	1.8	56
660	HNSCC: Tumour Antigens and Their Targeting by Immunotherapy. Cells, 2020, 9, 2103.	1.8	48
661	Synthetic Particles for Cancer Vaccines: Connecting the Inherent Supply Chain. Accounts of Chemical Research, 2020, 53, 2068-2080.	7.6	15
662	Spliced Peptides and Cytokine-Driven Changes in the Immunopeptidome of Melanoma. Cancer Immunology Research, 2020, 8, 1322-1334.	1.6	45
663	A Systematic, Unbiased Mapping of CD8+ and CD4+ T Cell Epitopes in Yellow Fever Vaccinees. Frontiers in Immunology, 2020, 11, 1836.	2.2	13
664	Personalized Immuno-Oncology. Medical Principles and Practice, 2021, 30, 1-16.	1.1	25

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
665	Therapeutic vaccines for aggressive B-cell lymphoma. Leukemia and Lymphoma, 2020, 61, 3038-3051.	0.6	6
666	Antigen processing and presentation in cancer immunotherapy. , 2020, 8, e001111.		66
667	Turning up the heat on non-immunoreactive tumours: opportunities for clinical development. Lancet Oncology, The, 2020, 21, e419-e430.	5.1	128
668	Improving human cancer therapy through the evaluation of pet dogs. Nature Reviews Cancer, 2020, 20, 727-742.	12.8	102
669	The Origin and Immune Recognition of Tumor-Specific Antigens. Cancers, 2020, 12, 2607.	1.7	30
670	Breaking Bottlenecks for the TCR Therapy of Cancer. Cells, 2020, 9, 2095.	1.8	35
671	Neoantigen-specific CD4 ⁺ T-cell response is critical for the therapeutic efficacy of cryo-thermal therapy. , 2020, 8, e000421.		23
672	TCR Redirected T Cells for Cancer Treatment: Achievements, Hurdles, and Goals. Frontiers in Immunology, 2020, 11, 1689.	2.2	63
673	Efficient Lymph Node-Targeted Delivery of Personalized Cancer Vaccines with Reactive Oxygen Species-Inducing Reduced Graphene Oxide Nanosheets. ACS Nano, 2020, 14, 13268-13278.	7.3	69
674	Enhancing mucosal immunity by transient microbiota depletion. Nature Communications, 2020, 11, 4475.	5.8	12
675	Chemical Strategies to Boost Cancer Vaccines. Chemical Reviews, 2020, 120, 11420-11478.	23.0	95
676	Peptide vaccine with glucopyranosyl lipid A–stable oil-in-water emulsion for patients with resected melanoma. Immunotherapy, 2020, 12, 983-995.	1.0	6
677	The Application of Single-Cell RNA Sequencing in Vaccinology. Journal of Immunology Research, 2020, 2020, 1-19.	0.9	30
678	Current Trends in Cancer Immunotherapy. Biomedicines, 2020, 8, 621.	1.4	34
679	Robust Production of Merkel Cell Polyomavirus Oncogene Specific T Cells From Healthy Donors for Adoptive Transfer. Frontiers in Immunology, 2020, 11, 592721.	2.2	8
680	Neo-Antigen mRNA Vaccines. Vaccines, 2020, 8, 776.	2.1	49
681	Therapeutic strategies to remodel immunologically cold tumors. Clinical and Translational Immunology, 2020, 9, e1226.	1.7	23
682	Immune Modulation in Lung Cancer: Current Concepts and Future Strategies. Respiration, 2020, 99, 903-929.	1.2	18

#	Article	IF	CITATIONS
683	Unveiling the Hidden Treasury: CIITA-Driven MHC Class II Expression in Tumor Cells to Dig up the Relevant Repertoire of Tumor Antigens for Optimal Stimulation of Tumor Specific CD4+ T Helper Cells. Cancers, 2020, 12, 3181.	1.7	9
684	Moderne Aspekte der Immuntherapie mit Checkpoint-Inhibitoren bei Melanom. Karger Kompass Dermatologie, 2020, 8, 92-101.	0.0	0
685	Immunomodulatory Effects of Radiotherapy. International Journal of Molecular Sciences, 2020, 21, 8151.	1.8	34
686	Pam ₃ CSK ₄ -CDG ^{SF} Augments Antitumor Immunotherapy by Synergistically Activating TLR1/2 and STING. Bioconjugate Chemistry, 2020, 31, 2499-2503.	1.8	14
687	The biomarkers of hyperprogressive disease in PD-1/PD-L1 blockage therapy. Molecular Cancer, 2020, 19, 81.	7.9	82
688	Nanocarrier-mediated immunogenic chemotherapy for triple negative breast cancer. Journal of Controlled Release, 2020, 323, 431-441.	4.8	39
689	Diverse Neoantigens and the Development of Cancer Therapies. Seminars in Radiation Oncology, 2020, 30, 113-128.	1.0	15
690	Heterogeneity of neoantigen landscape between primary lesions and their matched metastases in lung cancer. Translational Lung Cancer Research, 2020, 9, 246-256.	1.3	17
691	Immunotherapy for esophageal cancer: a 2019 update. Immunotherapy, 2020, 12, 203-218.	1.0	30
692	Can Graft vs. Leukemia Effect Be Uncoupled From Graft vs. Host Disease? An Examination of Proportions. Frontiers in Immunology, 2020, 11, 777.	2.2	2
693	T Cell Receptor Engineered Lymphocytes for Cancer Therapy. Current Protocols in Immunology, 2020, 129, e97.	3.6	7
694	A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology, 2020, 20, 651-668.	10.6	2,160
695	Shared neoantigens: ideal targets for off-the-shelf cancer immunotherapy. Pharmacogenomics, 2020, 21, 637-645.	0.6	26
696	MHC-restricted phosphopeptide antigens: preclinical validation and first-in-humans clinical trial in participants with high-risk melanoma. , 2020, 8, e000262.		44
697	Opportunities for Conventional and In Situ Cancer Vaccine Strategies and Combination with Immunotherapy for Gastrointestinal Cancers, A Review. Cancers, 2020, 12, 1121.	1.7	31
698	Pharmacokinetic tuning of protein–antigen fusions enhances the immunogenicity of T-cell vaccines. Nature Biomedical Engineering, 2020, 4, 636-648.	11.6	44
699	Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives. Theranostics, 2020, 10, 6011-6023.	4.6	56
700	An Immunological Glance on Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences, 2020, 21, 3345.	1.8	14

#	Article	IF	CITATIONS
701	An ultra-sensitive T-cell receptor detection method for TCR-Seq and RNA-Seq data. Bioinformatics, 2020, 36, 4255-4262.	1.8	13
702	A novel cancer immunotherapy utilizing autologous tumour tissue. Vox Sanguinis, 2020, 115, 525-535.	0.7	5
703	Overcoming resistance to anti-PD1 and anti-PD-L1 treatment in gastrointestinal malignancies. , 2020, 8, e000404.		29
704	Lipid-encapsulated oral therapeutic peptide vaccines reduce tumour growth in an orthotopic mouse model of colorectal cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 152, 183-192.	2.0	17
705	Nanoengineered targeting strategy for cancer immunotherapy. Acta Pharmacologica Sinica, 2020, 41, 902-910.	2.8	23
706	Comparative study of α-helical and β-sheet self-assembled peptide nanofiber vaccine platforms: influence of integrated T-cell epitopes. Biomaterials Science, 2020, 8, 3522-3535.	2.6	35
707	Immune Therapy Opportunities in Ovarian Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, e228-e240.	1.8	25
708	Promising Immuno-Oncology Options for the Future: Cellular Therapies and Personalized Cancer Vaccines. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, e253-e258.	1.8	8
709	A Pan-cancer Clinical Study of Personalized Neoantigen Vaccine Monotherapy in Treating Patients with Various Types of Advanced Solid Tumors. Clinical Cancer Research, 2020, 26, 4511-4520.	3.2	56
710	Engineering Polymeric Prodrug Nanoplatform for Vaccination Immunotherapy of Cancer. Nano Letters, 2020, 20, 4393-4402.	4.5	93
711	The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Research, 2020, 30, 507-519.	5.7	480
712	Identification of Tumor Antigens in the HLA Peptidome of Patient-derived Xenograft Tumors in Mouse. Molecular and Cellular Proteomics, 2020, 19, 1360-1374.	2.5	12
713	Neoantigen load and HLA-class I expression identify a subgroup of tumors with a T-cell-inflamed phenotype and favorable prognosis in homologous recombination-proficient high-grade serous ovarian carcinoma. , 2020, 8, e000375.		14
714	Comparison of personal and shared frameshift neoantigen vaccines in a mouse mammary cancer model. BMC Immunology, 2020, 21, 25.	0.9	9
715	A Review of Cancer Immunotherapy: From the Past, to the Present, to the Future. Current Oncology, 2020, 27, 87-97.	0.9	554
716	Killing the "BADâ€: Challenges for immunotherapy in pancreatic cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188384.	3.3	14
717	Co-assembled and self-delivered epitope/CpG nanocomplex vaccine augments peptide immunogenicity for cancer immunotherapy. Chemical Engineering Journal, 2020, 399, 125854.	6.6	29
718	Genetically modified immune cells targeting tumor antigens. , 2020, 214, 107603.		17

ARTICLE IF CITATIONS Towards new horizons: characterization, classification and implications of the tumour antigenic 12.5 124 repertoire. Nature Reviews Clinical Oncology, 2020, 17, 595-610. Multi-omic analysis reveals significantly mutated genes and DDX3X as a sex-specific tumor suppressor 5.7 in cutaneous melanoma. Nature Cancer, 2020, 1, 635-652. Integrating context of tumor biology and vaccine design to shape multidimensional immunotherapies. 0.8 1 Future Drug Discovery, 2020, 2, FDD25. Robust Antiâ€Tumor T Cell Response with Efficient Intratumoral Infiltration by Nanodisc Cancer Immunotherapy. Advanced Therapeutics, 2020, 3, 2000094. IConMHC: a deep learning convolutional neural network model to predict peptide and MHC-I binding 723 1.2 4 affinity. Immunogenetics, 2020, 72, 295-304. Mechanisms of immune escape in the cancer immune cycle. International Immunopharmacology, 2020, 1.7 86, 106700. Hallmarks of Splicing Defects in Cancer: Clinical Applications in the Era of Personalized Medicine. 725 1.7 14 Cancers, 2020, 12, 1381. Intratumoral CD4+ T Cells Mediate Anti-tumor Cytotoxicity in Human Bladder Cancer. Cell, 2020, 181, 13.5 436 1612-1625.e13. Rational design of a multi-valent human papillomavirus vaccine by capsomere-hybrid co-assembly of 728 5.8 16 virus-like particles. Nature Communications, 2020, 11, 2841. Injectable Therapies for Regional Melanoma. Surgical Oncology Clinics of North America, 2020, 29, 433-444 Breakthrough concepts in immune-oncology: Cancer vaccines at the bedside. Journal of Leukocyte 730 1.5 22 Biology, 2020, 108, 1455-1489. Identification of the Cryptic HLA-I Immunopeptidome. Cancer Immunology Research, 2020, 8, 1018-1026. 1.6 Dendritic Cells and Their Role in Immunotherapy. Frontiers in Immunology, 2020, 11, 924. 732 2.2 253 Trial watch: TLR3 agonists in cancer therapy. Oncolmmunology, 2020, 9, 1771143. 2.1 An engineered oncolytic virus expressing PD-L1 inhibitors activates tumor neoantigen-specific T cell 5.8124 responses. Nature Communications, 2020, 11, 1395. Enhanced Phenotype Definition for Precision Isolation of Precursor Exhausted Tumor-Infiltrating 2.2 CD8 T Cells. Frontiers in Immunology, 2020, 11, 340. Relationships Between Immune Landscapes, Genetic Subtypes and Responses to Immunotherapy in 736 291 2.2Colorectal Cancer. Frontiers in Immunology, 2020, 11, 369. Adoptive Cell Therapyâ€"Harnessing Antigen-Specific T Cells to Target Solid Tumours. Cancers, 2020, 12, 34

CITATION REPORT

683

731

734

#

719

#	Article	IF	CITATIONS
738	Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes. Nature Communications, 2020, 11, 1293.	5.8	196
739	Treatment of an aggressive orthotopic murine glioblastoma model with combination checkpoint blockade and a multivalent neoantigen vaccine. Neuro-Oncology, 2020, 22, 1276-1288.	0.6	51
740	Peptide-Based Vaccination Therapy for Rheumatic Diseases. Journal of Immunology Research, 2020, 2020, 1-15.	0.9	6
741	The top 100 most cited articles in medical artificial intelligence: a bibliometric analysis. Journal of Medical Artificial Intelligence, 2020, 3, 3-3.	1.1	5
742	Preâ€existing heterologous Tâ€cell immunity and neoantigen immunogenicity. Clinical and Translational Immunology, 2020, 9, e01111.	1.7	26
743	Clinical activity of a htert (vx-001) cancer vaccine as post-chemotherapy maintenance immunotherapy in patients with stage IV non-small cell lung cancer: final results of a randomised phase 2 clinical trial. British Journal of Cancer, 2020, 122, 1461-1466.	2.9	24
744	Sufficiency of CD40 activation and immune checkpoint blockade for T cell priming and tumor immunity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8022-8031.	3.3	84
745	Recent Advances in Immunotherapy for Hepatocellular Carcinoma. Cancers, 2020, 12, 775.	1.7	70
746	ProGeo-neo: a customized proteogenomic workflow for neoantigen prediction and selection. BMC Medical Genomics, 2020, 13, 52.	0.7	14
747	Streamlined selection of cancer antigens for vaccine development through integrative multi-omics and high-content cell imaging. Scientific Reports, 2020, 10, 5885.	1.6	5
748	Personalized neoantigen vaccines: a glimmer of hope for glioblastoma. Expert Review of Vaccines, 2020, 19, 407-417.	2.0	8
749	Neoantigen responses, immune correlates, and favorable outcomes after ipilimumab treatment of patients with prostate cancer. Science Translational Medicine, 2020, 12, .	5.8	108
750	Targeting Toll-like receptor 3 in dendritic cells for cancer immunotherapy. Expert Opinion on Biological Therapy, 2020, 20, 937-946.	1.4	19
751	Harnessing neoantigen specific CD4 T cells for cancer immunotherapy. Journal of Leukocyte Biology, 2020, 107, 625-633.	1.5	40
752	An altered HLA-A0201-restricted MUC1 epitope that could induce more efficient anti-tumor effects against gastric cancer. Experimental Cell Research, 2020, 390, 111953.	1.2	5
753	T Cell Dysfunction and Exhaustion in Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 17.	1.8	226
754	Computational Prediction and Validation of Tumor-Associated Neoantigens. Frontiers in Immunology, 2020, 11, 27.	2.2	86
755	Neoantigens in Hematologic Malignancies. Frontiers in Immunology, 2020, 11, 121.	2.2	26

#	Article	IF	CITATIONS
756	Insights Into Lung Cancer Immune-Based Biology, Prevention, and Treatment. Frontiers in Immunology, 2020, 11, 159.	2.2	73
757	Tumor-Specific T Cell Activation in Malignant Brain Tumors. Frontiers in Immunology, 2020, 11, 205.	2.2	36
758	Melanoma-Secreted Lysosomes Trigger Monocyte-Derived Dendritic Cell Apoptosis and Limit Cancer Immunotherapy. Cancer Research, 2020, 80, 1942-1956.	0.4	25
759	Mesenchymal Stem Cells Beyond Regenerative Medicine. Frontiers in Cell and Developmental Biology, 2020, 8, 72.	1.8	60
760	Neoantigen-Specific Adoptive Cell Therapies for Cancer: Making T-Cell Products More Personal. Frontiers in Immunology, 2020, 11, 1215.	2.2	32
761	DeepAntigen: a novel method for neoantigen prioritization via 3D genome and deep sparse learning. Bioinformatics, 2020, 36, 4894-4901.	1.8	17
762	Neoantigen prediction and computational perspectives towards clinical benefit: recommendations from the ESMO Precision Medicine Working Group. Annals of Oncology, 2020, 31, 978-990.	0.6	87
763	An effective peptide vaccine strategy circumventing clonal MHC heterogeneity of murine myeloid leukaemia. British Journal of Cancer, 2020, 123, 919-931.	2.9	0
764	Exploiting Cancer's Tactics to Make Cancer a Manageable Chronic Disease. Cancers, 2020, 12, 1649.	1.7	3
765	Endogenous retroviral proteins provide an immunodominant but not requisite antigen in a murine immunotherapy tumor model. Oncolmmunology, 2020, 9, 1758602.	2.1	12
766	Generation of multiepitope cancer vaccines based on large combinatorial libraries of survivinâ€derived mutant epitopes. Immunology, 2020, 161, 123-138.	2.0	15
767	Nanomedicine and Onco-Immunotherapy: From the Bench to Bedside to Biomarkers. Nanomaterials, 2020, 10, 1274.	1.9	26
768	Preclinical and Clinical Immunotherapeutic Strategies in Epithelial Ovarian Cancer. Cancers, 2020, 12, 1761.	1.7	8
769	INeo-Epp: A Novel T-Cell HLA Class-I Immunogenicity or Neoantigenic Epitope Prediction Method Based on Sequence-Related Amino Acid Features. BioMed Research International, 2020, 2020, 1-12.	0.9	17
770	Uncovering the Tumor Antigen Landscape: What to Know about the Discovery Process. Cancers, 2020, 12, 1660.	1.7	29
772	Neoantigen-based immunotherapy in pancreatic ductal adenocarcinoma (PDAC). Cancer Letters, 2020, 490, 12-19.	3.2	10
773	Emerging immunotherapies for malignant glioma: from immunogenomics to cell therapy. Neuro-Oncology, 2020, 22, 1425-1438.	0.6	37
774	Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nature Reviews Clinical Oncology, 2020, 17, 251-266.	12.5	408

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
776	Immunotherapy for glioma: Current management and future application. Cancer Letters, 2020, 476, 1-12.	3.2	351
777	Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, , .	0.8	3
778	Emerging Roles of ALK in Immunity and Insights for Immunotherapy. Cancers, 2020, 12, 426.	1.7	12
779	Current Advances in the Treatment of BRAF-Mutant Melanoma. Cancers, 2020, 12, 482.	1.7	112
780	Combination of chemotherapy and PD-1 blockade induces T cell responses to tumor non-mutated neoantigens. Communications Biology, 2020, 3, 85.	2.0	36
781	dbPepNeo: a manually curated database for human tumor neoantigen peptides. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	1.4	43
782	Melittin-lipid nanoparticles target to lymph nodes and elicit a systemic anti-tumor immune response. Nature Communications, 2020, 11, 1110.	5.8	133
783	Nanotechnology approaches in the current therapy of skin cancer. Advanced Drug Delivery Reviews, 2020, 153, 109-136.	6.6	65
784	Mass spectrometry-based identification of a B-cell maturation antigen-derived T-cell epitope for antigen-specific immunotherapy of multiple myeloma. Blood Cancer Journal, 2020, 10, 24.	2.8	15
785	Neoleukin-2 enhances anti-tumour immunity downstream of peptide vaccination targeted by an anti-MHC class II VHH. Open Biology, 2020, 10, 190235.	1.5	11
786	T-Cell Immunotherapies Targeting Histocompatibility and Tumor Antigens in Hematological Malignancies. Frontiers in Immunology, 2020, 11, 276.	2.2	38
787	Tumor-associated antigen-based personalized dendritic cell vaccine in solid tumor patients. Cancer Immunology, Immunotherapy, 2020, 69, 1375-1387.	2.0	75
788	Tumor neoantigenicity assessment with CSiN score incorporates clonality and immunogenicity to predict immunotherapy outcomes. Science Immunology, 2020, 5, .	5.6	39
789	PD-L1/L2 protein levels rapidly increase on monocytes via trogocytosis from tumor cells in classical Hodgkin lymphoma. Leukemia, 2020, 34, 2405-2417.	3.3	31
790	Mechanisms of Resistance to PD-1 Checkpoint Blockade. Drugs, 2020, 80, 459-465.	4.9	6
791	PDL1-targeted vaccine exhibits potent antitumor activity by simultaneously blocking PD1/PDL1 pathway and activating PDL1-specific immune responses. Cancer Letters, 2020, 476, 170-182.	3.2	15
792	Multifunctional Protein Conjugates with Built-in Adjuvant (Adjuvant-Protein-Antigen) as Cancer Vaccines Boost Potent Immune Responses. IScience, 2020, 23, 100935.	1.9	25
793	Normalization Cancer Immunotherapy for Melanoma. Journal of Investigative Dermatology, 2020, 140, 1134-1142.	0.3	13

ARTICLE IF CITATIONS # Nanotherapeutics for Immuno-Oncology: A Crossroad for New Paradigms. Trends in Cancer, 2020, 6, 794 3.8 27 288-298. Development of tumour peptide vaccines: From universalization to personalization. Scandinavian 795 1.3 19 Journal of Immunology, 2020, 91, e12875. Potential New Therapeutic Approaches for Renal Cell Carcinoma. Seminars in Nephrology, 2020, 40, 796 0.6 30 86-97. MAPDP: A Cloud-Based Computational Platform for Immunopeptidomics Analyses. Journal of Proteome 797 1.8 Research, 2020, 19, 1873-1881. HLA class I restricted epitopes prediction of common tumor antigens in white and East Asian 798 1.1 4 populations: Implication on antigen selection for cancer vaccine design. PLoS ONE, 2020, 15, e0229327. 799 Mass Spectrometry-Based Identification of MHC-Associated Peptides. Cancers, 2020, 12, 535. 1.7 Comprehensive mutanome analysis of Lewis lung cancer reveals immunogenic neoantigens for 800 1.0 4 therapeutic vaccines. Biochemical and Biophysical Research Communications, 2020, 525, 607-613. IGFBP2 regulates PD-L1 expression by activating the EGFR-STAT3 signaling pathway in malignant 3.2 47 melanoma. Cancer Letters, 2020, 477, 19-30. Antibody-mediated delivery of viral epitopes to tumors harnesses CMV-specific T cells for cancer 802 9.4 48 therapy. Nature Biotechnology, 2020, 38, 420-425. Cholesterol-modified DP7 enhances the effect of individualized cancer immunotherapy based on 5.7 neoantigens. Biomaterials, 2020, 241, 119852. Peptideâ€"TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance 804 210 9.4 CD8 T-cell immunity to tumor antigens. Nature Biotechnology, 2020, 38, 320-332. Intratumoral heterogeneity and clonal evolution in liver cancer. Nature Communications, 2020, 11, 5.8 230 291. Directing Traffic: How to Effectively Drive T Cells into Tumors. Cancer Discovery, 2020, 10, 185-197. 806 7.7 68 Development and Optimization of a GMP-Compliant Manufacturing Process for a Personalized Tumor 2.1 Lysate Dendritic Cell Vaccine. Vaccines, 2020, 8, 25. 808 Prediction of cancer neoepitopes needs new rules. Seminars in Immunology, 2020, 47, 101387. 2.7 19 Anti-tumor immune response varies among individuals: A gene expression profiling of mouse 809 melanoma. International Immunopharmacology, 2020, 80, 106211. Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell 810 5.829 immunity. Nature Communications, 2020, 11, 524. T cell receptors, mechanosensors, catch bonds and immunotherapy. Progress in Biophysics and 811 1.4 Molecular Biology, 2020, 153, 23-27.

#	Article	IF	CITATIONS
812	Automated Flow Synthesis of Tumor Neoantigen Peptides for Personalized Immunotherapy. Scientific Reports, 2020, 10, 723.	1.6	21
813	Immune gene signatures for predicting durable clinical benefit of anti-PD-1 immunotherapy in patients with non-small cell lung cancer. Scientific Reports, 2020, 10, 643.	1.6	124
814	Tumor Immunology and Tumor Evolution: Intertwined Histories. Immunity, 2020, 52, 55-81.	6.6	357
815	Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. Oncolmmunology, 2020, 9, 1703449.	2.1	156
816	Redox-Responsive Polycondensate Neoepitope for Enhanced Personalized Cancer Vaccine. ACS Central Science, 2020, 6, 404-412.	5.3	45
817	Therapeutic Cancer Vaccination with Ex Vivo RNA-Transfected Dendritic Cells—An Update. Pharmaceutics, 2020, 12, 92.	2.0	46
818	Tumor immune microenvironment in head and neck cancers. Molecular Carcinogenesis, 2020, 59, 766-774.	1.3	90
819	Engineering T cells for immunotherapy of primary human hepatocellular carcinoma. Journal of Genetics and Genomics, 2020, 47, 1-15.	1.7	15
820	Progress and challenges of personalized neoantigens in the clinical treatment of tumors. Medicine in Drug Discovery, 2020, 6, 100030.	2.3	3
821	Immunogenic clearance-mediated cancer vaccination. , 2020, , 549-568.		1
821 822	Immunogenic clearance-mediated cancer vaccination. , 2020, , 549-568. m6A-binding proteins: the emerging crucial performers in epigenetics. Journal of Hematology and Oncology, 2020, 13, 35.	6.9	1 174
821 822 823	Immunogenic clearance-mediated cancer vaccination. , 2020, , 549-568. m6A-binding proteins: the emerging crucial performers in epigenetics. Journal of Hematology and Oncology, 2020, 13, 35. Increasing Complexity to Simplify Clinical Care: High Resolution Mass Spectrometry as an Enabler of Al Guided Clinical and Therapeutic Monitoring. Advanced Therapeutics, 2020, 3, 1900163.	6.9	1 174 1
821 822 823 824	Immunogenic clearance-mediated cancer vaccination., 2020, 549-568. m6A-binding proteins: the emerging crucial performers in epigenetics. Journal of Hematology and Oncology, 2020, 13, 35. Increasing Complexity to Simplify Clinical Care: High Resolution Mass Spectrometry as an Enabler of Al Guided Clinical and Therapeutic Monitoring. Advanced Therapeutics, 2020, 3, 1900163. Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treatment Reviews, 2020, 86, 102019.	6.9 1.6 3.4	1 174 1 327
821 822 823 824 825	Immunogenic clearance-mediated cancer vaccination., 2020,, 549-568. m6A-binding proteins: the emerging crucial performers in epigenetics. Journal of Hematology and Oncology, 2020, 13, 35. Increasing Complexity to Simplify Clinical Care: High Resolution Mass Spectrometry as an Enabler of Al Guided Clinical and Therapeutic Monitoring. Advanced Therapeutics, 2020, 3, 1900163. Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treatment Reviews, 2020, 86, 102019. A tumor-specific neoepitope expressed in homologous/self or heterologous/viral antigens induced comparable effector CD8+ T-cell responses by DNA vaccination. Vaccine, 2020, 38, 3711-3719.	6.9 1.6 3.4 1.7	1 174 1 327 9
821 822 823 824 825 826	Immunogenic clearance-mediated cancer vaccination. , 2020, , 549-568. m6A-binding proteins: the emerging crucial performers in epigenetics. Journal of Hematology and Oncology, 2020, 13, 35. Increasing Complexity to Simplify Clinical Care: High Resolution Mass Spectrometry as an Enabler of Al Guided Clinical and Therapeutic Monitoring. Advanced Therapeutics, 2020, 3, 1900163. Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treatment Reviews, 2020, 86, 102019. A tumor-specific neoepitope expressed in homologous/self or heterologous/viral antigens induced comparable effector CD8+ T-cell responses by DNA vaccination. Vaccine, 2020, 38, 3711-3719. Cancer neoantigen prioritization through sensitive and reliable proteogenomics analysis. Nature Communications, 2020, 11, 1759.	6.9 1.6 3.4 1.7 5.8	1 174 1 327 9 97
821 822 823 824 825 825 826	Immunogenic clearance-mediated cancer vaccination. , 2020, , 549-568. m6A-binding proteins: the emerging crucial performers in epigenetics. Journal of Hematology and Oncology, 2020, 13, 35. Increasing Complexity to Simplify Clinical Care: High Resolution Mass Spectrometry as an Enabler of Al Guided Clinical and Therapeutic Monitoring. Advanced Therapeutics, 2020, 3, 1900163. Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treatment Reviews, 2020, 86, 102019. A tumor-specific neoepitope expressed in homologous/self or heterologous/viral antigens induced comparable effector CD8+ T-cell responses by DNA vaccination. Vaccine, 2020, 38, 3711-3719. Cancer neoantigen prioritization through sensitive and reliable proteogenomics analysis. Nature Communications, 2020, 11, 1759. Guidance Document: Validation of a High-Performance Liquid Chromatography-Tandem Mass Spectrometry Immunopeptidomics Assay for the Identification of HLA Class I Ligands Suitable for Pharmaceutical Therapies. Molecular and Cellular Proteomics, 2020, 19, 432-443.	 6.9 1.6 3.4 1.7 5.8 2.5 	1 174 1 327 9 97 31
 821 822 823 824 825 826 827 828 	Immunogenic clearance-mediated cancer vaccination. , 2020, , 549-568. m6A-binding proteins: the emerging crucial performers in epigenetics. Journal of Hematology and Oncology, 2020, 13, 35. Increasing Complexity to Simplify Clinical Care: High Resolution Mass Spectrometry as an Enabler of Al Guided Clinical and Therapeutic Monitoring. Advanced Therapeutics, 2020, 3, 1900163. Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treatment Reviews, 2020, 86, 102019. A tumor-specific neoepitope expressed in homologous/self or heterologous/viral antigens induced comparable effector CD8+ T-cell responses by DNA vaccination. Vaccine, 2020, 38, 3711-3719. Cancer neoantigen prioritization through sensitive and reliable proteogenomics analysis. Nature Communications, 2020, 11, 1759. Guidance Document: Validation of a High-Performance Liquid Chromatography-Tandem Mass Spectrometry Immunopeptidomics Assay for the Identification of HLA Class I Ligands Suitable for Pharmaceutical Therapies. Molecular and Cellular Proteomics, 2020, 19, 432-443. A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer. Science Advances, 2020, 6, eaaw6071.	 6.9 1.6 3.4 1.7 5.8 2.5 4.7 	1 174 1 327 9 97 31 31

#	Article	IF	CITATIONS
830	Tumor Membrane Vesicle Vaccine Augments the Efficacy of Anti-PD1 Antibody in Immune Checkpoint Inhibitor-Resistant Squamous Cell Carcinoma Models of Head and Neck Cancer. Vaccines, 2020, 8, 182.	2.1	14
831	DNT Cell-based Immunotherapy: Progress and Applications. Journal of Cancer, 2020, 11, 3717-3724.	1.2	23
832	The premise of personalized immunotherapy for cancer dormancy. Oncogene, 2020, 39, 4323-4330.	2.6	17
833	Polyomavirusâ€driven Merkel cell carcinoma: Prospects for therapeutic vaccine development. Molecular Carcinogenesis, 2020, 59, 807-821.	1.3	32
834	Chimeric antigen receptorâ€modified Tâ€cell therapy for plateletâ€derived growth factor receptor αâ€positive rhabdomyosarcoma. Cancer, 2020, 126, 2093-2100.	2.0	13
835	Roles and mechanisms of alternative splicing in cancer — implications for care. Nature Reviews Clinical Oncology, 2020, 17, 457-474.	12.5	400
836	Identification of the Targets of T-cell Receptor Therapeutic Agents and Cells by Use of a High-Throughput Genetic Platform. Cancer Immunology Research, 2020, 8, 672-684.	1.6	25
837	Next-generation immuno-oncology agents: current momentum shifts in cancer immunotherapy. Journal of Hematology and Oncology, 2020, 13, 29.	6.9	146
838	Integrative -omics and HLA-ligandomics analysis to identify novel drug targets for ccRCC immunotherapy. Genome Medicine, 2020, 12, 32.	3.6	32
839	Tumor-Infiltrating T Cells From Clear Cell Renal Cell Carcinoma Patients Recognize Neoepitopes Derived From Point and Frameshift Mutations. Frontiers in Immunology, 2020, 11, 373.	2.2	27
840	Modern Aspects of Immunotherapy with Checkpoint Inhibitors in Melanoma. International Journal of Molecular Sciences, 2020, 21, 2367.	1.8	34
841	Targeting Neoantigens in Hepatocellular Carcinoma for Immunotherapy: A Futile Strategy?. Hepatology, 2021, 73, 414-421.	3.6	37
842	A review of glioblastoma immunotherapy. Journal of Neuro-Oncology, 2021, 151, 41-53.	1.4	159
843	Revisiting the role of CD4+ T cells in cancer immunotherapy—new insights into old paradigms. Cancer Gene Therapy, 2021, 28, 5-17.	2.2	444
844	A Review of the Current State of Nanomedicines for Targeting and Treatment of Cancers: Achievements and Future Challenges. Advanced Therapeutics, 2021, 4, 2000186.	1.6	7
845	A biomimetic antitumor nanovaccine based on biocompatible calcium pyrophosphate and tumor cell membrane antigens. Asian Journal of Pharmaceutical Sciences, 2021, 16, 97-109.	4.3	17
846	Targeting Tumorâ€Associated Antigens in Hepatocellular Carcinoma for Immunotherapy: Past Pitfalls and Future Strategies. Hepatology, 2021, 73, 821-832.	3.6	25
847	Fundamentals of Cancer Immunology and Their Application to Cancer Vaccines. Clinical and Translational Science, 2021, 14, 120-131.	1.5	3

#	Article	IF	CITATIONS
848	Newly emerged immunogenic neoantigens in established tumors enable hosts to regain immunosurveillance in a T-cell-dependent manner. International Immunology, 2021, 33, 39-48.	1.8	4
849	Novel Peptide Inhibitors of β-Catenin Effectively Suppress the Tumorigenesis of Colorectal Cancer. International Journal of Peptide Research and Therapeutics, 2021, 27, 263-274.	0.9	1
850	Nanotechnologyâ€Based CARâ€T Strategies for Improving Efficacy and Safety of Tumor Immunotherapy. Advanced Functional Materials, 2021, 31, .	7.8	13
851	Steatohepatitis Impairs T-cell–Directed Immunotherapies Against Liver Tumors in Mice. Gastroenterology, 2021, 160, 331-345.e6.	0.6	46
852	Combination therapies utilizing neoepitope-targeted vaccines. Cancer Immunology, Immunotherapy, 2021, 70, 875-885.	2.0	12
853	Personalized Cancer Vaccines: Clinical Landscape, Challenges, and Opportunities. Molecular Therapy, 2021, 29, 555-570.	3.7	130
854	Immune Checkpoint Therapies for Melanoma. Hematology/Oncology Clinics of North America, 2021, 35, 99-109.	0.9	4
855	Polymer-lipid hybrid nanovesicle-enabled combination of immunogenic chemotherapy and RNAi-mediated PD-L1 knockdown elicits antitumor immunity against melanoma. Biomaterials, 2021, 268, 120579.	5.7	46
856	Special Review: The future of Immunotherapy. Immunotherapy Advances, 2021, 1, .	1.2	5
857	Neoantigen prediction in human breast cancer using RNA sequencing data. Cancer Science, 2021, 112, 465-475.	1.7	13
858	Frontiers in cancer immunotherapy—a symposium report. Annals of the New York Academy of Sciences, 2021, 1489, 30-47.	1.8	39
859	Efficacy of cancer vaccines in selected gynaecological breast and ovarianÂcancers: A 20-year systematic review and meta-analysis. European Journal of Cancer, 2021, 142, 63-82.	1.3	19
860	The Peptide Vaccine of the Future. Molecular and Cellular Proteomics, 2021, 20, 100022.	2.5	94
861	A New Pipeline to Predict and Confirm Tumor Neoantigens Predict Better Response to Immune Checkpoint Blockade. Molecular Cancer Research, 2021, 19, 498-506.	1.5	8
862	Selfâ€Adjuvanted Molecular Activator (SeaMac) Nanovaccines Promote Cancer Immunotherapy. Advanced Healthcare Materials, 2021, 10, e2002080.	3.9	20
863	The Changing Landscape of Therapeutic Cancer Vaccines—Novel Platforms and Neoantigen Identification. Clinical Cancer Research, 2021, 27, 689-703.	3.2	113
864	Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells. Nature Immunology, 2021, 22, 41-52.	7.0	110
865	Comparison of HLA ligand elution data and binding predictions reveals varying prediction performance for the multiple motifs recognized by HLAâ€DQ2.5. Immunology, 2021, 162, 235-247.	2.0	6

#	Article	IF	CITATIONS
866	Unique TP53 neoantigen and the immune microenvironment in long-term survivors of Hepatocellular carcinoma. Cancer Immunology, Immunotherapy, 2021, 70, 667-677.	2.0	34
867	Combining therapeutic vaccines with chemo- and immunotherapies in the treatment of cancer. Expert Opinion on Drug Discovery, 2021, 16, 89-99.	2.5	14
868	CIITA-Transduced Glioblastoma Cells Uncover a Rich Repertoire of Clinically Relevant Tumor-Associated HLA-II Antigens. Molecular and Cellular Proteomics, 2021, 20, 100032.	2.5	22
869	A DNA nanodevice-based vaccine for cancer immunotherapy. Nature Materials, 2021, 20, 421-430.	13.3	320
870	Recent developments of RNA-based vaccines in cancer immunotherapy. Expert Opinion on Biological Therapy, 2021, 21, 201-218.	1.4	55
871	Tumor antigens heterogeneity and immune response-targeting neoantigens in breast cancer. Seminars in Cancer Biology, 2021, 72, 65-75.	4.3	33
872	IDENTIFICATION OF MHC PEPTIDES USING MASS SPECTROMETRY FOR NEOANTIGEN DISCOVERY AND CANCER VACCINE DEVELOPMENT. Mass Spectrometry Reviews, 2021, 40, 110-125.	2.8	25
873	Co-delivery of anionic epitope/CpG vaccine and IDO inhibitor by self-assembled cationic liposomes for combination melanoma immunotherapy. Journal of Materials Chemistry B, 2021, 9, 3892-3899.	2.9	18
874	Biomedical overview of melanin. 1. Updating melanin biology and chemistry, physico-chemical properties, melanoma tumors, and photothermal therapy. Biocell, 2021, 45, 849-862.	0.4	9
875	The methods and advances of adaptive immune receptors repertoire sequencing. Theranostics, 2021, 11, 8945-8963.	4.6	22
876	Immune-based mutation classification enables neoantigen prioritization and immune feature discovery in cancer immunotherapy. Oncolmmunology, 2021, 10, 1868130.	2.1	17
877	Cancer Vaccines: Antigen Selection Strategy. Vaccines, 2021, 9, 85.	2.1	30
878	Sensitive and Quantitative Detection of MHC-I Displayed Neoepitopes Using a Semiautomated Workflow and TOMAHAQ Mass Spectrometry. Molecular and Cellular Proteomics, 2021, 20, 100108.	2.5	17
879	An Empirical Antigen Selection Method Identifies Neoantigens That Either Elicit Broad Antitumor T-cell Responses or Drive Tumor Growth. Cancer Discovery, 2021, 11, 696-713.	7.7	34
880	Proteogenomic Analysis Unveils the HLA Class I-Presented Immunopeptidome in Melanoma and EGFR-Mutant Lung Adenocarcinoma. Molecular and Cellular Proteomics, 2021, 20, 100136.	2.5	19
881	Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nature Reviews Clinical Oncology, 2021, 18, 215-229.	12.5	486
882	Biohybrid Nanosystems for Cancer Treatment: Merging the Best of Two Worlds. Advances in Experimental Medicine and Biology, 2021, 1295, 135-162.	0.8	0
883	Ex Vivo Study of Experimental Method Toward Future In Vivo Tissue Processing for Self-Anti-Tumoral Vaccinations. CardioVascular and Interventional Radiology, 2021, 44, 818-821.	0.9	0

ARTICLE IF CITATIONS Perspectives in immunotherapy: meeting report from the "Immunotherapy Bridge―(December 4th–5th,) Tj ĘTQq0 0 0,rgBT /Over 884 Designing the nextâ€generation therapeutic vaccines to cure chronic hepatitis B: focus on antigen presentation, vaccine properties and effect measures. Clinical and Translational Immunology, 2021, 10, 1.7 e1232. MS-Based HLA-II Peptidomics Combined With Multiomics Will Aid the Development of Future 886 2.5 13 Immunotherapies. Molecular and Cellular Proteomics, 2021, 20, 100116. A conjoined universal helper epitope can unveil antitumor effects of a neoantigen vaccine targeting 2.9 an MHC class I-restricted neoepitope. Npj Vaccines, 2021, 6, 12. Neoantigen landscape in metastatic nasopharyngeal carcinoma. Theranostics, 2021, 11, 6427-6444. 888 4.6 14 Profiling of hepatocellular carcinoma neoantigens reveals immune microenvironment and clonal evolution related patterns. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2021, 33, 364-378. Nanomaterial-based delivery vehicles for therapeutic cancer vaccine development. Cancer Biology and 890 1.4 22 Medicine, 2021, 18, 352-371. MATHLA: a robust framework for HLA-peptide binding prediction integrating bidirectional LSTM and multiple head attention mechanism. BMC Bioinformatics, 2021, 22, 7. 1.2

892	Therapeutic cancer vaccines for pediatric malignancies: advances, challenges, and emerging technologies. Neuro-Oncology Advances, 2021, 3, vdab027.	0.4	13
893	Vaccine Therapies for Cancer: Then and Now. Targeted Oncology, 2021, 16, 121-152.	1.7	90
895	Integrating CD4 ⁺ T cell help for therapeutic cancer vaccination in a preclinical head and neck cancer model. OncoImmunology, 2021, 10, 1958589.	2.1	9

895	neck cancer model. Oncolmmunology, 2021, 10, 1958589.	2,1	9
896	The Role of Antigen Processing and Presentation in Cancer and the Efficacy of Immune Checkpoint Inhibitor Immunotherapy. Cancers, 2021, 13, 134.	1.7	67
897	Ovarian Cancer: Towards Personalizing Ovarian Cancer Treatments Using Patient-Derived Organoids. , 2021, , .		0
898	TSNAD v2.0: A one-stop software solution for tumor-specific neoantigen detection. Computational and Structural Biotechnology Journal, 2021, 19, 4510-4516.	1.9	13
899	Optimized Liquid and Gas Phase Fractionation Increases HLA-Peptidome Coverage for Primary Cell and Tissue Samples. Molecular and Cellular Proteomics, 2021, 20, 100133.	2.5	32
900	The role of dendritic cells in tumor microenvironments and their uses as therapeutic targets. BMB Reports, 2021, 54, 31-43.	1.1	33
901	Use of plasma ctDNA as a potential biomarker for longitudinal monitoring of a patient with metastatic high-risk upper tract urothelial carcinoma receiving pembrolizumab and personalized neoepitope-derived multipeptide vaccinations: a case report. , 2021, 9, e001406.		7
902	Research advance in tumor specific antigens: a narrative review. AME Medical Journal, 0, 6, 35-35.	0.4	3

	CHANON		
# 903	ARTICLE Cell therapies in ovarian cancer. Therapeutic Advances in Medical Oncology, 2021, 13, 175883592110083.	IF 1.4	Citations 20
904	A simple and general strategy for postsurgical personalized cancer vaccine therapy based on an injectable dynamic covalent hydrogel. Biomaterials Science, 2021, 9, 6879-6888.	2.6	10
905	Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nature Medicine, 2021, 27, 515-525.	15.2	248
906	Development of a Metastasis-Related Immune Prognostic Model of Metastatic Colorectal Cancer and Its Usefulness to Immunotherapy. Frontiers in Cell and Developmental Biology, 2020, 8, 577125.	1.8	13
907	Research Interest and Public Interest in Melanoma: A Bibliometric and Google Trends Analysis. Frontiers in Oncology, 2021, 11, 629687.	1.3	15
908	Enhancing the Efficacy of Tumor Vaccines Based on Immune Evasion Mechanisms. Frontiers in Oncology, 2020, 10, 584367.	1.3	8
909	Exhausted CD8+T Cells in the Tumor Immune Microenvironment: New Pathways to Therapy. Frontiers in Immunology, 2020, 11, 622509.	2.2	148
910	Neoantigenâ€based vaccines as a promising strategy in cancer immunotherapeutics. Immunomedicine, 2021, 1, e1021.	0.7	1
911	CD4+ T Cells: Multitasking Cells in the Duty of Cancer Immunotherapy. Cancers, 2021, 13, 596.	1.7	24
912	Targeting IL-21 to tumor-reactive T cells enhances memory T cell responses and anti-PD-1 antibody therapy. Nature Communications, 2021, 12, 951.	5.8	50
913	Sulfated Lactosyl Archaeol Archaeosomes Synergize with Poly(I:C) to Enhance the Immunogenicity and Efficacy of a Synthetic Long Peptide-Based Vaccine in a Melanoma Tumor Model. Pharmaceutics, 2021, 13, 257.	2.0	7
914	Immunotherapeutic advances in gastric cancer. Surgery Today, 2021, 51, 1727-1735.	0.7	14
915	mRNA vaccine for cancer immunotherapy. Molecular Cancer, 2021, 20, 41.	7.9	445
916	Dog leukocyte antigenâ€88*034:01 presents nonamer peptides from canine distemper virus hemagglutinin, large polymerase, and matrix proteins. Hla, 2021, 97, 428-434.	0.4	1
918	Precision Medicine Approaches to Overcome Resistance to Therapy in Head and Neck Cancers. Frontiers in Oncology, 2021, 11, 614332.	1.3	33
919	Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. Cell Reports Medicine, 2021, 2, 100194.	3.3	77
920	Nanodevices for cancer vaccination. Nature Materials, 2021, 20, 286-287.	13.3	4
921	Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Science Advances, 2021, 7,	4.7	157

#	Article	IF	CITATIONS
922	Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines. Pharmaceutics, 2021, 13, 206.	2.0	122
923	Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduction and Targeted Therapy, 2021, 6, 72.	7.1	191
924	Bispecific Antibodies in Prostate Cancer Therapy: Current Status and Perspectives. Cancers, 2021, 13, 549.	1.7	13
925	Artificial intelligence in cancer research: learning at different levels of data granularity. Molecular Oncology, 2021, 15, 817-829.	2.1	15
926	Personal Neoantigen Vaccines for the Treatment of Cancer. Annual Review of Cancer Biology, 2021, 5, 259-276.	2.3	13
927	Clinical Trial of a Cancer Vaccine Targeting VEGF and KIF20A in Advanced Biliary Tract Cancer. Anticancer Research, 2021, 41, 1485-1496.	0.5	8
928	Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials, 2021, 270, 120709.	5.7	77
929	Nanomedicine to modulate immunotherapy in cutaneous melanoma (Review). Experimental and Therapeutic Medicine, 2021, 21, 535.	0.8	6
930	Immunotherapy for ALK-Rearranged Non-Small Cell Lung Cancer: Challenges Inform Promising Approaches. Cancers, 2021, 13, 1476.	1.7	21
931	Irradiated whole‑cell vaccine suppresses hepatocellular carcinoma growth in mice via Th9Âcells. Oncology Letters, 2021, 21, 409.	0.8	4
932	Rational discovery of a cancer neoepitope harboring the KRAS G12D driver mutation. Science China Life Sciences, 2021, 64, 2144-2152.	2.3	6
933	Mucin 4 mutation is associated with tumor mutation burden and promotes antitumor immunity in colon cancer patients. Aging, 2021, 13, 9043-9055.	1.4	18
934	Low-Dose Decitabine Augments the Activation and Anti-Tumor Immune Response of IFN-γ+ CD4+ T Cells Through Enhancing IκBα Degradation and NF-κB Activation. Frontiers in Cell and Developmental Biology, 2021, 9, 647713.	1.8	4
935	Neoantigen vaccine platforms in clinical development: understanding the future of personalized immunotherapy. Expert Opinion on Investigational Drugs, 2021, 30, 529-541.	1.9	26
936	Cancer Vaccines, Adjuvants, and Delivery Systems. Frontiers in Immunology, 2021, 12, 627932.	2.2	78
937	Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomedical Materials (Bristol), 2021, 16, 032005.	1.7	14
938	Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nature Reviews Cancer, 2021, 21, 298-312.	12.8	553
939	Identification of bacteria-derived HLA-bound peptides in melanoma. Nature, 2021, 592, 138-143.	13.7	187

#	Article	IF	Citations
940	A combination of PD‑1/PD‑L1 inhibitors: The prospect of overcoming the weakness of tumor immunotherapy (Review). Molecular Medicine Reports, 2021, 23, .	1.1	16
941	Immunotherapy for pancreatic cancer: chasing the light at the end of the tunnel. Cellular Oncology (Dordrecht), 2021, 44, 261-278.	2.1	16
942	Immunotherapy for Hepatocellular Carcinoma: Current Limits and Prospects. Frontiers in Oncology, 2021, 11, 589680.	1.3	23
944	Neoantigen-reactive T cells exhibit effective anti-tumor activity against colorectal cancer. Human Vaccines and Immunotherapeutics, 2022, 18, 1-11.	1.4	14
945	Chimeric antigen receptor engineered NK cellular immunotherapy overcomes the selection of T-cell escape variant cancer cells. , 2021, 9, e002128.		20
946	Machine learning optimization of peptides for presentation by class II MHCs. Bioinformatics, 2021, 37, 3160-3167.	1.8	8
947	Clinical and immunological effects of mRNA vaccines in malignant diseases. Molecular Cancer, 2021, 20, 52.	7.9	90
948	Radiotherapy-exposed CD8+ and CD4+ neoantigens enhance tumor control. Journal of Clinical Investigation, 2021, 131, .	3.9	111
949	Exploiting Tumor Neoantigens to Target Cancer Evolution: Current Challenges and Promising Therapeutic Approaches. Cancer Discovery, 2021, 11, 1024-1039.	7.7	56
950	CAR T cell therapy as a promising approach in cancer immunotherapy: challenges and opportunities. Cellular Oncology (Dordrecht), 2021, 44, 495-523.	2.1	32
951	Therapeutic applications of the cancer immunoediting hypothesis. Seminars in Cancer Biology, 2022, 78, 63-77.	4.3	29
952	Nanomedicineâ€Boosting Tumor Immunogenicity for Enhanced Immunotherapy. Advanced Functional Materials, 2021, 31, 2011171.	7.8	84
953	Nanovaccineâ€Based Strategies to Overcome Challenges in the Whole Vaccination Cascade for Tumor Immunotherapy. Small, 2021, 17, e2006000.	5.2	53
954	Clinical cancer genomic profiling. Nature Reviews Genetics, 2021, 22, 483-501.	7.7	79
955	A minimal model of T cell avidity may identify subtherapeutic vaccine schedules. Mathematical Biosciences, 2021, 334, 108556.	0.9	0
956	Cationic Nanoparticle-Based Cancer Vaccines. Pharmaceutics, 2021, 13, 596.	2.0	21
957	Precision and personalized vaccines needed to face COVID-19 pandemic. Insights in Clinical and Cellular Immunology, 2021, 5, 003-003.	0.1	0
958	Advances in immunotherapy for pancreatic ductal adenocarcinoma. Journal of Hepato-Biliary-Pancreatic Sciences, 2021, 28, 419-430.	1.4	9

#	Article	IF	CITATIONS
960	A prime/boost vaccine platform efficiently identifies CD27 agonism and depletion of myeloid-derived suppressor cells as therapies that rationally combine with checkpoint blockade in ovarian cancer. Cancer Immunology, Immunotherapy, 2021, 70, 3451-3460.	2.0	9
961	Synergistic Activation of Antitumor Immunity by a Particulate Therapeutic Vaccine. Advanced Science, 2021, 8, 2100166.	5.6	18
962	The synergistic strategies for the <scp>immunoâ€oncotherapy</scp> with photothermal nanoagents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1717.	3.3	9
963	Challenges and perspectives for immunotherapy inÂoesophageal cancer: A look to the future (Review). International Journal of Molecular Medicine, 2021, 47, .	1.8	3
964	Personal Neoantigens From Patients With NSCLC Induce Efficient Antitumor Responses. Frontiers in Oncology, 2021, 11, 628456.	1.3	14
965	Advances in immunotherapy for hepatocellular carcinoma. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 525-543.	8.2	609
966	Therapeutic cancer vaccines. Nature Reviews Cancer, 2021, 21, 360-378.	12.8	630
967	Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation. Genome Medicine, 2021, 13, 56.	3.6	34
968	Virus-Like Particle–Drug Conjugates Induce Protective, Long-lasting Adaptive Antitumor Immunity in the Absence of Specifically Targeted Tumor Antigens. Cancer Immunology Research, 2021, 9, 693-706.	1.6	18
969	Neoantigen: A New Breakthrough in Tumor Immunotherapy. Frontiers in Immunology, 2021, 12, 672356.	2.2	115
970	The Next Decade of Immune Checkpoint Therapy. Cancer Discovery, 2021, 11, 838-857.	7.7	363
971	Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nature Communications, 2021, 12, 2041.	5.8	207
972	Effect of physicochemical properties on inÂvivo fate of nanoparticle-based cancer immunotherapies. Acta Pharmaceutica Sinica B, 2021, 11, 886-902.	5.7	42
973	HLA Ligand Atlas: a benign reference of HLA-presented peptides to improve T-cell-based cancer immunotherapy. , 2021, 9, e002071.		126
974	Beyond Tumor Mutation Burden: Tumor Neoantigen Burden as a Biomarker for Immunotherapy and Other Types of Therapy. Frontiers in Oncology, 2021, 11, 672677.	1.3	48
975	Tumour neoantigen mimicry by microbial species in cancer immunotherapy. British Journal of Cancer, 2021, 125, 313-323.	2.9	29
976	Envisioning the immune system to determine its role in pancreatic ductal adenocarcinoma: Culprit or victim?. Immunology Letters, 2021, 232, 48-59.	1.1	2
977	In vitro induction of neoantigen-specific T cells in myelodysplastic syndrome, a disease with low mutational burden. Cytotherapy, 2021, 23, 320-328.	0.3	8

		CITATION REPORT		
#	Article		IF	CITATIONS
978	TANTIGEN 2.0: a knowledge base of tumor T cell antigens and epitopes. BMC Bioinforn	natics, 2021, 22, 40.	1.2	24
980	Ropporin-1 and 1B Are Widely Expressed in Human Melanoma and Evoke Strong Humo Responses. Cancers, 2021, 13, 1805.	bral Immune	1.7	2
981	Towards customized cancer vaccines: a promising filed in personalized cancer medicine of Vaccines, 2021, 20, 545-557.	e. Expert Review	2.0	2
982	NEPdb: A Database of T-Cell Experimentally-Validated Neoantigens and Pan-Cancer Pre Neoepitopes for Cancer Immunotherapy. Frontiers in Immunology, 2021, 12, 644637.	dicted	2.2	34
984	Safety and Efficacy of Personalized Cancer Vaccines in Combination With Immune Che Inhibitors in Cancer Treatment. Frontiers in Oncology, 2021, 11, 663264.	ckpoint?	1.3	19
985	YTHDF1 Is a Potential Pan-Cancer Biomarker for Prognosis and Immunotherapy. Frontie 2021, 11, 607224.	ers in Oncology,	1.3	64
986	Stay on Target: Reengaging Cancer Vaccines in Combination Immunotherapy. Vaccines	s, 2021, 9, 509.	2.1	14
987	Challenges of Neoantigen Targeting in Lynch Syndrome and Constitutional Mismatch I Syndrome. Cancers, 2021, 13, 2345.	Repair Deficiency	1.7	3
988	cIAP1/2 antagonism eliminates MHC class l–negative tumors through T cell–deper of mononuclear phagocytes. Science Translational Medicine, 2021, 13, .	ident reprogramming	5.8	25
989	CD40 and CD80/86 signaling in cDC1s mediate effective neoantigen vaccination and g antigen-specific CX3CR1+ CD8+ T cells. Cancer Immunology, Immunotherapy, 2022, 7	generation of 1, 137-151.	2.0	10
990	Impact of Immunotherapy on CD4 T Cell Phenotypes and Function in Cancer. Vaccines	, 2021, 9, 454.	2.1	11
991	Rapid assessment of T-cell receptor specificity of the immune repertoire. Nature Comp Science, 2021, 1, 362-373.	utational	3.8	20
992	Multi-step screening of neoantigens' HLA- and TCR-interfaces improves prediction Scientific Reports, 2021, 11, 9983.	of survival.	1.6	4
993	Emerging Next-Generation Target for Cancer Immunotherapy Research: The Orphan Nu NR2F6. Cancers, 2021, 13, 2600.	uclear Receptor	1.7	11
995	Deciphering Human Leukocyte Antigen Susceptibility Maps From Immunopeptidomics in Oncology and Infections. Frontiers in Cellular and Infection Microbiology, 2021, 11,	Characterization 642583.	1.8	7
996	Preclinical models and technologies to advance nanovaccine development. Advanced D Reviews, 2021, 172, 148-182.	Drug Delivery	6.6	18
997	Inmunoterapia personalizada contra el cáncer basada en neoantÃgenos. Revisión de Revista Facultad De Medicina, 2021, 69, e81633.	la literatura.	0.0	0
998	Peptide: MHC-based DNA vaccination strategy to activate natural killer cells by targetir immunoglobulin-like receptors. , 2021, 9, e001912.	ng killer cell		10

#	Article	IF	CITATIONS
999	Vaccines and immune checkpoint inhibitors: a promising combination strategy in gastrointestinal cancers. Immunotherapy, 2021, 13, 561-564.	1.0	4
1000	Differentiation and Regulation of TH Cells: A Balancing Act for Cancer Immunotherapy. Frontiers in Immunology, 2021, 12, 669474.	2.2	124
1001	Improvement of Neoantigen Identification Through Convolution Neural Network. Frontiers in Immunology, 2021, 12, 682103.	2.2	4
1002	Mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade and the emerging role of gut microbiome. Clinical and Translational Oncology, 2021, 23, 2237-2252.	1.2	7
1003	Development of Effective Tumor Vaccine Strategies Based on Immune Response Cascade Reactions. Advanced Healthcare Materials, 2021, 10, e2100299.	3.9	20
1005	Vaccines for immunoprevention of cancer. Journal of Clinical Investigation, 2021, 131, .	3.9	39
1006	Gene fusion neoantigens: Emerging targets for cancer immunotherapy. Cancer Letters, 2021, 506, 45-54.	3.2	42
1007	Intratumoral (Poly-ICLC) Therapy for Dogs with Advanced Cancers: First Report on Clinical Effectiveness, Quality of Life, and Adverse Events. Cancers, 2021, 13, 2237.	1.7	1
1008	Targeting the KRAS α4-α5 allosteric interface inhibits pancreatic cancer tumorigenesis. Small GTPases, 2021, , 1-14.	0.7	11
1009	Use of a Novel Peptide Welding Technology Platform for the Development of B- and T-Cell Epitope-Based Vaccines. Vaccines, 2021, 9, 526.	2.1	1
1010	Turning tumors from cold to inflamed to improve immunotherapy response. Cancer Treatment Reviews, 2021, 101, 102227.	3.4	42
1011	N ⁶ â€methyladenosine Steers RNA Metabolism and Regulation in Cancer. Cancer Communications, 2021, 41, 538-559.	3.7	24
1012	Navigating CAR-T cells through the solid-tumour microenvironment. Nature Reviews Drug Discovery, 2021, 20, 531-550.	21.5	236
1013	Hijacked Immune Cells in the Tumor Microenvironment: Molecular Mechanisms of Immunosuppression and Cues to Improve T Cell-Based Immunotherapy of Solid Tumors. International Journal of Molecular Sciences, 2021, 22, 5736.	1.8	29
1014	In situ vaccination and gene-mediated PD-L1 blockade for enhanced tumor immunotherapy. Chinese Chemical Letters, 2021, 32, 1770-1774.	4.8	41
1015	Highly conserved, non-human-like, and cross-reactive SARS-CoV-2 T cell epitopes for COVID-19 vaccine design and validation. Npj Vaccines, 2021, 6, 71.	2.9	23
1016	Evolution of Cancer Vaccines—Challenges, Achievements, and Future Directions. Vaccines, 2021, 9, 535.	2.1	38
1017	Current management of melanoma patients with nodal metastases. Clinical and Experimental Metastasis, 2022, 39, 181-199.	1.7	8

#	Article	IF	CITATIONS
1018	Therapeutic Liposomal Vaccines for Dendritic Cell Activation or Tolerance. Frontiers in Immunology, 2021, 12, 674048.	2.2	26
1019	Therapeutic dendritic cell cancer vaccines in hematologic malignancies. Immunomedicine, 2021, 1, e1022.	0.7	0
1020	Nanotechnology synergized immunoengineering for cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 72-101.	2.0	8
1021	MHC Class I Deficiency in Solid Tumors and Therapeutic Strategies to Overcome It. International Journal of Molecular Sciences, 2021, 22, 6741.	1.8	28
1022	Cross-presentation of a TAP-independent signal peptide induces CD8 T immunity to escaped cancers but necessitates anchor replacement. Cancer Immunology, Immunotherapy, 2021, , 1.	2.0	5
1023	Artificial intelligence in early drug discovery enabling precision medicine. Expert Opinion on Drug Discovery, 2021, 16, 991-1007.	2.5	35
1024	Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics. Nature Communications, 2021, 12, 3346.	5.8	90
1025	60 Years Young: The Evolving Role of Allogeneic Hematopoietic Stem Cell Transplantation in Cancer Immunotherapy. Cancer Research, 2021, 81, 4373-4384.	0.4	19
1027	Challenges targeting cancer neoantigens in 2021: a systematic literature review. Expert Review of Vaccines, 2021, 20, 827-837.	2.0	13
1028	Palmitoylated antigens for the induction of anti-tumor CD8+ TÂcells and enhanced tumor recognition. Molecular Therapy - Oncolytics, 2021, 21, 315-328.	2.0	3
1030	The Tumor Microenvironment Factors That Promote Resistance to Immune Checkpoint Blockade Therapy. Frontiers in Oncology, 2021, 11, 641428.	1.3	32
1031	Emerging self-assembling peptide nanomaterial for anti-cancer therapy. Journal of Biomaterials Applications, 2021, 36, 882-901.	1.2	5
1032	Radiation-induced neoantigens broaden the immunotherapeutic window of cancers with low mutational loads. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	62
1033	CD8 ⁺ T cell immunity blocks the metastasis of carcinogen-exposed breast cancer. Science Advances, 2021, 7, .	4.7	24
1034	Symphony of nanomaterials and immunotherapy based on the cancer–immunity cycle. Acta Pharmaceutica Sinica B, 2022, 12, 107-134.	5.7	70
1035	Tumor microenvironment in head and neck squamous cell carcinoma: Functions and regulatory mechanisms. Cancer Letters, 2021, 507, 55-69.	3.2	53
1037	Immunogenomics in personalized cancer treatments. Journal of Human Genetics, 2021, 66, 901-907.	1.1	10
1038	Rejection of benign melanocytic nevi by nevus-resident CD4 ⁺ T cells. Science Advances, 2021, 7, .	4.7	6

#	Article	IF	CITATIONS
1039	Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell, 2021, 39, 845-865.e7.	7.7	503
1040	Beyond Just Peptide Antigens: The Complex World of Peptide-Based Cancer Vaccines. Frontiers in Immunology, 2021, 12, 696791.	2.2	58
1041	Antiâ€JMH alloantibody in inherited JMHâ€negative patients leads to immunogenic destruction of JMHâ€positive RBCs. Clinical and Experimental Immunology, 2021, 205, 182-197.	1.1	2
1042	A synDNA vaccine delivering neoAg collections controls heterogenous, multifocal murine lung and ovarian tumors via robust TAcell generation. Molecular Therapy - Oncolytics, 2021, 21, 278-287.	2.0	7
1043	Advancing to the era of cancer immunotherapy. Cancer Communications, 2021, 41, 803-829.	3.7	90
1044	Ovarian Cancer Immunotherapy and Personalized Medicine. International Journal of Molecular Sciences, 2021, 22, 6532.	1.8	128
1045	Physio-pathological effects of m6A modification and its potential contribution to melanoma. Clinical and Translational Oncology, 2021, 23, 2269-2279.	1.2	12
1046	Employing Drug Delivery Strategies to Overcome Challenges Using TLR7/8 Agonists for Cancer Immunotherapy. AAPS Journal, 2021, 23, 90.	2.2	19
1047	Impact of Neoantigen Expression and T-Cell Activation on Breast Cancer Survival. Cancers, 2021, 13, 2879.	1.7	8
1048	Vaccination for cancer: Myth or reality. Immunomedicine, 2021, 1, e1026.	0.7	0
1049	Screening and Validation of the Hypoxia-Related Signature of Evaluating Tumor Immune Microenvironment and Predicting Prognosis in Gastric Cancer. Frontiers in Immunology, 2021, 12, 705511.	2.2	28
1050	Immunotherapy in endometrial cancer: rationale, practice and perspectives. Biomarker Research, 2021, 9, 49.	2.8	53
1051	Cancer Vaccines: Promising Therapeutics or an Unattainable Dream. Vaccines, 2021, 9, 668.	2.1	32
1052	The Current Lung Cancer Neoantigen Landscape and Implications for Therapy. Journal of Thoracic Oncology, 2021, 16, 922-932.	0.5	19
1053	CD8+ T Cell Exhaustion in Cancer. Frontiers in Immunology, 2021, 12, 715234.	2.2	163
1054	Characterization of neoantigen-specific T cells in cancer resistant to immune checkpoint therapies. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
1055	Proteogenomic identification of an immunogenic HLA class I neoantigen in mismatch repair–deficient	2.3	17
	colorectal cancer tissue. Jer insight, 2021, 0, .		

#	Article	IF	CITATIONS
1058	Efficacy of Intranodal Neoantigen Peptide-pulsed Dendritic Cell Vaccine Monotherapy in Patients With Advanced Solid Tumors: A Retrospective Analysis. Anticancer Research, 2021, 41, 4101-4115.	0.5	3
1059	Neoantigen vaccine: An emerging immunotherapy for hepatocellular carcinoma. World Journal of Gastrointestinal Oncology, 2021, 13, 673-683.	0.8	9
1060	Mucosal vaccines — fortifying the frontiers. Nature Reviews Immunology, 2022, 22, 236-250.	10.6	301
1061	Personalized Neoantigen-Pulsed DC Vaccines: Advances in Clinical Applications. Frontiers in Oncology, 2021, 11, 701777.	1.3	21
1062	Biochemical and functional characterization of mutant KRAS epitopes validates this oncoprotein for immunological targeting. Nature Communications, 2021, 12, 4365.	5.8	53
1063	CD8+ T cell differentiation and dysfunction in cancer. Nature Reviews Immunology, 2022, 22, 209-223.	10.6	345
1064	The Promise of Personalized TCR-Based Cellular Immunotherapy for Cancer Patients. Frontiers in Immunology, 2021, 12, 701636.	2.2	6
1065	An MRI-trackable therapeutic nanovaccine preventing cancer liver metastasis. Biomaterials, 2021, 274, 120893.	5.7	24
1066	Neoantigen Controversies. Annual Review of Biomedical Data Science, 2021, 4, 227-253.	2.8	9
1067	Combining Cancer Vaccines with Immunotherapy: Establishing a New Immunological Approach. International Journal of Molecular Sciences, 2021, 22, 8035.	1.8	30
1068	Therapeutic cancer vaccine therapy for acute myeloid leukemia. Immunotherapy, 2021, 13, 863-877.	1.0	6
1069	Neoantigen vaccine: An emerging immunotherapy for hepatocellular carcinoma. World Journal of Gastrointestinal Oncology, 2021, 13, 498-508.	0.8	0
1070	Development of neoantigens: from identification in cancer cells to application in cancer vaccines. Expert Review of Vaccines, 2022, 21, 941-955.	2.0	11
1071	HLA-B and cysteinylated ligands distinguish the antigen presentation landscape of extracellular vesicles. Communications Biology, 2021, 4, 825.	2.0	9
1072	Telomerase as a Target for Therapeutic Cancer Vaccines and Considerations for Optimizing Their Clinical Potential. Frontiers in Immunology, 2021, 12, 682492.	2.2	18
1073	Clinical Trials with Biologic Primary Endpoints in Immuno-oncology: Concepts and Usage. Clinical Cancer Research, 2022, 28, 13-22.	3.2	4
1074	Bacterial cytoplasmic membranes synergistically enhance the antitumor activity of autologous cancer vaccines. Science Translational Medicine, 2021, 13, .	5.8	109
1075	Fundamental and Essential Knowledge for Pathologists Engaged in the Research and Practice of Immune Checkpoint Inhibitor-Based Cancer Immunotherapy. Frontiers in Oncology, 2021, 11, 679095.	1.3	7

59

#	Article	IF	CITATIONS
1077	Targeting Neoepitopes to Treat Solid Malignancies: Immunosurgery. Frontiers in Immunology, 2021, 12, 592031.	2.2	6
1078	Personalized combination nano-immunotherapy for robust induction and tumor infiltration of CD8+ T cells. Biomaterials, 2021, 274, 120844.	5.7	19
1079	Intratumour microbiome associated with the infiltration of cytotoxic CD8+ T cells and patient survival in cutaneous melanoma. European Journal of Cancer, 2021, 151, 25-34.	1.3	59
1080	NLRP3 inflammasomes that induce antitumor immunity. Trends in Immunology, 2021, 42, 575-589.	2.9	29
1081	Identification of a class of non-conventional ER-stress-response-derived immunogenic peptides. Cell Reports, 2021, 36, 109312.	2.9	13
1082	Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature, 2021, 596, 119-125.	13.7	239
1083	Global mapping of cancers: The Cancer Genome Atlas and beyond. Molecular Oncology, 2021, 15, 2823-2840.	2.1	55
1084	Immunopeptidomics-Guided Warehouse Design for Peptide-Based Immunotherapy in Chronic Lymphocytic Leukemia. Frontiers in Immunology, 2021, 12, 705974.	2.2	22
1085	Photothermal Therapy Combined with Neoantigen Cancer Vaccination for Effective Immunotherapy against Large Established Tumors and Distant Metastasis. Advanced Therapeutics, 2021, 4, 2100093.	1.6	20
1086	An Integrated Approach for Discovering Noncanonical MHC-I Peptides Encoded by Small Open Reading Frames. Journal of the American Society for Mass Spectrometry, 2021, 32, 2346-2357.	1.2	10
1087	EVALUATION OF IMMUNOGENICITY OF SYNTHETIC NEOANTIGEN PEPTIDES FOR THE MELANOMA VACCINE MODEL. , 2021, 20, 61-68.	0.3	2
1088	Targeting neoantigens for cancer immunotherapy. Biomarker Research, 2021, 9, 61.	2.8	29
1091	Self-assembly nanovaccine containing TLR7/8 agonist and STAT3 inhibitor enhances tumor immunotherapy by augmenting tumor-specific immune response. , 2021, 9, e003132.		17
1092	Pancreatic Cancer and Immunotherapy: A Clinical Overview. Cancers, 2021, 13, 4138.	1.7	49
1093	Splicing modulators: on the way from nature to clinic. Journal of Antibiotics, 2021, 74, 603-616.	1.0	17
1094	Comparison of tumor mutation burden of 300 various non-Hodgkin lymphomas using panel based massively parallel sequencing. BMC Cancer, 2021, 21, 972.	1.1	6
1095	Identification and Targeting of Mutant Peptide Neoantigens in Cancer Immunotherapy. Cancers, 2021, 13, 4245.	1.7	13
1096	A Neoantigen-Based Peptide Vaccine for Patients With Advanced Pancreatic Cancer Refractory to Standard Treatment. Frontiers in Immunology, 2021, 12, 691605.	2.2	25

#	Article	IF	CITATIONS
1098	PopCover-2.0. Improved Selection of Peptide Sets With Optimal HLA and Pathogen Diversity Coverage. Frontiers in Immunology, 2021, 12, 728936.	2.2	5
1099	Emerging targets for anticancer vaccination: IDH. ESMO Open, 2021, 6, 100214.	2.0	15
1100	Tumor-reactive T cells are licensed by dendritic cells located in spatially different tissues: implications for dendritic cell vaccines. Oncotarget, 2021, 12, 1631-1633.	0.8	0
1101	Know thy immune self and nonâ€self: Proteomics informs on the expanse of self and nonâ€self, and how and where they arise. Proteomics, 2021, , 2000143.	1.3	6
1102	Efficacy and safety of a nanoparticle therapeutic vaccine in patients with chronic hepatitis B: A randomized clinical trial. Hepatology, 2022, 75, 182-195.	3.6	18
1103	DLpTCR: an ensemble deep learning framework for predicting immunogenic peptide recognized by T cell receptor. Briefings in Bioinformatics, 2021, 22, .	3.2	43
1104	PolyTLR7/8a-conjugated, antigen-trapping gold nanorods elicit anticancer immunity against abscopal tumors by photothermal therapy-induced in situ vaccination. Biomaterials, 2021, 275, 120921.	5.7	40
1105	VENUS, a Novel Selection Approach to Improve the Accuracy of Neoantigens' Prediction. Vaccines, 2021, 9, 880.	2.1	8
1106	Technological advances in cancer immunity: from immunogenomics to single-cell analysis and artificial intelligence. Signal Transduction and Targeted Therapy, 2021, 6, 312.	7.1	50
1107	The Role of Neoantigens in Cancer Immunotherapy. Frontiers in Oncology, 2021, 11, 682325.	1.3	14
1108	Peptide-MHC I complex stability measured by nanoscale differential scanning fluorimetry reveals molecular mechanism of thermal denaturation. Molecular Immunology, 2021, 136, 73-81.	1.0	11
1109	A therapeutic cancer vaccine delivers antigens and adjuvants to lymphoid tissues using genetically modified T cells. Journal of Clinical Investigation, 2021, 131, .	3.9	12
1110	Unraveling How Tumor-Derived Galectins Contribute to Anti-Cancer Immunity Failure. Cancers, 2021, 13, 4529.	1.7	10
1111	Building Personalized Cancer Therapeutics through Multi-Omics Assays and Bacteriophage-Eukaryotic Cell Interactions. International Journal of Molecular Sciences, 2021, 22, 9712.	1.8	2
1112	IFNÎ ² Is a Potent Adjuvant for Cancer Vaccination Strategies. Frontiers in Immunology, 2021, 12, 735133.	2.2	11
1113	Farnesylthiosalicylic acid-derivatized PEI-based nanocomplex for improved tumor vaccination. Molecular Therapy - Nucleic Acids, 2021, 26, 594-602.	2.3	6
1114	Immunization with a Plasmid DNA Vaccine Encoding the N-Terminus of Insulin-like Growth Factor Binding Protein-2 in Advanced Ovarian Cancer Leads to High-level Type I Immune Responses. Clinical Cancer Research, 2021, 27, 6405-6412.	3.2	8
1115	Engineered Attenuated <i>Salmonella typhimurium</i> Expressing Neoantigen Has Anticancer Effects. ACS Synthetic Biology, 2021, 10, 2478-2487.	1.9	13

#	Article	IF	CITATIONS
1116	Efficacy and Safety of Actively Personalized Neoantigen Vaccination in the Management of Newly Diagnosed Glioblastoma: A Systematic Review. International Journal of General Medicine, 2021, Volume 14, 5209-5220.	0.8	4
1117	Virusâ€Mimic mRNA Vaccine for Cancer Treatment. Advanced Therapeutics, 2021, 4, 2100144.	1.6	11
1118	Systematic discovery and validation of TÂcell targets directed against oncogenic KRAS mutations. Cell Reports Methods, 2021, 1, 100084.	1.4	24
1119	Tumor eradicated by combination of imiquimod and OX40 agonist for <i>in situ</i> vaccination. Cancer Science, 2021, 112, 4490-4500.	1.7	8
1120	Current Immunotherapeutic Strategies for the Treatment of Glioblastoma. Cancers, 2021, 13, 4548.	1.7	16
1121	Integrating Cancer Vaccines in the Standard-of-Care of Ovarian Cancer: Translating Preclinical Models to Human. Cancers, 2021, 13, 4553.	1.7	6
1122	Antigen dominance hierarchies shape TCF1+ progenitor CD8 TÂcell phenotypes in tumors. Cell, 2021, 184, 4996-5014.e26.	13.5	84
1124	Amateur antigenâ€presenting cells in the tumor microenvironment. Molecular Carcinogenesis, 2022, 61, 153-164.	1.3	12
1125	Role of Different Peptides for Cancer Immunotherapy. International Journal of Peptide Research and Therapeutics, 2021, 27, 2777-2793.	0.9	7
1126	Harnessing the Immune System to Fight Multiple Myeloma. Cancers, 2021, 13, 4546.	1.7	10
1127	Functional analysis of peripheral and intratumoral neoantigen-specific TCRs identified in a patient with melanoma. , 2021, 9, e002754.		7
1128	hnRNPâ€A1 binds to the IRES of MELOEâ€1 antigen to promote MELOEâ€1 translation in stressed melanoma cells. Molecular Oncology, 2022, 16, 594-606.	2.1	9
1129	High-dose IL-2/CD25 fusion protein amplifies vaccine-induced CD4 ⁺ and CD8 ⁺ neoantigen-specific T cells to promote antitumor immunity. , 2021, 9, e002865.		16
1130	Innate immune detection of lipid oxidation as a threat assessment strategy. Nature Reviews Immunology, 2022, 22, 322-330.	10.6	57
1131	Bioinformatics Analyses Reveal the Prognostic Value and Biological Roles of SEPHS2 in Various Cancers. International Journal of General Medicine, 2021, Volume 14, 6059-6076.	0.8	4
1132	Evolution of CD8+ T Cell Receptor (TCR) Engineered Therapies for the Treatment of Cancer. Cells, 2021, 10, 2379.	1.8	23
1133	Splicing modulators elicit global translational repression by condensate-prone proteins translated from introns. Cell Chemical Biology, 2022, 29, 259-275.e10.	2.5	9
1134	Nanotechnology-empowered vaccine delivery for enhancing CD8+ T cells-mediated cellular immunity. Advanced Drug Delivery Reviews, 2021, 176, 113889.	6.6	48

#	Article	IF	CITATIONS
1135	Targeting KRAS in pancreatic cancer: new drugs on the horizon. Cancer and Metastasis Reviews, 2021, 40, 819-835.	2.7	41
1136	T Cell Epitope Prediction and Its Application to Immunotherapy. Frontiers in Immunology, 2021, 12, 712488.	2.2	27
1137	Next-generation immunotherapy for pancreatic ductal adenocarcinoma: navigating pathways of immune resistance. Cancer and Metastasis Reviews, 2021, 40, 837-862.	2.7	8
1138	Contribution of pre-existing neoantigen-specific T cells to a durable complete response after tumor-pulsed dendritic cell vaccine plus nivolumab therapy in a patient with metastatic salivary duct carcinoma. Immunological Investigations, 2022, 51, 1498-1514.	1.0	8
1139	Combination strategies to maximize the benefits of cancer immunotherapy. Journal of Hematology and Oncology, 2021, 14, 156.	6.9	202
1140	Therapeutic cancer vaccines revamping: technology advancements and pitfalls. Annals of Oncology, 2021, 32, 1537-1551.	0.6	36
1141	mRNA-Based Cancer Vaccines: A Therapeutic Strategy for the Treatment of Melanoma Patients. Vaccines, 2021, 9, 1060.	2.1	39
1142	pepsickle rapidly and accurately predicts proteasomal cleavage sites for improved neoantigen identification. Bioinformatics, 2021, 37, 3723-3733.	1.8	6
1143	Role of CD4 ⁺ CD25 ⁺ FOXP3 ⁺ T _{Reg} cells on tumor immunity. Immunological Medicine, 2022, 45, 94-107.	1.4	12
1144	Immunotherapy and Prevention of Cancer by Nanovaccines Loaded with Wholeâ€Cell Components of Tumor Tissues or Cells. Advanced Materials, 2021, 33, e2104849.	11.1	52
1145	Mathematical model of a personalized neoantigen cancer vaccine and the human immune system. PLoS Computational Biology, 2021, 17, e1009318.	1.5	7
1146	Cyclophosphamide loaded thermo-responsive hydrogel system synergize with a hydrogel cancer vaccine to amplify cancer immunotherapy in a prime-boost manner. Bioactive Materials, 2021, 6, 3036-3048.	8.6	36
1147	Immunotherapy for HPV Malignancies. Seminars in Radiation Oncology, 2021, 31, 361-370.	1.0	5
1148	Co-assembled nanocomplexes of peptide neoantigen Adpgk and Toll-like receptor 9 agonist CpG ODN for efficient colorectal cancer immunotherapy. International Journal of Pharmaceutics, 2021, 608, 121091.	2.6	11
1149	Indication-specific tumor evolution and its impact on neoantigen targeting and biomarkers for individualized cancer immunotherapies. , 2021, 9, e003001.		8
1150	Enhancing therapeutic performance of personalized cancer vaccine via delivery vectors. Advanced Drug Delivery Reviews, 2021, 177, 113927.	6.6	34
1151	Synthetic multiepitope neoantigen DNA vaccine for personalized cancer immunotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 37, 102443.	1.7	24
1152	Natural and cryptic peptides dominate the immunopeptidome of atypical teratoid rhabdoid tumors. , 2021, 9, e003404.		11

	CITA	TION REPORT	
#	Article	IF	Citations
1153	Generation of cancer vaccine immunogens derived from Oncofetal antigen (OFA/iLRP) using variable epitope libraries tested in an aggressive breast cancer model. Molecular Immunology, 2021, 139, 65-75.	. 1.0	5
1154	Supramolecular co-assembly of self-adjuvanting nanofibrious peptide hydrogel enhances cancer vaccination by activating MyD88-dependent NF-ήB signaling pathway without inflammation. Bioactive Materials, 2021, 6, 3924-3934.	8.6	23
1155	Native Mitochondria-Targeting polymeric nanoparticles for mild photothermal therapy rationally potentiated with immune checkpoints blockade to inhibit tumor recurrence and metastasis. Chemical Engineering Journal, 2021, 424, 130171.	6.6	36
1156	Advances in clinical immunotherapy for gastric cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188615.	3.3	153
1157	Personalized cancer immunotherapy. , 2022, , 399-426.		0
1158	Stromal modulation strategies to improve immunotherapy response in cancer. , 2022, , 241-291.		0
1159	Applied cancer immunogenomics in glioblastoma. , 2022, , 19-38.		0
1160	Immune responses to CRISPR-Cas protein. Progress in Molecular Biology and Translational Science, 2021, 178, 213-229.	0.9	1
1161	Tumor microenvironment-triggered <i>in situ</i> cancer vaccines inducing dual immunogenic cell death for elevated antitumor and antimetastatic therapy. Nanoscale, 2021, 13, 10906-10915.	2.8	15
1162	Modulation of CD4 T Cell Response According to Tumor Cytokine Microenvironment. Cancers, 2021, 13 373.	8, 1.7	18
1163	Personalized immunotherapy in cancer precision medicine. Cancer Biology and Medicine, 2021, 18, 0-0.	1.4	20
1164	Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal Transduction and Targeted Therapy, 2021, 6, 26.	7.1	112
1165	Precision Medicine: Enabling Healthcare Progress in the Twenty-First Century. , 2021, , 9-19.		0
1166	Self-assembling, self-adjuvanting and fully synthetic peptide nanovaccine for cancer immunotherapy. Smart Materials in Medicine, 2021, 2, 237-249.	3.7	14
1167	Nanoparticle-mediated tumor vaccines for personalized therapy: preparing tumor antigens <i>in vivo</i> or <i>ex vivo</i> ?. Journal of Materials Chemistry B, 2021, 9, 2352-2366.	2.9	6
1168	Modularly Programmable Nanoparticle Vaccine Based on Polyethyleneimine for Personalized Cancer Immunotherapy. Advanced Science, 2021, 8, 2002577.	5.6	46
1169	Residue substitution enhances the immunogenicity of neoepitopes from gastric cancers. Cancer Biology and Medicine, 2021, 18, 0-0.	1.4	1
1170	Intratumoral injection of caerin 1.1 and 1.9 peptides increases the efficacy of vaccinated TCâ€1 tumorâ€bearing mice with PDâ€1 blockade by modulating macrophage heterogeneity and the activatio CD8 ⁺ T cells in the tumor microenvironment. Clinical and Translational Immunology, 2021, 10, e1335.	n of 1.7	12

		CITATION REPORT		
#	Article		IF	CITATIONS
1171	Personalized cancer vaccination in head and neck cancer. Cancer Science, 2021, 112,	978-988.	1.7	34
1172	Beyond conventional immune-checkpoint inhibition — novel immunotherapies for recarcinoma. Nature Reviews Clinical Oncology, 2021, 18, 199-214.	nal cell	12.5	179
1174	Cytotoxic CD8+ Lymphocytes in the Tumor Microenvironment. Advances in Experimen Biology, 2020, 1224, 53-62.	tal Medicine and	0.8	56
1175	Multiple Dynamics in Tumor Microenvironment Under Radiotherapy. Advances in Expe Medicine and Biology, 2020, 1263, 175-202.	rimental	0.8	5
1176	Mechanisms of Resistance to Checkpoint Blockade Therapy. Advances in Experimental Biology, 2020, 1248, 83-117.	Medicine and	0.8	22
1177	Pre-treatment tumor neo-antigen responses in draining lymph nodes are infrequent bu checkpoint blockade therapy outcome. OncoImmunology, 2020, 9, 1684714.	t predict	2.1	12
1178	Joint epitope selection and spacer design for string-of-beads vaccines. Bioinformatics, i643-i650.	2020, 36,	1.8	5
1204	Efficacy of immunotherapy targeting the neoantigen derived from epidermal growth fa T790M/C797S mutation in non–small cell lung cancer. Cancer Science, 2020, 111, 2	actor receptor 2736-2746.	1.7	12
1205	BSA-modified gold nanorods for combined photothermal therapy and immunotherapy 2019, , .	of melanoma. ,		3
1206	Optimized combinatorial pMHC class II multimer labeling for precision immune monito tumor-specific CD4 T cells in patients. , 2020, 8, e000435.	oring of		4
1207	Endogenous HLA-DQ8Î \pm Î ² programs superantigens (SEG/SEI) to silence toxicity and ur network with long-term melanoma survival. , 2020, 8, e001493.	leash a tumoricidal		3
1208	Synthetic High-density Lipoprotein Nanodiscs for Personalized Immunotherapy Agains Clinical Cancer Research, 2020, 26, 4369-4380.	t Gliomas.	3.2	48
1209	Combining STING-based neoantigen-targeted vaccine with checkpoint modulators enh immunity in murine pancreatic cancer. JCI Insight, 2018, 3, .	ances antitumor	2.3	120
1210	Role of in silico structural modeling in predicting immunogenic neoepitopes for cancer development. JCI Insight, 2020, 5, .	vaccine	2.3	20
1211	IL-27 gene therapy induces depletion of Tregs and enhances the efficacy of cancer imn Insight, 2018, 3, .	านnotherapy. JCl	2.3	42
1212	Emerging strategies for combination checkpoint modulators in cancer immunotherapy Clinical Investigation, 2018, 128, 3209-3218.	/. Journal of	3.9	170
1213	Endogenous retroviral signatures predict immunotherapy response in clear cell renal co Journal of Clinical Investigation, 2018, 128, 4804-4820.	ell carcinoma.	3.9	210
1214	Cellular therapy against public neoantigens. Journal of Clinical Investigation, 2019, 129	9, 506-508.	3.9	8

#	Article	IF	CITATIONS
1215	Immune escape and immunotherapy of acute myeloid leukemia. Journal of Clinical Investigation, 2020, 130, 1552-1564.	3.9	160
1216	Personal tumor antigens in blood malignancies: genomics-directed identification and targeting. Journal of Clinical Investigation, 2020, 130, 1595-1607.	3.9	10
1217	mRNA vaccine–induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. Journal of Clinical Investigation, 2020, 130, 5976-5988.	3.9	218
1218	CBFB-MYH11 fusion neoantigen enables T cell recognition and killing of acute myeloid leukemia. Journal of Clinical Investigation, 2020, 130, 5127-5141.	3.9	49
1219	Self-adjuvanting nanoemulsion targeting dendritic cell receptor Clec9A enables antigen-specific immunotherapy. Journal of Clinical Investigation, 2018, 128, 1971-1984.	3.9	73
1220	Mutated nucleophosmin 1 as immunotherapy target in acute myeloid leukemia. Journal of Clinical Investigation, 2019, 129, 774-785.	3.9	128
1221	Strategies for developing and optimizing cancer vaccines. F1000Research, 2019, 8, 654.	0.8	43
1222	Graph-theoretical formulation of the generalized epitope-based vaccine design problem. PLoS Computational Biology, 2020, 16, e1008237.	1.5	6
1223	THERAPY OF ENDOCRINE DISEASE Immunotherapy of advanced thyroid cancer: from bench to bedside. European Journal of Endocrinology, 2020, 183, R41-R55.	1.9	20
1224	Neoantigens in tumor immunotherapy. , 2018, 17, 6-14.	0.3	8
1224 1225	Neoantigens in tumor immunotherapy. , 2018, 17, 6-14. Identification of immunogenic mutant neoantigens in the genome of murine melanoma. , 2019, 18, 23-30.	0.3	8
1224 1225 1226	Neoantigens in tumor immunotherapy., 2018, 17, 6-14. Identification of immunogenic mutant neoantigens in the genome of murine melanoma., 2019, 18, 23-30. EVALUATION OF THE ANTITUMOR EFFICACY OF SYNTHETIC NEOANTIGEN PEPTIDES FOR THE MELANOMA VACCINE MODEL., 2019, 18, 76-81.	0.3 0.3 0.3	8 6 6
1224 1225 1226 1227	Neoantigens in tumor immunotherapy., 2018, 17, 6-14. Identification of immunogenic mutant neoantigens in the genome of murine melanoma., 2019, 18, 23-30. EVALUATION OF THE ANTITUMOR EFFICACY OF SYNTHETIC NEOANTICEN PEPTIDES FOR THE MELANOMA VACCINE MODEL., 2019, 18, 76-81. Prognostic value of immune-related genes in clear cell renal cell carcinoma. Aging, 2019, 11, 11474-11489.	0.3 0.3 0.3 1.4	8 6 6 56
1224 1225 1226 1227 1228	Neoantigens in tumor immunotherapy., 2018, 17, 6-14.Identification of immunogenic mutant neoantigens in the genome of murine melanoma., 2019, 18, 23-30.EVALUATION OF THE ANTITUMOR EFFICACY OF SYNTHETIC NEOANTIGEN PEPTIDES FOR THE MELANOMA VACCINE MODEL., 2019, 18, 76-81.Prognostic value of immune-related genes in clear cell renal cell carcinoma. Aging, 2019, 11, 11474-11489.Prognostic value of immune-related genes in clear cell renal cell carcinoma. Aging, 2019, 11, 11474-11489.	0.3 0.3 0.3 1.4	8 6 6 56
1224 1225 1226 1227 1228 1229	Neoantigens in tumor immunotherapy. , 2018, 17, 6-14.Identification of immunogenic mutant neoantigens in the genome of murine melanoma. , 2019, 18, 23-30.EVALUATION OF THE ANTITUMOR EFFICACY OF SYNTHETIC NEOANTICEN PEPTIDES FOR THE MELANOMA VACCINE MODEL. , 2019, 18, 76-81.Prognostic value of immune-related genes in clear cell renal cell carcinoma. Aging, 2019, 11, 11474-11489.Prognostic value of immune-related genes in clear cell renal cell carcinoma. Aging, 2019, 11, 11474-11489.Cancer immunogenomic approach to neoantigen discovery in a checkpoint blockade responsive murine model of oral cavity squamous cell carcinoma. Oncotarget, 2018, 9, 4109-4119.	0.3 0.3 0.3 1.4 1.4	8 6 6 56 6 34
1224 1225 1226 1227 1228 1229 1230	Neoantigens in tumor immunotherapy., 2018, 17, 6-14. Identification of immunogenic mutant neoantigens in the genome of murine melanoma., 2019, 18, 23-30. EVALUATION OF THE ANTITUMOR EFFICACY OF SYNTHETIC NEOANTICEN PEPTIDES FOR THE MELANOMA VACCINE MODEL., 2019, 18, 76-81. Prognostic value of immune-related genes in clear cell renal cell carcinoma. Aging, 2019, 11, 11474-11489. Prognostic value of immune-related genes in clear cell renal cell carcinoma. Aging, 2019, 11, 11474-11489. Cancer immunogenomic approach to neoantigen discovery in a checkpoint blockade responsive murine model of oral cavity squamous cell carcinoma. Oncotarget, 2018, 9, 4109-4119. Personalized identification of tumor-associated immunogenic neoepitopes in hepatocellular carcinoma in complete remission after sorted to reatment. Oncotarget, 2018, 9, 35394-35407.	0.3 0.3 0.3 1.4 1.4 0.8	8 6 5 6 3 4 6
1224 1225 1226 1227 1228 1229 1230	Neoantigens in tumor immunotherapy., 2018, 17, 6-14. Identification of immunogenic mutant neoantigens in the genome of murine melanoma., 2019, 18, 23-30. EVALUATION OF THE ANTITUMOR EFFICACY OF SYNTHETIC NEOANTIGEN PEPTIDES FOR THE MELANOMA VACCINE MODEL., 2019, 18, 76-81. Prognostic value of immune-related genes in clear cell renal cell carcinoma. Aging, 2019, 11, 11474-11489. Prognostic value of immune-related genes in clear cell renal cell carcinoma. Aging, 2019, 11, 11474-11489. Cancer immunogenomic approach to neoantigen discovery in a checkpoint blockade responsive murine model of oral cavity squamous cell carcinoma. Oncotarget, 2018, 9, 4109-4119. Personalized identification of tumor-associated immunogenic neoepitopes in hepatocellular carcinoma in complete remission after sorafenib treatment. Oncotarget, 2018, 9, 35394-35407. Cancer vaccines: what〙s next?. Oncotarget, 2019, 10, 3985-3987.	0.3 0.3 0.3 1.4 1.4 0.8 0.8	 8 6 56 6 34 6 2

# 1233	ARTICLE Advances and challenges in immunotherapy of small cell lung cancer. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2020, 32, 115-128.	IF 0.7	CITATIONS
1234	Cancer Biomarker Discovery for Precision Medicine: New Progress. Current Medicinal Chemistry, 2020, 26, 7655-7671.	1.2	51
1235	The Roles of Alternative Splicing in Tumor-immune Cell Interactions. Current Cancer Drug Targets, 2020, 20, 729-740.	0.8	8
1236	Current Progresses of Functional Nanomaterials for Imaging Diagnosis and Treatment of Melanoma. Current Topics in Medicinal Chemistry, 2019, 19, 2494-2506.	1.0	6
1237	Biological therapy in the treatment of melanoma. Journal of Mind and Medical Sciences, 2018, 5, 169-175.	0.1	2
1238	Global scenario on ovarian cancer – Its dynamics, relative survival, treatment, and epidemiology. , 0, 2, 17-25.		15
1239	Use of immunotherapy in the treatment of gastric cancer (Review). Oncology Letters, 2019, 18, 5681-5690.	0.8	31
1240	IL-27p28 Production by XCR1+ Dendritic Cells and Monocytes Effectively Predicts Adjuvant-Elicited CD8+ T Cell Responses. ImmunoHorizons, 2018, 2, 1-11.	0.8	26
1241	Advances in personalized neoantigen vaccines for cancer immunotherapy. BioScience Trends, 2020, 14, 349-353.	1.1	8
1242	Rejection of immunogenic tumor clones is limited by clonal fraction. ELife, 2018, 7, .	2.8	88
1243	Cancer systems immunology. ELife, 2020, 9, .	2.8	14
1244	Design of Nanostructure Materials to Modulate Immunosuppressive Tumour Microenvironments and Enhance Cancer Immunotherapy. Bioanalysis, 2021, , 143-172.	0.1	0
1246	Precisely Shaped Self-Adjuvanting Peptide Vaccines with Enhanced Immune Responses for HPV-Associated Cancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 49737-49753.	4.0	7
1247	Toward a postbiotic era of microbiome science: opportunities to advance immunotherapies for hepatocellular carcinoma. Journal of Gastroenterology and Hepatology (Australia), 2021, , .	1.4	3
1248	Vaccines for Non-Viral Cancer Prevention. International Journal of Molecular Sciences, 2021, 22, 10900.	1.8	4
1249	The Current Application and Future Prospects of Astragalus Polysaccharide Combined With Cancer Immunotherapy: A Review. Frontiers in Pharmacology, 2021, 12, 737674.	1.6	7
1250	DNA Vaccines Targeting Novel Cancer-Associated Antigens Frequently Expressed in Head and Neck Cancer Enhance the Efficacy of Checkpoint Inhibitor. Frontiers in Immunology, 2021, 12, 763086.	2.2	9
1251	Comprehensive Analyses Identify APOBEC3A as a Genomic Instability-Associated Immune Prognostic Biomarker in Ovarian Cancer. Frontiers in Immunology, 2021, 12, 749369.	2.2	7

#	Article	IF	CITATIONS
1252	Localized delivery of immunotherapeutics: A rising trend in the field. Journal of Controlled Release, 2021, 340, 149-167.	4.8	14
1253	Combined presentation and immunogenicity analysis reveals a recurrent RAS.Q61K neoantigen in melanoma. Journal of Clinical Investigation, 2021, 131, .	3.9	15
1254	Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell, 2021, 184, 5309-5337.	13.5	588
1255	Identification and Mitigation of Defensins in the Immunopurification of Peptide MHC-I Antigens from Lung Tissue. Journal of the American Society for Mass Spectrometry, 2021, , .	1.2	0
1256	Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nature Biotechnology, 2022, 40, 209-217.	9.4	127
1257	LN Monocytes Limit DC-Poly I:C Induced Cytotoxic T Cell Response via IL-10 and Induction of Suppressor CD4 T Cells. Frontiers in Immunology, 2021, 12, 763379.	2.2	3
1258	Cell membrane-coated nanoparticles for immunotherapy. Chinese Chemical Letters, 2022, 33, 1673-1680.	4.8	27
1259	Microbiome Crosstalk in Immunotherapy and Antiangiogenesis Therapy. Frontiers in Immunology, 2021, 12, 747914.	2.2	17
1260	Leveraging immune memory against measles virus as an antitumor strategy in a preclinical model of aggressive squamous cell carcinoma. , 2021, 9, e002170.		3
1261	Identification of tumor antigens with immunopeptidomics. Nature Biotechnology, 2022, 40, 175-188.	9.4	93
1262	Identification of Novel Modalities Through Bibliometric Analysis for Timely Development of Regulatory Guidance: A Case Study of T Cell Immunity. Frontiers in Medicine, 2021, 8, 756870.	1.2	2
1263	Novel immunotherapeutic drugs for the treatment of lung cancer. Current Opinion in Oncology, 2022, 34, 89-94.	1.1	9
1264	The Prediction and Function of Neoantigen in Oncobiology. , 2017, , .		0
1265	Tailor-made T cells for cancer therapy. Science Translational Medicine, 2017, 9, .	5.8	0
1266	Personalized cancer vaccines show glimmers of success. Nature, 0, , .	13.7	1
1267	Papers of note in <i>Nature</i> 547 (7662). Science Signaling, 2017, 10, .	1.6	0
1269	MHC class II restricted neoepitope vaccine: Promising strategy for immunotherapy , 2018, 03, .		0
1270	The Present Status and Future Prospects of Cancer Immunotherapy Using Active Immunization of Tumor-Associated Antigens. Major Histocompatibility Complex, 2018, 25, 40-49.	0.2	0

			0
# 1272	ARTICLE Congrès de l'association américaine de recherche contre le cancer — AACR 2018. Oncologie, 2018, 20, 49-70.	IF 0.2	O
1273	Cancer Precision Medicine; Where We Should Go?. The Journal of the Japanese Society of Internal Medicine, 2018, 107, 1688-1695.	0.0	Ο
1274	Melanoma Vaccines. , 2019, , 1-23.		0
1275	Genomic Applications in Melanoma. , 2019, , 509-540.		0
1276	Innate and Adaptive Immune Responses to Cancer. , 2019, , 111-159.		3
1278	The Current Strategies and Developing Directions of Tumor Immunotherapy. World Journal of Cancer Research, 2019, 09, 98-103.	0.1	0
1279	Novel Immunotherapies and Novel Combinations of Immunotherapy. , 2019, , 1-22.		0
1280	Cancer vaccine adjuvants. , 2019, 17, 36-44.	0.3	2
1281	Complexities of the Lung Tumor Microenvironment. Current Cancer Research, 2019, , 179-194.	0.2	0
1283	Immunotherapeutic strategies in patients with advanced head and neck squamous cell carcinoma. Annals of Translational Medicine, 2019, 7, S22-S22.	0.7	2
1284	Application of neoantigens in malignant tumor treatment and prognosis evaluation. World Chinese Journal of Digestology, 2019, 27, 287-292.	0.0	0
1295	Treatment: Future Directions. , 2020, , 265-277.		0
1306	Point mutation screening of tumor neoantigens and peptide‑induced specific cytotoxic T lymphocytes using The Cancer Genome Atlas database. Oncology Letters, 2020, 20, 1-1.	0.8	2
1307	The role of tumor microenvironment and exosomes in dormancy and relapse. Seminars in Cancer Biology, 2022, 78, 35-44.	4.3	24
1308	Positionâ€5canning Peptide Libraries as Particle Immunogens for Improving CD8 + Tâ€Cell Responses. Advanced Science, 2021, , 2103023.	5.6	5
1309	Analyzing the Immune Response of Neoepitopes for Personalized Vaccine Design. Lecture Notes in Computer Science, 2020, , 40-48.	1.0	Ο
1310	Identification of WDFY3 Neoantigens as Prognostic Markers in Longterm Survivors of Extrahepatic Cholangiocarcinoma. Current Cancer Drug Targets, 2020, 20, 875-886.	0.8	2
1311	Cancer and COVID-19: On the Quest for Effective Vaccines. Blood Cancer Discovery, 2021, 2, 13-18.	2.6	5

		EPORT	
#	Article	IF	CITATIONS
1314	Biomimetic nanomedicine toward personalized disease theranostics. Nano Research, 2021, 14, 2491-2511.	5.8	17
1315	Personalized Immuno-Oncology. , 2021, , 479-508.		2
1317	A tale of solving two computational challenges in protein science: neoantigen prediction and protein structure prediction. Briefings in Bioinformatics, 2022, 23, .	3.2	7
1318	Criteria to make animal studies more relevant to treating human cancer. Current Opinion in Immunology, 2022, 74, 25-31.	2.4	3
1319	Melanoma Vaccines. , 2020, , 1243-1265.		0
1320	Novel Immunotherapies and Novel Combinations of Immunotherapy for Metastatic Melanoma. , 2020, , 1165-1186.		0
1321	CHAPTER 14. Cell and Immune Therapy. RSC Detection Science, 2020, , 303-344.	0.0	0
1322	Cellular Therapy for Melanoma. , 2020, , 1267-1299.		0
1325	Reversion analysis reveals the in vivo immunogenicity of a poorly MHC I-binding cancer neoepitope. Nature Communications, 2021, 12, 6423.	5.8	18
1326	In Silico Model Estimates the Clinical Trial Outcome of Cancer Vaccines. Cells, 2021, 10, 3048.	1.8	4
1333	Vacunas basadas en neoantÃgenos y control del cáncer: perspectivas. Revista Colombiana De CancerologÃa, 2020, 24, 178-88.	0.0	0
1334	La implementación de las vacunas basadas en neoantÃgenos tumorales: un desafÃo para la medicina de precisión en oncologÃa. Revista Colombiana De CancerologÃa, 2020, 24, 154-56.	0.0	0
1335	Double-Stranded RNA Immunomodulators in Prostate Cancer. Urologic Clinics of North America, 2020, 47, e1-e8.	0.8	2
1336	Immunization with glypican-3 nanovaccine containing TLR7 agonist prevents the development of carcinogen-induced precancerous hepatic lesions to cancer in a murine model. American Journal of Translational Research (discontinued), 2018, 10, 1736-1749.	0.0	4
1338	<editors' choice=""> Meddling with meddlers: curbing regulatory T cells and augmenting antitumor immunity. Nagoya Journal of Medical Science, 2019, 81, 1-18.</editors'>	0.6	18
1339	Extracorporeal Photochemotherapy: Mechanistic Insights Driving Recent Advances and Future Directions. Yale Journal of Biology and Medicine, 2020, 93, 145-159.	0.2	3
1340	Strategy and clinical application of up-regulating cross presentation by DCs in anti-tumor therapy. Journal of Controlled Release, 2022, 341, 184-205.	4.8	18
1341	Xenograft cancer vaccines prepared from immunodeficient mice increase tumor antigen diversity and host T cell efficiency against colorectal cancers. Cancer Letters, 2022, 526, 66-75.	3.2	3

#	Article	IF	CITATIONS
1342	Is There a Role for Immunotherapy in Central Nervous System Cancers?. Hematology/Oncology Clinics of North America, 2022, 36, 237-252.	0.9	5
1343	Identification and <i>in vitro</i> validation of neoantigens for immune activation against high-risk pediatric leukemia cells. Human Vaccines and Immunotherapeutics, 2024, 17, 5558-5562.	1.4	1
1344	Role of Tumor-Associated Neutrophils in the Molecular Carcinogenesis of the Lung. Cancers, 2021, 13, 5972.	1.7	11
1345	Neoantigen-driven B cell and CD4ÂT follicular helper cell collaboration promotes anti-tumor CD8 TÂcell responses. Cell, 2021, 184, 6101-6118.e13.	13.5	192
1346	Directing the Future Breakthroughs in Immunotherapy: The Importance of a Holistic Approach to the Tumour Microenvironment. Cancers, 2021, 13, 5911.	1.7	1
1348	A Personalized Neoantigen Vaccine in Combination with Platinum-Based Chemotherapy Induces a T-Cell Response Coinciding with a Complete Response in Endometrial Carcinoma. Cancers, 2021, 13, 5801.	1.7	2
1350	Commensal Bifidobacterium Strains Enhance the Efficacy of Neo-Epitope Based Cancer Vaccines. Vaccines, 2021, 9, 1356.	2.1	10
1351	Clinical experience with CTLA-4 blockade for cancer immunotherapy: From the monospecific monoclonal antibody ipilimumab to probodies and bispecific molecules targeting the tumor microenvironment. Pharmacological Research, 2022, 175, 105997.	3.1	43
1352	Personalized Immunotherapy in Colorectal Cancers: Where Do We Stand?. Frontiers in Oncology, 2021, 11, 769305.	1.3	13
1353	Novel Tumor-Specific Antigens for Immunotherapy Identified From Multi-omics Profiling in Thymic Carcinomas. Frontiers in Immunology, 2021, 12, 748820.	2.2	3
1354	Computational cancer neoantigen prediction: current status and recent advances. Immuno-Oncology Technology, 2021, 12, 100052.	0.2	14
1355	Acute myeloid leukemia cell membrane-coated nanoparticles for cancer vaccination immunotherapy. Leukemia, 2022, 36, 994-1005.	3.3	33
1356	HLA AND CANCER. Physical and Rehabilitation Medicine Medical Rehabilitation, 0, , .	0.1	0
1357	Proteogenomics of non-small cell lung cancer reveals molecular subtypes associated with specific therapeutic targets and immune-evasion mechanisms. Nature Cancer, 2021, 2, 1224-1242.	5.7	37
1358	<i>In Silico</i> Epitope Prediction Analyses Highlight the Potential for Distracting Antigen Immunodominance with Allogeneic Cancer Vaccines. Cancer Research Communications, 2021, 1, 115-126.	0.7	1
1359	Maximizing cancer therapy via complementary mechanisms of immune activation: PD-1 blockade, neoantigen vaccination, and Tregs depletion. , 2021, 9, e003480.		4
1360	The HLA Ligandome Comprises a Limited Repertoire of O-GlcNAcylated Antigens Preferentially Associated With HLA-B*07:02. Frontiers in Immunology, 2021, 12, 796584.	2.2	7
1361	Neoantigen-Reactive T Cells: The Driving Force behind Successful Melanoma Immunotherapy. Cancers, 2021, 13, 6061.	1.7	5

			_
#	Article	IF	CITATIONS
1362	Immunization with short peptide particles reveals a functional CD8 ⁺ T-cell neoepitope in a murine renal carcinoma model. , 2021, 9, e003101.		7
1363	Cancer-Specific I Helper Shared and Neo-Epitopes Uncovered by Expression of the MHC Class II Master Regulator CIITA. SSRN Electronic Journal, 0, , .	0.4	Ο
1364	External stimuli-responsive nanomedicine for cancer immunotherapy. , 2021, , .		0
1965	Applications of CPISPP. Cas System in Tumor Biology Opeologia 2021 23 463-492	0.2	1
1909	Applications of CRISPR-Cas System in rumor biology. Oncologie, 2021, 25, 405-492.	0.2	1
1366	A Minimalist Binary Vaccine Carrier for Personalized Postoperative Cancer Vaccine Therapy. Advanced	11.1	44
	Materials, 2022, 34, 62109234.		
1367	Subclonal landscape of cancer drives resistance to immune therapy. Cancer Treatment and Research Communications, 2022, 30, 100507.	0.7	8
1368	Targets and Strategies for Cancer. Methods in Molecular Biology, 2022, 2435, 7-17.	0.4	0
1369	Personalized therapy with peptide-based neoantigen vaccine (EVX-01) including a novel adjuvant, CAF®09b, in patients with metastatic melanoma. Oncolmmunology, 2022, 11, 2023255.	2.1	18
	Redeide formulation of a personalized multi negantigen vaccine against mammany carcinoma 2022		
1370	10, e002927.		14
1051	Nanomaterials with changeable physicochemical property for boosting cancer immunotherapy.		
1371	Journal of Controlled Release, 2022, 342, 210-227.	4.8	16
1372	Irradiation conditioning of adjuvanted, autologous cancer cell membrane nanoparticle vaccines.	6.6	9
1072	Chemical Engineering Journal, 2022, 433, 134437.	0.0	,
1373	Perspective on the Immunotherapy of Pancreatic Cancer. , 2021, , 257-270.		Ο
1374	Microfluidic Squeezing Enables MHC Class I Antigen Presentation by Diverse Immune Cells to Elicit CD8+ T Cell Responses with Antitumor Activity, Journal of Immunology, 2022, 208, 929-940.	0.4	11
1375	Neoantigen Cancer Vaccines: Generation, Optimization, and Therapeutic Targeting Strategies. Vaccines, 2022, 10, 196.	2.1	12
1376	Immunotherapeutic Strategies in Cancer and Atherosclerosisâ€″ Iwo Sides of the Same Coin. Frontiers in Cardiovascular Medicine, 2021, 8, 812702.	1.1	2
	Bustandar CD4 (sup) I calls infiltrate human tumors and are phonotypically distinct		
1377	Oncolmmunology, 2022, 11, .	2.1	13
	Individually unique dynamics of cortical connectivity reflect the ongoing intensity of chronic pain.		
1378	Pain, 2022, 163, 1987-1998.	2.0	10
1970	Emerging Novel Therapeutic Approaches for Treatment of Advanced Cutaneous Melanoma. Cancers,	17	18
-1079	2022, 14, 271.	1.7	10
#	Article	IF	Citations
------	--	------	-----------
1380	Immune checkpoint inhibitors in HCC: Cellular, molecular and systemic data. Seminars in Cancer Biology, 2022, 86, 799-815.	4.3	28
1381	Immunotherapy in liver transplantation for hepatocellular carcinoma: Pros and cons. World Journal of Gastrointestinal Oncology, 2022, 14, 163-180.	0.8	12
1382	Dynamic Cancer Cell Heterogeneity: Diagnostic and Therapeutic Implications. Cancers, 2022, 14, 280.	1.7	12
1383	Targeting the "undruggable―RAS with biologics. Advances in Cancer Research, 2022, 153, 237-266.	1.9	4
1384	Neoantigens and the tumor microenvironment play important roles in the prognosis of high-grade serous ovarian cancer. Journal of Ovarian Research, 2022, 15, 18.	1.3	7
1385	B Cell Function in the Tumor Microenvironment. Annual Review of Immunology, 2022, 40, 169-193.	9.5	84
1386	Neoantigen cancer vaccine augments anti-CTLA-4 efficacy. Npj Vaccines, 2022, 7, 15.	2.9	17
1387	Identification of neoantigens for individualized therapeutic cancer vaccines. Nature Reviews Drug Discovery, 2022, 21, 261-282.	21.5	173
1388	Mechanisms of immune activation and regulation: lessons from melanoma. Nature Reviews Cancer, 2022, 22, 195-207.	12.8	101
1389	Nanovaccines with cell-derived components for cancer immunotherapy. Advanced Drug Delivery Reviews, 2022, 182, 114107.	6.6	41
1390	Neoantigens and their potential applications in tumor immunotherapy (Review). Oncology Letters, 2022, 23, 88.	0.8	10
1391	Noninvasive Imaging of CD4+ T Cells in Humanized Mice. Molecular Cancer Therapeutics, 2022, 21, 658-666.	1.9	3
1392	Case Report: Pathological Complete Response in a Lung Metastasis of Phyllodes Tumor Patient Following Treatment Containing Peptide Neoantigen Nano-Vaccine. Frontiers in Oncology, 2022, 12, 800484.	1.3	4
1393	Adoptive cell therapies in thoracic malignancies. Cancer Immunology, Immunotherapy, 2022, 71, 2077-2098.	2.0	4
1394	Remodeling Tumorâ€Associated Neutrophils to Enhance Dendritic Cellâ€Based HCC Neoantigen Nanoâ€Vaccine Efficiency. Advanced Science, 2022, 9, e2105631.	5.6	51
1395	Development of antigenâ€prediction algorithm for personalized neoantigen vaccine using human leukocyte antigen transgenic mouse. Cancer Science, 2022, , .	1.7	4
1396	CIMT 2021: report on the 18th Annual Meeting of the Association for Cancer Immunotherapy. Human Vaccines and Immunotherapeutics, 2022, , 1-10.	1.4	0
1397	Cytotoxic CD4+ TÂcells in cancer: Expanding the immune effector toolbox. Immunity, 2021, 54, 2701-2711.	6.6	170

#	Article	IF	CITATIONS
1398	T cell receptor (TCR) signaling in health and disease. Signal Transduction and Targeted Therapy, 2021, 6, 412.	7.1	127
1399	A phase 1/2 trial of an immune-modulatory vaccine against IDO/PD-L1 in combination with nivolumab in metastatic melanoma. Nature Medicine, 2021, 27, 2212-2223.	15.2	88
1400	Adoptive T-cell Immunotherapy: Perfecting Self-Defenses. Experientia Supplementum (2012), 2022, 113, 253-294.	0.5	1
1401	Monoclonal Antibodies to CTLA-4 with Focus on Ipilimumab. Experientia Supplementum (2012), 2022, 113, 295-350.	0.5	3
1402	Approaches to cancer vaccination. , 2022, , 177-199.		0
1403	Personalized peptide vaccines. , 2022, , 175-191.		0
1404	Tumor RNA transfected DCs derived from iPS cells elicit cytotoxicity against cancer cells induced from colorectal cancer patients in vitro. Scientific Reports, 2022, 12, 3295.	1.6	7
1405	Valid-NEO: A Multi-Omics Platform for Neoantigen Detection and Quantification from Limited Clinical Samples. Cancers, 2022, 14, 1243.	1.7	3
1406	Immunological Classification of Tumor Types and Advances in Precision Combination Immunotherapy. Frontiers in Immunology, 2022, 13, 790113.	2.2	23
1407	Defined tumor antigen-specific T cells potentiate personalized TCR-T cell therapy and prediction of immunotherapy response. Cell Research, 2022, 32, 530-542.	5.7	54
1408	TSAFinder: exhaustive tumor-specific antigen detection with RNAseq. Bioinformatics, 2022, 38, 2422-2427.	1.8	3
1409	Neoantigens as potential vaccines in hepatocellular carcinoma. , 2022, 10, e003978.		16
1410	Cancer Vaccine in Cold Tumors: Clinical Landscape, Challenges, and Opportunities. Current Cancer Drug Targets, 2022, 22, 437-453.	0.8	2
1411	An Immunological Perspective of Circulating Tumor Cells as Diagnostic Biomarkers and Therapeutic Targets. Life, 2022, 12, 323.	1.1	4
1412	Identification of Neoantigens in Cancer Cells as Targets for Immunotherapy. International Journal of Molecular Sciences, 2022, 23, 2594.	1.8	14
1413	Peptidic microarchitecture-trapped tumor vaccine combined with immune checkpoint inhibitor or PI3KÎ ³ inhibitor can enhance immunogenicity and eradicate tumors. , 2022, 10, e003564.		6
1414	What's next in cancer immunotherapy? - The promise and challenges of neoantigen vaccination. Oncolmmunology, 2022, 11, 2038403.	2.1	7
1415	Therapeutic Vaccines against Hepatocellular Carcinoma in the Immune Checkpoint Inhibitor Era: Time for Neoantigens?. International Journal of Molecular Sciences, 2022, 23, 2022.	1.8	13

#	Article	IF	CITATIONS
1417	Advanced Pancreatic Cancer Patient Benefit From Personalized Neoantigen Nanovaccine Based Immunotherapy: A Case Report. Frontiers in Immunology, 2022, 13, 799026.	2.2	4
1418	Neoantigen vaccine-induced CD4 T cells confer protective immunity in a mouse model of multiple myeloma through activation of CD8 T cells against non-vaccine, tumor-associated antigens. , 2022, 10, e003572.		9
1419	A transformer-based model to predict peptide–HLA class I binding and optimize mutated peptides for vaccine design. Nature Machine Intelligence, 2022, 4, 300-311.	8.3	55
1420	Strategies for Manipulating T Cells in Cancer Immunotherapy. Biomolecules and Therapeutics, 2022, , .	1.1	0
1421	The Interplay between Tumour Microenvironment Components in Malignant Melanoma. Medicina (Lithuania), 2022, 58, 365.	0.8	8
1422	The Current State of Treatment and Future Directions in Cutaneous Malignant Melanoma. Biomedicines, 2022, 10, 822.	1.4	18
1423	Cancer Neoantigens: Challenges and Future Directions for Prediction, Prioritization, and Validation. Frontiers in Oncology, 2022, 12, 836821.	1.3	20
1424	Messenger RNA vaccines for cancer immunotherapy: progress promotes promise. Journal of Clinical Investigation, 2022, 132, .	3.9	27
1425	A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nature Immunology, 2022, 23, 660-670.	7.0	191
1426	Emerging Strategies in TCR-Engineered T Cells. Frontiers in Immunology, 2022, 13, 850358.	2.2	20
1427	NeoScore Integrates Characteristics of the Neoantigen:MHC Class I Interaction and Expression to Accurately Prioritize Immunogenic Neoantigens. Journal of Immunology, 2022, 208, 1813-1827.	0.4	4
1429	Generation of Tumor-Specific Cytotoxic T Cells From Blood via InÂVitro Expansion Using Autologous Dendritic Cells Pulsed With Neoantigen-Coupled Microbeads. Frontiers in Oncology, 2022, 12, 866763.	1.3	2
1430	Predictive Markers for Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer. Journal of Clinical Medicine, 2022, 11, 1855.	1.0	11
1431	Proposed Models for Prediction of Mortality in Stage-I and Stage-II Gastric Cancer and 5 Years after Radical Gastrectomy. Journal of Oncology, 2022, 2022, 1-14.	0.6	7
1432	Recent Advances and Next Breakthrough in Immunotherapy for Cancer Treatment. Journal of Immunology Research, 2022, 2022, 1-9.	0.9	20
1433	Hallmarks of Resistance to Immune-Checkpoint Inhibitors. Cancer Immunology Research, 2022, 10, 372-383.	1.6	36
1434	A Comprehensive Survey of Genomic Mutations in Breast Cancer Reveals Recurrent Neoantigens as Potential Therapeutic Targets. Frontiers in Oncology, 2022, 12, 786438.	1.3	6
1435	Targeting the tumor mutanome for personalized vaccination in a TMB low non-small cell lung cancer. , 2022, 10, e003821.		12

		CITATION REPORT		
#	Article		IF	Citations
1436	Development of Peptide-Based Vaccines for Cancer. Journal of Oncology, 2022, 2022,	1-17.	0.6	32
1437	Understanding of Immune Escape Mechanisms and Advances in Cancer Immunotherap Oncology, 2022, 2022, 1-13.	y. Journal of	0.6	13
1438	The Development of Chiral Nanoparticles to Target NK Cells and CD8 ⁺ T G Immunotherapy. Advanced Materials, 2022, 34, e2109354.	Cells for Cancer	11.1	41
1439	Concurrent delivery of immune checkpoint blockade modulates T cell dynamics to enh neoantigen vaccine-generated antitumor immunity. Nature Cancer, 2022, 3, 437-452.	ance	5.7	19
1440	Chasing neoantigens; invite naà ve T cells to the party. Current Opinion in Immunolog	y, 2022, 75, 102172.	2.4	3
1441	Accurate detection of tumor-specific gene fusions reveals strongly immunogenic personeo-antigens. Nature Biotechnology, 2022, 40, 1276-1284.	nal	9.4	25
1443	Physical and chemical advances of synthetic delivery vehicles to enhance mRNA vaccin Journal of Controlled Release, 2022, 345, 405-416.	e efficacy.	4.8	5
1444	The current clinical landscape of personalized cancer vaccines. Cancer Treatment Revie 102383.	ws, 2022, 106,	3.4	25
1445	A nanovaccine for enhancing cellular immunity via cytosolic co-delivery of antigen and Journal of Controlled Release, 2022, 345, 354-370.	polyIC RNA.	4.8	14
1446	Patients with chronic pain exhibit individually unique cortical signatures of pain encodi Brain Mapping, 2022, 43, 1676-1693.	ng. Human	1.9	27
1448	Fast DNA Vaccination Strategy Elicits a Stronger Immune Response Dependent on CD8 Accumulation. Frontiers in Oncology, 2021, 11, 752444.	3+CD11c+ Cell	1.3	2
1449	Targeting Cross-Presentation as a Route to Improve the Efficiency of Peptide-Based Ca Cancers, 2021, 13, 6189.	ncer Vaccines.	1.7	9
1450	Prognostic Value of Neoantigen Load in Immune Checkpoint Inhibitor Therapy for Cano Immunology, 2021, 12, 689076.	cer. Frontiers in	2.2	21
1451	Focus on organoids: cooperation and interconnection with extracellular vesicles – Is of in vitro modeling?. Seminars in Cancer Biology, 2022, 86, 367-381.	this the future	4.3	5
1452	Beyond Sequencing: Prioritizing and Delivering Neoantigens for Cancer Vaccines. Meth Molecular Biology, 2022, 2410, 649-670.	iods in	0.4	11
1453	Neoantigen-based personalized cancer vaccines: the emergence of precision cancer im Expert Review of Vaccines, 2022, 21, 173-184.	munotherapy.	2.0	17
1455	Emerging immunological strategies: recent advances and future directions. Frontiers o 2021, 15, 805-828.	f Medicine,	1.5	5
1456	Immunotherapies and their moderation. , 2022, , 461-502.			0

#	Article	IF	CITATIONS
1457	Designing Personalized Antigen-Specific Immunotherapies for Autoimmune Diseases—The Case for Using Ignored Target Cell Antigen Determinants. Cells, 2022, 11, 1081.	1.8	3
1458	Altering Landscape of Cancer Vaccines: Unique Platforms, Research on Therapeutic Applications and Recent Patents. Recent Patents on Anti-Cancer Drug Discovery, 2023, 18, 133-146.	0.8	1
1459	Lymph node-targeted neoantigen nanovaccines potentiate anti-tumor immune responses of post-surgical melanoma. Journal of Nanobiotechnology, 2022, 20, 190.	4.2	25
1460	Report of the First International Symposium on NUT Carcinoma. Clinical Cancer Research, 2022, 28, 2493-2505.	3.2	23
1461	Mechanisms of Immunotherapy Resistance in Cutaneous Melanoma: Recognizing a Shapeshifter. Frontiers in Oncology, 2022, 12, 880876.	1.3	21
1462	Perspectives for Combining Viral Oncolysis With Additional Immunotherapies for the Treatment of Melanoma. Frontiers in Molecular Biosciences, 2022, 9, 777775.	1.6	3
1463	DNA Engineered Lymphocyte-Based Homologous Targeting Artificial Antigen-Presenting Cells for Personalized Cancer Immunotherapy. Journal of the American Chemical Society, 2022, 144, 7634-7645.	6.6	21
1464	Therapeutic Vaccines Targeting Neoantigens to Induce T-Cell Immunity against Cancers. Pharmaceutics, 2022, 14, 867.	2.0	9
1465	Neoantigen-specific CD4+ TÂcells in human melanoma have diverse differentiation states and correlate with CD8+ TÂcell, macrophage, and B cell function. Cancer Cell, 2022, 40, 393-409.e9.	7.7	59
1466	Reinvigorating therapeutic cancer vaccines. Current Opinion in Immunology, 2022, 76, 102176.	2.4	3
1547	Clinical wholeâ€genome sequencing in cancer diagnosis. Human Mutation, 2022, 43, 1519-1530.	1.1	8
1548	Deep Tumor Penetrating Gold Nanoâ€Adjuvant for NIRâ€Ilâ€Triggered In Situ Tumor Vaccination. Small, 2022, 18, e2200993.	5.2	18
1549	Adoptive tumor infiltrating lymphocytes cell therapy for cervical cancer. Human Vaccines and Immunotherapeutics, 2022, 18, 1-11.	1.4	9
1550	Neoantigen: A Promising Target for the Immunotherapy of Colorectal Cancer. Disease Markers, 2022, 2022, 1-11.	0.6	16
1551	Antibody-mediated delivery of a viral MHC-I epitope into the cytosol of target tumor cells repurposes virus-specific CD8+ T cells for cancer immunotherapy. Molecular Cancer, 2022, 21, 102.	7.9	12
1552	Heterogeneity of the tumor immune microenvironment and its clinical relevance. Experimental Hematology and Oncology, 2022, 11, 24.	2.0	40
1555	Safety and Activity of PolyPEPI1018 Combined with Maintenance Therapy in Metastatic Colorectal Cancer: an Open-Label, Multicenter, Phase Ib Study. Clinical Cancer Research, 2022, 28, 2818-2829.	3.2	12
1556	Combination Neoantigen-Based Dendritic Cell Vaccination and Adoptive T-Cell Transfer Induces Antitumor Responses Against Recurrence of Hepatocellular Carcinoma. Cancer Immunology Research, 2022, 10, 728-744.	1.6	27

#	Article	IF	CITATIONS
1557	Multiple-Allele MHC Class II Epitope Engineering by a Molecular Dynamics-Based Evolution Protocol. Frontiers in Immunology, 2022, 13, 862851.	2.2	7
1558	HLA-DR Presentation of the Tumor Antigen MSLN Associates with Clinical Outcome of Ovarian Cancer Patients. Cancers, 2022, 14, 2260.	1.7	5
1559	Physicochemical Heuristics for Identifying High Fidelity, Near-Native Structural Models of Peptide/MHC Complexes. Frontiers in Immunology, 2022, 13, 887759.	2.2	4
1560	NeoSplice: a bioinformatics method for prediction of splice variant neoantigens. Bioinformatics Advances, 2022, 2, .	0.9	13
1561	Landscape of helper and regulatory antitumour CD4+ T cells in melanoma. Nature, 2022, 605, 532-538.	13.7	70
1562	T Cell Epitope Discovery in the Context of Distinct and Unique Indigenous HLA Profiles. Frontiers in Immunology, 2022, 13, .	2.2	4
1564	Multiaspect Examinations of Possible Alternative Mappings of Identified Variant Peptides: A Case Study on the HEK293 Cell Line. ACS Omega, 0, , .	1.6	1
1565	PANDORA: A Fast, Anchor-Restrained Modelling Protocol for Peptide: MHC Complexes. Frontiers in Immunology, 2022, 13, .	2.2	14
1566	CAD v1.0: Cancer Antigens Database Platform for Cancer Antigen Algorithm Development and Information Exploration. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	2
1567	Comprehensive Analysis of the Potential Immune-Related Biomarker ATG101 that Regulates Apoptosis of Cholangiocarcinoma Cells After Photodynamic Therapy. Frontiers in Pharmacology, 2022, 13, 857774.	1.6	1
1568	Neoantigens – the next frontier in precision immunotherapy for B-cell lymphoproliferative disorders. Blood Reviews, 2022, 56, 100969.	2.8	2
1569	The paradigm shift in treatment from Covid-19 to oncology with mRNA vaccines. Cancer Treatment Reviews, 2022, 107, 102405.	3.4	28
1570	Considerations for personalized neoantigen vaccination in Malignant glioma. Advanced Drug Delivery Reviews, 2022, 186, 114312.	6.6	13
1571	Self-assembled polysaccharide nanogel delivery system for overcoming tumor immune resistance. Journal of Controlled Release, 2022, 347, 175-182.	4.8	22
1572	The dynamics of an immunotherapy duo. Nature Cancer, 2022, 3, 376-378.	5.7	2
1573	Adoptive Cell Transfer and Vaccines in Melanoma: The Horizon Comes Into View. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2022, 42, 730-737.	1.8	1
1574	Identification of shared neoantigens in esophageal carcinoma by the combination of comprehensive analysis of genomic data and in silico neoantigen prediction. Cellular Immunology, 2022, 377, 104537.	1.4	1
1575	Fueling Cancer Vaccines to Improve T Cell-Mediated Antitumor Immunity. Frontiers in Oncology, 2022, 12, .	1.3	4

	CHANON R		
#	Article	IF	CITATIONS
1576	Cancer vaccines: past, present and future; a review article. Discover Oncology, 2022, 13, 31.	0.8	24
1577	The role of biomarkers in personalized immunotherapy. Biomarker Research, 2022, 10, 32.	2.8	27
1578	Function and therapeutic development of exosomes for cancer therapy. Archives of Pharmacal Research, 2022, 45, 295-308.	2.7	15
1579	Harnessing the Immune System with Cancer Vaccines: From Prevention to Therapeutics. Vaccines, 2022, 10, 816.	2.1	7
1580	Durable and dynamic hTERT immune responses following vaccination with the long-peptide cancer vaccine UV1: long-term follow-up of three phase I clinical trials. , 2022, 10, e004345.		15
1581	Double Trouble: Immunotherapy Doublets in Melanoma—Approved and Novel Combinations to Optimize Treatment in Advanced Melanoma. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2022, , 745-766.	1.8	6
1582	mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	160
1585	Intratumoral administration of STING-activating nanovaccine enhances T cell immunotherapy. , 2022, 10, e003960.		22
1586	Recent Progress on Therapeutic Vaccines for Breast Cancer. Frontiers in Oncology, 0, 12, .	1.3	6
1587	Targeted therapies in nonâ€small cell lung cancer and the potential role of AI interventions in cancer treatment. Biotechnology and Applied Biochemistry, 2023, 70, 344-356.	1.4	3
1588	Progress in the Treatment of Advanced Melanoma. Advances in Clinical Medicine, 2022, 12, 5256-5262.	0.0	0
1590	Low-Dose JAK3 Inhibition Improves Antitumor T-Cell Immunity and Immunotherapy Efficacy. Molecular Cancer Therapeutics, 2022, 21, 1393-1405.	1.9	3
1591	Harnessing anti-cytomegalovirus immunity for local immunotherapy against solid tumors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15
1592	Vaccines for immunoprevention of DNA mismatch repair deficient cancers. , 2022, 10, e004416.		21
1593	A Highly Effective System for Predicting MHC-II Epitopes With Immunogenicity. Frontiers in Oncology, 0, 12, .	1.3	5
1594	Adaptive immune resistance at the tumour site: mechanisms and therapeutic opportunities. Nature Reviews Drug Discovery, 2022, 21, 529-540.	21.5	134
1595	A Potent Micron Neoantigen Tumor Vaccine GPâ€Neoantigen Induces Robust Antitumor Activity in Multiple Tumor Models. Advanced Science, 2022, 9, .	5.6	17
1596			

#	Article	IF	CITATIONS
1597	A Therapeutic Whole-Tumor-Cell Vaccine Covalently Conjugated with a TLR7 Agonist. Cells, 2022, 11, 1986.	1.8	8
1598	Personalized Neoantigen Vaccine Against Cancer. , 2022, 1, 96-100.		1
1599	Adoptive Cellular Therapy with Autologous Tumor-Infiltrating Lymphocytes and T-cell Receptor–Engineered T Cells Targeting Common p53 Neoantigens in Human Solid Tumors. Cancer Immunology Research, 2022, 10, 932-946.	1.6	52
1600	A Novel Proteogenomic Integration Strategy Expands the Breadth of Neo-Epitope Sources. Cancers, 2022, 14, 3016.	1.7	3
1601	Tumour burden and antigen-specific T cell magnitude represent major parameters for clinical response to cancer vaccine and TCR-engineered T cell therapy. European Journal of Cancer, 2022, 171, 96-105.	1.3	3
1602	Bioinspired nano-vaccine construction by antigen pre-degradation for boosting cancer personalized immunotherapy. Biomaterials, 2022, 287, 121628.	5.7	13
1603	Therapeutic cancer vaccines: From biological mechanisms and engineering to ongoing clinical trials. Cancer Treatment Reviews, 2022, 109, 102429.	3.4	30
1605	Charting roadmaps towards novel and safe synergistic immunotherapy combinations. Nature Cancer, 2022, 3, 665-680.	5.7	18
1606	Facts and Hopes in the Relationship of EBV with Cancer Immunity and Immunotherapy. Clinical Cancer Research, 2022, 28, 4363-4369.	3.2	3
1607	Current Advancements in Antitumor Properties and Mechanisms of Medicinal Components in Edible Mushrooms. Nutrients, 2022, 14, 2622.	1.7	9
1608	Enhancement of tumor immunogenicity by the introduction of non- proteinogenic amino acid azetidine-2-carboxylic acid. Oncolmmunology, 2022, 11, .	2.1	0
1609	GM-CSF: A Double-Edged Sword in Cancer Immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	61
1610	Therapeutic Cancer Vaccines—Antigen Discovery and Adjuvant Delivery Platforms. Pharmaceutics, 2022, 14, 1448.	2.0	6
1611	Dendritic cell-mediated cross presentation of tumor-derived peptides is biased against plasma membrane proteins. , 2022, 10, e004159.		5
1612	NAIRscore as a biomarker for the quality of immune response to neoantigens is related with an increased overall survival in multiple myeloma. Molecular Therapy - Nucleic Acids, 2022, 29, 285-295.	2.3	5
1614	In Situ Antigenâ€Capturing Nanochaperone Toward Personalized Nanovaccine for Cancer Immunotherapy. Small, 2022, 18, .	5.2	15
1615	Neoantigens and NK Cells: "Trick or Treat―the Cancers?. Frontiers in Immunology, 0, 13, .	2.2	4
1616	Cancer vaccines: Building a bridge over troubled waters. Cell, 2022, 185, 2770-2788.	13.5	82

#	Article	IF	CITATIONS
1617	<scp>mRNA</scp> vaccines: a transformative technology with applications beyond <scp>COVID</scp> â€19. Medical Journal of Australia, 2022, 217, 71-75.	0.8	2
1618	Imaging-guided/improved diseases management for immune-strategies and beyond. Advanced Drug Delivery Reviews, 2022, 188, 114446.	6.6	8
1619	LCOR Reverses Immune-Checkpoint Inhibitors Therapy Resistance Out of IFN Constraint in Triple-Negative Breast Cancer. Frontiers in Oncology, 0, 12, .	1.3	0
1620	Machine Learning Approaches to TCR Repertoire Analysis. Frontiers in Immunology, 0, 13, .	2.2	8
1621	Facts and Hopes for Immunotherapy in Renal Cell Carcinoma. Clinical Cancer Research, 2022, 28, 5013-5020.	3.2	8
1622	Neoantigens in precision cancer immunotherapy: from identification to clinical applications. Chinese Medical Journal, 2022, 135, 1285-1298.	0.9	12
1623	A high-throughput yeast display approach to profile pathogen proteomes for MHC-II binding. ELife, 0, 11,	2.8	12
1624	Prioritizing Candidate Peptides for Cancer Vaccines Through Predicting Peptide Presentation by HLA-I Proteins. Biometrics, 2023, 79, 2664-2676.	0.8	3
1625	Trends in the Development of Digital Technologies in Medicine. Bio-Medical Engineering, 2022, 56, 137-141.	0.3	2
1626	Cancer Immunotherapy – The Target is Precisely on The Cancer and Also Not. Annals of the Academy of Medicine, Singapore, 2018, 47, 381-387.	0.2	10
1627	Development of a Personalized Tumor Neoantigen Based Vaccine Formulation (FRAME-001) for Use in a Phase II Trial for the Treatment of Advanced Non-Small Cell Lung Cancer. Pharmaceutics, 2022, 14, 1515.	2.0	5
1628	Nanocarriers based on bacterial membrane materials for cancer vaccine delivery. Nature Protocols, 2022, 17, 2240-2274.	5.5	42
1629	Geospatial Immune Heterogeneity Reflects the Diverse Tumor–Immune Interactions in Intrahepatic Cholangiocarcinoma. Cancer Discovery, 2022, 12, 2350-2371.	7.7	28
1630	Immune Checkpoint Inhibitors in Cancer Therapy—How to Overcome Drug Resistance?. Cancers, 2022, 14, 3575.	1.7	18
1632	Across-Cancer Immune Responses Induced by Nanovaccines or Microvaccines to PreventÂDifferent Cancers and Cancer Metastasis. SSRN Electronic Journal, 0, , .	0.4	0
1633	Boosting Antitumor Immunity with an Expanded Neoepitope Landscape. Cancer Research, 2022, 82, 3637-3649.	0.4	4
1634	Nanomedicine approaches for treatment of hematologic and oncologic malignancies. World Journal of Clinical Oncology, 2022, 13, 553-566.	0.9	2
1635	Therapeutic Strategies to Enhance Tumor Antigenicity: Making the Tumor Detectable by the Immune System. Biomedicines, 2022, 10, 1842.	1.4	5

#	Article	IF	CITATIONS
1636	Multiepitope supramolecular peptide nanofibers eliciting coordinated humoral and cellular antitumor immune responses. Science Advances, 2022, 8, .	4.7	10
1637	Combining personalized neoantigen vaccination with chemotherapy and anti-PD-1 to treat NSCLC. Cancer Cell, 2022, , .	7.7	2
1638	Prediction of peptide mass spectral libraries with machine learning. Nature Biotechnology, 2023, 41, 33-43.	9.4	31
1639	Recent Advances and Challenges in Cancer Immunotherapy. Cancers, 2022, 14, 3972.	1.7	26
1640	Bias and inconsistency in the estimation of tumour mutation burden. BMC Cancer, 2022, 22, .	1.1	8
1642	A synthetic DNA template for fast manufacturing of versatile single epitope mRNA. Molecular Therapy - Nucleic Acids, 2022, 29, 943-954.	2.3	8
1643	Targeting PD-1/PD-L1 in cancer immunotherapy: An effective strategy for treatment of triple-negative breast cancer (TNBC) patients. Genes and Diseases, 2023, 10, 1318-1350.	1.5	11
1644	Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results. Nature Medicine, 2022, 28, 1619-1629.	15.2	56
1645	mRNA vaccines in the prevention and treatment of diseases. MedComm, 2022, 3, .	3.1	14
1647	Cancer vaccines: the next immunotherapy frontier. Nature Cancer, 2022, 3, 911-926.	5.7	207
1648	Biomineralized hydrogel DC vaccine for cancer immunotherapy: A boosting strategy via improving immunogenicity and reversing immune-inhibitory microenvironment. Biomaterials, 2022, 288, 121722.	5.7	20
1649	Cell-penetrating peptides enhance peptide vaccine accumulation and persistence in lymph nodes to drive immunogenicity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	20
1650	Dendritic Cell-Based Vaccines Against Cancer: Challenges, Advances and Future Opportunities. Immunological Investigations, 2022, 51, 2133-2158.	1.0	20
1651	Next Steps for Immunotherapy in Glioblastoma. Cancers, 2022, 14, 4023.	1.7	9
1652	Personalized neoantigen vaccine NEO-PV-01 with chemotherapy and anti-PD-1 as first-line treatment for non-squamous non-small cell lung cancer. Cancer Cell, 2022, 40, 1010-1026.e11.	7.7	47
1653	Neoantigenâ€based cancer vaccination using chimeric RNAâ€loaded dendritic cellâ€derived extracellular vesicles. Journal of Extracellular Vesicles, 2022, 11, .	5.5	18
1654	Strategies for improving the efficacy of immunotherapy in hepatocellular carcinoma. Hepatobiliary and Pancreatic Diseases International, 2022, 21, 420-429.	0.6	9
1655	Immunotherapeutic Strategies for Head and Neck Squamous Cell Carcinoma (HNSCC): Current Perspectives and Future Prospects. Vaccines, 2022, 10, 1272.	2.1	2

#	ARTICLE Flagellated bacterial porter for in situ tumor vaccine, Microbial Cell, 2022, 9, 158-161	IF 14	CITATIONS
1659	Transcriptional and functional analyses of neoantigen-specific CD4 T cells during a profound response to anti-PD-L1 in metastatic Merkel cell carcinoma. , 2022, 10, e005328.	1.1	6
1660	Suppression of high mobility group box 1 in <scp>B16F10</scp> tumor does not inhibit the induction of neoantigenâ€specific T cells. Cancer Science, 0, , .	1.7	1
1661	Improving PARP inhibitor efficacy in high-grade serous ovarian carcinoma: A focus on the immune system. Frontiers in Genetics, 0, 13, .	1.1	4
1662	Development of an exosome-related and immune microenvironment prognostic signature in colon adenocarcinoma. Frontiers in Genetics, 0, 13, .	1.1	4
1663	Harnessing gene fusion-derived neoantigens for â€ [~] cold'Âbreast and prostate tumor immunotherapy. Immunotherapy, 2022, 14, 1165-1179.	1.0	4
1664	Research progress of neoantigens in gynecologic cancers. International Immunopharmacology, 2022, 112, 109236.	1.7	5
1665	Research Advances of Traditional Chinese Medicine in Cancer Immunotherapy. Chinese Medicine and Culture, 2020, 3, 245-253.	0.2	5
1666	Engineering neoantigen vaccines to improve cancer personalized immunotherapy. International Journal of Biological Sciences, 2022, 18, 5607-5623.	2.6	15
1667	Biomimetic Nanoparticles for DC Vaccination: A Top-Down Approach to Boost Cancer Immunotherapy. SSRN Electronic Journal, 0, , .	0.4	0
1668	CD47KO/CRT Dual-Bioengineered Cell Membrane-Coated Nanovaccine Combined with Anti-PD-L1 Antibody for Boosting Tumor Immunotherapy. SSRN Electronic Journal, 0, , .	0.4	0
1669	Research progress on classification, characteristics and mechanism of antitumor drugs. AIP Conference Proceedings, 2022, , .	0.3	1
1670	Peptide therapeutics in the management of metastatic cancers. RSC Advances, 2022, 12, 21353-21373.	1.7	7
1671	Targeting Metastatic Disease: Challenges and New Opportunities. , 2022, , 51-68.		0
1672	CD47KO/CRT dual-bioengineered cell membrane-coated nanovaccine combined with anti-PD-L1 antibody for boosting tumor immunotherapy. Bioactive Materials, 2023, 22, 211-224.	8.6	9
1673	The Identification and Clinical Applications of Mutated Antigens in the Era of Immunotherapy. Cancers, 2022, 14, 4255.	1.7	3
1674	CDK2AP1 influences immune infiltrates and serves as a prognostic indicator for hepatocellular carcinoma. Frontiers in Genetics, 0, 13, .	1.1	2
1675	Neoantigen vaccine and neoantigenâ€specific cell adoptive transfer therapy in solid tumors: Challenges and future directions. , 2022, 1, 168-182.		1

#	Article	IF	CITATIONS
1676	Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy. Journal of Hematology and Oncology, 2022, 15, .	6.9	42
1677	Comparative Transcriptomic Analyses Revealed the Effects of Poly (I:C) on the Liver and Spleen of Argyrosomus japonicus. International Journal of Molecular Sciences, 2022, 23, 9801.	1.8	4
1678	Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	97
1679	Personalized neoantigen vaccine combined with PD-1 blockade increases CD8 ⁺ tissue-resident memory T-cell infiltration in preclinical hepatocellular carcinoma models. , 2022, 10, e004389.		12
1680	Dithranol as novel co-adjuvant for non-invasive dermal vaccination. Npj Vaccines, 2022, 7, .	2.9	3
1681	KEYNOTE – D36: personalized immunotherapy with a neoepitope vaccine, EVX-01 and pembrolizumab in advanced melanoma. Future Oncology, 0, , .	1.1	7
1682	Identification of neoantigens in oesophageal adenocarcinoma. Immunology, 2023, 168, 420-431.	2.0	6
1683	Sources of Cancer Neoantigens beyond Single-Nucleotide Variants. International Journal of Molecular Sciences, 2022, 23, 10131.	1.8	16
1684	Application of dendritic cells in tumor immunotherapy and progress in the mechanism of anti-tumor effect of Astragalus polysaccharide (APS) modulating dendritic cells: a review. Biomedicine and Pharmacotherapy, 2022, 155, 113541.	2.5	19
1685	High-Throughput, Quantitative Analysis of Peptide-Exchanged MHCI Complexes by Native Mass Spectrometry. Analytical Chemistry, 2022, 94, 14593-14602.	3.2	4
1687	Current therapeutic options for glioblastoma and future perspectives. Expert Opinion on Pharmacotherapy, 2022, 23, 1629-1640.	0.9	5
1688	Identification of tumor antigens and immune subtypes in lung squamous cell carcinoma for mRNA vaccine development. Journal of Thoracic Disease, 2022, 14, 3517-3530.	0.6	4
1689	Combination treatment of radiofrequency ablation and peptide neoantigen vaccination: Promising modality for future cancer immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	8
1690	Efficient Tumor Immunotherapy through a Single Injection of Injectable Antigen/Adjuvant-Loaded Macroporous Silk Fibroin Microspheres. ACS Applied Materials & Interfaces, 2022, 14, 42950-42962.	4.0	6
1691	Bacterial outer membrane vesicle-based cancer nanovaccines. Cancer Biology and Medicine, 2022, 19, 1290-1300.	1.4	14
1692	Systemic T-cell and humoral responses against cancer testis antigens in hepatocellular carcinoma patients. Oncolmmunology, 2022, 11, .	2.1	1
1693	Tumor antigens and vaccines in colorectal cancer. Medicine in Drug Discovery, 2022, 16, 100144.	2.3	1
1694	Personalized Cancer Vaccines Targeting Neoantigens. , 2022, , 1-21.		0

#	Article	IF	Citations
1695	A dual-adjuvant neoantigen nanovaccine loaded with imiquimod and magnesium enhances anti-tumor immune responses of melanoma. Biomaterials Science, 2022, 10, 6740-6748.	2.6	5
1696	Simultaneous Identification of Functional Antigen-Specific CD8+ and CD4+ Cells after In Vitro Expansion Using Elongated Peptides. Cells, 2022, 11, 3451.	1.8	2
1697	Comparison of Ridostin Pro and Poly(I:C) as adjuvant for a cancer neoantigen peptide vaccine. , 2022, 21, 82-89.	0.3	0
1698	Neoantigen Vaccines; Clinical Trials, Classes, Indications, Adjuvants and Combinatorial Treatments. Cancers, 2022, 14, 5163.	1.7	15
1699	Update on immune checkpoint therapy for melanoma. Dermatological Reviews, 0, , .	0.3	0
1700	A Novel Engineered AAV-Based Neoantigen Vaccine in Combination with Radiotherapy Eradicates Tumors. Cancer Immunology Research, 2023, 11, 123-136.	1.6	5
1701	Subcellular location of source proteins improves prediction of neoantigens for immunotherapy. EMBO Journal, 2022, 41, .	3.5	2
1702	Mannose and Hyaluronic Acid Dual-Modified Iron Oxide Enhances Neoantigen-Based Peptide Vaccine Therapy by Polarizing Tumor-Associated Macrophages. Cancers, 2022, 14, 5107.	1.7	6
1704	Cancer-specific T helper shared and neo-epitopes uncovered by expression of the MHC class II master regulator CIITA. Cell Reports, 2022, 41, 111485.	2.9	5
1706	Clinical cancer immunotherapy: Current progress and prospects. Frontiers in Immunology, 0, 13, .	2.2	39
1707	Intradermal vaccination of HPV-16 E6 synthetic peptides conjugated to an optimized Toll-like receptor 2 ligand shows safety and potent T cell immunogenicity in patients with HPV-16 positive (pre-)malignant lesions. , 2022, 10, e005016.		9
1708	Heat-inactivated modified vaccinia virus Ankara boosts Th1 cellular and humoral immunity as a vaccine adjuvant. Npj Vaccines, 2022, 7, .	2.9	6
1709	Clinical and Translational Advances in Glioma Immunotherapy. Neurotherapeutics, 2022, 19, 1799-1817.	2.1	14
1710	A Novel Identified Necroptosis-Related Risk Signature for Prognosis Prediction and Immune Infiltration Indication in Acute Myeloid Leukemia Patients. Genes, 2022, 13, 1837.	1.0	5
1711	Changes in the Immune Cell Repertoire for the Treatment of Malignant Melanoma. International Journal of Molecular Sciences, 2022, 23, 12991.	1.8	3
1712	Construction of the prognostic signature of alternative splicing revealed the prognostic predictor and immune microenvironment in head and neck squamous cell carcinoma. Frontiers in Genetics, 0, 13, .	1.1	1
1714	The oncogenic fusion protein DNAJB1-PRKACA can be specifically targeted by peptide-based immunotherapy in fibrolamellar hepatocellular carcinoma. Nature Communications, 2022, 13, .	5.8	15
1715	Peroxynitrite in the tumor microenvironment changes the profile of antigens allowing escape from cancer immunotherapy. Cancer Cell, 2022, 40, 1173-1189.e6.	7.7	10

	CHAHON	KLPOKI	
#	Article	IF	CITATIONS
1716	Mining the Immunopeptidome for Antigenic Peptides in Cancer. Cancers, 2022, 14, 4968.	1.7	8
1717	A randomised phase II trial of a trivalent ganglioside vaccine targeting GM2, GD2Âand GD3 combined with immunological adjuvant OPT-821 versus OPT-821 alone in metastatic sarcoma patients rendered disease-free by surgery. European Journal of Cancer, 2022, 176, 155-163.	1.3	4
1718	Cancer stem cell antigen nanodisc cocktail elicits anti-tumor immune responses in melanoma. Journal of Controlled Release, 2022, 351, 872-882.	4.8	7
1719	Sulfonium-Driven Neoantigen-Released DNA Nanodevice as a Precise Vaccine for Tumor Immunotherapy and Prevention. ACS Nano, 2022, 16, 19509-19522.	7.3	11
1720	The MHC Motif Atlas: a database of MHC binding specificities and ligands. Nucleic Acids Research, 2023, 51, D428-D437.	6.5	12
1721	Human T lymphocytes at tumor sites. Seminars in Immunopathology, 2022, 44, 883-901.	2.8	10
1723	Cellular Cancer Immunotherapy Development and Manufacturing in the Clinic. Clinical Cancer Research, 2023, 29, 843-857.	3.2	4
1724	Across-cancer specific immune responses induced by nanovaccines or microvaccines to prevent different cancers and cancer metastasis. IScience, 2022, 25, 105511.	1.9	2
1725	Potential biomarkers: Identifying powerful tumor specific T cells in adoptive cellular therapy. Frontiers in Immunology, 0, 13, .	2.2	2
1726	Non-viral precision T cell receptor replacement for personalized cell therapy. Nature, 2023, 615, 687-696.	13.7	85
1727	Characterization of genomic alterations and neoantigens and analysis of immune infiltration identified therapeutic and prognostic biomarkers in adenocarcinoma at the gastroesophageal junction. Frontiers in Oncology, 0, 12, .	1.3	1
1728	Dual-Responsive Glycopolymers for Intracellular Codelivery of Antigen and Lipophilic Adjuvants. Molecular Pharmaceutics, 2022, 19, 4705-4716.	2.3	2
1729	Adjuvant Treatment for Breast Cancer Patients Using Individualized Neoantigen Peptide Vaccination—A Retrospective Observation. Vaccines, 2022, 10, 1882.	2.1	1
1732	Benefits of an Immunogenic Personalized Neoantigen Nanovaccine in Patients with Highâ€Risk Gastric/Gastroesophageal Junction Cancer. Advanced Science, 2023, 10, .	5.6	6
1733	Engineering Energyâ€Responsive Magnetic Nanomaterials to Improve the Efficacy of Dendritic Cellâ€Based Immunotherapy. Advanced Therapeutics, 2023, 6, .	1.6	0
1734	Challenges in neoantigen-directed therapeutics. Cancer Cell, 2023, 41, 15-40.	7.7	27
1735	Neoepitopes prediction strategies: an integration of cancer genomics and immunoinformatics approaches. Briefings in Functional Genomics, 0, , .	1.3	1
1736	Dendritic cell derived exosomes loaded neoantigens for personalized cancer immunotherapies. Journal of Controlled Release, 2023, 353, 423-433.	4.8	23

#	Article	IF	CITATIONS
1737	Fluoroalkane modified cationic polymers for personalized mRNA cancer vaccines. Chemical Engineering Journal, 2023, 456, 140930.	6.6	14
1738	Neoantigen personalized vaccine plus anti-PD-1 antibody in cancer patients. Annals of Translational Medicine, 2022, .	0.7	0
1739	Arsenic trioxide elicits prophylactic and therapeutic immune responses against solid tumors by inducing necroptosis and ferroptosis. , 2023, 20, 51-64.		13
1740	Modern aspects of immunotherapy with checkpoint inhibitors in melanoma. Medical Alphabet, 2022, , 35-40.	0.0	2
1741	Comprehensive analysis of the expression, prognostic significance, and regulation pathway of G2E3 in breast cancer. World Journal of Surgical Oncology, 2022, 20, .	0.8	1
1742	Machine Learning for Lung Cancer Diagnosis, Treatment, and Prognosis. Genomics, Proteomics and Bioinformatics, 2022, 20, 850-866.	3.0	25
1744	CD8+ T cell exhaustion and cancer immunotherapy. Cancer Letters, 2023, 559, 216043.	3.2	18
1745	Attenuated Salmonella potentiate PD-L1 blockade immunotherapy in a preclinical model of colorectal cancer. Frontiers in Immunology, 0, 13, .	2.2	6
1746	Initial characterization of immune microenvironment in pheochromocytoma and paraganglioma. Frontiers in Genetics, 0, 13, .	1.1	2
1747	Combination TIGIT/PD-1 blockade enhances the efficacy of neoantigen vaccines in a model of pancreatic cancer. Frontiers in Immunology, 0, 13, .	2.2	5
1748	Cancer Immunotherapy Beyond Checkpoint Blockade. JACC: CardioOncology, 2022, 4, 563-578.	1.7	1
1749	Mutant and non-mutant neoantigen-based cancer vaccines: recent advances and future promises. Exploration of Targeted Anti-tumor Therapy, 0, , 746-762.	0.5	0
1750	Pan-Cancer Landscape of NEIL3 in Tumor Microenvironment: A Promising Predictor for Chemotherapy and Immunotherapy. Cancers, 2023, 15, 109.	1.7	0
1751	What do cancer-specific T cells â€~see'?. , 2023, 2, .		1
1752	Therapy sculpts the complex interplay between cancer and the immune system during tumour evolution. Genome Medicine, 2022, 14, .	3.6	15
1753	Advanced Nanomedicine for High-Risk HPV-Driven Head and Neck Cancer. Viruses, 2022, 14, 2824.	1.5	3
1754	Pathogenesis to management of hepatocellular carcinoma. Genes and Cancer, 2022, 13, 72-87.	0.6	2
1755	Technological aspects of creating neopeptide vaccines. , 2022, 21, 10-21.	0.3	1

#	Article	IF	CITATIONS
1756	Current status and challenges of immunotherapy in ALK rearranged NSCLC. Frontiers in Oncology, 0, 12, .	1.3	0
1758	lmmunotherapies targeting neoantigens are effective in <scp>PD</scp> â€1 blockadeâ€resistant tumors. International Journal of Cancer, 2023, 152, 1463-1475.	2.3	2
1760	Regression in cutaneous melanoma: histological assessment, immune mechanisms and clinical implications. Pathology, 2023, 55, 227-235.	0.3	3
1761	The Function of DNA and RNA Nanovaccines in the Treatment of Cancer. , 2023, , 229-252.		Ο
1762	Cell membrane-camouflaged liposomes and neopeptide-loaded liposomes with TLR agonist R848 provides a prime and boost strategy for efficient personalized cancer vaccine therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2023, 48, 102648.	1.7	4
1763	Development of therapeutic vaccines for the treatment of diseases. Molecular Biomedicine, 2022, 3, .	1.7	11
1764	Regulatory Landscapes in Approval of Cancer Vaccines. , 2022, , 325-347.		0
1765	Biomaterials-assisted construction of neoantigen vaccines for personalized cancer immunotherapy. Expert Opinion on Drug Delivery, 2023, 20, 323-333.	2.4	4
1766	ldentification of tumour antigens and immune subtypes in the development of an anti ancer vaccine for endometrial carcinoma. Scandinavian Journal of Immunology, 0, , .	1.3	0
1767	Effective personalized neoantigen vaccine plus anti-PD-1 in a PD-1 blockade-resistant lung cancer patient. Immunotherapy, 0, , .	1.0	2
1768	Supramolecular assembly of a trivalent peptide hydrogel vaccine for cancer immunotherapy. Acta Biomaterialia, 2023, 158, 535-546.	4.1	8
1769	ldentification of patient-specific CD4+ and CD8+ T cell neoantigens through HLA-unbiased genetic screens. Nature Biotechnology, 2023, 41, 783-787.	9.4	10
1770	Advanced T and Natural Killer Cell Therapy for Glioblastoma. Journal of Korean Neurosurgical Society, 2023, 66, 356-381.	0.5	0
1771	The Future of Nanomedicine. Micro/Nano Technologies, 2023, , 847-873.	0.1	0
1772	Melanoma antigens recognized by T cells and their use for immunotherapy. Experimental Dermatology, 0, , .	1.4	3
1773	Nanoparticle drug delivery systems and their applications as targeted therapies for triple negative breast cancer. Progress in Materials Science, 2023, 134, 101070.	16.0	31
1774	Analysis of tumor-immune functional responses in a mathematical model of neoantigen cancer vaccines. Mathematical Biosciences, 2023, 356, 108966.	0.9	3
1775	Neoantigens: promising targets for cancer therapy. Signal Transduction and Targeted Therapy, 2023, 8,	7.1	112

#	Article	IF	CITATIONS
1776	A Universal Antigen-Ranking Method to Design Personalized Vaccines Targetting Neoantigens against Melanoma. Life, 2023, 13, 155.	1.1	0
1777	Improved predictions of antigen presentation and TCR recognition with MixMHCpred2.2 and PRIME2.0 reveal potent SARS-CoV-2 CD8+ T-cell epitopes. Cell Systems, 2023, 14, 72-83.e5.	2.9	18
1778	Wnt/β-Catenin Signaling and Resistance to Immune Checkpoint Inhibitors: From Non-Small-Cell Lung Cancer to Other Cancers. Biomedicines, 2023, 11, 190.	1.4	9
1779	MHC II immunogenicity shapes the neoepitope landscape in human tumors. Nature Genetics, 2023, 55, 221-231.	9.4	5
1780	Advancing our knowledge of antigen processing with computational modelling, structural biology, and immunology. Biochemical Society Transactions, 0, , .	1.6	1
1781	Deciphering the Clinical Trials of Immunotherapy in Glioblastoma: What a Neuroradiologist Needs to Know. Neurographics, 2022, 12, 176-187.	0.0	1
1783	Perspektiven der medikamentĶsen Tumortherapie. , 2022, , 335-357.		0
1784	Impact of Precision Medicine in Oncology. Cancer Journal (Sudbury, Mass), 2023, 29, 15-19.	1.0	1
1785	mRNAâ€"From COVID-19 Treatment to Cancer Immunotherapy. Biomedicines, 2023, 11, 308.	1.4	3
1786	Tumor immunology. , 2023, , 245-452.		0
1786 1787	Tumor immunology. , 2023, , 245-452. Cellular and Vaccine-Based Immunotherapy for Hematologic Malignancies. , 2023, , .		0
1786 1787 1788	Tumor immunology., 2023,, 245-452. Cellular and Vaccine-Based Immunotherapy for Hematologic Malignancies., 2023,,. Leveraging a powerful allogeneic dendritic cell line towards neoantigen-based cancer vaccines. Genes and Cancer, 2023, 14, 3-11.	0.6	0 0 2
1786 1787 1788 1789	Tumor immunology., 2023, , 245-452. Cellular and Vaccine-Based Immunotherapy for Hematologic Malignancies., 2023, , . Leveraging a powerful allogeneic dendritic cell line towards neoantigen-based cancer vaccines. Genes and Cancer, 2023, 14, 3-11. Decoupling peptide binding from T cell receptor recognition with engineered chimeric MHC-I molecules. Frontiers in Immunology, 0, 14, .	0.6	0 0 2 3
1786 1787 1788 1789 1790	Tumor immunology., 2023, , 245-452. Cellular and Vaccine-Based Immunotherapy for Hematologic Malignancies., 2023, , . Leveraging a powerful allogeneic dendritic cell line towards neoantigen-based cancer vaccines. Genes and Cancer, 2023, 14, 3-11. Decoupling peptide binding from T cell receptor recognition with engineered chimeric MHC-I molecules. Frontiers in Immunology, 0, 14, . Targeting Driver Oncogenes and Other Public Neoantigens Using T Cell Receptor–Based Cellular Therapy. Annual Review of Cancer Biology, 2023, 7, .	0.6 2.2 2.3	0 2 3 1
1786 1787 1788 1789 1790	Tumor immunology., 2023, , 245-452. Cellular and Vaccine-Based Immunotherapy for Hematologic Malignancies., 2023, , . Leveraging a powerful allogeneic dendritic cell line towards neoantigen-based cancer vaccines. Genes and Cancer, 2023, 14, 3-11. Decoupling peptide binding from T cell receptor recognition with engineered chimeric MHC-I molecules. Frontiers in Immunology, 0, 14, . Targeting Driver Oncogenes and Other Public Neoantigens Using T Cell Receptor–Based Cellular Therapy. Annual Review of Cancer Biology, 2023, 7, . Research progress of neoantigen-based dendritic cell vaccines in pancreatic cancer. Frontiers in Immunology, 0, 14, .	0.6 2.2 2.3 2.2	0 0 2 3 1
1786 1787 1788 1789 1790 1792	Tumor immunology., 2023, 245-452. Cellular and Vaccine-Based Immunotherapy for Hematologic Malignancies., 2023, . Leveraging a powerful allogeneic dendritic cell line towards neoantigen-based cancer vaccines. Genes and Cancer, 2023, 14, 3-11. Decoupling peptide binding from T cell receptor recognition with engineered chimeric MHC-I molecules. Frontiers in Immunology, 0, 14, . Targeting Driver Oncogenes and Other Public Neoantigens Using T Cell Receptor–Based Cellular Therapy. Annual Review of Cancer Biology, 2023, 7, . Research progress of neoantigen-based dendritic cell vaccines in pancreatic cancer. Frontiers in Immunology, 0, 14, . Cetting personal in metastatic melanoma: neoantigen-based vaccines as a new therapeutic strategy. Current Opinion in Oncology, 2023, 35, 94-99.	0.6 2.2 2.3 2.2 1.1	0 0 2 3 1 1
1786 1787 1788 1789 1790 1792 1793	Tumor immunology. , 2023, , 245-452. Cellular and Vaccine-Based Immunotherapy for Hematologic Malignancies. , 2023, , . Leveraging a powerful allogeneic dendritic cell line towards neoantigen-based cancer vaccines. Genes and Cancer, 2023, 14, 3-11. Decoupling peptide binding from T cell receptor recognition with engineered chimeric MHC-1 molecules. Frontiers in Immunology, 0, 14, . Targeting Driver Oncogenes and Other Public Neoantigens Using T Cell Receptor–Based Cellular Therapy. Annual Review of Cancer Biology, 2023, 7, . Research progress of neoantigen-based dendritic cell vaccines in pancreatic cancer. Frontiers in Immunology, 0, 14, . Cetting personal in metastatic melanoma: neoantigen-based vaccines as a new therapeutic strategy. Current Opinion in Oncology, 2023, 35, 94-99. A Highly Sensitive Flow Cytometric Approach to Detect Rare Antigen-Specific T Cells: Development and Comparison to Standard Monitoring Tools. Cancers, 2023, 15, 574.	0.6 2.2 2.3 2.2 1.1 1.7	0 0 2 3 1 1 4 0

#	Article	IF	CITATIONS
1798	Peptide Vaccines in Melanoma: Chemical Approaches towards Improved Immunotherapeutic Efficacy. Pharmaceutics, 2023, 15, 452.	2.0	3
1799	mRNA-Based Therapeutics in Cancer Treatment. Pharmaceutics, 2023, 15, 622.	2.0	11
1800	Carbon ion irradiation induces DNA damage in melanoma and optimizes the tumor microenvironment based on the cGAS–STING pathway. Journal of Cancer Research and Clinical Oncology, 2023, 149, 6315-6328.	1.2	2
1801	Machine learning predictions of MHC-II specificities reveal alternative binding mode of class II epitopes. Immunity, 2023, 56, 1359-1375.e13.	6.6	12
1802	Circular RNAs as a potential source of neoepitopes in cancer. Frontiers in Oncology, 0, 13, .	1.3	2
1803	Strategy and application of manipulating DCs chemotaxis in disease treatment and vaccine design. Biomedicine and Pharmacotherapy, 2023, 161, 114457.	2.5	3
1804	Immunogenic cell death inducer peptides: A new approach for cancer therapy, current status and future perspectives. Biomedicine and Pharmacotherapy, 2023, 161, 114503.	2.5	3
1805	Nanovaccine that activates the NLRP3 inflammasome enhances tumor specific activation of anti-cancer immunity. Biomaterials, 2023, 296, 122062.	5.7	6
1806	Ionizable polymeric nanocarriers for the codelivery of bi-adjuvant and neoantigens in combination tumor immunotherapy. Bioactive Materials, 2023, 26, 169-180.	8.6	3
1807	Adoptive neoantigen-reactive T cell therapy: improvement strategies and current clinical researches. Biomarker Research, 2023, 11, .	2.8	2
1808	Fluorescence labeling of anchorâ€modified Martâ€1 peptide for increasing its affinity for HLAâ€A*0201: Hit two targets with one arrow. Journal of Peptide Science, 0, , .	0.8	0
1809	Multi-antigen spherical nucleic acid cancer vaccines. Nature Biomedical Engineering, 2023, 7, 911-927.	11.6	19
1810	Labyrinthin Expression Is Associated with Poor Prognosis in Patients with Non-Small-Cell Lung Cancer. Cancers, 2023, 15, 924.	1.7	1
1811	IFN-Î ³ Signaling Sensitizes Melanoma Cells to BH3 Mimetics. Journal of Investigative Dermatology, 2023, 143, 1246-1256.e8.	0.3	1
1812	Noncanonical splicing junctions between exons and transposable elements represent a source of immunogenic recurrent neo-antigens in patients with lung cancer. Science Immunology, 2023, 8, .	5.6	27
1813	Identification of T Cell Receptors Targeting a Neoantigen Derived from Recurrently Mutated FGFR3. Cancers, 2023, 15, 1031.	1.7	0
1814	Anti-Helicobacter pylori antibody status is associated with cancer mortality: A longitudinal analysis from the Japanese DAIKO prospective cohort study. PLOS Global Public Health, 2023, 3, e0001125.	0.5	2
1815	Inhibitor of Apoptosis Proteins Antagonist Induces T-cell Proliferation after Cross-Presentation by Dendritic Cells. Cancer Immunology Research, 2023, 11, 450-465.	1.6	2

#	Article	IF	Citations
1816	Designing neoantigen cancer vaccines, trials, and outcomes. Frontiers in Immunology, 0, 14, .	2.2	12
1817	Engineered Norovirus-Derived Nanoparticles as a Plug-and-Play Cancer Vaccine Platform. ACS Nano, 2023, 17, 3412-3429.	7.3	8
1818	The emerging landscape of neo/adjuvant immunotherapy in renal cell carcinoma. Human Vaccines and Immunotherapeutics, 2023, 19, .	1.4	4
1819	Preliminary clinical study of personalized neoantigen vaccine therapy for microsatellite stability (MSS)-advanced colorectal cancer. Cancer Immunology, Immunotherapy, 2023, 72, 2045-2056.	2.0	1
1820	Altered HLAâ€A2â€restricted TP53 epitope induces specific CTL cytotoxicity against hepatocellular carcinoma. European Journal of Immunology, 0, , 2250054.	1.6	2
1821	Precision immunointerception of EGFR-driven tumorigenesis for lung cancer prevention. Frontiers in Immunology, 0, 14, .	2.2	1
1822	Dynamic Covalent Dextran Hydrogels as Injectable, Self-Adjuvating Peptide Vaccine Depots. ACS Chemical Biology, 2023, 18, 652-659.	1.6	4
1823	Systems Biology Approaches for the Improvement of Oncolytic Virus-Based Immunotherapies. Cancers, 2023, 15, 1297.	1.7	4
1824	In silico designed mRNA vaccines targeting CA-125 neoantigen in breast and ovarian cancer. Vaccine, 2023, 41, 2073-2083.	1.7	7
1825	Self-assembled nanoparticles: A new platform for revolutionizing therapeutic cancer vaccines. Frontiers in Immunology, 0, 14, .	2.2	1
1826	Autologous-cancer-cryoablation-mediated nanovaccine augments systematic immunotherapy. Materials Horizons, 2023, 10, 1661-1677.	6.4	9
1827	Advanced Biomaterials with Intrinsic Immunomodulation Effects for Cancer Immunotherapy. Small Methods, 2023, 7, .	4.6	3
1828	Antigen discovery for the development of cancer immunotherapy. Seminars in Immunology, 2023, 66, 101733.	2.7	9
1829	Alanine-based spacers promote an efficient antigen processing and presentation in neoantigen polypeptide vaccines. Cancer Immunology, Immunotherapy, 2023, 72, 2113-2125.	2.0	1
1830	Cancer vaccines based on whole-tumor lysate or neoepitopes with validated HLA binding outperform those with predicted HLA-binding affinity. IScience, 2023, 26, 106288.	1.9	0
1831	Development of synthetic, self-adjuvanting, and self-assembling anticancer vaccines based on a minimal saponin adjuvant and the tumor-associated MUC1 antigen. Chemical Science, 2023, 14, 3501-3513.	3.7	2
1832	PGNneo: A Proteogenomics-Based Neoantigen Prediction Pipeline in Noncoding Regions. Cells, 2023, 12, 782.	1.8	2
1833	Vaccines as treatments for prostate cancer. Nature Reviews Urology, 2023, 20, 544-559.	1.9	8

#	Article	IF	CITATIONS
1834	Transgenic HA-1-Specific CD8+ T-Lymphocytes Selectively Target Leukemic Cells. Cancers, 2023, 15, 1592.	1.7	0
1835	Current Trends in Neoantigen-Based Cancer Vaccines. Pharmaceuticals, 2023, 16, 392.	1.7	6
1836	Pan-Peptide Meta Learning for T-cell receptor–antigen binding recognition. Nature Machine Intelligence, 2023, 5, 236-249.	8.3	27
1837	Resistance mechanisms of immune checkpoint inhibition in lymphoma: Focusing on the tumor microenvironment. Frontiers in Pharmacology, 0, 14, .	1.6	1
1838	KIT A502_Y503 duplication mutation serves as a potential and universal target for neoantigen peptide in Chinese GIST patients. Journal of Gastroenterology and Hepatology (Australia), 2023, 38, 1123-1130.	1.4	0
1840	Treatment of Recurrent Melanoma Following Adjuvant Therapy. American Journal of Clinical Dermatology, 0, , .	3.3	0
1841	MC38 colorectal tumor cell lines from two different sources display substantial differences in transcriptome, mutanome and neoantigen expression. Frontiers in Immunology, 0, 14, .	2.2	5
1843	Development of a Cancer Nanovaccine to Induce Antigen-specific Immune Responses Based on Large-Sized Porous Silica Nanoparticles. ACS Applied Materials & Interfaces, 0, , .	4.0	2
1844	Biomimetic nanoparticles for DC vaccination: a versatile approach to boost cancer immunotherapy. Nanoscale, 2023, 15, 6432-6455.	2.8	5
1845	Mesoporous nanodrug delivery system: a powerful tool for a new paradigm of remodeling of the tumor microenvironment. Journal of Nanobiotechnology, 2023, 21, .	4.2	2
1846	Identification of antigenic epitopes recognized by tumor infiltrating lymphocytes in high grade serous ovarian cancer by multi-omics profiling of the auto-antigen repertoire. Cancer Immunology, Immunotherapy, 2023, 72, 2375-2392.	2.0	2
1847	Lynch syndrome cancer vaccines: A roadmap for the development of precision immunoprevention strategies. Frontiers in Oncology, 0, 13, .	1.3	5
1848	A Therapeutic Vaccine Targeting Rat BORIS (CTCFL) for the Treatment of Rat Breast Cancer Tumors. International Journal of Molecular Sciences, 2023, 24, 5976.	1.8	1
1849	Roles of Virus-like particles in particularcancer vaccines. , 0, 36, 1517-1524.		0
1850	TLimmuno2: predicting MHC class II antigen immunogenicity through transfer learning. Briefings in Bioinformatics, 2023, 24, .	3.2	1
1851	CD4+ T cells in cancer. Nature Cancer, 2023, 4, 317-329.	5.7	68
1852	Immunotherapy in Gastrointestinal Malignancies. , 2023, , 1-23.		0
1853	Hydrogel-enabled, local administration and combinatorial delivery of immunotherapies for cancer treatment. Materials Today, 2023, 65, 227-243.	8.3	9

#	Article	IF	CITATIONS
1854	CD4+ conventional T cells-related genes signature is a prognostic indicator for ovarian cancer. Frontiers in Immunology, 0, 14, .	2.2	0
1855	Worth a Pound of Cure? Emerging Strategies and Challenges in Cancer Immunoprevention. Cancer Prevention Research, 2023, 16, 483-495.	0.7	1
1856	The Efficacy of Tumor Mutation Burden as a Biomarker of Response to Immune Checkpoint Inhibitors. International Journal of Molecular Sciences, 2023, 24, 6710.	1.8	7
1857	The peptide woods are lovely, dark and deep: Hunting for novel cancer antigens. Seminars in Immunology, 2023, 67, 101758.	2.7	4
1858	General considerations on artificial intelligence. , 2023, , 9-34.		0
1859	Computational prediction of MHC anchor locations guides neoantigen identification and prioritization. Science Immunology, 2023, 8, .	5.6	8
1861	Targeting the tumor microenvironment by liposomal Epacadostat in combination with liposomal gp100 vaccine. Scientific Reports, 2023, 13, .	1.6	0
1862	Dendritic Cell Subsets in Melanoma: Pathophysiology, Clinical Prognosis and Therapeutic Exploitation. Cancers, 2023, 15, 2206.	1.7	2
1863	Neoantigen-directed therapeutics in the clinic: where are we?. Trends in Cancer, 2023, 9, 503-519.	3.8	4
1864	Research Progress of Immunotherapy for Gastric Cancer. Technology in Cancer Research and Treatment, 2023, 22, 153303382211505.	0.8	2
1865	Dynamics and specificities of T cells in cancer immunotherapy. Nature Reviews Cancer, 2023, 23, 295-316.	12.8	49
1866	Novel strategies for cancer immunotherapy: counter-immunoediting therapy. Journal of Hematology and Oncology, 2023, 16, .	6.9	14
1867	Immune responses to citrullinated and homocitrullinated peptides in healthy donors are not restricted to the <scp>HLA SE</scp> shared allele and can be selected into the memory pool. Immunology, 2023, 169, 467-486.	2.0	0
1868	Melanoma stem cell vaccine induces effective tumor immunity against melanoma. Human Vaccines and Immunotherapeutics, 2023, 19, .	1.4	4
1869	Integrating Tumor-Intrinsic and Immunologic Factors to Identify Immunogenic Breast Cancers from a Low-Risk Cohort: Results from the Randomized SweBCG91RT Trial. Clinical Cancer Research, 2023, 29, 1783-1793.	3.2	2
1870	DeepNeo: a webserver for predicting immunogenic neoantigens. Nucleic Acids Research, 2023, 51, W134-W140.	6.5	5
1871	Dominant neoantigen verification in hepatocellular carcinoma by a single-plasmid system coexpressing patient HLA and antigen. , 2023, 11, e006334.		0
1872	Intratumor childhood vaccine-specific CD4 ⁺ T-cell recall coordinates antitumor CD8 ⁺ T cells and eosinophils. , 2023, 11, e006463.		0

#	Article	IF	CITATIONS
1874	The regulation of the programmed death ligand 1 (PD-L1) by nitric oxide in breast cancer: Immunotherapeutic implication. , 2023, , 173-192.		0
1875	Neoantigen vaccination augments antitumor effects of anti-PD-1 on mouse hepatocellular carcinoma. Cancer Letters, 2023, 563, 216192.	3.2	4
1898	Vaccines and active immunization against cancer. , 2024, , 177-194.e3.		0
1907	Cancer Antigens: Sources, Generation, and Presentation. , 2023, , 1-40.		0
1912	Whole tumour cell-based vaccines: tuning the instruments to orchestrate an optimal antitumour immune response. British Journal of Cancer, 2023, 129, 572-585.	2.9	4
1929	The landscape of T cell antigens for cancer immunotherapy. Nature Cancer, 2023, 4, 937-954.	5.7	14
1935	Cancer Vaccines. , 2023, , 191-210.e9.		0
1937	"Deep learning―for healthcare: Opportunities, threats, and challenges. , 2023, , 225-244.		0
1959	Challenges in developing personalized neoantigen cancer vaccines. Nature Reviews Immunology, 2024, 24, 213-227.	10.6	6
1961	Heterogeneity of the tumor immune microenvironment and clinical interventions. Frontiers of Medicine, 2023, 17, 617-648.	1.5	0
1967	Stem-like exhausted and memory CD8+ T cells in cancer. Nature Reviews Cancer, 2023, 23, 780-798.	12.8	5
1982	Potential of Biotechnology in Cancer Management. , 2023, , 9-44.		0
1991	Cancer Among the Elderly. , 2023, , 1-31.		0
1994	Immunotherapies landscape and associated inhibitors for the treatment of cervical cancer. , 2023, 40, .		0
1995	Deep Learning Models for Vaccinology: Predicting T-cell Epitopes in C57BL/6 Mice. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2023, , 182-192.	0.2	0
2004	Computational immunogenomic approaches to predict response to cancer immunotherapies. Nature Reviews Clinical Oncology, 2024, 21, 28-46.	12.5	1
2013	Recent advances in immunopeptidomic-based tumor neoantigen discovery. Advances in Immunology, 2023, , 1-36.	1.1	0
2030	Immunization: Unveiling the Power of Vaccines in Shaping Global Health. , 0, , .		0

#	Article	IF	CITATIONS
2032	Nanomaterials for Precision Medicine. , 2023, , 269-290.		0
2033	Immunotherapy combination approaches: mechanisms, biomarkers and clinical observations. Nature Reviews Immunology, 0, , .	10.6	2
2046	Molecular Mechanisms of Immune Checkpoints as an Immunotherapy Tool in Hematological Malignancies. , 2024, , .		0
2062	mRNA vaccines: a promising solution for incurable diseases. , 2024, , .		0
2074	Recent advances in light-triggered cancer immunotherapy. Journal of Materials Chemistry B, 2024, 12, 2650-2669.	2.9	0
2093	Case report: A case of advanced gastric cancer with multiple skin metastases, with significant relief from immunotherapy. Frontiers in Immunology, 0, 15, .	2.2	0
2103	Immunotherapy of Solid Tumors Based on Neoantigen Vaccines. , 2024, , 1-19.		0
2105	Revolutionizing Lung Cancer Treatment: Recent Breakthroughs in Immunotherapy. , 2024, , 45-64.		0