Hydrogen Sulfide Capture: From Absorption in Polar Lie Metal–Organic Framework Adsorbents and Membran

Chemical Reviews 117, 9755-9803

DOI: 10.1021/acs.chemrev.7b00095

Citation Report

#	Article	IF	CITATIONS
1	Introduction: Carbon Capture and Separation. Chemical Reviews, 2017, 117, 9521-9523.	23.0	157
2	Janus Reactors with Highly Efficient Enzymatic CO ₂ Nanocascade at Air–Liquid Interface. ACS Applied Materials & Interfaces, 2017, 9, 42806-42815.	4.0	25
3	Thiophene Separation with Silver-Doped Cu-BTC Metal–Organic Framework for Deep Desulfurization. Industrial & Description Chemistry Research, 2018, 57, 2956-2966.	1.8	25
4	A Chemical Role for Trichloromethane: Room-Temperature Removal of Coordinated Solvents from Open Metal Sites in the Copper-Based Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 5225-5231.	1.9	33
5	Novel Application of a Polyurethane Membrane for Efficient Separation of Hydrogen Sulfide from Binary and Ternary Gas Mixtures. ChemistrySelect, 2018, 3, 3302-3308.	0.7	23
6	Activated Carbon-Assisted Fabrication of Cost-Efficient ZnO/SiO ₂ Desulfurizer with Characteristic of High Loadings and High Dispersion. Energy & Energy & 2018, 32, 6064-6072.	2.5	16
7	Monoethanolamine-enabled electrochemical detection of H2S in a hydroxyl-functionalized ionic liquid. Electrochemistry Communications, 2018, 88, 93-96.	2.3	21
8	Diffusion Control in the in Situ Synthesis of Iconic Metal–Organic Frameworks within an Ionic Polymer Matrix. ACS Applied Materials & Interfaces, 2018, 10, 3793-3800.	4.0	30
9	Role of Amine Structure on Hydrogen Sulfide Capture from Dilute Gas Streams Using Solid Adsorbents. Energy & En	2.5	33
10	Metal coordination and metal activation abilities of commonly unreactive chloromethanes toward metal–organic frameworks. Chemical Communications, 2018, 54, 6458-6471.	2.2	42
11	Biofiltration of hydrogen sulfide: Trends and challenges. Journal of Cleaner Production, 2018, 187, 131-147.	4.6	105
12	Highlighting the origins and consequences of thermodynamic non-idealities in mixture separations using zeolites and metal-organic frameworks. Microporous and Mesoporous Materials, 2018, 267, 274-292.	2.2	27
13	Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks. Chemical Society Reviews, 2018, 47, 4729-4756.	18.7	530
14	Isostructural lanthanide-based metal–organic frameworks: structure, photoluminescence and magnetic properties. Dalton Transactions, 2018, 47, 925-934.	1.6	45
15	Understanding the Reactive Adsorption of H ₂ S and CO ₂ in Sodiumâ€Exchanged Zeolites. ChemPhysChem, 2018, 19, 512-518.	1.0	12
16	Sulfidation-Oxidation Cycling of a H2S Adsorbing Hollow Sphere Array. Microscopy and Microanalysis, 2018, 24, 1800-1801.	0.2	O
17	Prediction of the monocomponent adsorption of H2S and mixtures with CO2 and CH4 on activated carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 342-350.	2.3	28
18	In Silico Study of (Mn, Fe, Co, Ni, Zn)-BTC Metal–Organic Frameworks for Recovering Xenon from Exhaled Anesthetic Gas. ACS Sustainable Chemistry and Engineering, 2018, 6, 15001-15006.	3.2	17

#	ARTICLE	IF	CITATIONS
19	Computational screening of hydrophobic metal–organic frameworks for the separation of H ₂ S and CO ₂ from natural gas. Journal of Materials Chemistry A, 2018, 6, 18898-18905.	5.2	84
20	Synthesis and Gas Permeation Properties of STT-type Zeolite Membranes. Journal of the Japan Petroleum Institute, 2018, 61, 263-271.	0.4	6
21	Present and future of MOF research in the field of adsorption and molecular separation. Current Opinion in Chemical Engineering, 2018, 20, 132-142.	3.8	152
22	î³-Fe ₂ O ₃ -M41S Sorbents for H ₂ S Removal: Effect of Different Porous Structures and Silica Wall Thickness. Journal of Physical Chemistry C, 2018, 122, 12231-12242.	1.5	20
23	Hydrogen sulfide gas capture by organic superbase 1,8-diazabicyclo-[5.4.0]-undec-7-ene through salt formation: salt synthesis, characterization and application for CO ₂ capture. RSC Advances, 2018, 8, 18531-18541.	1.7	20
24	Piperazine-tuned NBD-based colorimetric and fluorescent turn-off probes for hydrogen sulfide. Analytical Methods, 2018, 10, 3375-3379.	1.3	17
25	Inexpensive metal oxides nanoparticles doped Na2CO3 fibers for highly selective capturing trace HCl from HCl/CO2 mixture gas at low temperature. Chemical Engineering Journal, 2018, 352, 634-643.	6.6	16
26	Green applications of metal–organic frameworks. CrystEngComm, 2018, 20, 5899-5912.	1.3	54
27	Hierarchical Titanium Dioxide Nanowire/Metal–Organic Framework/Carbon Nanofiber Membranes for Highly Efficient Photocatalytic Degradation of Hydrogen Sulfide. Chemistry - A European Journal, 2018, 24, 15019-15025.	1.7	25
28	H2S selective catalytic oxidation over Ce substituted La1â^'xCexFeO3 perovskite oxides catalyst. Chemical Engineering Journal, 2018, 348, 831-839.	6.6	75
29	First principles Monte Carlo simulations of unary and binary adsorption: CO ₂ , N ₂ , and H ₂ O in Mg-MOF-74. Chemical Communications, 2018, 54, 10816-10819.	2.2	31
30	Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chemical Reviews, 2018, 118, 8655-8769.	23.0	239
31	The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of Metal–organic frameworks. Polyhedron, 2018, 155, 232-253.	1.0	34
32	Highly reversible sorption of H2S and CO2 by an environmentally friendly Mg-based MOF. Journal of Materials Chemistry A, 2018, 6, 16900-16909.	5.2	81
33	Capturing Condensable Gases with Ionic Liquids. Industrial & Engineering Chemistry Research, 2018, 57, 12202-12214.	1.8	43
34	Mercury Capture from Petroleum Using Deep Eutectic Solvents. Industrial & Engineering Chemistry Research, 2018, 57, 9222-9230.	1.8	22
35	A Topotactic Synthetic Methodology for the Synthesis of Nanosized MFI Zeolites with Hierarchical Structures. Chemistry - A European Journal, 2018, 24, 12600-12606.	1.7	2
36	Ln(III)-Functionalized Metal–Organic Frameworks Hybrid System: Luminescence Properties and Sensor for <i>trans</i> , <i>description of Benzene. Inorganic Chemistry, 2018, 57, 7815-7824.</i>	1.9	76

#	Article	IF	CITATIONS
37	Graphene-Based Membranes for CO2/CH4 Separation: Key Challenges and Perspectives. Applied Sciences (Switzerland), 2019, 9, 2784.	1.3	29
38	Metal-organic frameworks for the capture of volatile organic compounds and toxic chemicals. , 2019, , 141-178.		12
39	Adsorptive desulfurization of liquid hydrocarbons using zeolite-based sorbents: a comprehensive review. Reaction Chemistry and Engineering, 2019, 4, 1357-1386.	1.9	77
40	Theoretical studies on B, N, P, S, and Si doped fullerenes toward H2S sensing and adsorption. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 114, 113626.	1.3	18
41	Design of Efficient, Hierarchical Porous Polymers Endowed with Tunable Structural Base Sites for Direct Catalytic Elimination of COS and H ₂ S. ACS Applied Materials & Interfaces, 2019, 11, 29950-29959.	4.0	61
42	Recent advances in technologies for the removal of volatile methylsiloxanes: A case in biogas purification process. Critical Reviews in Environmental Science and Technology, 2019, 49, 2257-2313.	6.6	38
43	Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019, 1, 100006.	10.1	434
44	Continuous Oxidation of Hydrogen Sulfide by an Adsorbent Derived from Sewage Sludge. Environmental Engineering Science, 2019, 36, 1170-1178.	0.8	4
45	Low-Temperature H ₂ S Removal from Gas Streams over γ-FeOOH, γ-Fe ₂ O ₃ : Effects of the Hydroxyl Group, Defect, and Specific Surface Area. Industrial & Specific Surface Area. Indus	1.8	44
46	Study on Short-Circuit Impedance Characteristics in DN Traction Electric Lines. IOP Conference Series: Earth and Environmental Science, 2019, 310, 032053.	0.2	O
48	Temperature field modeling of the plate during hot rolling based on inverse heat conduction problem. Journal of Physics: Conference Series, 2019, 1300, 012017.	0.3	0
49	Low Voltage Power Line Communication Routing Method based on Improved Genetic Algorithm. , 2019,		0
51	Removal of Hydrogen Sulfide from Gas Streams Using Porous Materials: A Review. Industrial & Samp; Engineering Chemistry Research, 2019, 58, 22133-22164.	1.8	116
52	Sensitivity analysis of ship traffic in restricted two-way waterways considering the impact of LNG carriers. Ocean Engineering, 2019, 192, 106556.	1.9	9
53	Hydrogen sulfide removal using diatomite. AIP Conference Proceedings, 2019, , .	0.3	1
54	Absorption and Removal Efficiency of Low-Partial-Pressure H2S in a Tetramethylammonium Glycinate Activated N-Methyldiethanolamine Aqueous Solution. Energy & Energy & 2019, 33, 8413-8422.	2.5	12
55	Impact of pyrone group on H2S catalytic oxidization. Science of the Total Environment, 2019, 695, 133875.	3.9	4
56	Highly efficient SO3Ag-functionalized MIL-101(Cr) for adsorptive desulfurization of the gas stream: Experimental and DFT study. Chemical Engineering Journal, 2019, 363, 73-83.	6.6	50

#	ARTICLE	IF	CITATIONS
57	Outstanding reversible H ₂ S capture by an Al(<scp>iii</scp>)-based MOF. Chemical Communications, 2019, 55, 3049-3052.	2.2	63
58	Metal–Organic Frameworks for Helium Recovery from Natural Gas via N ₂ /He Separation: A Computational Screening. Journal of Physical Chemistry C, 2019, 123, 3469-3475.	1.5	15
59	Ultraselective glassy polymer membranes with unprecedented performance for energy-efficient sour gas separation. Science Advances, 2019, 5, eaaw5459.	4.7	106
60	Toward Green Production of Water-Stable Metal–Organic Frameworks Based on High-Valence Metals with Low Toxicities. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	21
61	Phosphonium zwitterions for lighter and chemically-robust MOFs: highly reversible H ₂ S capture and solvent-triggered release. Journal of Materials Chemistry A, 2019, 7, 16842-16849.	5.2	22
62	Facile and Versatile Sol–Gel Strategy for the Preparation of a High-Loaded ZnO/SiO ₂ Adsorbent for Room-Temperature H ₂ S Removal. Langmuir, 2019, 35, 7759-7768.	1.6	22
63	Stability of amine-functionalized CO ₂ adsorbents: a multifaceted puzzle. Chemical Society Reviews, 2019, 48, 3320-3405.	18.7	260
64	A Reliable Database for Ionic Volume and Surface: Its Application To Predict Molar Volume and Density of Ionic Liquid. Industrial & Engineering Chemistry Research, 2019, 58, 10073-10083.	1.8	8
65	Combined Experimental and Theoretical Study on High Pressure Methane Solubility in Natural Deep Eutectic Solvents. Industrial & Engineering Chemistry Research, 2019, 58, 8097-8111.	1.8	34
66	Nitrogen-Decorated, Ordered Mesoporous Carbon Spheres as High-Efficient Catalysts for Selective Capture and Oxidation of H ₂ S. ACS Sustainable Chemistry and Engineering, 2019, 7, 7609-7618.	3.2	84
67	Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation. Applied Catalysis B: Environmental, 2019, 252, 98-110.	10.8	213
68	Selfâ€Cleaning of Interfacial Oil Between Polymer Composites with Porous Zeolite Microparticles and Their Selfâ€Lubrication Properties. Advanced Materials Interfaces, 2019, 6, 1801889.	1.9	10
69	Humidity swing adsorption of H2S by fibrous polymeric ionic liquids (PILs). Separation and Purification Technology, 2019, 217, 1-7.	3.9	14
70	Thermodynamic and molecular insights into the absorption of H ₂ 5, CO ₂ , and CH ₄ in choline chloride plus urea mixtures. AICHE Journal, 2019, 65, e16574.	1.8	139
71	Cadmiumâ€Based Coordination Polymers from 1D to 3D: Synthesis, Structures, and Photoluminescent and Electrochemiluminescent Properties. ChemPlusChem, 2019, 84, 190-202.	1.3	28
72	Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coordination Chemistry Reviews, 2019, 387, 79-120.	9.5	298
73	Boron-Decorated Graphitic Carbon Nitride (g-C ₃ N ₄): An Efficient Sensor for H ₂ S, SO ₂ , and NH ₃ Capture. Journal of Physical Chemistry C, 2019, 123, 29513-29523.	1.5	39
74	Research advancements in sulfide scavengers for oil and gas sectors. Reviews in Chemical Engineering, 2021, 37, 663-686.	2.3	22

#	ARTICLE	IF	CITATIONS
75	Structural diversity, magnetic properties, and luminescent sensing of four coordination polymers based on 6-(3,5-dicarboxylphenyl)nicotinic acid. Journal of Solid State Chemistry, 2019, 271, 40-46.	1.4	13
76	Room-temperature hydrogen sulfide removal with zinc oxide nanoparticle/molecular sieve prepared by melt infiltration. Fuel Processing Technology, 2019, 185, 26-37.	3.7	37
77	Quantitative structural determination of active sites from in situ and operando XANES spectra: From standard ab initio simulations to chemometric and machine learning approaches. Catalysis Today, 2019, 336, 3-21.	2.2	70
78	Chemical Liquid Deposition Modified 4A Zeolite as a Size-Selective Adsorbent for Methane Upgrading, CO ₂ Capture and Air Separation. ACS Sustainable Chemistry and Engineering, 2019, 7, 3301-3308.	3.2	51
79	Capturing ability for COS gas by a strong bridge bonding of a pair of potassium anchored on carbonate of activated carbon at low temperatures. Separation and Purification Technology, 2019, 211, 421-429.	3.9	14
80	Metallosalen-based crystalline porous materials: Synthesis and property. Coordination Chemistry Reviews, 2019, 378, 483-499.	9 . 5	82
81	A sustainable design of ZnO-based adsorbent for robust H2S uptake and secondary utilization as hydrogenation catalyst. Chemical Engineering Journal, 2020, 382, 122892.	6.6	28
82	Automated detection and localization system of myocardial infarction in single-beat ECG using Dual-Q TQWT and wavelet packet tensor decomposition. Computer Methods and Programs in Biomedicine, 2020, 184, 105120.	2.6	31
83	Probing the room-temperature oxidative desulfurization activity of three-dimensional alkaline graphene aerogel. Applied Catalysis B: Environmental, 2020, 262, 118266.	10.8	59
84	Recent progress on solution and materials chemistry for the removal of hydrogen sulfide from various gas plants. Journal of Molecular Liquids, 2020, 297, 111886.	2.3	50
85	Two-dimensional carbon nitride (C3N) nanosheets as promising materials for H2S and NH3 elimination: A computational approach. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113794.	1.3	31
86	Mercury in natural gas streams: A review of materials and processes for abatement and remediation. Journal of Hazardous Materials, 2020, 382, 121036.	6.5	49
87	Surprising plasticization benefits in natural gas upgrading using polyimide membranes. Journal of Membrane Science, 2020, 593, 117430.	4.1	51
88	Efficient recovery of hydrogen and sulfur resources over non-sulfide based LaFexAl12-xO19 hexaaluminate catalysts by H2S catalytic decomposition. Applied Catalysis B: Environmental, 2020, 263, 118354.	10.8	26
89	Cross-Linkable Semi-Rigid 6FDA-Based Polyimide Hollow Fiber Membranes for Sour Natural Gas Purification. Industrial & Description of the Purification of the Purificat	1.8	19
90	Highly uniform molybdenum oxide loaded N-CNT as a remarkably active and selective nanocatalyst for H2S selective oxidation. Science of the Total Environment, 2020, 711, 134819.	3.9	16
91	Hydrogen sulfide conversion: How to capture hydrogen and sulfur by photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 42, 100339.	5 . 6	54
92	A Decade of UiO-66 Research: A Historic Review of Dynamic Structure, Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal–Organic Framework. Crystal Growth and Design, 2020, 20, 1347-1362.	1.4	306

#	Article	IF	Citations
93	Contributions of metalloporphyrin linkers and Zr6 nodes in gas adsorption on a series of bioinspired zirconium-based metal-organic frameworks: A computational study. Journal of Molecular Structure, 2020, 1204, 127559.	1.8	3
94	The adsorption of hydrogen sulfide in calcite pores: A molecular simulation study. Journal of Molecular Liquids, 2020, 299, 112253.	2.3	15
95	Highly value-added utilization of H ₂ S in Na ₂ SO ₃ solution over Ca–CdS nanocrystal photocatalysts. Chemical Communications, 2020, 56, 14227-14230.	2,2	16
96	Hydrogen sulfide removal from biogas using ion-exchanged nanostructured NaA zeolite for fueling solid oxide fuel cells. International Journal of Hydrogen Energy, 2020, 45, 31027-31040.	3.8	16
97	Capture of Sulfur Mustard by Pillar[5]arene: From Host-Guest Complexation to Efficient Adsorption Using Nonporous Adaptive Crystals. IScience, 2020, 23, 101443.	1.9	20
98	Natural gas sweetening using a cellulose triacetate hollow fiber membrane illustrating controlled plasticization benefits. Journal of Membrane Science, 2020, 601, 117910.	4.1	49
99	Impurities in biogas: Analytical strategies, occurrence, effects and removal technologies. Biomass and Bioenergy, 2020, 143, 105878.	2.9	41
100	Dynamic Desulfurization Process over Porous Zn–Cu-Based Materials in a Packed Column: Adsorption Kinetics and Breakthrough Modeling. Energy & Energy & 16552-16559.	2.5	3
101	Colorimetric Dye-Loaded Nanofiber Yarn: Eye-Readable and Weavable Gas Sensing Platform. ACS Nano, 2020, 14, 16907-16918.	7.3	74
102	Sensing of Hydrogen Sulfide Gas in the Raman-Silent Region Based on Gold Nano-Bipyramids (Au NBPs) Encapsulated by Zeolitic Imidazolate Framework-8. ACS Sensors, 2020, 5, 3964-3970.	4.0	37
103	Adsorption of H ₂ S from Hydrocarbon Gas Using Doped Bentonite: A Molecular Simulation Study. ACS Omega, 2020, 5, 19877-19883.	1.6	3
104	Removal of H ₂ S to produce hydrogen in the presence of CO on a transition metal-doped ZSM-12 catalyst: a DFT mechanistic study. Physical Chemistry Chemical Physics, 2020, 22, 19877-19887.	1.3	6
105	Support features govern the properties of the active phase and the performance of bifunctional ZnFe2O4-based H2S adsorbents. Carbon, 2020, 169, 327-337.	5.4	21
106	Liquid-liquid phase-change absorption of hydrogen sulfide by superbase 1,8-diazabicyclo[5.4.0]undec-7-ene and its chemical regeneration. Separation and Purification Technology, 2020, 250, 117244.	3.9	6
107	Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chemical Society Reviews, 2020, 49, 6364-6401.	18.7	784
108	Highly Dispersed Potassium-Based Nanowire Structure for Selectively Capturing Trace Hydrogen Chloride in H ₂ 5/CO ₂ Environments. Energy & Environments. Environme	2.5	4
109	Hydrogen Sulfide (H2S) Removal via MOFs. Materials, 2020, 13, 3640.	1.3	43
110	Ultrasonic-assisted preparation of highly active Co3O4/MCM-41 adsorbent and its desulfurization performance for low H2S concentration gas. RSC Advances, 2020, 10, 30214-30222.	1.7	4

#	Article	IF	CITATIONS
111	Machine Learning-Aided Computational Study of Metalâ€"Organic Frameworks for Sour Gas Sweetening. Journal of Physical Chemistry C, 2020, 124, 27580-27591.	1.5	29
112	Hydrogen sulfide removal from biogas on ZIF-derived nitrogen-doped carbons. Catalysis Today, 2020, 371, 221-221.	2.2	4
113	Molecularly Engineered 6FDAâ€Based Polyimide Membranes for Sour Natural Gas Separation. Angewandte Chemie - International Edition, 2020, 59, 14877-14883.	7.2	69
114	Removal of Hydrogen Sulfide From Various Industrial Gases: A Review of The Most Promising Adsorbing Materials. Catalysts, 2020, 10, 521.	1.6	137
115	One-pot hydrothermal synthesis of ultrafine Pd clusters within Beta zeolite for selective oxidation of alcohols. Green Chemistry, 2020, 22, 4199-4209.	4.6	34
116	Chemistry of H2S over the surface of Common solid sorbents in industrial natural gas desulfurization. Catalysis Today, 2021, 371, 204-220.	2.2	39
117	Molecular simulation on the stability and adsorption properties of choline-based ionic liquids/IRMOF-1 hybrid composite for selective H2S/CO2 capture. Journal of Hazardous Materials, 2020, 399, 123008.	6.5	20
118	Recovery of Hydrogen and Sulfur by Electrolysis of Ionized H ₂ S in an Amine-Containing Organic Electrolyte with Highly Temperature-Dependent Sulfur Solubility. Energy & Dependent Sulfur Solubility. Energy & Depen	2.5	16
119	Molecularly Engineered 6FDAâ€Based Polyimide Membranes for Sour Natural Gas Separation. Angewandte Chemie, 2020, 132, 14987-14993.	1.6	4
120	Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>)-based metal–organic frameworks: crystal structures, Ln(<scp>iii</scp>)-functionalized luminescence and chemical sensing of dichloroaniline as a pesticide biomarker. Journal of Materials Chemistry C, 2020, 8, 9427-9439.	2.7	43
121	Modeling of H ₂ S, CO ₂ + H ₂ S, and CH ₄ + CO ₂ Solubilities in Aqueous Monoethanolamine and Methyldiethanolamine Solutions. Industrial & Description of the Solution of the	1.8	15
122	Effective adsorption of hydrogen sulfide by intercalation of TiO2 and N-doped TiO2 in graphene oxide. Journal of Environmental Chemical Engineering, 2020, 8, 103836.	3.3	35
123	Experimental Bench-Scale Study of Residual Biomass Syngas Desulfurization Using ZnO-Based Adsorbents. Energy & Samp; Fuels, 2020, 34, 3326-3335.	2.5	9
124	Metal–Organic Frameworks against Toxic Chemicals. Chemical Reviews, 2020, 120, 8130-8160.	23.0	406
125	Partially Reversible H ₂ S Adsorption by MFM-300(Sc): Formation of Polysulfides. ACS Applied Materials & Distribution (Sc) (18885-18892).	4.0	34
126	Preparation of Nitrogen-Doped Porous Carbon from Waste Polyurethane Foam by Hydrothermal Carbonization for H ₂ S Adsorption. Industrial & Engineering Chemistry Research, 2020, 59, 7447-7456.	1.8	31
127	Porous Material Screening and Evaluation for Deep Desulfurization of Dry Air. Langmuir, 2020, 36, 2775-2785.	1.6	10
128	Hydrogen Sulfide Removal from Biogas and Sulfur Production by Autotrophic Denitrification in a Gas-Lift Bioreactor. ACS Sustainable Chemistry and Engineering, 2020, 8, 10480-10489.	3.2	13

#	Article	IF	CITATIONS
129	Two-dimensional porous coordination polymers and nano-composites for electrocatalysis and electrically conductive applications. Journal of Materials Chemistry A, 2020, 8, 14356-14383.	5.2	33
130	Preparation and oil adsorption properties of hydrophobic microcrystalline cellulose aerogel. Cellulose, 2020, 27, 7663-7675.	2.4	54
131	On the impact of copper local environment on hydrogen sulfide adsorption within microporous AlPO4-5. Journal of Environmental Chemical Engineering, 2020, 8, 104245.	3.3	6
132	Investigation on the capture performance and influencing factors of ZIF-67 for hydrogen sulfide. Separation and Purification Technology, 2020, 250, 117300.	3.9	21
133	Effect of Humidity on the Sorption of H ₂ S from Multicomponent Acid Gas Streams on Silica-Supported Sterically Hindered and Unhindered Amines. ACS Sustainable Chemistry and Engineering, 2020, 8, 10102-10114.	3.2	22
134	Acid gas adsorption on zeolite <scp>SSZ</scp> â€13: Equilibrium and dynamic behavior for natural gas applications. AICHE Journal, 2020, 66, e16549.	1.8	10
135	One-pot synthesis of core-shell structured SSZ-13 zeolite using aluminum isopropoxide as an aluminum source. Materials Letters, 2020, 266, 127497.	1.3	7
136	Defect creation by benzoic acid in Cu-Based Metalâ^'Organic frameworks for enhancing sulfur capture. Microporous and Mesoporous Materials, 2020, 298, 110070.	2.2	26
137	Post-synthetic metal-ion metathesis in a single-crystal-to-single-crystal process: improving the gas adsorption and separation capacity of an indium-based metal–organic framework. Inorganic Chemistry Frontiers, 2020, 7, 1591-1597.	3.0	9
138	The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 2020, 30, 1909062.	7.8	174
139	Anchoring ultrasmall FeIII-based nanoparticles on silica and titania mesostructures for syngas H2S purification. Microporous and Mesoporous Materials, 2020, 298, 110062.	2.2	14
140	Design of Highly Nitrogen-Doped, Two-Dimensional Hierarchical Porous Carbons with Superior Performance for Selective Capture of CO ₂ and SO ₂ . Energy & amp; Fuels, 2020, 34, 3557-3565.	2.5	10
141	Highly selective absorption separation of H ₂ S and CO ₂ from CH ₄ by novel azoleâ€based protic ionic liquids. AICHE Journal, 2020, 66, e16936.	1.8	105
142	MOF Materials for the Capture of Highly Toxic H ₂ S and SO ₂ . Organometallics, 2020, 39, 883-915.	1.1	122
143	Bifunctional ZnO-MgO/activated carbon adsorbents boost H2S room temperature adsorption and catalytic oxidation. Applied Catalysis B: Environmental, 2020, 266, 118674.	10.8	109
144	Enhancement of Pb(II) Adsorption and Antibacterial Performances of Sodium Alginate/Acrylic Acid Composite Hydrogel via Snowflake-like ZnO Modification. Polymer-Plastics Technology and Materials, 2020, 59, 1010-1022.	0.6	5
145	χ3–borophene-based detection of hydrogen sulfide via gas nanosensors. Chemical Physics Letters, 2020, 741, 137066.	1.2	18
146	Adsorption of SO2 and H2S by sonicated raw eggshell. Materials Today: Proceedings, 2020, 31, 36-42.	0.9	1

#	Article	IF	CITATIONS
147	MOFs-carbon hybrid nanocomposites in environmental protection applications. Environmental Science and Pollution Research, 2020, 27, 16004-16018.	2.7	33
148	Tuning the electrophilicity of vanadium-substituted polyoxometalate based ionic liquids for high-efficiency aerobic oxidative desulfurization. Applied Catalysis B: Environmental, 2020, 271, 118936.	10.8	135
149	ZnFe2O4/activated carbon as a regenerable adsorbent for catalytic removal of H2S from air at room temperature. Chemical Engineering Journal, 2020, 394, 124906.	6.6	86
150	Efficient catalytic elimination of COS and H2S by developing ordered mesoporous carbons with versatile base N sites via a calcination induced self-assembly route. Chemical Engineering Science, 2020, 221, 115714.	1.9	55
151	Functionalization effects on HKUST-1 and HKUST-1/graphene oxide hybrid adsorbents for hydrogen sulfide removal. Journal of Hazardous Materials, 2020, 394, 122565.	6.5	92
152	Improved Predictive Tools for Structural Properties of Metal–Organic Frameworks. Molecules, 2020, 25, 1552.	1.7	7
153	Low-Temperature Highly Efficient and Selective Removal of H ₂ S over Three-Dimensional Zn–Cu-Based Materials in an Anaerobic Environment. Environmental Science & Echnology, 2020, 54, 5964-5972.	4.6	42
154	Photogenerated Charge Separation in a CdSe Nanocluster Encapsulated in a Metal–Organic Framework for Improved Photocatalysis. Journal of Physical Chemistry C, 2020, 124, 8504-8513.	1.5	14
155	Selectivity of SO2 and H2S removal by ethanol-treated calcined eggshell at low temperature. Environmental Science and Pollution Research, 2020, 27, 22065-22080.	2.7	5
156	Zinc ions modified InP quantum dots for enhanced photocatalytic hydrogen evolution from hydrogen sulfide. Journal of Colloid and Interface Science, 2020, 573, 71-77.	5.0	20
157	A review on the removal of hydrogen sulfide from biogas by adsorption using sorbents derived from waste. Reviews in Chemical Engineering, 2021, 37, 407-431.	2.3	23
158	Two-dimensional CaO/carbon heterostructures with unprecedented catalytic performance in room-temperature H2S oxidization. Applied Catalysis B: Environmental, 2021, 280, 119444.	10.8	42
159	A high efficient absorbent for the separation of H2S from low partial pressure coke oven gas. Environmental Science and Pollution Research, 2021, 28, 5822-5832.	2.7	10
160	CFD simulation of CO2 removal from hydrogen rich stream in a microchannel. International Journal of Hydrogen Energy, 2021, 46, 19749-19757.	3.8	18
161	Anoxic biogas biodesulfurization promoting elemental sulfur production in a Continuous Stirred Tank Bioreactor. Journal of Hazardous Materials, 2021, 401, 123785.	6.5	22
162	A highly selective electron affinity facilitated H ₂ S sensor: the marriage of tris(keto-hydrazone) and an organic field-effect transistor. Materials Horizons, 2021, 8, 525-537.	6.4	22
163	CoFe-based layered double hydroxide for high removal capacity of hydrogen sulfide under high humid gas stream. Chemical Engineering Journal, 2021, 416, 127918.	6.6	19
164	IRMOF â€8: Theoretical evaluation of aluminum doping on hydrogen, methane, and hydrogen sulfide adsorption. International Journal of Quantum Chemistry, 2021, 121, e26510.	1.0	6

#	Article	IF	CITATIONS
165	Polyethyleneimine-functionalized mesoporous carbon nanosheets as metal-free catalysts for the selective oxidation of H2S at room temperature. Applied Catalysis B: Environmental, 2021, 283, 119650.	10.8	28
166	A rare 4-fold interpenetrated metal–organic framework constructed from an anionic indium-based node and a cationic dicopper linker. Dalton Transactions, 2021, 50, 6631-6636.	1.6	3
167	A high-throughput screening of metal–organic framework based membranes for biogas upgrading. Faraday Discussions, 2021, 231, 235-257.	1.6	12
168	A Mesoporous Zirconium-Isophthalate Multifunctional Platform. Matter, 2021, 4, 182-194.	5.0	20
169	Capture of toxic gases in MOFs: SO ₂ , H ₂ S, NH ₃ and NO _x . Chemical Science, 2021, 12, 6772-6799.	3.7	79
170	Applications of green solvents in toxic gases removal. , 2021, , 149-201.		4
171	Transition metal-based metal–organic frameworks for environmental applications: a review. Environmental Chemistry Letters, 2021, 19, 1295-1334.	8.3	63
172	Synthesis and characterization of AFe ₂ O ₄ (A: Ni, Co, Mg)–silica nanocomposites and their application for the removal of dibenzothiophene (DBT) by an adsorption process: kinetics, isotherms and experimental design. RSC Advances, 2021, 11, 22661-22676.	1.7	7
173	Process Analysis of Ionic Liquid-Based Blends as H ₂ S Absorbents: Search for Thermodynamic/Kinetic Synergies. ACS Sustainable Chemistry and Engineering, 2021, 9, 2080-2088.	3.2	15
174	Oxidative Dehydrogenation of Propane to Propylene with Soft Oxidants via Heterogeneous Catalysis. ACS Catalysis, 2021, 11, 2182-2234.	5.5	97
175	Air dehumidification with advance adsorptive materials for food drying: A critical assessment for future prospective. Drying Technology, 2021, 39, 1648-1666.	1.7	10
176	Valorization of Raw and Calcined Chicken Eggshell for Sulfur Dioxide and Hydrogen Sulfide Removal at Low Temperature. Catalysts, 2021, 11, 295.	1.6	16
177	A simple model for estimating hydrogen sulfide solubility in aqueous alkanolamines in the high pressure-high gas loading region. Journal of Sulfur Chemistry, 2021, 42, 410-425.	1.0	1
178	Measuring and Modeling the Solubility of Hydrogen Sulfide in rFeCl3/[bmim]Cl. Processes, 2021, 9, 652.	1.3	7
179	Removing of the Sulfur Compounds by Impregnated Polypropylene Fibers with Silver Nanoparticles-Cellulose Derivatives for Air Odor Correction. Membranes, 2021, 11, 256.	1.4	27
180	Evaluating the Robustness of Metal–Organic Frameworks for Synthetic Chemistry. ACS Applied Materials & Chemistry. ACS	4.0	35
181	Hydrogen sulfide removal technology: A focused review on adsorption and catalytic oxidation. Korean Journal of Chemical Engineering, 2021, 38, 674-691.	1.2	31
182	Application of Response Surface Methodology for Preparation of ZnAC2/CAC Adsorbents for Hydrogen Sulfide (H2S) Capture. Catalysts, 2021, 11, 545.	1.6	11

#	ARTICLE	IF	CITATIONS
183	Unveiling the Nature of Room-Temperature O ₂ Activation and O ₂ ^{•–} Enrichment on MgO-Loaded Porous Carbons with Efficient H ₂ S Oxidation. ACS Catalysis, 2021, 11, 5974-5983.	5.5	53
184	Atomistic simulation study of the adsorptive separation of hydrogen sulphide/alkane mixtures on all-silica zeolites. Molecular Simulation, 2022, 48, 31-42.	0.9	1
185	SO ₂ Capture and Oxidation in a Pd₆L₈ Metal–Organic Cage. ACS Applied Materials & Damp; Interfaces, 2021, 13, 18658-18665.	4.0	17
186	Impact of Na+ and Ca2+ Cations on the Adsorption of H2S on Binder-Free LTA Zeolites. Adsorption Science and Technology, 2021, 2021, 1-12.	1.5	11
187	Quaternary nanorod-type BalnSbSe5 semiconductor combined graphene-based conducting polymer (PPy) nanocomposite and highly sensing performance of H2O2 & Description of Materials Science: Materials in Electronics, 2021, 32, 15944-15963.	1.1	5
188	Activated Carbons for Syngas Desulfurization: Evaluating Approaches for Enhancing Low-Temperature H2S Oxidation Rate. ChemEngineering, 2021, 5, 23.	1.0	3
189	Fabrication of Cu(BDC)0.5(BDC-NH2)0.5 metal-organic framework for superior H2S removal at room temperature. Chemical Engineering Journal, 2021, 411, 128536.	6.6	54
190	Low viscosity superbase protic ionic liquids for the highly efficient simultaneous removal of H2S and CO2 from CH4. Separation and Purification Technology, 2021, 263, 118417.	3.9	57
191	Chemical immobilization of amino acids into robust metal–organic framework for efficient SO ₂ removal. AICHE Journal, 2021, 67, e17300.	1.8	16
192	An automated multi-component gas adsorption system (MC GAS). Review of Scientific Instruments, 2021, 92, 054102.	0.6	6
193	Adsorption of Hydrogen Sulfide at Low Temperatures Using an Industrial Molecular Sieve: An Experimental and Theoretical Study. ACS Omega, 2021, 6, 14774-14787.	1.6	29
194	Storage and delivery of H2S by microporous and mesoporous materials. Microporous and Mesoporous Materials, 2021, 320, 111093.	2.2	8
195	Heteroatom-Doped Monolithic Carbocatalysts with Improved Sulfur Selectivity and Impurity Tolerance for H ₂ S Selective Oxidation. ACS Catalysis, 2021, 11, 8591-8604.	5.5	30
196	Penetrant competition and plasticization in membranes: How negatives can be positives in natural gas sweetening. Journal of Membrane Science, 2021, 627, 119201.	4.1	22
197	Computer-Aided Design of New Physical Solvents for Hydrogen Sulfide Absorption. Industrial & Engineering Chemistry Research, 2021, 60, 8588-8596.	1.8	9
198	Polycrystalline zeolite and metal-organic framework membranes for molecular separations. Coordination Chemistry Reviews, 2021, 437, 213794.	9.5	52
199	Sorbents for the Capture of CO ₂ and Other Acid Gases: A Review. Industrial & Samp; Engineering Chemistry Research, 2021, 60, 9313-9346.	1.8	55
200	Effective anodic sulfide removal catalyzed by single nickel atoms on nitrogen-doped graphene with stainless steel substrate. Chemical Engineering Journal, 2022, 427, 130963.	6.6	13

#	Article	IF	CITATIONS
201	Engineering of crystal phase over porous MnO2 with 3D morphology for highly efficient elimination of H2S. Journal of Hazardous Materials, 2021, 411, 125180.	6.5	47
202	Fabrication of coral-like Mn2O3/Fe2O3 nanocomposite for room temperature removal of hydrogen sulfide. Journal of Environmental Chemical Engineering, 2021, 9, 105216.	3.3	25
203	High temperature H2S selective oxidation on a copper-substituted hexaaluminate catalyst: A facile process for treating low concentration acid gas. Chinese Chemical Letters, 2021, , .	4.8	2
204	Simultaneous phosphorus recovery, sulfide removal, and biogas production improvement in electrochemically assisted anaerobic digestion of dairy manure. Science of the Total Environment, 2021, 777, 146226.	3.9	14
205	Efficient removal of methyl orange by nanocomposite aerogel of polyethyleneimine and \hat{l}^2 $\hat{a} \in \mathfrak{E}$ yclodextrin grafted cellulose nanocrystals. Journal of Applied Polymer Science, 2021, 138, 51481.	1.3	8
206	Fabrication of Zn-MOF/ZnO nanocomposites for room temperature H2S removal: Adsorption, regeneration, and mechanism. Chemosphere, 2021, 274, 129789.	4.2	61
207	Removal of Acidic-Sulfur-Containing Components from Gasoline Fractions and Their Simulated Analogues Using Silica Gel Modified with Transition-Metal Carboxylates. ACS Omega, 2021, 6, 23181-23190.	1.6	5
208	Microstructure Characterization and Oil Absorption Performance of Superhydrophobic Cotton Cellulose Aerogel. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 538-545.	0.4	7
209	High-Temperature Selective Oxidation of H $<$ sub $>$ 2 $<$ /sub $>$ S to Elemental Sulfur on a \hat{i}^2 -SiC-Supported Cerium Catalyst. Industrial & Engineering Chemistry Research, 2021, 60, 12798-12810.	1.8	9
210	Natural gas sweetening using TEGMC polyimide hollow fiber membranes. Journal of Membrane Science, 2021, 632, 119361.	4.1	15
211	Chemical Transformation of H ₂ S within the Pores of Metal–Organic Frameworks: Formation of Polysulfides. Chemistry of Materials, 2021, 33, 6269-6276.	3.2	21
212	Highly sensitive, selective, and rapid response colorimetric chemosensor for naked eye detection of hydrogen sulfide gas under versatile conditions: Solution, thin-film, and wearable fabric. Sensors and Actuators B: Chemical, 2021, 341, 130013.	4.0	17
213	State of the art and prospects of chemically and thermally aggressive membrane gas separations: Insights from polymer science. Polymer, 2021, 229, 123988.	1.8	18
214	Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nature Reviews Materials, 2021, 6, 1156-1174.	23.3	209
215	Novel Cellulose Triacetate (CTA)/Cellulose Diacetate (CDA) Blend Membranes Enhanced by Amine Functionalized ZIF-8 for CO2 Separation. Polymers, 2021, 13, 2946.	2.0	14
216	Influence of H2S on the general corrosion and sulfide stress cracking of pipelines steels for supercritical CO2 transportation. Corrosion Science, 2021, 190, 109639.	3.0	20
217	Highâ€throughput computational screening of porous polymer networks for natural gas sweetening based on a neural network. AICHE Journal, 2022, 68, e17433.	1.8	11
218	Segmented Polyurethanes and Thermoplastic Elastomers from Elemental Sulfur with Enhanced Thermomechanical Properties and Flame Retardancy. Angewandte Chemie, 2021, 133, 23082.	1.6	6

#	Article	IF	CITATIONS
219	Effective removal of hydrogen sulfide using Mn-based recovered oxides from recycled batteries. Chemical Engineering Journal, 2021, 419, 129669.	6.6	7
220	High-Capacity Regenerable H2S Sorbent for Reducing Sulfur Emissions. Industrial & Engineering Chemistry Research, 0, , .	1.8	6
221	Segmented Polyurethanes and Thermoplastic Elastomers from Elemental Sulfur with Enhanced Thermomechanical Properties and Flame Retardancy. Angewandte Chemie - International Edition, 2021, 60, 22900-22907.	7.2	44
222	Printed Chemiresistive In ₂ O ₃ Nanoparticle-Based Sensors with ppb Detection of H ₂ S Gas for Food Packaging. ACS Applied Nano Materials, 2021, 4, 9508-9517.	2.4	23
223	Discovering the Interference of Hydrogen Sulfide on Polyethylenimine-Functionalized Porous Resin for Biogas Upgrading via CO ₂ Adsorption. ACS Sustainable Chemistry and Engineering, 2021, 9, 14722-14734.	3.2	7
224	In situ construction of an immobilized b-oriented titanium silicalite spherical molecular sieve membrane. Applied Surface Science, 2021, 563, 150275.	3.1	7
225	H2 and H2S separation by adsorption using graphene and zinc oxide sheets: Molecular dynamic simulations. Physica B: Condensed Matter, 2021, 619, 413175.	1.3	6
226	Iron-organic frameworks-derived iron oxide adsorbents for hydrogen sulfide removal at room temperature. Journal of Environmental Chemical Engineering, 2021, 9, 106195.	3.3	17
227	Tuning the structure of pyridinolate-based functional ionic liquids for highly efficient SO2 absorption. Fuel, 2021, 303, 121311.	3.4	21
228	Novel insight into composite packing of copper modified adsorbents for synergistically capturing H2S&HCl in low-temperature anaerobic environment. Separation and Purification Technology, 2021, 275, 119222.	3.9	0
229	The effect of ZnFe2O4/activated carbon adsorbent photocatalytic activity on gas-phase desulfurization. Chemical Engineering Journal, 2021, 423, 130255.	6.6	20
230	Analysis and optimization for chemical absorption of H2S/CO2 system: Applied in a multiple gas feeds sweetening process. Separation and Purification Technology, 2021, 276, 119301.	3.9	12
231	Cu-Zn oxides nanoparticles supported on SBA-15 zeolite as a novel adsorbent for simultaneous removal of H2S and Hg0 in natural gas. Chemical Engineering Journal, 2021, 426, 131286.	6.6	9
232	Porous materials for low-temperature H2S-removal in fuel cell applications. Separation and Purification Technology, 2021, 277, 119426.	3.9	7
233	1-ethyl-3-methylimidazolium chloride plus imidazole deep eutectic solvents as physical solvents for remarkable separation of H2S from CO2. Separation and Purification Technology, 2021, 276, 119313.	3.9	38
234	Synergistic decomposition of H2S into H2 by Ni3S2 over ZrO2 support via a sulfur looping scheme with CO2 enabled carrier regeneration. Chemical Engineering Journal, 2021, 426, 131815.	6.6	13
235	Understanding the fundamental interaction mechanism of hazardous gases and imidazolium based ionic liquids for efficient gas adsorption. Chemical Engineering Science, 2022, 247, 117031.	1.9	6
236	Metal-organic framework-derived NaMnxOy hexagonal microsheets for superior adsorptive-oxidative removal of hydrogen sulfide in ambient conditions. Chemical Engineering Journal, 2022, 427, 130909.	6.6	14

#	ARTICLE	IF	CITATIONS
237	A solid thermal and fast synthesis of MgAl-hydrotalcite nanosheets and their applications in the catalytic elimination of carbonyl sulfide and hydrogen sulfide. New Journal of Chemistry, 2021, 45, 3535-3545.	1.4	5
238	Recent advances in the capture and abatement of toxic gases and vapors by metal–organic frameworks. Materials Chemistry Frontiers, 2021, 5, 5970-6013.	3.2	44
239	A novel one-step synthesis of Ce/Mn/Fe mixed metal oxide nanocomposites for oxidative removal of hydrogen sulfide at room temperature. RSC Advances, 2021, 11, 26739-26749.	1.7	10
240	Biocompatible metal–organic frameworks for the storage and therapeutic delivery of hydrogen sulfide. Chemical Science, 2021, 12, 7848-7857.	3.7	21
241	Chemisorption of hydrogen sulfide over copper-based metal–organic frameworks: methanol and UV-assisted regeneration. RSC Advances, 2021, 11, 4890-4900.	1.7	49
242	Hydrogen sulfide removal from natural gas using membrane technology: a review. Journal of Materials Chemistry A, 2021, 9, 20211-20240.	5. 2	37
243	Development of a piperazinyl-NBD-based fluorescent probe and its dual-channel detection for hydrogen sulfide. Analyst, The, 2021, 146, 2138-2143.	1.7	16
244	Mesoporous silica "plated―copper hydroxides/oxides heterostructures as superior regenerable sorbents for low temperature H2S removal. Chemical Engineering Journal, 2020, 398, 125585.	6.6	20
245	Crystal structure, Hirshfeld surface, DFT calculations and photophysical properties of 2,4,5-tris(4-pyridyl)imidazole hydrogen chloride. Journal of Molecular Structure, 2020, 1213, 128175.	1.8	4
246	Novel Porous Organic Polymer for the Concurrent and Selective Removal of Hydrogen Sulfide and Carbon Dioxide from Natural Gas Streams. ACS Applied Materials & Samp; Interfaces, 2020, 12, 47984-47992.	4.0	29
247	Removal of H2S by vermicompost biofilter and analysis on bacterial community. Open Chemistry, 2020, 18, 720-731.	1.0	2
248	SAPO-34 zeotype membrane for gas sweetening. Reviews in Chemical Engineering, 2022, 38, 431-450.	2.3	12
249	A New Generalized Empirical Correlation for Predicting Methane Hydrate Equilibrium Conditions in Pure Water. Industrial & Description (2021, 60, 3474-3483).	1.8	13
250	New Solvents for CO2 and H2S Removal from Gaseous Streams. Energies, 2021, 14, 6687.	1.6	23
251	Selective Electrochemical Regeneration of Aqueous Amine Solutions to Capture CO2 and to Convert H2S into Hydrogen and Solid Sulfur. Applied Sciences (Switzerland), 2021, 11, 9851.	1.3	3
252	Research Progress of Hydrogen Sulfide Adsorption Based on MOFs. ChemistrySelect, 2021, 6, 9960-9968.	0.7	7
253	Ionic liquid screening for desulfurization of coke oven gas based on COSMO-SAC model and process simulation. Chemical Engineering Research and Design, 2021, 176, 146-161.	2.7	7
254	Diffusive Formation of Hollow Mesoporous Silica Shells from Core–Shell Composites: Insights from the Hydrogen Sulfide Capture Cycle of CuO@mSiO ₂ Nanoparticles. Langmuir, 2020, 36, 6540-6549.	1.6	6

#	Article	IF	Citations
255	N-doped porous carbocatalyst engineering via modulating the crystalline size of ZIF-8 for continuous H2S selective oxidation. Applied Materials Today, 2021, 25, 101228.	2.3	9
256	Chitosan Biocomposites for the Adsorption and Release of H2S. Materials, 2021, 14, 6701.	1.3	6
257	Preparation and evaluation of active Cu-Zn-Al mixed oxides to CS2 removal for CO2 ultra-purification. Journal of Hazardous Materials, 2020, 398, 122737.	6.5	4
258	Effect of contamination on processes in the natural gas industry. , 2022, , 225-316.		1
259	Development and Application of a Novel Hydrogen Sulfide Scavenger for Oilfield Applications., 2021,,.		1
260	Synthesis, modifications and applications of MILs Metal-organic frameworks for environmental remediation: The cutting-edge review. Science of the Total Environment, 2022, 810, 152279.	3.9	28
261	H2S removal by copper enriched porous carbon cuboids. Carbon Trends, 2022, 7, 100145.	1.4	2
262	Hierarchical Porous MOF-199 Regulated by PVP for Desulfurization at Ambient Conditions. SSRN Electronic Journal, $0, , .$	0.4	0
263	Simulation-Based Optimization of a Multiple Gas Feed Sweetening Process. ACS Omega, 2022, 7, 2690-2705.	1.6	6
264	Effect of amine type on acidic toxic gas adsorption at ambient conditions on modified CuBTC. Journal of Environmental Chemical Engineering, 2022, 10, 107261.	3.3	7
265	Efficient production of hydrogen from H ₂ S <i>via</i> lectrolysis using a CoFeS ₂ catalyst. Journal of Materials Chemistry A, 2022, 10, 7048-7057.	5.2	24
266	A thermally activated double oxidants advanced oxidation system for gaseous H2S removal: Mechanism and kinetics. Chemical Engineering Journal, 2022, 434, 134430.	6.6	26
267	Rotten Eggs Revaluated: Ionic Liquids and Deep Eutectic Solvents for Removal and Utilization of Hydrogen Sulfide. Industrial & Deep Eutectic Solvents for Removal and Utilization of Hydrogen Sulfide. Industrial & Deep Eutectic Solvents for Removal and Utilization of Hydrogen Sulfide.	1.8	23
268	Opening the Toolbox: 18 Experimental Techniques for Measurement of Mixed Gas Adsorption. Industrial & December 18 Industr	1.8	28
269	Advances, challenges, and perspectives of biogas cleaning, upgrading, and utilisation. Fuel, 2022, 317, 123085.	3.4	63
270	Insights on Cryogenic Distillation Technology for Simultaneous CO2 and H2S Removal for Sour Gas Fields. Molecules, 2022, 27, 1424.	1.7	24
271	Bimetallic Metal–Organic Frameworks MIL-53(<i>x</i> Al– <i>y</i> Fe) as Efficient Catalysts for H ₂ S Selective Oxidation. Inorganic Chemistry, 2022, 61, 3774-3784.	1.9	12
272	Ozone-assisted detemplation of SSZ-13 zeolite at low temperature. Microporous and Mesoporous Materials, 2022, 334, 111780.	2.2	2

#	Article	IF	Citations
273	Anion Regulates scu Topological Porous Coordination Polymers into the Acetylene Trap. ACS Applied Materials & Samp; Interfaces, 2022, 14, 13550-13559.	4.0	14
274	Biogas purification by adsorption of hydrogen sulphide on NaX and Ag-exchanged NaX zeolites. Biomass and Bioenergy, 2022, 159, 106417.	2.9	11
275	Highly Efficient Photocatalytic Degradation of Hydrogen Sulfide in the Gas Phase Using Anatase/TiO ₂ (B) Nanotubes. ACS Omega, 2022, 7, 11946-11955.	1.6	15
276	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	2.2	5
277	Revealing the Structure–Interaction–Dissolubility Relationships through Computational Investigation Coupled with Solubility Measurement: Toward Solvent Design for Organosulfide Capture. Industrial & Design Engineering Chemistry Research, 2022, 61, 7183-7192.	1.8	7
278	Efficient and Simple Strategy to Obtain Ordered Mesoporous Carbons with Abundant Structural Base N Sites toward CO ₂ Selective Capture and Catalytic Conversion. ACS Sustainable Chemistry and Engineering, 2022, 10, 5175-5182.	3.2	5
279	Membrane and Electrochemical Based Technologies for the Decontamination of Exploitable Streams Produced by Thermochemical Processing of Contaminated Biomass. Energies, 2022, 15, 2683.	1.6	2
280	Performance of Multilayer Composite Hollow Membrane in Separation of CO2 from CH4 in Mixed Gas Conditions. Polymers, 2022, 14, 1480.	2.0	2
281	Self-activated, urea modified microporous carbon cryogels for high-performance CO2 capture and separation. Carbon, 2022, 192, 14-29.	5.4	47
282	Effect of hierarchical porous MOF-199 regulated by PVP on their ambient desulfurization performance. Fuel, 2022, 319, 123845.	3.4	16
283	Copper supported on activated carbon from hydrochar of pomelo peel for efficient H2S removal at room temperature: Role of copper valance, humidity and oxygen. Fuel, 2022, 319, 123774.	3.4	16
284	Improving the measurement of total dissolved sulfide in natural waters: A new on-site flow injection analysis method. Science of the Total Environment, 2022, 829, 154594.	3.9	6
285	Adsorption of H ₂ S from Thermal Water Using Clinoptilolite. IOP Conference Series: Earth and Environmental Science, 2021, 906, 012047.	0.2	0
286	Effect of a Support on the Properties of Zinc Oxide Based Sorbents. Nanomaterials, 2022, 12, 89.	1.9	1
287	Regenerable Sorbent Pellets for the Removal of Dilute H ₂ S from Claus Process Tail Gas. Industrial & Dilute H ₂ S from Claus Process Tail Gas.	1.8	8
288	An investigation of some H $<$ sub $>$ 2 $<$ /sub $>$ S thermodynamical properties at the water interface under pressurised conditions through molecular dynamics. Molecular Physics, 0 , , .	0.8	4
289	Polymerizations with Elemental Sulfur: From Petroleum Refining to Polymeric Materials. Journal of the American Chemical Society, 2022, 144, 5-22.	6.6	91
290	Fe-oxide/Al2O3 for the enhanced activity of H2S decomposition under realistic conditions: Mechanistic studies by in-situ DRIFTS and XPS. Chemical Engineering Journal, 2022, 443, 136459.	6.6	18

#	Article	IF	CITATIONS
291	Role of Bimetallic Solutions in the Growth and Functionality of Cu-BTC Metal–Organic Framework. Materials, 2022, 15, 2804.	1.3	3
292	Simulation of Sorption Purification of Hydrocarbon Fuel from Sulfur Compounds with Transition-Metal Pivalates. Theoretical Foundations of Chemical Engineering, 2022, 56, 84-91.	0.2	0
293	Acid Gas Removal by Superhigh Silica ZSM-5: Adsorption Isotherms of Hydrogen Sulfide, Carbon Dioxide, Methane, and Nitrogen. Industrial & Engineering Chemistry Research, 2022, 61, 6600-6610.	1.8	4
294	Development of microwave-assisted nitrogen-modified activated carbon for efficient biogas desulfurization: a practical approach. Environmental Science and Pollution Research, 2023, 30, 17129-17148.	2.7	1
295	Machine-learning-guided reaction kinetics prediction towards solvent identification for chemical absorption of carbonyl sulfide. Chemical Engineering Journal, 2022, 444, 136662.	6.6	8
296	Pure hydrogen and sulfur production from H ₂ S by an electrochemical approach using a NiCu–MoS ₂ catalyst. Journal of Materials Chemistry A, 2022, 10, 13031-13041.	5.2	13
297	Synthesis, Crystal Structures, H ₂ S, and Iodine Uptake Properties of Four New Coordination Polymers Constructed from Group 12 Transition Metal Ions and a Bidentate Sulfur Donor Ligand. Crystal Growth and Design, 2022, 22, 4343-4356.	1.4	6
298	Environmental Applications of Metalâ^'Organic Frameworks and Derivatives: Recent Advances and Challenges. ACS Symposium Series, 0, , 257-298.	0.5	1
299	Optimizing Triple Phase Boundary Âln Ysz BasedÂElectrochemicalÂGas Sensor ForÂSensing Ppb-LevelÂH2s at Low-Temperature. SSRN Electronic Journal, 0, , .	0.4	0
300	Hydrogen sulfide capture and removal technologies: A comprehensive review of recent developments and emerging trends. Separation and Purification Technology, 2022, 298, 121448.	3.9	70
301	Review of Adsorptive Desulfurization of Liquid Fuels and Regeneration Attempts. Industrial & Engineering Chemistry Research, 2022, 61, 8595-8606.	1.8	12
302	Exploring covalent organic frameworks for H2S+CO2 separation from natural gas using efficient computational approaches. Journal of CO2 Utilization, 2022, 62, 102077.	3.3	4
303	Empowering carbon materials robust gas desulfurization capability through an inclusion of active inorganic phases: A review of recent approaches. Journal of Hazardous Materials, 2022, 437, 129414.	6.5	11
304	Visible-Light-Driven photocatalytic oxidation of H2S by Boron-doped TiO2/LDH Heterojunction: Synthesis, performance, and reaction mechanism. Chemical Engineering Journal, 2022, 448, 137607.	6.6	25
305	Fabrication and Application of Novel Core-Shell Mil- $101(Cr)$ @Uio- $66(Zr)$ Nanocrystals for Highly Selective Separation of H2s and Co2. SSRN Electronic Journal, 0, , .	0.4	1
306	Selfâ€lubrication and tribological properties of <scp>SBA</scp> â€15 as smart microcontainer and resin composites. Polymer Composites, 2022, 43, 7967-7976.	2.3	1
307	A comprehensive mechanistic analysis of silver dissolution with the monoethanolamine-copper-ammonium system and the development of a novel leaching technology. Minerals Engineering, 2022, 186, 107753.	1.8	2
308	Stable Porous Organic Polymers Used for Reversible Adsorption and Efficient Separation of Trace SO ₂ . ACS Macro Letters, 2022, 11, 999-1007.	2.3	9

#	Article	IF	CITATIONS
309	Recent Attempts on the Removal of H2S from Various Gas Mixtures Using Zeolites and Waste-Based Adsorbents. Energies, 2022, 15, 5391.	1.6	8
310	MOFâ€Based Chemiresistive Gas Sensors: Toward New Functionalities. Advanced Materials, 2023, 35, .	11.1	59
311	Chemical and physical systems for sour gas removal: An overview from reaction mechanisms to industrial implications. Journal of Natural Gas Science and Engineering, 2022, 106, 104755.	2.1	5
312	Further Use of Spent Co-Based Macroporous Adsorbent for Low-Temperature Hydrodesulfurization. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 4549-4558.	1.9	1
313	Tuning the redox activity of polyoxometalate by central atom for high-efficient desulfurization. Journal of Hazardous Materials, 2022, 440, 129710.	6.5	1
314	Enhanced electro-activity of nickel phosphide by pre-treatment for efficient hydrogen sulfide elimination. Applied Surface Science, 2023, 607, 155035.	3.1	1
315	A state-of-the-art review on capture and separation of hazardous hydrogen sulfide (H2S): Recent advances, challenges and outlook. Environmental Pollution, 2022, 314, 120219.	3.7	46
316	Synergistic conversion of acid gases (H2S and CO2) to valuable chemicals: Carbonyl sulfide synthesis over vacancy-defective CoMo sulfide catalysts. Applied Catalysis B: Environmental, 2022, 319, 121912.	10.8	10
317	Fabrication and application of novel core–shell MIL-101(Cr)@UiO-66(Zr) nanocrystals for highly selective separation of H2S and CO2. Chemical Engineering Journal, 2023, 452, 139001.	6.6	17
318	Computer Simulations of MOF Systems: Key Applications. Engineering Materials, 2022, , 231-253.	0.3	0
319	A cooperative adsorbent for the switch-like capture of carbon dioxide from crude natural gas. Chemical Science, 2022, 13, 11772-11784.	3.7	6
320	Anti-corrosion MgO nanoparticle-equipped graphene oxide nanosheet for efficient room-temperature H ₂ S removal. Journal of Materials Chemistry A, 2022, 10, 18308-18321.	5.2	13
321	Insights into H2S-absorption and oxidation-regeneration behavior of Ni-doped ZnO-based sorbents supported on SBA-15 for desulfurization of hot coal gas. Fuel, 2023, 332, 126052.	3.4	11
322	Review of Hydrogen Sulfide Removal from Various Industrial Gases by Zeolites. Separations, 2022, 9, 229.	1.1	9
323	Overview of the Recent Advancements in Graphene-Based H ₂ S Sensors. ACS Applied Nano Materials, 2022, 5, 12300-12319.	2.4	11
324	Tuning Interaction and Diffusion for Dimethyl Disulfide Adsorption on Cu-BTC Frameworks via Low Transition-Metal Doping. Industrial & Depingering Chemistry Research, 2022, 61, 14881-14890.	1.8	4
325	Ternary metal oxide nanocomposite for room temperature H2S and SO2 gas removal in wet conditions. Scientific Reports, 2022, 12, .	1.6	7
326	Probing the origin and stability of bivalency in copper based porous coordination network and its application for H2S gas capture. Scientific Reports, 2022, 12, .	1.6	8

#	Article	IF	CITATIONS
328	Dynamic weak coordination bonding of chlorocarbons enhances the catalytic performance of a metal–organic framework material. Journal of Materials Chemistry A, 2022, 10, 23499-23508.	5.2	17
329	Facilitated transport membranes for CO2/CH4 separation - State of the art. , 2022, 2, 100040.		5
330	Permeation of Ternary Mixture Containing H2S, CO2 and CH4 in Aquivion® Perfluorosulfonic Acid (PFSA) Ionomer Membranes. Membranes, 2022, 12, 1034.	1.4	2
331	Fabrication of Na _{0.4} MnO ₂ Microrods for Room-Temperature Oxidation of Sulfurous Gases. ACS Omega, 2022, 7, 37774-37781.	1.6	7
332	Towards improving H2S catalytic oxidation on porous carbon materials at room temperature: A review of governing and influencing factors, recent advances, mechanisms and perspectives. Applied Catalysis B: Environmental, 2023, 323, 122133.	10.8	26
333	H2S gas adsorption study using copper impregnated on KOH activated carbon from coffee residue for indoor air purification. Journal of Environmental Chemical Engineering, 2022, 10, 108797.	3.3	16
334	Chemical scavenging of hydrogen sulfide and mercaptans. , 2023, , 1-35.		0
335	Understanding the Effective Capture of H ₂ S/CO ₂ from Natural Gas Using lonic Liquid@MOF Composites. Journal of Physical Chemistry C, 2022, 126, 19872-19882.	1.5	6
336	Investigation of the Adsorption of Hydrogen Sulfide on Faujasite Zeolites Focusing on the Influence of Cations. ACS Omega, 2022, 7, 43665-43677.	1.6	2
337	Synthesis of novel and tunable Micro-Mesoporous carbon nitrides for Ultra-High CO2 and H2S capture. Chemical Engineering Journal, 2023, 456, 140973.	6.6	23
338	Selective adsorption of sulphur dioxide and hydrogen sulphide by metal–organic frameworks. Physical Chemistry Chemical Physics, 2023, 25, 954-965.	1.3	3
339	Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid. Chinese Journal of Chemical Engineering, 2023, 59, 210-221.	1.7	0
340	Review of high temperature H2S removal from syngas: Perspectives on downstream process integration. Chemical Engineering and Processing: Process Intensification, 2023, 183, 109258.	1.8	5
341	Enhanced H2S removal from diverse fuels by a coupled absorption and biological process uses CO2 as carbon resource for microbial ecosystem. Separation and Purification Technology, 2023, 310, 123182.	3.9	11
342	Sodium/lithium 3d transition metalates for chemisorption of gaseous pollutants: a review. Materials Today Chemistry, 2023, 27, 101329.	1.7	2
343	A confined MoN2@N-rich carbon catalyst derived from \hat{l}^2 -cyclodextrin encapsulating phosphomolybdic acid for oxidative removal of H2S. Chemical Engineering Journal, 2023, 457, 141389.	6.6	5
344	Evaluation of the H2S and NO adsorption and release capacity of PEG-zeolites and PEG-titanosilicates composites. Microporous and Mesoporous Materials, 2023, 350, 112432.	2.2	2
345	Screening activated carbons produced from recycled petroleum coke for acid gas separation. Carbon Trends, 2023, 10, 100243.	1.4	2

#	Article	IF	Citations
346	Experimental study on removal of mercaptans from gas streams by 1-butyl-3-methyl-imidazolyl alanine. Fuel Processing Technology, 2023, 242, 107645.	3.7	3
347	Removal of H2S from simulated blast furnace gas by adsorption over metal-modified 13X zeolite. Fuel, 2023, 338, 127261.	3.4	8
348	A Zn(II)–Metal–Organic Framework Based on 4-(4-Carboxy phenoxy) Phthalate Acid as Luminescent Sensor for Detection of Acetone and Tetracycline. Molecules, 2023, 28, 999.	1.7	2
349	Zeolites and molecular frameworks for adsorption-based syngas purification. , 2023, , 203-228.		O
350	A water-soluble NIR fluorescent probe capable of rapid response and selective detection of hydrogen sulfide in food samples and living cells. Talanta, 2023, 256, 124303.	2.9	10
351	Novel preparation method of fullerene and its ability to detect H2S and NO2 gases. Results in Chemistry, 2023, 5, 100924.	0.9	7
352	Current Status and Future Directions in Environmental Stability of Sulfide Solid-State Electrolytes for All-Solid-State Batteries. Energy Material Advances, 2023, 4, .	4.7	6
353	Sustainable design of co-doped ordered mesoporous carbons as efficient and long-lived catalysts for H2S reutilization. Chemical Engineering Science, 2023, 269, 118483.	1.9	7
354	Density, viscosity, and H2S solubility of N-butylmorpholine bromide iron-based ionic liquids. Journal of Molecular Liquids, 2023, 378, 121592.	2.3	4
355	One-step synthesis of flower-like MgO/Carbon materials for efficient H2S oxidation at room temperature. Chemical Engineering Journal, 2023, 465, 142871.	6.6	9
356	Selective removal of H2S over CO2 in a membrane gas–liquid microdisperison microreactor. Separation and Purification Technology, 2023, 314, 123600.	3.9	3
357	Synergistic effect of bimetal in isoreticular Zn–Cu–1,3,5-benzenetricarboxylate on room temperature gaseous sulfides removal. Journal of Colloid and Interface Science, 2023, 641, 707-718.	5.0	5
358	Aromatic volatile organic compounds absorption with phenylâ€based deep eutectic solvents: A molecular thermodynamics and dynamics study. AICHE Journal, 2023, 69, .	1.8	11
359	Effect of calcination temperature on sensing performance of YSZ based electrochemical H2S gas sensor with a NiFe2O4 electrode. Sensors and Actuators A: Physical, 2023, 353, 114204.	2.0	5
360	Density, Viscosity, and Hydrogen Sulfide Solubility of the Triethylamine Hydrochloride Ferric Chloride Ionic Liquid. Journal of Chemical & Engineering Data, 2023, 68, 612-626.	1.0	3
361	Cuâ€MOFâ€808 as a Sensing Material for Gaseous Hydrogen Sulfide. ChemPlusChem, 2023, 88, .	1.3	0
362	Copolyimide asymmetric hollow fiber membranes for <scp>highâ€pressure</scp> natural gas purification. Journal of Applied Polymer Science, 2023, 140, .	1.3	5
363	Interpretable Machine Learning Model for Predicting Interaction Energies between Dimethyl Sulfide and Potential Absorbing Solvents. Industrial & Engineering Chemistry Research, 2023, 62, 5274-5285.	1.8	2

#	Article	IF	CITATIONS
364	Hydrogen Sulphide Sequestration with Metallic Ions in Acidic Media Based on Chitosan/sEPDM/Polypropylene Composites Hollow Fiber Membranes System. Membranes, 2023, 13, 350.	1.4	1
380	Biomethanation for Energy Security and Sustainable Development. Energy, Environment, and Sustainability, 2023, , 195-217.	0.6	0
381	Ionic Liquids Functionalized MOFs for Adsorption. Chemical Reviews, 2023, 123, 10432-10467.	23.0	31
401	Graphene-Based Materials for the Remediation of Hydrogen Sulfide Gas. Carbon Nanostructures, 2023, , 151-167.	0.1	0
420	Catalytic processes for fuels production from CO2-rich streams: Opportunities for industrial flue gases upgrading., 2024,, 93-118.		0
426	Porous metal structures, metal oxides, and silica-based sorbents for natural gas sweetening. , 2024, , 359-394.		0
427	Natural gas sweetening by solvents modified with nanoparticles. , 2024, , 135-152.		0